Effect of Thermal Stress on Morphology in High-Performance Organic Photovoltaic Blends

Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash...

Full description

Saved in:
Bibliographic Details
Published inJACS Au Vol. 4; no. 11; pp. 4334 - 4344
Main Authors Zhao, Haoyu, Prine, Nathaniel, Kundu, Soumya, Ma, Guorong, Gu, Xiaodan
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 25.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (T g) of Y6 and PM6 were measured, with Y6 exhibiting a T g of 175.2 °C and PM6 showing two T gs at 39.7 and 107.6 °C. Our findings indicate that average OPVs’ operational temperatures are lower than the blend’s primary T g of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6’s crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM–IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.
AbstractList Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (T g) of Y6 and PM6 were measured, with Y6 exhibiting a T g of 175.2 °C and PM6 showing two T gs at 39.7 and 107.6 °C. Our findings indicate that average OPVs’ operational temperatures are lower than the blend’s primary T g of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6’s crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM–IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.
Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (T g) of Y6 and PM6 were measured, with Y6 exhibiting a T g of 175.2 °C and PM6 showing two T gs at 39.7 and 107.6 °C. Our findings indicate that average OPVs' operational temperatures are lower than the blend's primary T g of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6's crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM-IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures (T g) of Y6 and PM6 were measured, with Y6 exhibiting a T g of 175.2 °C and PM6 showing two T gs at 39.7 and 107.6 °C. Our findings indicate that average OPVs' operational temperatures are lower than the blend's primary T g of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6's crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM-IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.
Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures ( T g ) of Y6 and PM6 were measured, with Y6 exhibiting a T g of 175.2 °C and PM6 showing two T g s at 39.7 and 107.6 °C. Our findings indicate that average OPVs’ operational temperatures are lower than the blend’s primary T g of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures significantly contributes to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6’s crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM–IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.
Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study provides direct insights into the thermal properties of Y6, PM6, and their binary blends by employing fast differential scanning calorimetry (flash DSC) to analyze their chain dynamics. The glass transition temperatures ( ) of Y6 and PM6 were measured, with Y6 exhibiting a of 175.2 °C and PM6 showing two s at 39.7 and 107.6 °C. Our findings indicate that average OPVs' operational temperatures are lower than the blend's primary of 138.2 °C. Thus, the mobility of PM6 and Y6 is not the critical factor that results in drastic drifts in the device morphology. Instead, we discovered that the crystallization of small molecules Y6 in the BHJ film at elevated operation temperatures to the morphological instability of the BHJ layer, based on a flash DSC isotherm crystallization study. The crystallization of the acceptor leads to severe phase separation between donors and acceptors and results in device failure. The acceptor Y6's crystallization rate also increased when blended with donor PM6, compared to that of pure Y6 molecules. Furthermore, AFM-IR analysis of the morphology of the BHJ layer after high thermal stress of 200 °C revealed an apparent demixing of donor PM6 and acceptor Y6, revealing Y6 globules about 200 nm in diameter, with PM6 domains surrounding the Y6 regions. This crystallization-induced morphology change was later confirmed to correlate well with the device performance drop. This study offers valuable insights into the origin of BHJ layer instability in OPV devices containing nonfullerene small molecule acceptors and polymer donors. Additionally, it emphasizes the importance of addressing thermal stress to enhance the performance and durability of such devices and informs strategies for developing more stable organic solar cells.
Author Prine, Nathaniel
Kundu, Soumya
Gu, Xiaodan
Zhao, Haoyu
Ma, Guorong
AuthorAffiliation School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices
AuthorAffiliation_xml – name: School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices
Author_xml – sequence: 1
  givenname: Haoyu
  surname: Zhao
  fullname: Zhao, Haoyu
– sequence: 2
  givenname: Nathaniel
  surname: Prine
  fullname: Prine, Nathaniel
– sequence: 3
  givenname: Soumya
  surname: Kundu
  fullname: Kundu, Soumya
– sequence: 4
  givenname: Guorong
  surname: Ma
  fullname: Ma, Guorong
– sequence: 5
  givenname: Xiaodan
  orcidid: 0000-0002-1123-3673
  surname: Gu
  fullname: Gu, Xiaodan
  email: xiaodan.gu@usm.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39610759$$D View this record in MEDLINE/PubMed
BookMark eNp1kd9L3TAYhsNwTOe83eXo5Rj07EvbpMnVmOJUcCjssNuQpkmbQ05ylqSC__2qPRMdeJVfz_t8gfc9OvDBa4Q-YlhhqPDXjVRJTqtGAdAav0FHFeW4rFtoDp7tD9FJShsAqAiugcI7dFhziqEl_Aj9PjdGq1wEU6xHHbfSFb9y1CkVwRc_Q9yNwYXhvrC-uLTDWN7qaMKMeaWLmzhIb1VxO4Yc7oLLcj6cOu379AG9NdIlfbJfj9H6x_n67LK8vrm4Ovt-XcqGV7nsWU0UA46hY9RIxmjbG9azSvGuJZRKxqGrWFs1vNWcaopJZTgnpKG4a3V9jK4WbR_kRuyi3cp4L4K04vEixEHImK1yWuDKaDCcSGV4Q4B0GqhRBAMjTS8Vnl3fFtdu6ra6V9rnKN0L6csXb0cxhDuBMQXAbTMbPu8NMfyZdMpia5PSzkmvw5REjesGKKOMz-in58OepvwrZgZWC6BiSClq84RgEA_li6V8sS9_DjT_BZTNMtvw8FnrXo99WWLztdiEKfq5rtfgv1c9wew
CitedBy_id crossref_primary_10_1021_acs_macromol_4c02588
crossref_primary_10_1002_smll_202409411
Cites_doi 10.1021/acsenergylett.0c01364
10.1038/ncomms14541
10.1002/anie.201808976
10.1016/j.joule.2023.03.002
10.1002/adem.201300172
10.1002/aenm.201703298
10.1016/j.xcrp.2022.100911
10.1039/C4EE02582B
10.1109/led.2010.2048552
10.1038/nmat5063
10.1002/aenm.201904234
10.1016/j.orgel.2009.08.001
10.1039/C5CS00593K
10.1007/s11426-020-1021-x
10.1002/aenm.202001436
10.1002/macp.201900324
10.1021/acs.jpclett.7b03110
10.1039/c1jm11239b
10.1016/j.jpowsour.2014.04.080
10.1007/s11426-021-1087-8
10.1039/D0MH00837K
10.1016/j.nanoen.2020.104861
10.1002/adma.201902210
10.1016/j.progpolymsci.2017.03.003
10.1002/advs.201800434
10.1016/j.enchem.2020.100046
10.1002/adma.202005348
10.1038/nmat2102
10.1063/1.1750631
10.1021/acs.chemmater.9b01213
10.1021/acsami.9b04554
10.1038/s41467-023-37526-5
10.1002/adma.201603940
10.1002/macp.201900062
10.1002/aenm.201600910
10.1016/j.solmat.2011.09.064
10.1016/j.surfin.2020.100921
10.1016/j.scib.2020.01.001
10.1039/C3TC31859A
10.1002/aenm.202003390
10.1021/acs.chemmater.9b02943
10.1002/adma.201103010
10.1016/j.rser.2017.12.008
10.1016/j.tca.2011.02.031
10.1039/D3NR00886J
ContentType Journal Article
Copyright 2024 The Authors. Published by American Chemical Society
2024 The Authors. Published by American Chemical Society.
2024 The Authors. Published by American Chemical Society 2024 The Authors
Copyright_xml – notice: 2024 The Authors. Published by American Chemical Society
– notice: 2024 The Authors. Published by American Chemical Society.
– notice: 2024 The Authors. Published by American Chemical Society 2024 The Authors
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1021/jacsau.4c00631
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2691-3704
EndPage 4344
ExternalDocumentID oai_doaj_org_article_12fe0f95acf94505be06fc510854dac1
PMC11600174
39610759
10_1021_jacsau_4c00631
c361140396
Genre Journal Article
GroupedDBID AAFWJ
ACS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
EBS
GROUPED_DOAJ
M~E
N~.
OK1
PGMZT
RPM
VF5
AAYXX
ABBLG
ADUCK
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-a492t-d835c80910b86fa8867df8d82c9b7566a890b2872497e96e6152f9955461b7e3
IEDL.DBID DOA
ISSN 2691-3704
IngestDate Wed Aug 27 00:11:47 EDT 2025
Thu Aug 21 18:36:22 EDT 2025
Fri Jul 11 15:17:52 EDT 2025
Wed Feb 19 02:04:08 EST 2025
Thu Apr 24 23:09:50 EDT 2025
Tue Jul 01 04:36:43 EDT 2025
Tue Nov 26 03:22:37 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords morphological instability
isothermal crystallization
thermal stability
bulk heterojunction
Language English
License https://creativecommons.org/licenses/by/4.0
2024 The Authors. Published by American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a492t-d835c80910b86fa8867df8d82c9b7566a890b2872497e96e6152f9955461b7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1123-3673
OpenAccessLink https://doaj.org/article/12fe0f95acf94505be06fc510854dac1
PMID 39610759
PQID 3134068689
PQPubID 23479
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_12fe0f95acf94505be06fc510854dac1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11600174
proquest_miscellaneous_3134068689
pubmed_primary_39610759
crossref_primary_10_1021_jacsau_4c00631
crossref_citationtrail_10_1021_jacsau_4c00631
acs_journals_10_1021_jacsau_4c00631
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-25
PublicationDateYYYYMMDD 2024-11-25
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle JACS Au
PublicationTitleAlternate JACS Au
PublicationYear 2024
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref46/cit46
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
Fox T. G. (ref38/cit38) 1956; 1
ref44/cit44
ref7/cit7
References_xml – ident: ref29/cit29
  doi: 10.1021/acsenergylett.0c01364
– ident: ref17/cit17
  doi: 10.1038/ncomms14541
– ident: ref3/cit3
  doi: 10.1002/anie.201808976
– ident: ref44/cit44
  doi: 10.1016/j.joule.2023.03.002
– ident: ref6/cit6
  doi: 10.1002/adem.201300172
– ident: ref21/cit21
  doi: 10.1002/aenm.201703298
– ident: ref35/cit35
  doi: 10.1016/j.xcrp.2022.100911
– ident: ref11/cit11
  doi: 10.1039/C4EE02582B
– ident: ref20/cit20
  doi: 10.1109/led.2010.2048552
– ident: ref1/cit1
  doi: 10.1038/nmat5063
– ident: ref45/cit45
  doi: 10.1002/aenm.201904234
– ident: ref10/cit10
  doi: 10.1016/j.orgel.2009.08.001
– ident: ref15/cit15
  doi: 10.1039/C5CS00593K
– ident: ref9/cit9
  doi: 10.1007/s11426-020-1021-x
– ident: ref30/cit30
  doi: 10.1002/aenm.202001436
– ident: ref33/cit33
  doi: 10.1002/macp.201900324
– ident: ref36/cit36
  doi: 10.1021/acs.jpclett.7b03110
– ident: ref31/cit31
  doi: 10.1039/c1jm11239b
– ident: ref14/cit14
  doi: 10.1016/j.jpowsour.2014.04.080
– ident: ref22/cit22
  doi: 10.1007/s11426-021-1087-8
– ident: ref37/cit37
  doi: 10.1039/D0MH00837K
– ident: ref26/cit26
  doi: 10.1016/j.nanoen.2020.104861
– ident: ref27/cit27
  doi: 10.1002/adma.201902210
– ident: ref16/cit16
  doi: 10.1016/j.progpolymsci.2017.03.003
– ident: ref32/cit32
  doi: 10.1002/advs.201800434
– ident: ref19/cit19
  doi: 10.1016/j.enchem.2020.100046
– ident: ref40/cit40
  doi: 10.1002/adma.202005348
– ident: ref2/cit2
  doi: 10.1038/nmat2102
– ident: ref42/cit42
  doi: 10.1063/1.1750631
– volume: 1
  start-page: 123
  year: 1956
  ident: ref38/cit38
  publication-title: Bull. Am. Phys. Soc.
– ident: ref39/cit39
  doi: 10.1021/acs.chemmater.9b01213
– ident: ref41/cit41
  doi: 10.1021/acsami.9b04554
– ident: ref46/cit46
  doi: 10.1038/s41467-023-37526-5
– ident: ref12/cit12
  doi: 10.1002/adma.201603940
– ident: ref23/cit23
  doi: 10.1002/macp.201900062
– ident: ref18/cit18
  doi: 10.1002/aenm.201600910
– ident: ref7/cit7
  doi: 10.1016/j.solmat.2011.09.064
– ident: ref24/cit24
  doi: 10.1016/j.surfin.2020.100921
– ident: ref4/cit4
  doi: 10.1016/j.scib.2020.01.001
– ident: ref5/cit5
  doi: 10.1039/C3TC31859A
– ident: ref25/cit25
  doi: 10.1002/aenm.202003390
– ident: ref28/cit28
  doi: 10.1021/acs.chemmater.9b02943
– ident: ref8/cit8
  doi: 10.1002/adma.201103010
– ident: ref13/cit13
  doi: 10.1016/j.rser.2017.12.008
– ident: ref34/cit34
  doi: 10.1016/j.tca.2011.02.031
– ident: ref43/cit43
  doi: 10.1039/D3NR00886J
SSID ssj0002513060
Score 2.3206227
Snippet Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study...
Thermal stress is a critical factor causing long-term instability in bulk heterojunction (BHJ) layers of organic photovoltaic (OPV) devices. This study...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4334
SummonAdditionalLinks – databaseName: American Chemical Society (ACS) Open Access
  dbid: N~.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na90wDDelO3SXsY9ue_vCY4OeXGLHdqzjWlbKYKWwrvQWHMemhUdS-vKu_dsnOXmve-0KOyYWTpBk6ydZkhn72oAJ3ldGxEq3QoMF4Y0OAuUNrkzJGZ-zfE_s8W_948Jc3MU77p_gK-oPFBZ-ua8DWVP0c54o6xwtwZPb_XU0Ba00Yl8KqCgLEldNoVcdGh9MQXYoLDbsUG7X_y-MeT9V8i_bc_ScPZtAI_82SvkF24rdS7ZzuLqr7RU7H5sQ8z5xlDvutXP-KxeB8L7jP3vkZY6e86uOU2KHOL0rF-BjNWbgp5f90ONmNXh8OJhTquwuOzv6fnZ4LKYbE4TXoAbRIp4KjiBA42zyztmqTa51KkBTIXDzDooGfST0uaoINiKcUQmAMtVkU8XyNdvu-i6-ZVzHtpRtcKYIoGV0HpKMbcqAwkVvZ-wLMrGeFH5R57Nshb5EZnU9sXrGxIrJdZh6jtPVF_NH6ffW9Ndjt41HKQ9IZmsq6pKdX6Dq1NOiq6VKsUhgfEigEeo1sbApGCq40K0POMnnlcRrFBgdlfgu9stFXcpSU_GMgxl7M2rA-lMlIOSsDI64Dd3Y-JfNke7qMnfulpLwZaXf_Rf33rOnCiEUVT4q84FtDzfL-BEh0NB8ytr_B-ptAac
  priority: 102
  providerName: American Chemical Society
Title Effect of Thermal Stress on Morphology in High-Performance Organic Photovoltaic Blends
URI http://dx.doi.org/10.1021/jacsau.4c00631
https://www.ncbi.nlm.nih.gov/pubmed/39610759
https://www.proquest.com/docview/3134068689
https://pubmed.ncbi.nlm.nih.gov/PMC11600174
https://doaj.org/article/12fe0f95acf94505be06fc510854dac1
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYjL93L2Nr9SNcFjQ32pMyyJVt6XMNCGawEko28GVmWSCDYY3Ze-7f3TnbSpCzspS8G2wKLu7PuO-nuO0I-F1paYzLJXCZKJnSqmZHCMtC3Von3SpqQ5Xub3vwSP5ZyedDqC3PCOnrgTnBfeexd5LU01msB7rpwUeqtxKR5URobAh_weQfBFK7B4LUBC0c7lsYYaYZsY7ZjYdEpc_RFtjnyRYGy_18483G65IH_mb4kL3rgSL91E35FnrnqnJxNdv3aLsjvjoiY1p6C7mG93dB5KAShdUV_1iDPsINO1xXF5A42eygZoF1FpqWzVd3WsGC1Bm6uN5gu-5ospt8XkxvWd01gRui4ZSVgKqsQBhQq9UapNCu9KlVsdZEBeDNKRwXESRB3ZU6nDiBN7LXGbDVeZC55QwZVXbl3hApXJry0SkZWC-6U0Z670gdQoZxJh-QTCDHvjb7Jw3l2DPFEEHXei3pI2E7Iue15x7H9xebk-C_78X86xo2TI69RZ_tRyJQdHoD95L395P-znyH5uNN4DgrD4xJTuXrb5AlPBBbQKD0kbzsL2H8q0QA7Mwlv1JFtHM3l-E21XgX2bs4RY2bi8ilm_548jwFlYXFkLK_IoP27dR8AJbXFCKKEyXwUfgu43t6NR2Er6x7EthO-
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcigXxLvL0wgQp1SxYyf2gQMtVFvariqxoN4sx7HVSqsEkawQF34Kv5Wxk2xZoBKXHpOMHGsens_2PABelkpYYwqRuIJXCVe5SozgNkF5K5l5L4WJUb6zfPqJfzgVpxvwc8yFwUm0OFIbL_EvqguEMkG2NcsdboNTpUMU5aH7_g33aO2bg3co0FeM7b-f702ToY1AYrhiXVIhyLAy-MVS5t5ImReVl5VkVpUFohkjVVrixgE3IoVTuUMfz7xSIXyLloXLcNhrcB2BjwiGP_uxszrDQWyAiDsc47BcUbTVlI91If-acfB-tl3zfrFJwL-Q7Z8Bmr95vP1bcHOAquRtr1u3YcPVd2Brb-wQdxc-96WPSeMJahuu8AvyMaaekKYmxw1KMJ7Zk_OahHCS5OQiSYH0OaCWnJw1XYNLZGfwYXcRAnTvwfwqGHwfNuumdttAuKsyWlkpUqs4ddIoT13lI4yRzuQTeIFM1IOZtTreoDPcwURW64HVE0hGJms7VDoPDTcWl9K_XtF_6Wt8XEq5G2S2ogq1ueML1FY9mLqmzLvUK2GsVxwBZunS3FsR0jx4ZSwO8nyUuEaBhQsaU7tm2eqMZjyk7Eg1gQe9Bqx-lSkEuoXAL3JNN9bmsv6lPj-L9cIpDai24A__i3vPYGs6Pz7SRwezw0dwgyGIC7mXTDyGze7r0j1BENaVT6MlENBXbHm_ABRBPpo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkYBLxc6UzQgQJ1exYyf2gQNtGbUURiNRUG-W40WtNEoqkhHiwo_hl_LsJAMDVOLSY5Inx3qL32f7LQi9qJSwxpSC-JI7wlWhiBHcEpC3knkIUpgU5TsrDj7xdyfiZAP9GHNhYBItjNSmS_xo1ecuDBUGYqkg25rlDrfRsdIhkvLIf_sK-7T29eE-CPUlY9O3x3sHZGglQAxXrCMOgIaV0TdWsghGyqJ0QTrJrKpKQDRGqqyCzQNsRkqvCg9-ngWlYggXrUqfw7BX0FUgzKLxz77vrM5xAB8A6o5HOaxQFOw142NtyL9mHD2gbdc8YGoU8C90-2eQ5m9eb3oTbQ1wFb_p9esW2vD1bXR9b-wSdwd97ssf4yZg0DhY5Rf4Y0o_wU2NPzQgxXRuj89qHENKyPxXogLu80Atnp82XQPLZGfgYXcRg3TvouPLYPA9tFk3tX-AMPcup85KkVnFqZdGBepdSFBGelNM0HNgoh5MrdXpFp3BLiaxWg-sniAyMlnbodp5bLqxuJD-1Yr-vK_zcSHlbpTZiirW504vQGP1YO6asuCzoISxQXEAmZXPimBFTPXgzlgY5NkocQ0Ci5c0pvbNstU5zXlM25Fqgu73GrD6Va4A7JYCvsg13Viby_qX-uw01QynNCLbkm__F_eeomvz_al-fzg7eohuMMBxMf2SiUdos_uy9I8Bh3XVk2QIGOlLNryfxYI_pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Thermal+Stress+on+Morphology+in+High-Performance+Organic+Photovoltaic+Blends&rft.jtitle=JACS+Au&rft.au=Zhao%2C+Haoyu&rft.au=Prine%2C+Nathaniel&rft.au=Kundu%2C+Soumya&rft.au=Ma%2C+Guorong&rft.date=2024-11-25&rft.issn=2691-3704&rft.eissn=2691-3704&rft.volume=4&rft.issue=11&rft.spage=4334&rft_id=info:doi/10.1021%2Fjacsau.4c00631&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2691-3704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2691-3704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2691-3704&client=summon