Structure–Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide
New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject...
Saved in:
Published in | Environmental science & technology Vol. 50; no. 10; pp. 5094 - 5102 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
17.05.2016
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a, E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory). |
---|---|
AbstractList | New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ(-)), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa, EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pK as of the amines, and energies of the highest occupied molecular orbital (E HOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E ox)]. The selection of calculated descriptors (pK a, E HOMO, and E ox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E HOMO (calculated with a modest level of theory). New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. Here in this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett $\sigma$ constants ($\sigma^-$), pKas of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eox)]. The selection of calculated descriptors (pKa), EHOMO, and Eox) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett s constants ( sigma super( -)), pK sub( a)s of the amines, and energies of the highest occupied molecular orbital (E sub( HOMO))] to specific for the likely rate-limiting step [one-electron oxidation potentials (E sub( ox))]. The selection of calculated descriptors (pK sub( a), E sub( HOMO), and E sub( ox)) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E sub( HOMO) (calculated with a modest level of theory). New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO₂) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett σ constants (σ–), pKₐs of the amines, and energies of the highest occupied molecular orbital (EHOMO)] to specific for the likely rate-limiting step [one-electron oxidation potentials (Eₒₓ)]. The selection of calculated descriptors (pKₐ, EHOMO, and Eₒₓ) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure–activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO₂ to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to EHOMO (calculated with a modest level of theory). New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their transformation products. The nitro groups of energetic compounds are readily reduced to amines, and the resulting aromatic amines are subject to oxidation and coupling reactions. Manganese dioxide (MnO2) is a common environmental oxidant and model system for kinetic studies of aromatic amine oxidation. In this study, a training set of new and previously reported kinetic data for the oxidation of model and energetic-derived aromatic amines was assembled and subjected to correlation analysis against descriptor variables that ranged from general purpose [Hammett s constants (σ^sup -^), pK^sub a^s of the amines, and energies of the highest occupied molecular orbital (E^sub HOMO^)] to specific for the likely rate-limiting step [one-electron oxidation potentials (E^sub ox^)]. The selection of calculated descriptors (pK^sub a^, E^sub HOMO^, and E^sub ox^) was based on validation with experimental data. All of the correlations gave satisfactory quantitative structure-activity relationships (QSARs), but they improved with the specificity of the descriptor. The scope of correlation analysis was extended beyond MnO2 to include literature data on aromatic amine oxidation by other environmentally relevant oxidants (ozone, chlorine dioxide, and phosphate and carbonate radicals) by correlating relative rate constants (normalized to 4-chloroaniline) to E^sub HOMO^ (calculated with a modest level of theory). |
Author | Salter-Blanc, Alexandra J Bylaska, Eric J Lyon, Molly A Tratnyek, Paul G Ness, Stuart C |
AuthorAffiliation | Oregon Health & Science University William R. Wiley Environmental Molecular Sciences Laboratory Institute of Environmental Health Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: Oregon Health & Science University – name: William R. Wiley Environmental Molecular Sciences Laboratory – name: Pacific Northwest National Laboratory – name: Institute of Environmental Health |
Author_xml | – sequence: 1 givenname: Alexandra J surname: Salter-Blanc fullname: Salter-Blanc, Alexandra J – sequence: 2 givenname: Eric J surname: Bylaska fullname: Bylaska, Eric J – sequence: 3 givenname: Molly A surname: Lyon fullname: Lyon, Molly A – sequence: 4 givenname: Stuart C surname: Ness fullname: Ness, Stuart C – sequence: 5 givenname: Paul G surname: Tratnyek fullname: Tratnyek, Paul G email: tratnyek@ohsu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27074054$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1406818$$D View this record in Osti.gov |
BookMark | eNqFkV1rFDEUhoNU7LZ67Z0EvRFktiefM3O51E-oFKqCNxJmMmdsysxkm2TEvfM_-A_9JWa7W4RCkVwE8j7vyTnnPSIHk5-QkKcMlgw4O2lsXGJMS90C1Fw-IAumOBSqUuyALACYKGqhvx6SoxivAIALqB6RQ15CKUHJBfn2KYXZpjngn1-_Vza5Hy5t6AUOTXJ-ipduHWnvA71oEkbqe7oKfsyapavRTUjPf7ruBqXthn5spu_NhBHpa-ezgI_Jw74ZIj7Z38fky9s3n0_fF2fn7z6crs6KRtYqFaqVva5BqrKrLe9ZWYGsUXe8g5IrxVpuG9EJ3alaWSlaphBQl5ifsWuVFMfk-a6uj8mZaF1Ce2n9NKFNhknQFasy9HIHrYO_nvPWzOiixWHILfs5Gp73I6CEuvwvyiqodCXzyeiLO-iVn8OUpzWsrIXQXMttg8_21NyO2Jl1cGMTNuY2iAyoHWCDjzFgb_IQN4tNoXGDYWC2gZscuNl-sg88-07u-G5L3-94tXNshX-93kP_BTFbvMg |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1021_acsestengg_2c00245 crossref_primary_10_1071_EN17221 crossref_primary_10_1016_j_ijbiomac_2022_06_124 crossref_primary_10_1016_j_biortech_2018_01_029 crossref_primary_10_1038_s41598_025_85875_6 crossref_primary_10_1039_D4CP02342K crossref_primary_10_1016_j_watres_2021_117513 crossref_primary_10_1016_j_cej_2022_136998 crossref_primary_10_1021_acs_est_1c03758 crossref_primary_10_1039_C9EM00557A crossref_primary_10_1016_j_jhazmat_2022_130108 crossref_primary_10_1016_j_chemolab_2021_104384 crossref_primary_10_1039_C9EW00859D crossref_primary_10_1016_j_cej_2019_03_203 crossref_primary_10_1016_j_apcatb_2019_118232 crossref_primary_10_1016_j_chemosphere_2018_03_020 crossref_primary_10_1016_j_chemosphere_2017_01_014 crossref_primary_10_1016_j_cej_2024_151156 crossref_primary_10_1016_j_tiv_2019_03_017 crossref_primary_10_1021_acs_est_7b05101 crossref_primary_10_1016_j_jhazmat_2024_136911 crossref_primary_10_1021_acs_est_9b06208 crossref_primary_10_1021_acs_est_7b02271 crossref_primary_10_1016_j_jhazmat_2024_135740 crossref_primary_10_1021_acs_jpca_9b07766 crossref_primary_10_1016_j_jece_2020_104226 crossref_primary_10_1021_acs_est_9b05475 crossref_primary_10_1021_acs_est_3c08273 crossref_primary_10_1021_acs_est_9b04542 crossref_primary_10_1016_j_cej_2023_145521 crossref_primary_10_1021_acs_est_1c03972 crossref_primary_10_1016_j_cej_2017_08_116 crossref_primary_10_1021_acs_estlett_9b00056 crossref_primary_10_1016_j_watres_2018_04_062 crossref_primary_10_1016_j_ijbiomac_2024_135810 crossref_primary_10_1039_C6EM00694A crossref_primary_10_1007_s11274_021_03067_6 crossref_primary_10_1021_acs_est_3c05495 crossref_primary_10_1021_acsomega_1c01134 crossref_primary_10_1007_s10498_018_9342_1 crossref_primary_10_1016_j_cej_2018_07_103 crossref_primary_10_1016_j_cplett_2020_137588 crossref_primary_10_1016_j_jhazmat_2019_121141 crossref_primary_10_1016_j_molliq_2019_111221 crossref_primary_10_1021_acs_est_1c05048 crossref_primary_10_1007_s11274_021_03110_6 crossref_primary_10_1016_j_cej_2019_123923 crossref_primary_10_1016_j_cej_2017_06_179 crossref_primary_10_1016_j_toxlet_2022_03_005 crossref_primary_10_1021_acs_est_3c02675 crossref_primary_10_1039_D1TA02237G crossref_primary_10_1021_acs_est_0c02065 crossref_primary_10_1016_j_chemosphere_2023_140660 crossref_primary_10_1021_acsearthspacechem_4c00166 crossref_primary_10_1016_j_chemosphere_2023_140659 crossref_primary_10_1016_j_desal_2024_117914 crossref_primary_10_1016_j_watres_2018_02_014 crossref_primary_10_1007_s11696_018_0599_z crossref_primary_10_1039_C7EM00053G crossref_primary_10_1111_wej_12628 |
Cites_doi | 10.1897/01-236 10.1016/j.theochem.2005.10.015 10.1021/cr00002a004 10.1002/etc.5620070403 10.1016/S0043-1354(96)00344-2 10.1039/jr9540000980 10.1021/es200743t 10.1002/jcc.21803 10.1021/es0209518 10.1021/es00073a012 10.1021/es204294c 10.1021/es970053p 10.1016/j.watres.2012.06.006 10.1021/ja01026a005 10.1007/BF02841982 10.1021/es991331i 10.1016/j.mrfmmm.2010.06.009 10.1021/es0113551 10.1021/es051236b 10.1002/poc.3281 10.1007/978-1-4757-9447-2_12 10.1021/acs.est.5b00902 10.1016/0169-7722(86)90004-5 10.1021/es001759d 10.1039/C3EM00479A 10.1021/es00021a011 10.1021/es505092s 10.1021/es703143g 10.1897/01-237 10.1039/a909076b 10.1021/jo00066a012 10.1039/c3em00703k 10.1021/es960004x 10.1146/annurev.mi.49.100195.002515 10.1021/jp511408f 10.1021/es9809760 10.1021/es00003a027 10.2174/138527206776818892 10.1021/es990427+ 10.1021/es011191o 10.1128/aem.48.3.491-496.1984 10.1007/BF02843503 10.1093/carcin/bgp267 10.1007/978-1-4757-6427-7_1 10.1021/es000956+ 10.1016/0043-1354(94)90119-8 10.1016/j.watres.2005.03.007 10.1016/S0040-4020(01)86165-2 10.1016/S0016-7037(03)00217-5 10.1155/2015/364170 10.1016/0021-9797(74)90045-9 10.1016/S0891-5849(98)00190-7 10.1021/ac102667y 10.1021/jf010123i 10.1021/es50001a011 10.1021/ac50154a032 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society May 17, 2016 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society May 17, 2016 |
CorporateAuthor | Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
CorporateAuthor_xml | – name: Pacific Northwest National Lab. (PNNL), Richland, WA (United States) |
DBID | N~. AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/acs.est.6b00924 |
DatabaseName | American Chemical Society (ACS) Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE Environment Abstracts AGRICOLA Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: N~. name: Amer. Chemical Soc. (ACS) (Free, activated by CARLI) url: https://pubs.acs.org sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 5102 |
ExternalDocumentID | 1406818 4075756781 27074054 10_1021_acs_est_6b00924 b964972403 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS N~. PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7S9 L.6 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a495t-5b4f690457d9c2f178049e6d2d072551b2ca3d36d595c43b15e0e67e2caedb543 |
IEDL.DBID | N~. |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri May 19 01:12:14 EDT 2023 Fri Jul 11 02:45:06 EDT 2025 Fri Jul 11 09:40:25 EDT 2025 Mon Jun 30 02:38:02 EDT 2025 Thu Apr 03 07:06:40 EDT 2025 Tue Jul 01 04:29:07 EDT 2025 Thu Apr 24 22:52:52 EDT 2025 Thu Aug 27 13:41:57 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://pubs.acs.org/page/policy/authorchoice_termsofuse.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a495t-5b4f690457d9c2f178049e6d2d072551b2ca3d36d595c43b15e0e67e2caedb543 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 PNNL-SA-119652 AC05-76RL01830 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
OpenAccessLink | http://dx.doi.org/10.1021/acs.est.6b00924 |
PMID | 27074054 |
PQID | 1793362644 |
PQPubID | 45412 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1406818 proquest_miscellaneous_2000307097 proquest_miscellaneous_1808684848 proquest_journals_1793362644 pubmed_primary_27074054 crossref_citationtrail_10_1021_acs_est_6b00924 crossref_primary_10_1021_acs_est_6b00924 acs_journals_10_1021_acs_est_6b00924 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ N~. UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-17 |
PublicationDateYYYYMMDD | 2016-05-17 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-17 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2016 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref63/cit63 ref56/cit56 ref16/cit16 Byrd E. F. H. (ref10/cit10) 2006 Tratnyek P. G. (ref57/cit57) 1998 Fan Z.-Y. (ref67/cit67) 2005; 8 Shorter J. (ref48/cit48) 1982 ref52/cit52 ref23/cit23 Rieger P. G. (ref3/cit3) 1995 ref8/cit8 ref31/cit31 ref2/cit2 Huang P. M. (ref33/cit33) 1991; 27 ref34/cit34 ref37/cit37 ref20/cit20 ref60/cit60 ref17/cit17 ref35/cit35 Subramanian P. (ref68/cit68) 1986; 97 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 Lyons C. D. (ref12/cit12) 1984; 48 ref50/cit50 ref64/cit64 ref6/cit6 ref36/cit36 Elango T. P. (ref53/cit53) 1984; 93 ref18/cit18 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 Cramer C. J. (ref59/cit59) 2002 Fan Z.-Y. (ref66/cit66) 2004; 25 ref32/cit32 ref39/cit39 ref14/cit14 Monteil-Rivera F. (ref5/cit5) 2009 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref22/cit22 Padmaja S. (ref54/cit54) 1990; 29 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 29064232 - Environ Sci Technol. 2017 Nov 7;51(21):13058-13059 |
References_xml | – ident: ref46/cit46 doi: 10.1897/01-236 – ident: ref60/cit60 doi: 10.1016/j.theochem.2005.10.015 – ident: ref9/cit9 – ident: ref47/cit47 doi: 10.1021/cr00002a004 – start-page: 5 volume-title: Ecotoxicology of Explosives year: 2009 ident: ref5/cit5 – ident: ref56/cit56 doi: 10.1002/etc.5620070403 – ident: ref26/cit26 doi: 10.1016/S0043-1354(96)00344-2 – ident: ref25/cit25 doi: 10.1039/jr9540000980 – ident: ref21/cit21 doi: 10.1021/es200743t – ident: ref11/cit11 doi: 10.1002/jcc.21803 – ident: ref22/cit22 doi: 10.1021/es0209518 – ident: ref19/cit19 doi: 10.1021/es00073a012 – volume-title: Essentials of Computational Chemistry: Theories and Models year: 2002 ident: ref59/cit59 – ident: ref31/cit31 doi: 10.1021/es204294c – ident: ref20/cit20 doi: 10.1021/es970053p – ident: ref50/cit50 doi: 10.1016/j.watres.2012.06.006 – ident: ref30/cit30 doi: 10.1021/ja01026a005 – volume: 93 start-page: 47 issue: 1 year: 1984 ident: ref53/cit53 publication-title: Proc. Indian Natl. Sci. Acad., Chem. Sci. doi: 10.1007/BF02841982 – ident: ref17/cit17 doi: 10.1021/es991331i – start-page: 167 volume-title: Perspectives in Environmental Chemistry year: 1998 ident: ref57/cit57 – ident: ref7/cit7 doi: 10.1016/j.mrfmmm.2010.06.009 – ident: ref16/cit16 doi: 10.1021/es0113551 – ident: ref70/cit70 doi: 10.1021/es051236b – volume: 27 start-page: 191 volume-title: Rates of Soil Chemical Processes year: 1991 ident: ref33/cit33 – ident: ref23/cit23 doi: 10.1002/poc.3281 – volume: 8 start-page: 1050 year: 2005 ident: ref67/cit67 publication-title: J. Harbin Inst. Technol. – ident: ref8/cit8 – ident: ref2/cit2 doi: 10.1007/978-1-4757-9447-2_12 – ident: ref40/cit40 – ident: ref24/cit24 doi: 10.1021/acs.est.5b00902 – ident: ref1/cit1 doi: 10.1016/0169-7722(86)90004-5 – ident: ref15/cit15 doi: 10.1021/es001759d – ident: ref29/cit29 doi: 10.1039/C3EM00479A – ident: ref51/cit51 doi: 10.1021/es00021a011 – ident: ref65/cit65 doi: 10.1021/es505092s – ident: ref32/cit32 doi: 10.1021/es703143g – ident: ref52/cit52 doi: 10.1897/01-237 – ident: ref58/cit58 doi: 10.1039/a909076b – ident: ref27/cit27 doi: 10.1021/jo00066a012 – volume: 29 start-page: 422 issue: 5 year: 1990 ident: ref54/cit54 publication-title: Indian J. Chem., Sec. A – ident: ref34/cit34 doi: 10.1039/c3em00703k – ident: ref41/cit41 doi: 10.1021/es960004x – ident: ref4/cit4 doi: 10.1146/annurev.mi.49.100195.002515 – ident: ref28/cit28 doi: 10.1021/jp511408f – volume: 25 start-page: 95 issue: 1 year: 2004 ident: ref66/cit66 publication-title: Huan Jing Ke Xue – ident: ref44/cit44 doi: 10.1021/es9809760 – ident: ref43/cit43 doi: 10.1021/es00003a027 – ident: ref49/cit49 doi: 10.2174/138527206776818892 – ident: ref18/cit18 doi: 10.1021/es990427+ – ident: ref45/cit45 doi: 10.1021/es011191o – volume: 48 start-page: 491 issue: 3 year: 1984 ident: ref12/cit12 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.48.3.491-496.1984 – volume: 97 start-page: 573 issue: 5 year: 1986 ident: ref68/cit68 publication-title: Proc. Indian Natl. Sci. Acad., Chem. Sci. doi: 10.1007/BF02843503 – ident: ref6/cit6 doi: 10.1093/carcin/bgp267 – start-page: 1 volume-title: Biodegradation of Nitroaromatic Compounds year: 1995 ident: ref3/cit3 – ident: ref42/cit42 doi: 10.1007/978-1-4757-6427-7_1 – volume-title: Correlation Analysis of Organic Reactivity with Particular Reference to Multiple Regression year: 1982 ident: ref48/cit48 – ident: ref13/cit13 doi: 10.1021/es000956+ – ident: ref63/cit63 doi: 10.1016/0043-1354(94)90119-8 – volume-title: Computational Chemistry Toolkit for Energetic Materials Design year: 2006 ident: ref10/cit10 – ident: ref14/cit14 doi: 10.1016/j.watres.2005.03.007 – ident: ref39/cit39 – ident: ref69/cit69 doi: 10.1016/S0040-4020(01)86165-2 – ident: ref38/cit38 doi: 10.1016/S0016-7037(03)00217-5 – ident: ref35/cit35 doi: 10.1155/2015/364170 – ident: ref37/cit37 doi: 10.1016/0021-9797(74)90045-9 – ident: ref61/cit61 doi: 10.1016/S0891-5849(98)00190-7 – ident: ref36/cit36 doi: 10.1021/ac102667y – ident: ref55/cit55 doi: 10.1021/jf010123i – ident: ref64/cit64 doi: 10.1021/es50001a011 – ident: ref62/cit62 doi: 10.1021/ac50154a032 – reference: 29064232 - Environ Sci Technol. 2017 Nov 7;51(21):13058-13059 |
SSID | ssj0002308 |
Score | 2.449226 |
Snippet | New energetic compounds are designed to minimize their potential environmental impacts, which includes their transformation and the fate and effects of their... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5094 |
SubjectTerms | Amines aromatic amines chlorine dioxide Correlation analysis Environmental impact ENVIRONMENTAL SCIENCES free radicals INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Kinetics manganese dioxide Oxidants Oxidation Oxidation-Reduction ozone phosphates Quantitative Structure-Activity Relationship quantitative structure-activity relationships Studies |
Title | Structure–Activity Relationships for Rates of Aromatic Amine Oxidation by Manganese Dioxide |
URI | http://dx.doi.org/10.1021/acs.est.6b00924 https://www.ncbi.nlm.nih.gov/pubmed/27074054 https://www.proquest.com/docview/1793362644 https://www.proquest.com/docview/1808684848 https://www.proquest.com/docview/2000307097 https://www.osti.gov/servlets/purl/1406818 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELVguZRDxXcXFmSkHrhk6yS2kxxXCwhVAqQC0l5QFDs2rEQ3q2aR6KXqf-g_5JfwnGQDpVqpys0ZO9aMZ_xGdt4Q8jlD7m-sUh68iXlcsthTVliPcc2i3M_CpCrfdn4hz27415EYvZJFvz_BD_wvmS77CJB9qRw_EF8mK4GMY-eDF7_6bdAFko7nxQqSUI5aFp9_BnDbkC7_2oY6BdxpMcSstprTNfKxwYh0UBt1nSyZyQZZfcMcuEG2T15_UINo46HlJrm9qghhH3-Y599_BrquDUHbK2_342lJgVPpN4cxaWHxlaJibaWD7xieXj6N6ypLVP2k59nkLnMlKunxuMALs0VuTk-uh2deU0LBy5D5zDyhuEX-y0WUJzqwvqMbSozMg5xFSCZ8FegszEOZi0RoHipfGGZkZNBsciV4uE06k2JiPhGqGFeaCWtDZnmiYkA1qwG_bJjzTEe8C8PrMm1coEyr0-3AT10jdJo26u-S_lzxqW5oyF01jIfFHY7aDtOagWOx6J6zZArw4BhwtbsqpGfIbpgELumS3tzAb2aJ-OQYeTg6H7av4WLu3AQaLh4hEyPvizmexTIBq8NnEnXJTr142tkGEXAaoPHu_2loj3wAKpPuioIf9UgHy8bsA_nM1AGQ__DqoFr5L--DAII |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V5QAcEBQKSwsYCSQuWZzEzs-Bw4q22tLuIkEr7QWlsWPDSrCpyFbQC-IdeAGejSfhc5JNi9BKXKrc_BdrPDP-Rra_IXqaI_Y3VikP1sQ9EfHEU1ZajwvN48LPw7RO3zaeRKMj8Xoqp2v0a_kWBpOoMFJVH-Kfswv4L1wZ_OQgUo4mSLTXKPfN2VcEadXLvW2s6LMg2N05fDXy2jwCXg74v_CkEhZBoJBxkerA-o5zJzVRERQ8BqL2VaDzsAijQqZSi1D50nATxQbFplBShBj3Cl0F9JHO9CffB52vB4BPljkS0jCaduRB_0zY7X66-mv365Ww4tXItt7hdm_RzRaasmGjS7dpzczX6cYFwsJ12tg5fxeHpq1jqO7Q-3c1D-3pF_P7x8-hblJSsO6m3cfZScUAj9lbB21ZafGXsiaLZcPPGJ69-TZrkjsxdcbG-fxD7jJjsu1ZiQpzl44uReIb1JuXc3OfmOJCaS6tDbkVqUqAEK0G6rNhIXIdiz70TVdZa3lVVh-qB37mCiHTrBV_nwZLwWe6ZT93STg-re7wvOtw0hB_rG666VYyA2ZxxLva3VDSCwRVPAIc6tPWcoEvzBJu0REBCXR-0lXDst1xDSRcnqJNgnAzEfhWtwl447XTuE_3GuXpZhvEgIdA5A_-T0KP6drocHyQHexN9jfpOoBh5G5J-PEW9aBC5iHA10I9qvWf0fFlG9wfPFQ-rw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VRUJwQFAoLC1gJJC4ZHESOz8HDiu2q5bSBQGV9oLS2LFhJdisyFbQC-IdeAWejCfhc5INRWglLlVu_os1nhl_I9vfED3MEfsbq5QHa-KeiHjiKSutx4XmceHnYVqnbzucRHtH4vlUTjfo5-otDCZRYaSqPsR3Vr0obMsw4D9x5fCVg0g5qiDRXqU8MKdfEKhVT_dHWNVHQTDefftsz2tzCXg5QoClJ5WwCASFjItUB9Z3vDupiYqg4DFQta8CnYdFGBUylVqEypeGmyg2KDaFkiLEuBfoIsAPd-Y_-Tbo_D1AfLLKk5CG0bQjEPpnwm4H1NVfO2CvhCWvR7f1Lje-RldbeMqGjT5dpw0z36QrZ0gLN2lr98_bODRtnUN1g969qbloTz6bX99_DHWTloJ1t-0-zBYVA0Rmrx28ZaXFX8qaMJYNP2F49vLrrEnwxNQpO8zn73OXHZONZiUqzE06OheJb1FvXs7NbWKKC6W5tDbkVqQqAUq0GsjPhoXIdSz60DldZa31VVl9sB74mSuETLNW_H0arASf6ZYB3SXi-Li-w-Ouw6Ih_1jfdNutZAbc4sh3tbulpJcIrHgESNSnndUCn5klXKMjAxLo_KCrhnW7IxtIuDxBmwQhZyLwrW8T8MZzp3GfbjXK0802iAERgcrv_J-E7tOlV6Nx9mJ_crBNl4ENI3dRwo93qAcNMneBv5bqXq3-jI7P295-A-PbP7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structure%E2%80%93Activity+Relationships+for+Rates+of+Aromatic+Amine+Oxidation+by+Manganese+Dioxide&rft.jtitle=Environmental+science+%26+technology&rft.au=Salter-Blanc%2C+Alexandra+J&rft.au=Bylaska%2C+Eric+J&rft.au=Lyon%2C+Molly+A&rft.au=Ness%2C+Stuart+C&rft.date=2016-05-17&rft.pub=American+Chemical+Society&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=50&rft.issue=10&rft.spage=5094&rft.epage=5102&rft_id=info:doi/10.1021%2Facs.est.6b00924&rft.externalDocID=b964972403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |