Using TDR and inverse modeling to characterize solute transport in a layered agricultural volcanic soil

Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in vo...

Full description

Saved in:
Bibliographic Details
Published inVadose zone journal Vol. 4; no. 2; pp. 300 - 309
Main Authors Ritter, A, Munoz-Carpena, R, Regalado, C.M, Javaux, M, Vanclooster, M
Format Journal Article
LanguageEnglish
Published Madison Soil Science Society of America 01.05.2005
Soil Science Society
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br ̄in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective-dispersive (CDE) and mobile-immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency-irrigation systems that we considered, Br ̄was found to move slowly by convection-dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br ̄is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable-charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
AbstractList Volcanic soils exhibit particular physical‐chemical properties (i.e., strong and stable natural aggregation and high content of variable‐charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br− in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective–dispersive (CDE) and mobile–immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency‐irrigation systems that we considered, Br− was found to move slowly by convection–dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br− is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable‐charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br super(-) in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective-dispersive (CDE) and mobile- immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency-irrigation systems that we considered, Br super(-) was found to move slowly by convection- dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br super(-) is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable-charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br ̄in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective-dispersive (CDE) and mobile-immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency-irrigation systems that we considered, Br ̄was found to move slowly by convection-dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br ̄is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable-charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br⁻ in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective–dispersive (CDE) and mobile–immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency-irrigation systems that we considered, Br⁻ was found to move slowly by convection–dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br⁻ is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable-charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Volcanic soils exhibit particular physical‐chemical properties (i.e., strong and stable natural aggregation and high content of variable‐charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br − in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective–dispersive (CDE) and mobile–immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency‐irrigation systems that we considered, Br − was found to move slowly by convection–dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br − is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable‐charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that may influence solute transport. To determine if such techniques like TDR and inverse modeling are useful for analyzing solute transport in volcanic soils, we studied the governing transport processes by means of a miscible displacement experiment of Br- in a large undisturbed soil monolith. Bromide resident concentrations at several depths were monitored successfully with TDR technology, while parameters for the convective-dispersive (CDE) and mobile-immobile (MIM) transport models were estimated by inverse modeling. For the relatively high soil moisture conditions, typical of high frequency-irrigation systems that we considered, Br- was found to move slowly by convection-dispersion. Simulations with the CDE and MIM transport models yielded very similar results. Although Br- is generally assumed to behave as a tracer, we found that this anion in our experiment was subject to adsorption at the bottom part of the monolith. This may be explained by the variable-charge nature of the minerals (Fe and Al oxihydroxides) present in this volcanic soil, which exhibited anion exchange when the pH of the soil solution decreased below the zero point of charge.
Author Regalado, C.M
Javaux, M
Munoz-Carpena, R
Vanclooster, M
Ritter, A
Author_xml – sequence: 1
  fullname: Ritter, A
– sequence: 2
  fullname: Munoz-Carpena, R
– sequence: 3
  fullname: Regalado, C.M
– sequence: 4
  fullname: Javaux, M
– sequence: 5
  fullname: Vanclooster, M
BookMark eNqFkc1rFDEchoO0YFu9eTcnEdqt-ZrM5Ci19YOCoF0PXkIm85s1SzZZk5kt27--GWYPIlgPQ4bked58vKfoKMQACL2i5JJRLt_tHtaMEHFJiBLP0AmtuFpQKfnRH__P0WnOa0KoEoKdoNUyu7DCdx--YRM67MIOUga8iR34aWGI2P4yydgBknsAnKMfB8BDMiFvYxqKgQ32Zg8JOmxWydnRD2MyHu-ityY4WxznX6Dj3vgMLw_jGVreXN9dfVrcfv34-er97cKIcqAFY7KyNW-F6gkVtTS2Vz2VbdtYBQaASKEk0Bo63tQcWkmtJZ3oWgmq7SznZ-jNnLtN8fcIedAbly14bwLEMWshZU0Jbwr49kmQCU6biqqG_TeTSqoUqafMixm0KeacoNfb5DYm7TUlempIHxrSU0MFZ3_h1g1mcDGU53X-X5KapXvnYf_kBvrHzy9s-srEwT2f3RXEbB0EC_cx-U6v45hCqUUXtNJEUFlN1349072Jemo26-V3RigntKQxSfgjApHBEQ
CitedBy_id crossref_primary_10_2136_vzj2012_0194
crossref_primary_10_1111_j_1365_2389_2007_00904_x
crossref_primary_10_2136_vzj2005_0080
crossref_primary_10_2136_sssaj2007_0176
crossref_primary_10_3390_w16233361
crossref_primary_10_1590_S0100_204X2009000700013
crossref_primary_10_1007_s11242_008_9219_7
crossref_primary_10_1016_j_mcm_2011_10_060
crossref_primary_10_1016_j_jhydrol_2025_132773
crossref_primary_10_1016_j_scitotenv_2020_139324
crossref_primary_10_2136_sssaj2009_0247
crossref_primary_10_2136_vzj2005_0117
crossref_primary_10_1590_S1415_43662012000600005
crossref_primary_10_2136_vzj2010_0028
crossref_primary_10_1016_j_agwat_2008_01_005
Cites_doi 10.2136/sssaj1996.03615995006000010004x
10.2136/sssaj1995.03615995005900030009x
10.1016/0169-7722(94)90016-7
10.2136/sssabookser5.4
10.2136/sssaj1998.03615995006200050018x
10.2136/vzj2003.4440
10.2136/sssaj1999.634733x
10.2136/sssaj1995.03615995005900020010x
10.1016/S0022-1694(96)03064-8
10.1016/S0378-3774(01)00131-7
10.1016/S0016-7061(02)00131-3
10.2134/jeq2003.2325
10.1016/S0378-3774(02)00160-9
10.2136/sssaj2003.4140
10.1029/WR012i003p00513
10.1016/S0098-3004(99)00138-7
10.2136/sssaj1994.03615995005800040006x
10.1016/S0167-1987(01)00172-6
10.2136/sssaj1996.03615995006000050011x
10.1029/2001WR001224
10.2136/sssaj1976.03615995004000040011x
10.2136/sssaj2000.64112x
10.2136/sssaj1980.03615995004400050002x
10.2136/sssaj1976.03615995004000050017x
10.1016/j.jhydrol.2004.03.005
10.1029/WR021i006p00808
10.1023/A:1008382309369
10.1016/j.geoderma.2004.06.002
10.1016/S0016-7061(03)00131-9
10.2136/sssaj1991.03615995005500040007x
10.2136/sssaj2000.6441305x
10.1029/WR026i007p01483
10.1016/S0022-1694(01)00591-1
10.1016/0169-7722(95)00043-U
10.2136/sssaj1999.634777x
10.1029/98WR01873
10.2136/sssaj2003.4100
10.1093/comjnl/7.4.308
10.1016/S0169-7722(01)00120-6
10.2136/sssaj2003.1334
10.1016/S0169-7722(01)00100-0
ContentType Journal Article
Copyright GeoRef, Copyright 2020, American Geosciences Institute.
Soil Science Society of America
Copyright_xml – notice: GeoRef, Copyright 2020, American Geosciences Institute.
– notice: Soil Science Society of America
DBID FBQ
AAYXX
CITATION
7QH
7TV
7UA
C1K
7S9
L.6
DOI 10.2136/vzj2004.0094
DatabaseName AGRIS
CrossRef
Aqualine
Pollution Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Pollution Abstracts
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Pollution Abstracts
AGRICOLA
AGRICOLA

CrossRef

Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1539-1663
EndPage 309
ExternalDocumentID 10_2136_vzj2004_0094
VZJ2VZJ20040094
2005_041652
US201301009260
Genre article
GrantInformation_xml – fundername: Florida Agricultural Experiment Station
  funderid: R‐09686
GroupedDBID .~0
0R~
123
18M
1OB
1OC
24P
2WC
6KN
AAHHS
ABJNI
ACAWQ
ACCFJ
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
AKLNG
ALMA_UNASSIGNED_HOLDINGS
AVUZU
BCNDV
C1A
CS3
DU5
E3Z
EBS
ECGQY
EJD
FBQ
GOHGZ
GROUPED_DOAJ
GX1
IAO
IGS
MV1
M~E
NHAZY
O9-
OK1
P2P
RAK
RGW
SAMSI
TR2
WIN
WOQ
~02
~KM
0
02
0R
ACSAR
ADACO
H13
KM
LI0
AAHBH
AAWFE
ACCMX
ALUQN
DDYGU
ITC
WXSBR
AAYXX
CITATION
7QH
7TV
7UA
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
7S9
L.6
ID FETCH-LOGICAL-a4944-2265c73b49f01476acf9f16bb8c9eaee06496e17ed3873eb61cc0d4db6e9bdc33
ISSN 1539-1663
IngestDate Fri Jul 11 09:09:00 EDT 2025
Fri Jul 11 01:48:51 EDT 2025
Fri Jul 11 03:10:16 EDT 2025
Tue Jul 01 01:12:41 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Wed Jan 22 16:38:44 EST 2025
Tue Jan 19 19:02:29 EST 2021
Wed Dec 27 19:22:09 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4944-2265c73b49f01476acf9f16bb8c9eaee06496e17ed3873eb61cc0d4db6e9bdc33
Notes http://vzj.scijournals.org/cgi/reprint/4/2/300
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 16199078
PQPubID 24069
PageCount 10
ParticipantIDs proquest_miscellaneous_46671038
proquest_miscellaneous_2431851982
proquest_miscellaneous_16199078
crossref_primary_10_2136_vzj2004_0094
crossref_citationtrail_10_2136_vzj2004_0094
wiley_primary_10_2136_vzj2004_0094_VZJ2VZJ20040094
geoscienceworld_journals_2005_041652
fao_agris_US201301009260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2005
PublicationDateYYYYMMDD 2005-05-01
PublicationDate_xml – month: 05
  year: 2005
  text: May 2005
PublicationDecade 2000
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Vadose zone journal
PublicationYear 2005
Publisher Soil Science Society of America
Soil Science Society
Publisher_xml – name: Soil Science Society of America
– name: Soil Science Society
References 2002; 38
2001; 50
1976; 40
2003; 117
2000; 26
1995; 59
1991; 55
1980; 44
2000; 64
1998
2004; 3
2003; 59
1996
2002; 259
1994
1999; 63
1992
2002
1998; 62
1985; 21
2003; 32
1999
1977
1995; 20
2001; 60
1976; 12
1990; 26
2001
1967; 12
2005; 124
1965; 7
2004; 295
1999; 14
2003; 2
1996; 60
1994; 58
1997; 190
2002; 108
1994; 17
1998; 34
2001; 51
2001; 52
2003; 67
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_49_1
Vanclooster M. (e_1_2_8_45_1) 1996
e_1_2_8_3_1
Muñoz‐Carpena R. (e_1_2_8_26_1) 1999
e_1_2_8_5_1
FAO, ISRIC, ISSS (e_1_2_8_9_1) 1998
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
Olphen H. (e_1_2_8_43_1) 1977
ISSS, ISRIC, FAO (e_1_2_8_14_1) 1994
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
Vanderborght J. (e_1_2_8_47_1) 2004; 3
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
Hopmans J.W. (e_1_2_8_12_1) 2002
e_1_2_8_48_1
Biggar J.W. (e_1_2_8_2_1) 1967; 12
Lettenmaier D.P. (e_1_2_8_20_1) 1992
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Vanderborght J. (e_1_2_8_46_1) 2002
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
Wilson B.N. (e_1_2_8_53_1) 2001
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Dane J.H. (e_1_2_8_7_1) 2002
Muñoz‐Carpena R. (e_1_2_8_27_1) 2001; 52
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 63
  start-page: 777
  year: 1999
  end-page: 781
  article-title: A dielectric–water content relationship for sandy volcanic soils in New Zealand
  publication-title: Soil Sci. Soc. Am. J.
– volume: 64
  start-page: 1305
  year: 2000
  end-page: 1317
  article-title: Solute transport for steady‐state and transient flow in soils with and without macropores
  publication-title: Soil Sci. Soc. Am. J.
– volume: 40
  start-page: 473
  year: 1976
  end-page: 480
  article-title: Mass transfer studies in sorbing porous media. I. Analytical solutions
  publication-title: Soil Sci. Soc. Am. J.
– year: 2001
– volume: 60
  start-page: 1368
  year: 1996
  end-page: 1375
  article-title: Anion transport involving competitive adsorption during transient water flow in an Andisol
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 26.1
  year: 1992
  end-page: 26.30
– start-page: 678
  year: 2002
  end-page: 679
– volume: 108
  start-page: 207
  year: 2002
  end-page: 223
  article-title: Macropore transport of bromide as influenced by soil structure differences
  publication-title: Geoderma
– volume: 26
  start-page: 1483
  year: 1990
  end-page: 1496
  article-title: A general mass‐conservative numerical solution for the unsaturated flow equation
  publication-title: Water Resour. Res.
– volume: 190
  start-page: 75
  year: 1997
  end-page: 101
  article-title: Parameter uncertainty in the mobile‐immobile solute transport model
  publication-title: J. Hydrol. (Amsterdam)
– volume: 60
  start-page: 91
  year: 2001
  end-page: 99
  article-title: Applicability of multiple length TDR probes to measure water distributions in an Andisol under different tillage systems in Japan
  publication-title: Soil Tillage Res.
– year: 1994
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  article-title: A closed‐form equation for predicting the hydraulic conductivity of soil
  publication-title: Soil Sci. Soc. Am. J.
– year: 1998
– volume: 67
  start-page: 1334
  year: 2003
  end-page: 1343
  article-title: Scale‐ and rate‐dependent solute transport within an unsaturated sandy monolith
  publication-title: Soil Sci. Soc. Am. J.
– volume: 21
  start-page: 808
  year: 1985
  end-page: 820
  article-title: Validity of the local equilibrium assumption for modeling sorbing solute transport through homogenous soils
  publication-title: Water Resour. Res.
– volume: 17
  start-page: 91
  year: 1994
  end-page: 109
  article-title: Estimating solute transport in undisturbed soil columns using time domain reflectometry
  publication-title: J. Contam. Hydrol.
– volume: 59
  start-page: 77
  year: 2003
  end-page: 96
  article-title: Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods
  publication-title: Agric. Water Manage.
– volume: 12
  start-page: 513
  year: 1976
  end-page: 522
  article-title: A new model for predicting the hydraulic conductivity of unsaturated porous media
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 331
  year: 1999
  end-page: 355
  article-title: Global optimization by multilevel coordinate search
  publication-title: J. Global Optim.
– volume: 62
  start-page: 1275
  year: 1998
  end-page: 1279
  article-title: Thermodynamics of bromide exchange on ferrihydrite: Implications for bromide transport
  publication-title: Soil Sci. Soc. Am. J.
– start-page: 1002
  year: 2002
  end-page: 1003
– volume: 295
  start-page: 124
  year: 2004
  end-page: 139
  article-title: Analysis of alternative measurement strategies for the inverse optimization of the hydraulic properties of a volcanic soil
  publication-title: J. Hydrol. (Amsterdam)
– volume: 67
  start-page: 41
  year: 2003
  end-page: 51
  article-title: Gas diffusivity in undisturbed volcanic ash soils: Test of soil‐water‐characteristic‐based prediction models
  publication-title: Soil Sci. Soc. Am. J.
– volume: 3
  start-page: 206
  year: 2004
  end-page: 221
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
– volume: 20
  start-page: 127
  year: 1995
  end-page: 143
  article-title: Ionic tracer movement through highly weathered sediments
  publication-title: J. Contam. Hydrol.
– volume: 59
  start-page: 337
  year: 1995
  end-page: 344
  article-title: Monitoring solute transport in a multi‐layered sandy lysimeter using time domain reflectometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 52
  start-page: 93
  year: 2001
  end-page: 117
  article-title: Nitrogen evolution and fate in a Canary Islands (Spain) sprinkler fertigated banana plot
  publication-title: Agric. Water Manage.
– volume: 40
  start-page: 651
  year: 1976
  end-page: 655
  article-title: Effects of liquid‐phase electrical conductivity, water content, and surface conductivity on bulk soil electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 26
  start-page: 319
  year: 2000
  end-page: 327
  article-title: RETCML: Incorporating maximum likelihood estimation principles in the RETC soil hydraulic parameter estimation code
  publication-title: Comput. Geosci.
– volume: 12
  start-page: 254
  year: 1967
  end-page: 274
  article-title: Miscible displacement and leaching phenomenon
  publication-title: Agronomy
– volume: 32
  start-page: 2325
  year: 2003
  end-page: 2333
  article-title: Solute movement through an allophanic soil
  publication-title: J. Environ. Qual.
– volume: 60
  start-page: 5
  year: 1996
  end-page: 12
  article-title: Characterizing water and solute movement by TDR and disk permeametry
  publication-title: Soil Sci. Soc. Am. J.
– year: 1996
– volume: 7
  start-page: 308
  year: 1965
  end-page: 313
  article-title: A simplex method for function minimization
  publication-title: Comp. J.
– year: 1977
– volume: 50
  start-page: 121
  year: 2001
  end-page: 138
  article-title: Effectiveness of equilibrium and physical non‐equilibrium approaches for interpreting solute transport through undisturbed soil columns
  publication-title: J. Contam. Hydrol.
– volume: 51
  start-page: 13
  year: 2001
  end-page: 39
  article-title: Grid lysimeter study of steady state chloride transport in two Spodosol types using TDR and wick samplers
  publication-title: J. Contam. Hydrol.
– volume: 58
  start-page: 1031
  year: 1994
  end-page: 1039
  article-title: Laboratory measurements of solute transport using time domain reflectometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 59
  start-page: 689
  year: 1995
  end-page: 698
  article-title: Assessing temporal variations in soil water composition with time domain reflectometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 63
  start-page: 733
  year: 1999
  end-page: 740
  article-title: Soft X‐ray radiography of drainage patterns of structured soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 34
  start-page: 2539
  year: 1998
  end-page: 2550
  article-title: Analysis of steady state chloride transport through two heterogeneous field soils
  publication-title: Water Resour. Res.
– volume: 259
  start-page: 15
  year: 2002
  end-page: 31
  article-title: Calibration of Richards' and convection–dispersion equations to field‐scale water flow and solute transport under rainfall conditions
  publication-title: J. Hydrol. (Amsterdam)
– year: 2002
– volume: 38
  start-page: 1224
  year: 2002
  article-title: A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties. (11)
  publication-title: Water Resour. Res.
– volume: 55
  start-page: 938
  year: 1991
  end-page: 943
  article-title: Time domain reflectometry measurements of water content and electrical conductivity of layered soil columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 64
  start-page: 12
  year: 2000
  end-page: 18
  article-title: A simple approach to determine reactive solute transport using time domain reflectometry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 67
  start-page: 414
  year: 2003
  end-page: 424
  article-title: The effect of ohmic cable losses on time‐domain reflectometry measurements of electrical conductivity
  publication-title: Soil Sci. Soc. Am. J.
– volume: 2
  start-page: 444
  year: 2003
  end-page: 475
  article-title: A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectrometry
  publication-title: Vadose Zone J.
– volume: 117
  start-page: 313
  year: 2003
  end-page: 330
  article-title: Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils
  publication-title: Geoderma
– volume: 124
  start-page: 399
  year: 2005
  end-page: 413
  article-title: TDR estimation of saline solutes concentration in a volcanic soil
  publication-title: Geoderma
– year: 1999
– ident: e_1_2_8_50_1
  doi: 10.2136/sssaj1996.03615995006000010004x
– ident: e_1_2_8_10_1
  doi: 10.2136/sssaj1995.03615995005900030009x
– ident: e_1_2_8_22_1
  doi: 10.1016/0169-7722(94)90016-7
– volume-title: Reference and user's manual. Release 2.1
  year: 1996
  ident: e_1_2_8_45_1
– start-page: 678
  volume-title: Methods of soils analysis. Part 4
  year: 2002
  ident: e_1_2_8_7_1
  doi: 10.2136/sssabookser5.4
– volume-title: Evaluation of hydrologic models using statistical methods
  year: 2001
  ident: e_1_2_8_53_1
– start-page: 26.1
  volume-title: Handbook of hydrology
  year: 1992
  ident: e_1_2_8_20_1
– ident: e_1_2_8_3_1
  doi: 10.2136/sssaj1998.03615995006200050018x
– ident: e_1_2_8_36_1
  doi: 10.2136/vzj2003.4440
– ident: e_1_2_8_25_1
  doi: 10.2136/sssaj1999.634733x
– ident: e_1_2_8_44_1
  doi: 10.2136/sssaj1995.03615995005900020010x
– ident: e_1_2_8_48_1
  doi: 10.1016/S0022-1694(96)03064-8
– volume: 52
  start-page: 93
  year: 2001
  ident: e_1_2_8_27_1
  article-title: Nitrogen evolution and fate in a Canary Islands (Spain) sprinkler fertigated banana plot
  publication-title: Agric. Water Manage.
  doi: 10.1016/S0378-3774(01)00131-7
– volume-title: Estudio de la Integración a Diferentes Escalas del Transporte de Aguas y Solutos en Suelos–IDEASS
  year: 1999
  ident: e_1_2_8_26_1
– ident: e_1_2_8_8_1
  doi: 10.1016/S0016-7061(02)00131-3
– ident: e_1_2_8_21_1
  doi: 10.2134/jeq2003.2325
– ident: e_1_2_8_34_1
  doi: 10.1016/S0378-3774(02)00160-9
– start-page: 1002
  volume-title: Methods of soils analysis. Part 4
  year: 2002
  ident: e_1_2_8_12_1
– volume: 3
  start-page: 206
  year: 2004
  ident: e_1_2_8_47_1
  article-title: A set of analytical benchmarks to test numerical models of flow and transport in soils
  publication-title: Vadose Zone J.
– ident: e_1_2_8_4_1
  doi: 10.2136/sssaj2003.4140
– volume-title: An introduction to clay colloid chemistry
  year: 1977
  ident: e_1_2_8_43_1
– ident: e_1_2_8_29_1
  doi: 10.1029/WR012i003p00513
– ident: e_1_2_8_11_1
  doi: 10.1016/S0098-3004(99)00138-7
– ident: e_1_2_8_52_1
  doi: 10.2136/sssaj1994.03615995005800040006x
– ident: e_1_2_8_23_1
  doi: 10.1016/S0167-1987(01)00172-6
– ident: e_1_2_8_18_1
  doi: 10.2136/sssaj1996.03615995006000050011x
– ident: e_1_2_8_19_1
  doi: 10.1029/2001WR001224
– ident: e_1_2_8_42_1
  doi: 10.2136/sssaj1976.03615995004000040011x
– ident: e_1_2_8_51_1
  doi: 10.2136/sssaj2000.64112x
– volume: 12
  start-page: 254
  year: 1967
  ident: e_1_2_8_2_1
  article-title: Miscible displacement and leaching phenomenon
  publication-title: Agronomy
– volume-title: World Soil Resources Rep. 84
  year: 1998
  ident: e_1_2_8_9_1
– volume-title: World reference base for soil resources
  year: 1994
  ident: e_1_2_8_14_1
– ident: e_1_2_8_41_1
  doi: 10.2136/sssaj1980.03615995004400050002x
– ident: e_1_2_8_33_1
  doi: 10.2136/sssaj1976.03615995004000050017x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.jhydrol.2004.03.005
– ident: e_1_2_8_40_1
  doi: 10.1029/WR021i006p00808
– ident: e_1_2_8_13_1
  doi: 10.1023/A:1008382309369
– ident: e_1_2_8_28_1
  doi: 10.1016/j.geoderma.2004.06.002
– volume-title: Proceedings of the First Workshop on Mathematical Modelling of Environmental Problems, Bucharest
  year: 2002
  ident: e_1_2_8_46_1
– ident: e_1_2_8_32_1
  doi: 10.1016/S0016-7061(03)00131-9
– ident: e_1_2_8_30_1
  doi: 10.2136/sssaj1991.03615995005500040007x
– ident: e_1_2_8_49_1
  doi: 10.2136/sssaj2000.6441305x
– ident: e_1_2_8_5_1
  doi: 10.1029/WR026i007p01483
– ident: e_1_2_8_16_1
  doi: 10.1016/S0022-1694(01)00591-1
– ident: e_1_2_8_37_1
  doi: 10.1016/0169-7722(95)00043-U
– ident: e_1_2_8_39_1
  doi: 10.2136/sssaj1999.634777x
– ident: e_1_2_8_15_1
  doi: 10.1029/98WR01873
– ident: e_1_2_8_24_1
  doi: 10.2136/sssaj2003.4100
– ident: e_1_2_8_31_1
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_2_8_38_1
  doi: 10.1016/S0169-7722(01)00120-6
– ident: e_1_2_8_17_1
  doi: 10.2136/sssaj2003.1334
– ident: e_1_2_8_6_1
  doi: 10.1016/S0169-7722(01)00100-0
SSID ssj0019442
Score 1.8096035
Snippet Volcanic soils exhibit particular physical-chemical properties (i.e., strong and stable natural aggregation and high content of variable-charge minerals) that...
Volcanic soils exhibit particular physical‐chemical properties (i.e., strong and stable natural aggregation and high content of variable‐charge minerals) that...
SourceID proquest
crossref
wiley
geoscienceworld
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 300
SubjectTerms adsorption
agricultural soils
agriculture
aluminum
aluminum oxyhydroxides
Andisols
anion exchange
Atlantic Ocean Islands
breakthrough curves
bromide ion
bromides
bromine
Canary Islands
characterization
chemical dispersion
convection
electrical methods
Environmental geology
field studies
geochemistry
geophysical methods
ground water
halogens
inverse modeling
inverse problem
ion exchange
iron
iron oxyhydroxides
layered materials
layered soils
mathematical models
minerals
miscible displacement
mobility
numerical models
oxide, hydroxide, and oxyhydroxide minerals
physicochemical properties
pollution
quantitative analysis
reactivity
simulation models
soil solution
soil transport processes
soil water
soils
solute transport
solutes
statistical analysis
TDR data
Tenerife
terraces
time domain reflectometry
tracers
unsaturated zone
vadose zone
variable charge
volcanic soils
water pollution
Title Using TDR and inverse modeling to characterize solute transport in a layered agricultural volcanic soil
URI https://pubs.geoscienceworld.org/vzj/article/4/2/300/111807
https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2004.0094
https://www.proquest.com/docview/16199078
https://www.proquest.com/docview/2431851982
https://www.proquest.com/docview/46671038
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe6cWGHaXxphQFGGqcqJc6HEx9L6TRV3ZCgrSoulhM71dDUVGs7QQ_87Tw7zsembRocGlVu6jj-_Wy_5_f8HkLHMgmVUAl1fFj9QEFJmCOikDiJLzMqJYi0TJ93Pjunp5NgOAtnrday4bW0WSfddHvnuZL_QRXKAFd9SvYfkK0qhQL4DvjCFRCG66MwLuz94y_frFevdrFQJr2ZOWQOYmW_ise8VR2zBabqeOZ6r0N0RuK3ztfZ6c2v6jgc0_wS-vwihf9YHwwrwE6F1B7u2xyE02YbTRzstc3y0ath1Ib4zyTfOn1t6CkOoNXGJQXrE1RodmvrfdmhuBabX_VWbbkpEdYugNU8yhxC7dyl7iizk2_Q4JjXWXZ9F5YFlzWmVN91G6uz_e32xO8VmWmutz81P7raX7Je4Eqj_vlXfjIZjfh4MBvvoCceKBY658XZn0Fld2KBSbdUNbU4KqFr_9Ss-4YQs5OJfA_tz5WNPqpMrNsbGktT7zGCy_gA7VuNA_cK-jxDLbV4jvZqtNULNDdEwkAkDETClki4JBJe57hJJFwQCVdEwhcLLLAlEm4SCZdEwppIL9HkZDDunzo2A4cjAugKB2TzMI38JGAZqNIRFWnGMkKTJE4ZDHEF8iyjikRK-nHkw5AnaerKQCZUsUSmvv8K7S6AkIcIh5lULnOhyyULFE3jmGRE-ioihApC4zbqlF3KUxueXmdJueSgpmoAuAWAawDa6GN197IIy3LPfYeADhfw4is--e5pOz3Rccao20bHtyDjdtisdG7WkLugq4ReG70vceQw82pzmliofLPioCuBKBdByz_cc4cX6NgEhMUP1BJQGukkBW3kGZI8-Dp8-mPo6Y9Ze1nw-hGPfoOe1iP0CO2urzbqLQjS6-Sd4f5f3zLFoA
linkProvider ISSN International Centre
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7R7QF6qHiq4VUjlRMKrPNw4uOqUC1l2wNsVlUvlh07q61WCdrdItFfz4yThhapPXDIzXZifxnPZ3v8DcCBNanTzogwRu-HCxQjQ52lPDSxrYS1SGkl3Xc-ORXjIjk-S8-6PKd0F6bVh-g33Mgy_HxNBk4b0j52uU1D8uvqgiD-SMFxW7BNxCYfwPZoVpwX_UGCTHz-HLRrGXL0rm3sO7Xw6Wb9W15pq9LNDuzOXScn6bx46S0KepPIek909Bh2OwrJRi3mT-CBq5_Czmi-6mQ03DOY-0gANv38nenaMhLTWK0do8RndP2cbRp22Cs1XznmN8cc65XO2aJmmk30b8rkyf42ja-dNUtEY1FincXyORRHX6aH47BLqRDqBIciRLKVlllsElnh2igTuqxkxYUxeSkRM4cERQrHM2fjPIsRQ16WQ5tYI5w0tozjFzCom9rtAUsr64a4tI4iKxMnyjznFbexyzgXmos8gA_XQ6rKTm-c0l4sFa47CADVAaAIgADe96V_tjobd5TbQ3SUxo6vVfEjooNXTsJRYhjAwT-Qqc4e15RsM1VDJJ9pFMD-NY4KTYnOR3Ttmsu1QvKLvjnDL393R4koocvmXOb3tJIIkZHqfACR_0nu7Y6anR9H9PjJVCYv_6fSPjwcT08mavL19NsreOTFZX1I5msYbFaX7g3Spo1525nGH72TD64
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKSFU5IOiHSFuKK9FTlXadDyc-rqArSimqWrJCXCw7nqwWrRK0u1Qqv74zTkgBCQ495GY7iZ_H82yP3zC252wKBqwMY_R-uECxKjRZKkIbu0o6h5RW0X3n7yfysEiOztKzbsON7sK0-hD9hhtZhp-vycAvXeVDl9ssJL-vLwjhTxQbt8LWSCgPR_XacFycF_05gkp8-hw0axUKdK5t6Du18Pl2_TtOaaUyzTrbmECnJgleu_QOA73NY70jGm2yjY5B8mEL-RZ7AvVztj6czDsVDXjBJj4QgJ8e_OSmdpy0NOYL4JT3jG6f82XD93uh5mvgfm8MeC90zqc1N_zY_KFEnvxf0_jacTNDMKYl1pnOXrJi9OV0_zDsMiqEJsGuCJFrpWUW20RVuDTKpCkrVQlpbV4qhAyQnygJIgMX51mMEIqyHLjEWQnKujKOX7HVuqlhm_G0cjDAlXUUOZWALPNcVMLFkAkhjZB5wD7edKkuO7lxynox07jsIAB0B4AmAAL2oS992cpsPFBuG9HRBn98oYtfEZ27CtKNkoOA7d2DTHfmuKBcm6keIPdMo4Dt3uCo0ZLoeMTU0FwtNHJfdM0Zfvn7B0pECd01Fyp_pJVEyoxE5wMW-UHy6O_o8flRRI-fS1Xy-n8q7bKnPw5G-vjrybc37JmXlvUBmW_Z6nJ-BTtImpb2XWcZfwH7jA7X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+TDR+and+Inverse+Modeling+to+Characterize+Solute+Transport+in+a+Layered+Agricultural+Volcanic+Soil&rft.jtitle=Vadose+zone+journal&rft.au=Ritter%2C+A&rft.au=Mu%C3%B1oz-Carpena%2C+R&rft.au=Regalado%2C+C+M&rft.au=Javaux%2C+M&rft.date=2005-05-01&rft.issn=1539-1663&rft.eissn=1539-1663&rft.volume=4&rft.issue=2+p.300-309&rft.spage=300&rft.epage=309&rft_id=info:doi/10.2136%2Fvzj2004.0094&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon