Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR

Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS a...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 50; no. 14; pp. 7671 - 7678
Main Authors Zhang, Xinran, Li, Jing, Yang, Jer-Yen, Wood, Karl V, Rothwell, Arlene P, Li, Weiguang, Blatchley III, Ernest R
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 19.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
AbstractList Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV254 exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV254 irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV sub( 254) exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV sub( 254) irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of the chlorine/UV process for MC-LR decomposition and detoxification. Chlorinated MC-LR was observed to be more photoactive than MC-LR. LC/MS analyses confirmed that the arginine moiety represented an important reaction site within the MC-LR molecule for conditions of chlorination below the chlorine demand of the molecule. Prechlorination activated MC-LR toward UV₂₅₄ exposure by increasing the product of the molar absorption coefficient and the quantum yield of chloro-MC-LR, relative to the unchlorinated molecule. This mechanism of decay is fundamentally different than the conventional view of chlorine/UV as an advanced oxidation process. A toxicity assay based on human liver cells indicated MC-LR degradation byproducts in the chlorine/UV process possessed less cytotoxicity than those that resulted from chlorination or UV₂₅₄ irradiation applied separately. MC-LR decomposition and detoxification in this combined process were more effective at pH 8.5 than at pH 7.5 or 6.5. These results suggest that the chlorine/UV process could represent an effective strategy for control of microcystins and their associated toxicity in drinking water supplies.
Author Li, Weiguang
Rothwell, Arlene P
Blatchley III, Ernest R
Wood, Karl V
Zhang, Xinran
Li, Jing
Yang, Jer-Yen
AuthorAffiliation Department of Basic Medical Sciences & Center for Cancer Research
Harbin Institute of Technology
School of Municipal and Environmental Engineering
Department of Applied Chemistry
Purdue University
China Agricultural University
Campus-Wide Mass Spectrometry Center
Division of Environmental & Ecological Engineering
Lyles School of Civil Engineering
AuthorAffiliation_xml – name: Campus-Wide Mass Spectrometry Center
– name: China Agricultural University
– name: School of Municipal and Environmental Engineering
– name: Department of Basic Medical Sciences & Center for Cancer Research
– name: Lyles School of Civil Engineering
– name: Department of Applied Chemistry
– name: Purdue University
– name: Harbin Institute of Technology
– name: Division of Environmental & Ecological Engineering
Author_xml – sequence: 1
  givenname: Xinran
  surname: Zhang
  fullname: Zhang, Xinran
– sequence: 2
  givenname: Jing
  surname: Li
  fullname: Li, Jing
– sequence: 3
  givenname: Jer-Yen
  surname: Yang
  fullname: Yang, Jer-Yen
– sequence: 4
  givenname: Karl V
  surname: Wood
  fullname: Wood, Karl V
– sequence: 5
  givenname: Arlene P
  surname: Rothwell
  fullname: Rothwell, Arlene P
– sequence: 6
  givenname: Weiguang
  surname: Li
  fullname: Li, Weiguang
– sequence: 7
  givenname: Ernest R
  surname: Blatchley III
  fullname: Blatchley III, Ernest R
  email: blatch@purdue.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27338715$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1rGzEQxUVISBy359zCQi6FsvZIWkmrY3DbfOCQUJqS26LVSkRhvXKlNTT_fbWxm4AhHyfB6Pdm5s07RLud7wxCRxgmGAieKh0nJvYTXgMBkDtohBmBnJUM76IRAKa5pPzuAB3G-AAAhEK5jw6IoLQUmI3Q5ey-9cF1Znr7O7sJXpsYM-tD9s1ov1j66Hrnu0x1Tar0_q-zTqunkrfZldNJ8Rh71-Xzn5_QnlVtNJ837xjd_vj-a3aez6_PLman81wVkvZ5U5AGmKkFs8KUnAlaMqUB18TKwhLQltVS2qYppObMasM5FMwmX0qQmhI6Rl_WfZfB_1kl99XCRW3aVnXGr2JFBp_AmWTvorjEuBRCEv4BFJjguIBhgZMt9MGvQpc8rymJSTHMPt5Qq3phmmoZ3EKFx-r_7RMwXQPpiDEGY58RDNWQbpXSrYb2m3STgm0ptOuf0uiDcu0buq9r3fDxsusr9D9hPra1
CODEN ESTHAG
CitedBy_id crossref_primary_10_1002_jssc_201601407
crossref_primary_10_1016_j_scitotenv_2024_170078
crossref_primary_10_1021_acs_est_3c01912
crossref_primary_10_1016_j_apcatb_2022_121709
crossref_primary_10_1021_acs_est_3c00744
crossref_primary_10_1186_s42834_023_00202_w
crossref_primary_10_1016_j_apcatb_2020_118756
crossref_primary_10_1016_j_chemosphere_2024_142338
crossref_primary_10_1007_s11356_021_13798_6
crossref_primary_10_2116_analsci_18P384
crossref_primary_10_1016_j_watres_2020_116305
crossref_primary_10_1021_acs_est_4c04255
crossref_primary_10_1016_j_jwpe_2023_104707
crossref_primary_10_1016_j_cej_2019_01_079
crossref_primary_10_1038_srep41326
crossref_primary_10_1016_j_jece_2022_107508
crossref_primary_10_1016_j_cej_2020_125073
crossref_primary_10_1016_j_watres_2019_05_030
crossref_primary_10_1002_wer_70049
crossref_primary_10_1016_j_fuproc_2017_10_011
crossref_primary_10_1021_acs_est_7b03628
crossref_primary_10_1016_j_watres_2024_121148
crossref_primary_10_1016_j_jhazmat_2021_125111
crossref_primary_10_1016_j_chemosphere_2021_131426
crossref_primary_10_1016_j_jhazmat_2019_120921
crossref_primary_10_1021_acs_est_2c08868
crossref_primary_10_1016_j_jhazmat_2021_127357
crossref_primary_10_1039_C9EW01112A
crossref_primary_10_1016_j_watres_2021_116893
crossref_primary_10_1016_j_chemosphere_2022_133726
crossref_primary_10_1016_j_watres_2020_116056
crossref_primary_10_1016_j_cej_2022_137553
crossref_primary_10_1016_j_chemosphere_2017_07_104
crossref_primary_10_1021_acs_chemrestox_0c00164
crossref_primary_10_2965_jwet_19_021
crossref_primary_10_1021_acs_est_9b01412
crossref_primary_10_1016_j_jece_2022_108641
crossref_primary_10_1016_j_chemosphere_2018_09_162
crossref_primary_10_1021_acs_est_8b00034
crossref_primary_10_1016_j_cej_2021_128631
crossref_primary_10_1021_acs_estlett_0c00923
crossref_primary_10_1016_j_seppur_2023_124259
crossref_primary_10_1021_acs_est_2c01495
crossref_primary_10_3390_toxins16060269
crossref_primary_10_1016_j_cej_2024_149353
crossref_primary_10_1016_j_jece_2018_08_032
Cites_doi 10.1021/es801637z
10.1016/j.watres.2015.02.011
10.1016/0041-0101(95)00101-8
10.1016/j.ecoenv.2004.04.006
10.1016/j.chemosphere.2008.10.024
10.1016/j.watres.2013.05.034
10.1021/es802282n
10.1016/j.watres.2011.11.012
10.2174/138955706776073475
10.1021/es070318s
10.1016/j.hal.2016.01.003
10.1021/es049120n
10.1016/j.watres.2012.02.017
10.1016/j.watres.2010.12.008
10.1016/0022-1759(83)90303-4
10.1016/j.watres.2005.01.022
10.1016/j.watres.2011.09.025
10.1016/j.watres.2009.04.035
10.1016/j.watres.2014.10.044
10.1021/es400273w
10.1007/s00216-010-3709-5
10.3390/ijms11010268
10.1016/j.watres.2005.10.030
10.1002/j.1551-8833.1989.tb06894.x
10.1016/j.watres.2011.11.009
10.1016/S0006-291X(05)80936-2
10.1016/j.watres.2007.03.032
10.1016/j.watres.2013.03.037
10.1021/es048350z
10.1021/es403732s
10.1016/S0041-0101(96)00223-1
10.1021/es5030355
10.1021/es0625327
10.1021/es903157h
10.2216/07-11.1
10.1021/es8016304
10.1021/es9812103
10.1139/s06-052
10.1016/S0043-1354(97)82238-5
10.1016/j.seppur.2012.02.018
10.1021/es302458h
10.1016/S0045-6535(99)00402-6
10.1021/acs.est.5b03029
10.1016/j.watres.2006.01.030
10.1016/j.toxicon.2007.03.021
10.1177/019262330002800513
10.1021/es052546x
10.1016/j.jhazmat.2013.03.010
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright American Chemical Society Jul 19, 2016
Copyright_xml – notice: Copyright © 2016 American Chemical Society
– notice: Copyright American Chemical Society Jul 19, 2016
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
M7N
7S9
L.6
DOI 10.1021/acs.est.6b02009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Toxicology Abstracts
Biotechnology Research Abstracts
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 7678
ExternalDocumentID 4123346451
27338715
10_1021_acs_est_6b02009
b057446708
Genre Journal Article
Feature
GroupedDBID -
.K2
1AW
3R3
4R4
53G
55A
5GY
5VS
63O
7~N
85S
AABXI
ABFLS
ABMVS
ABOGM
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
AEESW
AENEX
AFEFF
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DZ
EBS
ED
ED~
EJD
F5P
GNL
IH9
JG
JG~
K2
LG6
MS
PQEST
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
XZL
YZZ
---
-DZ
-~X
..I
.DC
4.4
6TJ
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
ADUKH
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
MS~
MW2
XSW
ZCA
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
M7N
7S9
L.6
ID FETCH-LOGICAL-a493t-d42d05eb75f7e8657385ac01b2f94f20cf5b99fdd49c65fce66045f152a72b323
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Fri Jul 11 04:22:23 EDT 2025
Fri Jul 11 07:30:28 EDT 2025
Fri Jul 11 10:28:00 EDT 2025
Mon Jun 30 03:34:59 EDT 2025
Wed Feb 19 02:42:38 EST 2025
Tue Jul 01 04:29:08 EDT 2025
Thu Apr 24 23:11:08 EDT 2025
Thu Aug 27 13:43:10 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a493t-d42d05eb75f7e8657385ac01b2f94f20cf5b99fdd49c65fce66045f152a72b323
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27338715
PQID 1805791245
PQPubID 45412
PageCount 8
ParticipantIDs proquest_miscellaneous_2000206595
proquest_miscellaneous_1811877926
proquest_miscellaneous_1805761402
proquest_journals_1805791245
pubmed_primary_27338715
crossref_primary_10_1021_acs_est_6b02009
crossref_citationtrail_10_1021_acs_est_6b02009
acs_journals_10_1021_acs_est_6b02009
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-19
PublicationDateYYYYMMDD 2016-07-19
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2016
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
Organization W. H. (ref11/cit11) 2004; 1
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref20/cit20
Jensen J. N. (ref37/cit37) 1989; 81
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref42/cit42
  doi: 10.1021/es801637z
– ident: ref46/cit46
  doi: 10.1016/j.watres.2015.02.011
– ident: ref14/cit14
  doi: 10.1016/0041-0101(95)00101-8
– ident: ref50/cit50
  doi: 10.1016/j.ecoenv.2004.04.006
– ident: ref29/cit29
  doi: 10.1016/j.chemosphere.2008.10.024
– ident: ref26/cit26
  doi: 10.1016/j.watres.2013.05.034
– ident: ref18/cit18
  doi: 10.1021/es802282n
– ident: ref3/cit3
  doi: 10.1016/j.watres.2011.11.012
– ident: ref8/cit8
  doi: 10.2174/138955706776073475
– volume: 1
  volume-title: Guidelines for Drinking-Water Quality: Recommendations
  year: 2004
  ident: ref11/cit11
– ident: ref45/cit45
  doi: 10.1021/es070318s
– ident: ref16/cit16
  doi: 10.1016/j.hal.2016.01.003
– ident: ref41/cit41
  doi: 10.1021/es049120n
– ident: ref25/cit25
  doi: 10.1016/j.watres.2012.02.017
– ident: ref40/cit40
  doi: 10.1016/j.watres.2010.12.008
– ident: ref31/cit31
  doi: 10.1016/0022-1759(83)90303-4
– ident: ref13/cit13
  doi: 10.1016/j.watres.2005.01.022
– ident: ref19/cit19
  doi: 10.1016/j.watres.2011.09.025
– ident: ref39/cit39
  doi: 10.1016/j.watres.2009.04.035
– ident: ref22/cit22
  doi: 10.1016/j.watres.2014.10.044
– ident: ref24/cit24
  doi: 10.1021/es400273w
– ident: ref2/cit2
  doi: 10.1007/s00216-010-3709-5
– ident: ref7/cit7
  doi: 10.3390/ijms11010268
– ident: ref15/cit15
  doi: 10.1016/j.watres.2005.10.030
– volume: 81
  start-page: 59
  issue: 12
  year: 1989
  ident: ref37/cit37
  publication-title: J.Am. Water Works Ass.
  doi: 10.1002/j.1551-8833.1989.tb06894.x
– ident: ref4/cit4
  doi: 10.1016/j.watres.2011.11.009
– ident: ref9/cit9
  doi: 10.1016/S0006-291X(05)80936-2
– ident: ref20/cit20
  doi: 10.1016/j.watres.2007.03.032
– ident: ref49/cit49
  doi: 10.1016/j.watres.2013.03.037
– ident: ref32/cit32
  doi: 10.1021/es048350z
– ident: ref43/cit43
  doi: 10.1021/es403732s
– ident: ref12/cit12
  doi: 10.1016/S0041-0101(96)00223-1
– ident: ref47/cit47
  doi: 10.1021/es5030355
– ident: ref48/cit48
  doi: 10.1021/es0625327
– ident: ref34/cit34
  doi: 10.1021/es903157h
– ident: ref30/cit30
  doi: 10.2216/07-11.1
– ident: ref23/cit23
  doi: 10.1021/es8016304
– ident: ref38/cit38
  doi: 10.1021/es9812103
– ident: ref21/cit21
  doi: 10.1139/s06-052
– ident: ref27/cit27
  doi: 10.1016/S0043-1354(97)82238-5
– ident: ref28/cit28
– ident: ref6/cit6
  doi: 10.1016/j.seppur.2012.02.018
– ident: ref44/cit44
  doi: 10.1021/es302458h
– ident: ref35/cit35
  doi: 10.1016/S0045-6535(99)00402-6
– ident: ref17/cit17
  doi: 10.1021/acs.est.5b03029
– ident: ref36/cit36
  doi: 10.1016/j.watres.2006.01.030
– ident: ref33/cit33
  doi: 10.1016/j.toxicon.2007.03.021
– ident: ref10/cit10
  doi: 10.1177/019262330002800513
– ident: ref1/cit1
  doi: 10.1021/es052546x
– ident: ref5/cit5
  doi: 10.1016/j.jhazmat.2013.03.010
SSID ssj0002308
Score 2.4271405
Snippet Microcystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. Experiments were conducted to evaluate the efficiency of...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7671
SubjectTerms absorption
arginine
Bacteria
byproducts
chemical degradation
chlorination
Chlorine
Cyanobacteria
Cyanobacteria - chemistry
cytotoxicity
Decomposition
detoxification (processing)
Drinking water
hepatocytes
hepatotoxicity
hepatotoxins
humans
irradiation
Mass Spectrometry
microcystin-LR
Molecules
oxidation
Oxidation-Reduction
Toxicity
Ultraviolet radiation
Water Supply
Title Chlorine/UV Process for Decomposition and Detoxification of Microcystin-LR
URI http://dx.doi.org/10.1021/acs.est.6b02009
https://www.ncbi.nlm.nih.gov/pubmed/27338715
https://www.proquest.com/docview/1805791245
https://www.proquest.com/docview/1805761402
https://www.proquest.com/docview/1811877926
https://www.proquest.com/docview/2000206595
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwELUQvdBDKVDKthSlEodeEhzHduIj2oIQAg4tW-0tsh1blUBZRLIS8PWdSbyBFm3hmowja-zxPGdm3hCyL7HRm9UutpZWMRcsj3WFia7gqh31NuUOq5HPL-TJhJ9OxfSRLPrfCD5LD7RtEjggE2loX6r3hskix3vW4fjncOgCki4WzQpUJqcDi8-zD6Abss3fbmgJtux8zPF6n53VdNSEmFpylcxbk9iH58SNL0__PXkXkGZ02G-NDbLi6k3y9gn_4CbZPnoscwPRYOfNFjkd_-4y89zB5FcUagkigLfRd4c56CHRK9J1BU_a2R3mG3VLHM18dI45fvYezo46PvvxgUyOjy7HJ3HouhBrrrI2rjirqHAmFz53hRRId6MtTQ3zintGrRdGKV9VXFkpvHVSAiz0gAN0zkzGsm2yWs9qt0Mi6zLKHFyoBDXceKGVt6xIs9QzxYWxI7IP6imD1TRlFxBnaYkPQWdl0NmIJIu1Km1gLscGGtfLB3wbBtz0pB3LRXcXi_9kHgWW6ALyESPydXgNdofBFF272TzIALah7H8y2Mw9V0wul2FdMBhZHUfkY7_5hjkDtMzgQis-vU5Pn8kawDmJf55TtUtW29u5-wKQqTV7nbH8ASa4EE0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3BbtQwEB1V5QAcWigUthQIUpG4ZOs4sbM-cKi2rbbtbg_QRXsLsWMLiSqLSFZQvoZf6Z91JutNC2gRl0pcnXHk2JOZZ3vmDcCOpEJvJrehMawIE8HTMC8o0BVdtWXORImlbOTRqRyMk-OJmKzAz0UuDA6iwjdVzSX-NbtAtEttaCe7UjM60PdhlCf24htu0qq3R_u4oq85Pzw46w9CX0cgzBMV12GR8IIJq1PhUtuTgghccsMizZ1KHGfGCa2UK4pEGSmcsVIi0HHo2fKU65ioDdDI30How2l7t9d_39p6BPC9RY0EFctJSx70x4DJ-5nqV--3BNI2ru1wHS7bSWkiWj53Z7Xumh-_8UX-z7P2ANY8rg725j_CQ1ix5Qbcv8G2uAGbB9dJfSjqrVr1CI77n5o4RLs7_hD4zIkAwXywbyni3oe1BXlZYEs9_U7RVY1CB1MXjCii0VygpSzD4bvHML6Vr9yE1XJa2qcQGBszbnH7KJhOtBO5cob3ojhyXCVCmw7s4HJk3kZUWXP9z6OMGnGNMr9GHeguVCQznqedyoWcL-_wpu3wZU5Rslx0e6FzN8bRo4RkxHmiA6_ax2hl6OooL-105mUQyTH-NxkqXZ8qLpfL8ObqmzgsO_BkrvPtmBFIx7h9F1v_Nk8v4e7gbDTMhkenJ8_gHgJZSWfukdqG1frrzD5HsFjrF83_GsDH21b1Kw2Fcr8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5VRUJw4KdQWCgQpCJxydZxbGd94FDtdtV_IWDR3kLs2EICZSuSFZTn4VV4L2ay3lBAi7hU4upMIscez3y2v5kB2FZU6M0WLraWlbGQPIuLkoiu6Kod8zYRjqKRT07V_kQcTuV0Db4tY2GwEzV-qW4v8WlVn5U-ZBhIdqgdbWVfGUaH-oFKeeTOP-NGrX5xMMJZfcb5eO_NcD8OtQTiQui0iUvBSyadyaTP3EBJSuJSWJYY7rXwnFkvjda-LIW2SnrrlEKw49G7FRk3KaU3QEN_hS4JaYu3O3zd2XsE8YNlnQSdqmmXQOiPDpMHtPWvHnAFrG3d2_gmfO8GpmW1fOjPG9O3X3_LGfm_j9wtuBHwdbS7WBC3Yc1VG3D9QtbFDdjc-xnch6LButV34HD4vuUjup3J2yhEUEQI6qORI-Z9oLdFRVViSzP7QiyrVrGjmY9OiNloz9FiVvHxq7swuZS_3IT1ala5-xBZlzLucBspmRHGy0J7ywdJmniuhTS2B9s4HXmwFXXe0gB4klMjzlEe5qgH_aWa5Dbka6eyIR9Xv_C8e-FskapktejWUu8u9GNAgcmI92QPnnaP0drQFVJRudk8yCCiY_xvMlTCPtNcrZbh7RU45bLswb2F3nd9RkCd4jZePvi3cXoCV1-OxvnxwenRQ7iGeFbR0Xuit2C9-TR3jxAzNuZxu2QjeHfZmv4DO551Qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chlorine%2FUV+Process+for+Decomposition+and+Detoxification+of+Microcystin-LR&rft.jtitle=Environmental+science+%26+technology&rft.au=Zhang%2C+Xinran&rft.au=Li%2C+Jing&rft.au=Yang%2C+Jer-Yen&rft.au=Wood%2C+Karl+V&rft.date=2016-07-19&rft.eissn=1520-5851&rft.volume=50&rft.issue=14&rft.spage=7671&rft_id=info:doi/10.1021%2Facs.est.6b02009&rft_id=info%3Apmid%2F27338715&rft.externalDocID=27338715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon