Structure–Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide

New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 10; pp. 5094 - 5102
Main Authors Salter-Blanc, Alexandra J, Bylaska, Eric J, Lyon, Molly A, Ness, Stuart C, Tratnyek, Paul G
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 17.05.2016
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a, E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).
AbstractList New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a, E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory).
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett $\sigma$ constants ($\sigma^-$), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa), EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett s constants ( sigma super( -)), pK sub( a)s of the amines, and energies of the highest occupied molecular orbital (E sub( HOMO))] to specific for the likely rate-limiting step [one-electron oxidation potentials (E sub( ox))]. The selection of calculated descriptors (pK sub( a), E sub( HOMO), and E sub( ox)) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E sub( HOMO) (calculated with a modest level of theory).
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO₂) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pKₐs of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eₒₓ)]. The selection of calculated descriptors (pKₐ, EHOMO, and Eₒₓ) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO₂ to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory).
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett s constants (σ^sup -^), pK^sub a^s of the amines, and energies of the highest occupied molecular orbital (E^sub HOMO^)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E^sub ox^)]. The selection of calculated descriptors (pK^sub a^, E^sub HOMO^, and E^sub ox^) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E^sub HOMO^ (calculated with a modest level of theory).
Author Salter-Blanc, Alexandra J
Bylaska, Eric J
Lyon, Molly A
Tratnyek, Paul G
Ness, Stuart C
AuthorAffiliation Oregon Health & Science University
William R. Wiley Environmental Molecular Sciences Laboratory
Institute of Environmental Health
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Oregon Health & Science University
– name: William R. Wiley Environmental Molecular Sciences Laboratory
– name: Pacific Northwest National Laboratory
– name: Institute of Environmental Health
Author_xml – sequence: 1
  givenname: Alexandra J
  surname: Salter-Blanc
  fullname: Salter-Blanc, Alexandra J
– sequence: 2
  givenname: Eric J
  surname: Bylaska
  fullname: Bylaska, Eric J
– sequence: 3
  givenname: Molly A
  surname: Lyon
  fullname: Lyon, Molly A
– sequence: 4
  givenname: Stuart C
  surname: Ness
  fullname: Ness, Stuart C
– sequence: 5
  givenname: Paul G
  surname: Tratnyek
  fullname: Tratnyek, Paul G
  email: tratnyek@ohsu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27074054$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1406818$$D View this record in Osti.gov
BookMark eNqFkV1rFDEUhoNU7LZ67Z0EvRFktiefM3O51E-oFKqCNxJmMmdsysxkm2TEvfM_-A_9JWa7W4RCkVwE8j7vyTnnPSIHk5-QkKcMlgw4O2lsXGJMS90C1Fw-IAumOBSqUuyALACYKGqhvx6SoxivAIALqB6RQ15CKUHJBfn2KYXZpjngn1-_Vza5Hy5t6AUOTXJ-ipduHWnvA71oEkbqe7oKfsyapavRTUjPf7ruBqXthn5spu_NhBHpa-ezgI_Jw74ZIj7Z38fky9s3n0_fF2fn7z6crs6KRtYqFaqVva5BqrKrLe9ZWYGsUXe8g5IrxVpuG9EJ3alaWSlaphBQl5ifsWuVFMfk-a6uj8mZaF1Ce2n9NKFNhknQFasy9HIHrYO_nvPWzOiixWHILfs5Gp73I6CEuvwvyiqodCXzyeiLO-iVn8OUpzWsrIXQXMttg8_21NyO2Jl1cGMTNuY2iAyoHWCDjzFgb_IQN4tNoXGDYWC2gZscuNl-sg88-07u-G5L3-94tXNshX-93kP_BTFbvMg
CODEN ESTHAG
CitedBy_id crossref_primary_10_1021_acsestengg_2c00245
crossref_primary_10_1071_EN17221
crossref_primary_10_1016_j_ijbiomac_2022_06_124
crossref_primary_10_1016_j_biortech_2018_01_029
crossref_primary_10_1038_s41598_025_85875_6
crossref_primary_10_1039_D4CP02342K
crossref_primary_10_1016_j_watres_2021_117513
crossref_primary_10_1016_j_cej_2022_136998
crossref_primary_10_1021_acs_est_1c03758
crossref_primary_10_1039_C9EM00557A
crossref_primary_10_1016_j_jhazmat_2022_130108
crossref_primary_10_1016_j_chemolab_2021_104384
crossref_primary_10_1039_C9EW00859D
crossref_primary_10_1016_j_cej_2019_03_203
crossref_primary_10_1016_j_apcatb_2019_118232
crossref_primary_10_1016_j_chemosphere_2018_03_020
crossref_primary_10_1016_j_chemosphere_2017_01_014
crossref_primary_10_1016_j_cej_2024_151156
crossref_primary_10_1016_j_tiv_2019_03_017
crossref_primary_10_1021_acs_est_7b05101
crossref_primary_10_1016_j_jhazmat_2024_136911
crossref_primary_10_1021_acs_est_9b06208
crossref_primary_10_1021_acs_est_7b02271
crossref_primary_10_1016_j_jhazmat_2024_135740
crossref_primary_10_1021_acs_jpca_9b07766
crossref_primary_10_1016_j_jece_2020_104226
crossref_primary_10_1021_acs_est_9b05475
crossref_primary_10_1021_acs_est_3c08273
crossref_primary_10_1021_acs_est_9b04542
crossref_primary_10_1016_j_cej_2023_145521
crossref_primary_10_1021_acs_est_1c03972
crossref_primary_10_1016_j_cej_2017_08_116
crossref_primary_10_1021_acs_estlett_9b00056
crossref_primary_10_1016_j_watres_2018_04_062
crossref_primary_10_1016_j_ijbiomac_2024_135810
crossref_primary_10_1039_C6EM00694A
crossref_primary_10_1007_s11274_021_03067_6
crossref_primary_10_1021_acs_est_3c05495
crossref_primary_10_1021_acsomega_1c01134
crossref_primary_10_1007_s10498_018_9342_1
crossref_primary_10_1016_j_cej_2018_07_103
crossref_primary_10_1016_j_cplett_2020_137588
crossref_primary_10_1016_j_jhazmat_2019_121141
crossref_primary_10_1016_j_molliq_2019_111221
crossref_primary_10_1021_acs_est_1c05048
crossref_primary_10_1007_s11274_021_03110_6
crossref_primary_10_1016_j_cej_2019_123923
crossref_primary_10_1016_j_cej_2017_06_179
crossref_primary_10_1016_j_toxlet_2022_03_005
crossref_primary_10_1021_acs_est_3c02675
crossref_primary_10_1039_D1TA02237G
crossref_primary_10_1021_acs_est_0c02065
crossref_primary_10_1016_j_chemosphere_2023_140660
crossref_primary_10_1021_acsearthspacechem_4c00166
crossref_primary_10_1016_j_chemosphere_2023_140659
crossref_primary_10_1016_j_desal_2024_117914
crossref_primary_10_1016_j_watres_2018_02_014
crossref_primary_10_1007_s11696_018_0599_z
crossref_primary_10_1039_C7EM00053G
crossref_primary_10_1111_wej_12628
Cites_doi 10.1897/01-236
10.1016/j.theochem.2005.10.015
10.1021/cr00002a004
10.1002/etc.5620070403
10.1016/S0043-1354(96)00344-2
10.1039/jr9540000980
10.1021/es200743t
10.1002/jcc.21803
10.1021/es0209518
10.1021/es00073a012
10.1021/es204294c
10.1021/es970053p
10.1016/j.watres.2012.06.006
10.1021/ja01026a005
10.1007/BF02841982
10.1021/es991331i
10.1016/j.mrfmmm.2010.06.009
10.1021/es0113551
10.1021/es051236b
10.1002/poc.3281
10.1007/978-1-4757-9447-2_12
10.1021/acs.est.5b00902
10.1016/0169-7722(86)90004-5
10.1021/es001759d
10.1039/C3EM00479A
10.1021/es00021a011
10.1021/es505092s
10.1021/es703143g
10.1897/01-237
10.1039/a909076b
10.1021/jo00066a012
10.1039/c3em00703k
10.1021/es960004x
10.1146/annurev.mi.49.100195.002515
10.1021/jp511408f
10.1021/es9809760
10.1021/es00003a027
10.2174/138527206776818892
10.1021/es990427+
10.1021/es011191o
10.1128/aem.48.3.491-496.1984
10.1007/BF02843503
10.1093/carcin/bgp267
10.1007/978-1-4757-6427-7_1
10.1021/es000956+
10.1016/0043-1354(94)90119-8
10.1016/j.watres.2005.03.007
10.1016/S0040-4020(01)86165-2
10.1016/S0016-7037(03)00217-5
10.1155/2015/364170
10.1016/0021-9797(74)90045-9
10.1016/S0891-5849(98)00190-7
10.1021/ac102667y
10.1021/jf010123i
10.1021/es50001a011
10.1021/ac50154a032
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society May 17, 2016
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society May 17, 2016
CorporateAuthor Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
CorporateAuthor_xml – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
DBID N~.
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/acs.est.6b00924
DatabaseName American Chemical Society (ACS) Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE


Environment Abstracts
AGRICOLA
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: N~.
  name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI)
  url: https://pubs.acs.org
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 5102
ExternalDocumentID 1406818
4075756781
27074054
10_1021_acs_est_6b00924
b964972403
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
N~.
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7S9
L.6
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a495t-5b4f690457d9c2f178049e6d2d072551b2ca3d36d595c43b15e0e67e2caedb543
IEDL.DBID N~.
ISSN 0013-936X
1520-5851
IngestDate Fri May 19 01:12:14 EDT 2023
Fri Jul 11 02:45:06 EDT 2025
Fri Jul 11 09:40:25 EDT 2025
Mon Jun 30 02:38:02 EDT 2025
Thu Apr 03 07:06:40 EDT 2025
Tue Jul 01 04:29:07 EDT 2025
Thu Apr 24 22:52:52 EDT 2025
Thu Aug 27 13:41:57 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://pubs.acs.org/page/policy/authorchoice_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a495t-5b4f690457d9c2f178049e6d2d072551b2ca3d36d595c43b15e0e67e2caedb543
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PNNL-SA-119652
AC05-76RL01830
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OpenAccessLink http://dx.doi.org/10.1021/acs.est.6b00924
PMID 27074054
PQID 1793362644
PQPubID 45412
PageCount 9
ParticipantIDs osti_scitechconnect_1406818
proquest_miscellaneous_2000307097
proquest_miscellaneous_1808684848
proquest_journals_1793362644
pubmed_primary_27074054
crossref_citationtrail_10_1021_acs_est_6b00924
crossref_primary_10_1021_acs_est_6b00924
acs_journals_10_1021_acs_est_6b00924
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
N~.
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-17
PublicationDateYYYYMMDD 2016-05-17
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2016
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
Byrd E. F. H. (ref10/cit10) 2006
Tratnyek P. G. (ref57/cit57) 1998
Fan Z.-Y. (ref67/cit67) 2005; 8
Shorter J. (ref48/cit48) 1982
ref52/cit52
ref23/cit23
Rieger P. G. (ref3/cit3) 1995
ref8/cit8
ref31/cit31
ref2/cit2
Huang P. M. (ref33/cit33) 1991; 27
ref34/cit34
ref37/cit37
ref20/cit20
ref60/cit60
ref17/cit17
ref35/cit35
Subramanian P. (ref68/cit68) 1986; 97
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
Lyons C. D. (ref12/cit12) 1984; 48
ref50/cit50
ref64/cit64
ref6/cit6
ref36/cit36
Elango T. P. (ref53/cit53) 1984; 93
ref18/cit18
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
Cramer C. J. (ref59/cit59) 2002
Fan Z.-Y. (ref66/cit66) 2004; 25
ref32/cit32
ref39/cit39
ref14/cit14
Monteil-Rivera F. (ref5/cit5) 2009
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
Padmaja S. (ref54/cit54) 1990; 29
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
29064232 - Environ Sci Technol. 2017 Nov 7;51(21):13058-13059
References_xml – ident: ref46/cit46
  doi: 10.1897/01-236
– ident: ref60/cit60
  doi: 10.1016/j.theochem.2005.10.015
– ident: ref9/cit9
– ident: ref47/cit47
  doi: 10.1021/cr00002a004
– start-page: 5
  volume-title: Ecotoxicology of Explosives
  year: 2009
  ident: ref5/cit5
– ident: ref56/cit56
  doi: 10.1002/etc.5620070403
– ident: ref26/cit26
  doi: 10.1016/S0043-1354(96)00344-2
– ident: ref25/cit25
  doi: 10.1039/jr9540000980
– ident: ref21/cit21
  doi: 10.1021/es200743t
– ident: ref11/cit11
  doi: 10.1002/jcc.21803
– ident: ref22/cit22
  doi: 10.1021/es0209518
– ident: ref19/cit19
  doi: 10.1021/es00073a012
– volume-title: Essentials of Computational Chemistry: Theories and Models
  year: 2002
  ident: ref59/cit59
– ident: ref31/cit31
  doi: 10.1021/es204294c
– ident: ref20/cit20
  doi: 10.1021/es970053p
– ident: ref50/cit50
  doi: 10.1016/j.watres.2012.06.006
– ident: ref30/cit30
  doi: 10.1021/ja01026a005
– volume: 93
  start-page: 47
  issue: 1
  year: 1984
  ident: ref53/cit53
  publication-title: Proc. Indian Natl. Sci. Acad., Chem. Sci.
  doi: 10.1007/BF02841982
– ident: ref17/cit17
  doi: 10.1021/es991331i
– start-page: 167
  volume-title: Perspectives in Environmental Chemistry
  year: 1998
  ident: ref57/cit57
– ident: ref7/cit7
  doi: 10.1016/j.mrfmmm.2010.06.009
– ident: ref16/cit16
  doi: 10.1021/es0113551
– ident: ref70/cit70
  doi: 10.1021/es051236b
– volume: 27
  start-page: 191
  volume-title: Rates of Soil Chemical Processes
  year: 1991
  ident: ref33/cit33
– ident: ref23/cit23
  doi: 10.1002/poc.3281
– volume: 8
  start-page: 1050
  year: 2005
  ident: ref67/cit67
  publication-title: J. Harbin Inst. Technol.
– ident: ref8/cit8
– ident: ref2/cit2
  doi: 10.1007/978-1-4757-9447-2_12
– ident: ref40/cit40
– ident: ref24/cit24
  doi: 10.1021/acs.est.5b00902
– ident: ref1/cit1
  doi: 10.1016/0169-7722(86)90004-5
– ident: ref15/cit15
  doi: 10.1021/es001759d
– ident: ref29/cit29
  doi: 10.1039/C3EM00479A
– ident: ref51/cit51
  doi: 10.1021/es00021a011
– ident: ref65/cit65
  doi: 10.1021/es505092s
– ident: ref32/cit32
  doi: 10.1021/es703143g
– ident: ref52/cit52
  doi: 10.1897/01-237
– ident: ref58/cit58
  doi: 10.1039/a909076b
– ident: ref27/cit27
  doi: 10.1021/jo00066a012
– volume: 29
  start-page: 422
  issue: 5
  year: 1990
  ident: ref54/cit54
  publication-title: Indian J. Chem., Sec. A
– ident: ref34/cit34
  doi: 10.1039/c3em00703k
– ident: ref41/cit41
  doi: 10.1021/es960004x
– ident: ref4/cit4
  doi: 10.1146/annurev.mi.49.100195.002515
– ident: ref28/cit28
  doi: 10.1021/jp511408f
– volume: 25
  start-page: 95
  issue: 1
  year: 2004
  ident: ref66/cit66
  publication-title: Huan Jing Ke Xue
– ident: ref44/cit44
  doi: 10.1021/es9809760
– ident: ref43/cit43
  doi: 10.1021/es00003a027
– ident: ref49/cit49
  doi: 10.2174/138527206776818892
– ident: ref18/cit18
  doi: 10.1021/es990427+
– ident: ref45/cit45
  doi: 10.1021/es011191o
– volume: 48
  start-page: 491
  issue: 3
  year: 1984
  ident: ref12/cit12
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.48.3.491-496.1984
– volume: 97
  start-page: 573
  issue: 5
  year: 1986
  ident: ref68/cit68
  publication-title: Proc. Indian Natl. Sci. Acad., Chem. Sci.
  doi: 10.1007/BF02843503
– ident: ref6/cit6
  doi: 10.1093/carcin/bgp267
– start-page: 1
  volume-title: Biodegradation of Nitroaromatic Compounds
  year: 1995
  ident: ref3/cit3
– ident: ref42/cit42
  doi: 10.1007/978-1-4757-6427-7_1
– volume-title: Correlation Analysis of Organic Reactivity with Particular Reference to Multiple Regression
  year: 1982
  ident: ref48/cit48
– ident: ref13/cit13
  doi: 10.1021/es000956+
– ident: ref63/cit63
  doi: 10.1016/0043-1354(94)90119-8
– volume-title: Computational Chemistry Toolkit for Energetic Materials Design
  year: 2006
  ident: ref10/cit10
– ident: ref14/cit14
  doi: 10.1016/j.watres.2005.03.007
– ident: ref39/cit39
– ident: ref69/cit69
  doi: 10.1016/S0040-4020(01)86165-2
– ident: ref38/cit38
  doi: 10.1016/S0016-7037(03)00217-5
– ident: ref35/cit35
  doi: 10.1155/2015/364170
– ident: ref37/cit37
  doi: 10.1016/0021-9797(74)90045-9
– ident: ref61/cit61
  doi: 10.1016/S0891-5849(98)00190-7
– ident: ref36/cit36
  doi: 10.1021/ac102667y
– ident: ref55/cit55
  doi: 10.1021/jf010123i
– ident: ref64/cit64
  doi: 10.1021/es50001a011
– ident: ref62/cit62
  doi: 10.1021/ac50154a032
– reference: 29064232 - Environ Sci Technol. 2017 Nov 7;51(21):13058-13059
SSID ssj0002308
Score 2.449226
Snippet New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5094
SubjectTerms Amines
aromatic amines
chlorine dioxide
Correlation analysis
Environmental impact
ENVIRONMENTAL SCIENCES
free radicals
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Kinetics
manganese dioxide
Oxidants
Oxidation
Oxidation-Reduction
ozone
phosphates
Quantitative Structure-Activity Relationship
quantitative structure-activity relationships
Studies
Title Structure–Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
URI http://dx.doi.org/10.1021/acs.est.6b00924
https://www.ncbi.nlm.nih.gov/pubmed/27074054
https://www.proquest.com/docview/1793362644
https://www.proquest.com/docview/1808684848
https://www.proquest.com/docview/2000307097
https://www.osti.gov/servlets/purl/1406818
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVguZRDxXcXFmSkHrhk6yS2kxxXCwhVAqQC0l5QFDs2rEQ3q2aR6KXqf-g_5JfwnGQDpVqpys0ZO9aMZ_xGdt4Q8jlD7m-sUh68iXlcsthTVliPcc2i3M_CpCrfdn4hz27415EYvZJFvz_BD_wvmS77CJB9qRw_EF8mK4GMY-eDF7_6bdAFko7nxQqSUI5aFp9_BnDbkC7_2oY6BdxpMcSstprTNfKxwYh0UBt1nSyZyQZZfcMcuEG2T15_UINo46HlJrm9qghhH3-Y599_BrquDUHbK2_342lJgVPpN4cxaWHxlaJibaWD7xieXj6N6ypLVP2k59nkLnMlKunxuMALs0VuTk-uh2deU0LBy5D5zDyhuEX-y0WUJzqwvqMbSozMg5xFSCZ8FegszEOZi0RoHipfGGZkZNBsciV4uE06k2JiPhGqGFeaCWtDZnmiYkA1qwG_bJjzTEe8C8PrMm1coEyr0-3AT10jdJo26u-S_lzxqW5oyF01jIfFHY7aDtOagWOx6J6zZArw4BhwtbsqpGfIbpgELumS3tzAb2aJ-OQYeTg6H7av4WLu3AQaLh4hEyPvizmexTIBq8NnEnXJTr142tkGEXAaoPHu_2loj3wAKpPuioIf9UgHy8bsA_nM1AGQ__DqoFr5L--DAII
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V5QAcEBQKSwsYCSQuWZzEzs-Bw4q22tLuIkEr7QWlsWPDSrCpyFbQC-IdeAGejSfhc5JNi9BKXKrc_BdrPDP-Rra_IXqaI_Y3VikP1sQ9EfHEU1ZajwvN48LPw7RO3zaeRKMj8Xoqp2v0a_kWBpOoMFJVH-Kfswv4L1wZ_OQgUo4mSLTXKPfN2VcEadXLvW2s6LMg2N05fDXy2jwCXg74v_CkEhZBoJBxkerA-o5zJzVRERQ8BqL2VaDzsAijQqZSi1D50nATxQbFplBShBj3Cl0F9JHO9CffB52vB4BPljkS0jCaduRB_0zY7X66-mv365Ww4tXItt7hdm_RzRaasmGjS7dpzczX6cYFwsJ12tg5fxeHpq1jqO7Q-3c1D-3pF_P7x8-hblJSsO6m3cfZScUAj9lbB21ZafGXsiaLZcPPGJ69-TZrkjsxdcbG-fxD7jJjsu1ZiQpzl44uReIb1JuXc3OfmOJCaS6tDbkVqUqAEK0G6rNhIXIdiz70TVdZa3lVVh-qB37mCiHTrBV_nwZLwWe6ZT93STg-re7wvOtw0hB_rG666VYyA2ZxxLva3VDSCwRVPAIc6tPWcoEvzBJu0REBCXR-0lXDst1xDSRcnqJNgnAzEfhWtwl447XTuE_3GuXpZhvEgIdA5A_-T0KP6drocHyQHexN9jfpOoBh5G5J-PEW9aBC5iHA10I9qvWf0fFlG9wfPFQ-rw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VRUJwQFAoLC1gJJC4ZHESOz8HDiu2q5bSBQGV9oLS2LFhJdisyFbQC-IdeAWejCfhc5INRWglLlVu_os1nhl_I9vfED3MEfsbq5QHa-KeiHjiKSutx4XmceHnYVqnbzucRHtH4vlUTjfo5-otDCZRYaSqPsR3Vr0obMsw4D9x5fCVg0g5qiDRXqU8MKdfEKhVT_dHWNVHQTDefftsz2tzCXg5QoClJ5WwCASFjItUB9Z3vDupiYqg4DFQta8CnYdFGBUylVqEypeGmyg2KDaFkiLEuBfoIsAPd-Y_-Tbo_D1AfLLKk5CG0bQjEPpnwm4H1NVfO2CvhCWvR7f1Lje-RldbeMqGjT5dpw0z36QrZ0gLN2lr98_bODRtnUN1g969qbloTz6bX99_DHWTloJ1t-0-zBYVA0Rmrx28ZaXFX8qaMJYNP2F49vLrrEnwxNQpO8zn73OXHZONZiUqzE06OheJb1FvXs7NbWKKC6W5tDbkVqQqAUq0GsjPhoXIdSz60DldZa31VVl9sB74mSuETLNW_H0arASf6ZYB3SXi-Li-w-Ouw6Ih_1jfdNutZAbc4sh3tbulpJcIrHgESNSnndUCn5klXKMjAxLo_KCrhnW7IxtIuDxBmwQhZyLwrW8T8MZzp3GfbjXK0802iAERgcrv_J-E7tOlV6Nx9mJ_crBNl4ENI3dRwo93qAcNMneBv5bqXq3-jI7P295-A-PbP7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93Activity+Relationships+for+Rates+of+Aromatic+Amine+Oxidation+by+Manganese+Dioxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Salter-Blanc%2C+Alexandra+J&rft.au=Bylaska%2C+Eric+J&rft.au=Lyon%2C+Molly+A&rft.au=Ness%2C+Stuart+C&rft.date=2016-05-17&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=50&rft.issue=10&rft.spage=5094&rft.epage=5102&rft_id=info:doi/10.1021%2Facs.est.6b00924&rft.externalDocID=b964972403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon