Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS a...
Saved in:
Published in | Environmental science & technology Vol. 50; no. 14; pp. 7671 - 7678 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. |
---|---|
AbstractList | Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV sub( 254) exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV sub( 254) irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV₂₅₄ exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV₂₅₄ irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies. |
Author | Li, Weiguang Rothwell, Arlene P Blatchley III, Ernest R Wood, Karl V Zhang, Xinran Li, Jing Yang, Jer-Yen |
AuthorAffiliation | Department of Basic Medical Sciences & Center for Cancer Research Harbin Institute of Technology School of Municipal and Environmental Engineering Department of Applied Chemistry Purdue University China Agricultural University Campus-Wide Mass Spectrometry Center Division of Environmental & Ecological Engineering Lyles School of Civil Engineering |
AuthorAffiliation_xml | – name: Campus-Wide Mass Spectrometry Center – name: China Agricultural University – name: School of Municipal and Environmental Engineering – name: Department of Basic Medical Sciences & Center for Cancer Research – name: Lyles School of Civil Engineering – name: Department of Applied Chemistry – name: Purdue University – name: Harbin Institute of Technology – name: Division of Environmental & Ecological Engineering |
Author_xml | – sequence: 1 givenname: Xinran surname: Zhang fullname: Zhang, Xinran – sequence: 2 givenname: Jing surname: Li fullname: Li, Jing – sequence: 3 givenname: Jer-Yen surname: Yang fullname: Yang, Jer-Yen – sequence: 4 givenname: Karl V surname: Wood fullname: Wood, Karl V – sequence: 5 givenname: Arlene P surname: Rothwell fullname: Rothwell, Arlene P – sequence: 6 givenname: Weiguang surname: Li fullname: Li, Weiguang – sequence: 7 givenname: Ernest R surname: Blatchley III fullname: Blatchley III, Ernest R email: blatch@purdue.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27338715$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1rGzEQxUVISBy359zCQi6FsvZIWkmrY3DbfOCQUJqS26LVSkRhvXKlNTT_fbWxm4AhHyfB6Pdm5s07RLud7wxCRxgmGAieKh0nJvYTXgMBkDtohBmBnJUM76IRAKa5pPzuAB3G-AAAhEK5jw6IoLQUmI3Q5ey-9cF1Znr7O7sJXpsYM-tD9s1ov1j66Hrnu0x1Tar0_q-zTqunkrfZldNJ8Rh71-Xzn5_QnlVtNJ837xjd_vj-a3aez6_PLman81wVkvZ5U5AGmKkFs8KUnAlaMqUB18TKwhLQltVS2qYppObMasM5FMwmX0qQmhI6Rl_WfZfB_1kl99XCRW3aVnXGr2JFBp_AmWTvorjEuBRCEv4BFJjguIBhgZMt9MGvQpc8rymJSTHMPt5Qq3phmmoZ3EKFx-r_7RMwXQPpiDEGY58RDNWQbpXSrYb2m3STgm0ptOuf0uiDcu0buq9r3fDxsusr9D9hPra1 |
CODEN | ESTHAG |
CitedBy_id | crossref_primary_10_1002_jssc_201601407 crossref_primary_10_1016_j_scitotenv_2024_170078 crossref_primary_10_1021_acs_est_3c01912 crossref_primary_10_1016_j_apcatb_2022_121709 crossref_primary_10_1021_acs_est_3c00744 crossref_primary_10_1186_s42834_023_00202_w crossref_primary_10_1016_j_apcatb_2020_118756 crossref_primary_10_1016_j_chemosphere_2024_142338 crossref_primary_10_1007_s11356_021_13798_6 crossref_primary_10_2116_analsci_18P384 crossref_primary_10_1016_j_watres_2020_116305 crossref_primary_10_1021_acs_est_4c04255 crossref_primary_10_1016_j_jwpe_2023_104707 crossref_primary_10_1016_j_cej_2019_01_079 crossref_primary_10_1038_srep41326 crossref_primary_10_1016_j_jece_2022_107508 crossref_primary_10_1016_j_cej_2020_125073 crossref_primary_10_1016_j_watres_2019_05_030 crossref_primary_10_1002_wer_70049 crossref_primary_10_1016_j_fuproc_2017_10_011 crossref_primary_10_1021_acs_est_7b03628 crossref_primary_10_1016_j_watres_2024_121148 crossref_primary_10_1016_j_jhazmat_2021_125111 crossref_primary_10_1016_j_chemosphere_2021_131426 crossref_primary_10_1016_j_jhazmat_2019_120921 crossref_primary_10_1021_acs_est_2c08868 crossref_primary_10_1016_j_jhazmat_2021_127357 crossref_primary_10_1039_C9EW01112A crossref_primary_10_1016_j_watres_2021_116893 crossref_primary_10_1016_j_chemosphere_2022_133726 crossref_primary_10_1016_j_watres_2020_116056 crossref_primary_10_1016_j_cej_2022_137553 crossref_primary_10_1016_j_chemosphere_2017_07_104 crossref_primary_10_1021_acs_chemrestox_0c00164 crossref_primary_10_2965_jwet_19_021 crossref_primary_10_1021_acs_est_9b01412 crossref_primary_10_1016_j_jece_2022_108641 crossref_primary_10_1016_j_chemosphere_2018_09_162 crossref_primary_10_1021_acs_est_8b00034 crossref_primary_10_1016_j_cej_2021_128631 crossref_primary_10_1021_acs_estlett_0c00923 crossref_primary_10_1016_j_seppur_2023_124259 crossref_primary_10_1021_acs_est_2c01495 crossref_primary_10_3390_toxins16060269 crossref_primary_10_1016_j_cej_2024_149353 crossref_primary_10_1016_j_jece_2018_08_032 |
Cites_doi | 10.1021/es801637z 10.1016/j.watres.2015.02.011 10.1016/0041-0101(95)00101-8 10.1016/j.ecoenv.2004.04.006 10.1016/j.chemosphere.2008.10.024 10.1016/j.watres.2013.05.034 10.1021/es802282n 10.1016/j.watres.2011.11.012 10.2174/138955706776073475 10.1021/es070318s 10.1016/j.hal.2016.01.003 10.1021/es049120n 10.1016/j.watres.2012.02.017 10.1016/j.watres.2010.12.008 10.1016/0022-1759(83)90303-4 10.1016/j.watres.2005.01.022 10.1016/j.watres.2011.09.025 10.1016/j.watres.2009.04.035 10.1016/j.watres.2014.10.044 10.1021/es400273w 10.1007/s00216-010-3709-5 10.3390/ijms11010268 10.1016/j.watres.2005.10.030 10.1002/j.1551-8833.1989.tb06894.x 10.1016/j.watres.2011.11.009 10.1016/S0006-291X(05)80936-2 10.1016/j.watres.2007.03.032 10.1016/j.watres.2013.03.037 10.1021/es048350z 10.1021/es403732s 10.1016/S0041-0101(96)00223-1 10.1021/es5030355 10.1021/es0625327 10.1021/es903157h 10.2216/07-11.1 10.1021/es8016304 10.1021/es9812103 10.1139/s06-052 10.1016/S0043-1354(97)82238-5 10.1016/j.seppur.2012.02.018 10.1021/es302458h 10.1016/S0045-6535(99)00402-6 10.1021/acs.est.5b03029 10.1016/j.watres.2006.01.030 10.1016/j.toxicon.2007.03.021 10.1177/019262330002800513 10.1021/es052546x 10.1016/j.jhazmat.2013.03.010 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical Society Copyright American Chemical Society Jul 19, 2016 |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society – notice: Copyright American Chemical Society Jul 19, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 M7N 7S9 L.6 |
DOI | 10.1021/acs.est.6b02009 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Toxicology Abstracts Biotechnology Research Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 7678 |
ExternalDocumentID | 4123346451 27338715 10_1021_acs_est_6b02009 b057446708 |
Genre | Journal Article Feature |
GroupedDBID | - .K2 1AW 3R3 4R4 53G 55A 5GY 5VS 63O 7~N 85S AABXI ABFLS ABMVS ABOGM ABPPZ ABPTK ABUCX ABUFD ACGFS ACGOD ACIWK ACJ ACPRK ACS AEESW AENEX AFEFF AFRAH ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DZ EBS ED ED~ EJD F5P GNL IH9 JG JG~ K2 LG6 MS PQEST PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK XZL YZZ --- -DZ -~X ..I .DC 4.4 6TJ AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV ADUKH AGXLV AHGAQ CITATION CUPRZ GGK MS~ MW2 XSW ZCA CGR CUY CVF ECM EIF NPM YIN 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 M7N 7S9 L.6 |
ID | FETCH-LOGICAL-a493t-d42d05eb75f7e8657385ac01b2f94f20cf5b99fdd49c65fce66045f152a72b323 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Fri Jul 11 04:22:23 EDT 2025 Fri Jul 11 07:30:28 EDT 2025 Fri Jul 11 10:28:00 EDT 2025 Mon Jun 30 03:34:59 EDT 2025 Wed Feb 19 02:42:38 EST 2025 Tue Jul 01 04:29:08 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Thu Aug 27 13:43:10 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a493t-d42d05eb75f7e8657385ac01b2f94f20cf5b99fdd49c65fce66045f152a72b323 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 27338715 |
PQID | 1805791245 |
PQPubID | 45412 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2000206595 proquest_miscellaneous_1811877926 proquest_miscellaneous_1805761402 proquest_journals_1805791245 pubmed_primary_27338715 crossref_primary_10_1021_acs_est_6b02009 crossref_citationtrail_10_1021_acs_est_6b02009 acs_journals_10_1021_acs_est_6b02009 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-19 |
PublicationDateYYYYMMDD | 2016-07-19 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2016 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 Organization W. H. (ref11/cit11) 2004; 1 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref20/cit20 Jensen J. N. (ref37/cit37) 1989; 81 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref42/cit42 doi: 10.1021/es801637z – ident: ref46/cit46 doi: 10.1016/j.watres.2015.02.011 – ident: ref14/cit14 doi: 10.1016/0041-0101(95)00101-8 – ident: ref50/cit50 doi: 10.1016/j.ecoenv.2004.04.006 – ident: ref29/cit29 doi: 10.1016/j.chemosphere.2008.10.024 – ident: ref26/cit26 doi: 10.1016/j.watres.2013.05.034 – ident: ref18/cit18 doi: 10.1021/es802282n – ident: ref3/cit3 doi: 10.1016/j.watres.2011.11.012 – ident: ref8/cit8 doi: 10.2174/138955706776073475 – volume: 1 volume-title: Guidelines for Drinking-Water Quality: Recommendations year: 2004 ident: ref11/cit11 – ident: ref45/cit45 doi: 10.1021/es070318s – ident: ref16/cit16 doi: 10.1016/j.hal.2016.01.003 – ident: ref41/cit41 doi: 10.1021/es049120n – ident: ref25/cit25 doi: 10.1016/j.watres.2012.02.017 – ident: ref40/cit40 doi: 10.1016/j.watres.2010.12.008 – ident: ref31/cit31 doi: 10.1016/0022-1759(83)90303-4 – ident: ref13/cit13 doi: 10.1016/j.watres.2005.01.022 – ident: ref19/cit19 doi: 10.1016/j.watres.2011.09.025 – ident: ref39/cit39 doi: 10.1016/j.watres.2009.04.035 – ident: ref22/cit22 doi: 10.1016/j.watres.2014.10.044 – ident: ref24/cit24 doi: 10.1021/es400273w – ident: ref2/cit2 doi: 10.1007/s00216-010-3709-5 – ident: ref7/cit7 doi: 10.3390/ijms11010268 – ident: ref15/cit15 doi: 10.1016/j.watres.2005.10.030 – volume: 81 start-page: 59 issue: 12 year: 1989 ident: ref37/cit37 publication-title: J.Am. Water Works Ass. doi: 10.1002/j.1551-8833.1989.tb06894.x – ident: ref4/cit4 doi: 10.1016/j.watres.2011.11.009 – ident: ref9/cit9 doi: 10.1016/S0006-291X(05)80936-2 – ident: ref20/cit20 doi: 10.1016/j.watres.2007.03.032 – ident: ref49/cit49 doi: 10.1016/j.watres.2013.03.037 – ident: ref32/cit32 doi: 10.1021/es048350z – ident: ref43/cit43 doi: 10.1021/es403732s – ident: ref12/cit12 doi: 10.1016/S0041-0101(96)00223-1 – ident: ref47/cit47 doi: 10.1021/es5030355 – ident: ref48/cit48 doi: 10.1021/es0625327 – ident: ref34/cit34 doi: 10.1021/es903157h – ident: ref30/cit30 doi: 10.2216/07-11.1 – ident: ref23/cit23 doi: 10.1021/es8016304 – ident: ref38/cit38 doi: 10.1021/es9812103 – ident: ref21/cit21 doi: 10.1139/s06-052 – ident: ref27/cit27 doi: 10.1016/S0043-1354(97)82238-5 – ident: ref28/cit28 – ident: ref6/cit6 doi: 10.1016/j.seppur.2012.02.018 – ident: ref44/cit44 doi: 10.1021/es302458h – ident: ref35/cit35 doi: 10.1016/S0045-6535(99)00402-6 – ident: ref17/cit17 doi: 10.1021/acs.est.5b03029 – ident: ref36/cit36 doi: 10.1016/j.watres.2006.01.030 – ident: ref33/cit33 doi: 10.1016/j.toxicon.2007.03.021 – ident: ref10/cit10 doi: 10.1177/019262330002800513 – ident: ref1/cit1 doi: 10.1021/es052546x – ident: ref5/cit5 doi: 10.1016/j.jhazmat.2013.03.010 |
SSID | ssj0002308 |
Score | 2.4271405 |
Snippet | Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7671 |
SubjectTerms | absorption arginine Bacteria byproducts chemical degradation chlorination Chlorine Cyanobacteria Cyanobacteria - chemistry cytotoxicity Decomposition detoxification (processing) Drinking water hepatocytes hepatotoxicity hepatotoxins humans irradiation Mass Spectrometry microcystin-LR Molecules oxidation Oxidation-Reduction Toxicity Ultraviolet radiation Water Supply |
Title | Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR |
URI | http://dx.doi.org/10.1021/acs.est.6b02009 https://www.ncbi.nlm.nih.gov/pubmed/27338715 https://www.proquest.com/docview/1805791245 https://www.proquest.com/docview/1805761402 https://www.proquest.com/docview/1811877926 https://www.proquest.com/docview/2000206595 |
Volume | 50 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwELUQvdBDKVDKthSlEodeEhzHduIj2oIQAg4tW-0tsh1blUBZRLIS8PWdSbyBFm3hmowja-zxPGdm3hCyL7HRm9UutpZWMRcsj3WFia7gqh31NuUOq5HPL-TJhJ9OxfSRLPrfCD5LD7RtEjggE2loX6r3hskix3vW4fjncOgCki4WzQpUJqcDi8-zD6Abss3fbmgJtux8zPF6n53VdNSEmFpylcxbk9iH58SNL0__PXkXkGZ02G-NDbLi6k3y9gn_4CbZPnoscwPRYOfNFjkd_-4y89zB5FcUagkigLfRd4c56CHRK9J1BU_a2R3mG3VLHM18dI45fvYezo46PvvxgUyOjy7HJ3HouhBrrrI2rjirqHAmFz53hRRId6MtTQ3zintGrRdGKV9VXFkpvHVSAiz0gAN0zkzGsm2yWs9qt0Mi6zLKHFyoBDXceKGVt6xIs9QzxYWxI7IP6imD1TRlFxBnaYkPQWdl0NmIJIu1Km1gLscGGtfLB3wbBtz0pB3LRXcXi_9kHgWW6ALyESPydXgNdofBFF272TzIALah7H8y2Mw9V0wul2FdMBhZHUfkY7_5hjkDtMzgQis-vU5Pn8kawDmJf55TtUtW29u5-wKQqTV7nbH8ASa4EE0 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1V5QAcWigUthQIUpG4ZOs4sbM-cKi2rbbtbg_QRXsLsWMLiSqLSFZQvoZf6Z91JutNC2gRl0pcnXHk2JOZZ3vmDcCOpEJvJrehMawIE8HTMC8o0BVdtWXORImlbOTRqRyMk-OJmKzAz0UuDA6iwjdVzSX-NbtAtEttaCe7UjM60PdhlCf24htu0qq3R_u4oq85Pzw46w9CX0cgzBMV12GR8IIJq1PhUtuTgghccsMizZ1KHGfGCa2UK4pEGSmcsVIi0HHo2fKU65ioDdDI30How2l7t9d_39p6BPC9RY0EFctJSx70x4DJ-5nqV--3BNI2ru1wHS7bSWkiWj53Z7Xumh-_8UX-z7P2ANY8rg725j_CQ1ix5Qbcv8G2uAGbB9dJfSjqrVr1CI77n5o4RLs7_hD4zIkAwXywbyni3oe1BXlZYEs9_U7RVY1CB1MXjCii0VygpSzD4bvHML6Vr9yE1XJa2qcQGBszbnH7KJhOtBO5cob3ojhyXCVCmw7s4HJk3kZUWXP9z6OMGnGNMr9GHeguVCQznqedyoWcL-_wpu3wZU5Rslx0e6FzN8bRo4RkxHmiA6_ax2hl6OooL-105mUQyTH-NxkqXZ8qLpfL8ObqmzgsO_BkrvPtmBFIx7h9F1v_Nk8v4e7gbDTMhkenJ8_gHgJZSWfukdqG1frrzD5HsFjrF83_GsDH21b1Kw2Fcr8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5VRUJw4KdQWCgQpCJxydZxbGd94FDtdtV_IWDR3kLs2EICZSuSFZTn4VV4L2ay3lBAi7hU4upMIscez3y2v5kB2FZU6M0WLraWlbGQPIuLkoiu6Kod8zYRjqKRT07V_kQcTuV0Db4tY2GwEzV-qW4v8WlVn5U-ZBhIdqgdbWVfGUaH-oFKeeTOP-NGrX5xMMJZfcb5eO_NcD8OtQTiQui0iUvBSyadyaTP3EBJSuJSWJYY7rXwnFkvjda-LIW2SnrrlEKw49G7FRk3KaU3QEN_hS4JaYu3O3zd2XsE8YNlnQSdqmmXQOiPDpMHtPWvHnAFrG3d2_gmfO8GpmW1fOjPG9O3X3_LGfm_j9wtuBHwdbS7WBC3Yc1VG3D9QtbFDdjc-xnch6LButV34HD4vuUjup3J2yhEUEQI6qORI-Z9oLdFRVViSzP7QiyrVrGjmY9OiNloz9FiVvHxq7swuZS_3IT1ala5-xBZlzLucBspmRHGy0J7ywdJmniuhTS2B9s4HXmwFXXe0gB4klMjzlEe5qgH_aWa5Dbka6eyIR9Xv_C8e-FskapktejWUu8u9GNAgcmI92QPnnaP0drQFVJRudk8yCCiY_xvMlTCPtNcrZbh7RU45bLswb2F3nd9RkCd4jZePvi3cXoCV1-OxvnxwenRQ7iGeFbR0Xuit2C9-TR3jxAzNuZxu2QjeHfZmv4DO551Qg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine%2FUV+Process+for+Decomposition+and+Detoxification+of+Microcystin-LR&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Xinran&rft.au=Li%2C+Jing&rft.au=Yang%2C+Jer-Yen&rft.au=Wood%2C+Karl+V&rft.date=2016-07-19&rft.eissn=1520-5851&rft.volume=50&rft.issue=14&rft.spage=7671&rft_id=info:doi/10.1021%2Facs.est.6b02009&rft_id=info%3Apmid%2F27338715&rft.externalDocID=27338715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |