Assessing the Persistence and Mobility of Organic Substances to Protect Freshwater Resources
Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in th...
Saved in:
Published in | ACS Environmental Au Vol. 2; no. 6; pp. 482 - 509 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Chemical Society
16.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon–water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24–30% were PMT/vPvM substances. |
---|---|
AbstractList | Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon-water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24-30% were PMT/vPvM substances.Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon-water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24-30% were PMT/vPvM substances. Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2 , thresholds; the assessment of mobility will likely be based on organic carbon–water distribution coefficient, K OC , thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2 , K OC , and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24–30% were PMT/vPvM substances. Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels, to contaminate drinking water extraction points and freshwater environments. To prevent such contamination, the European Commission is in the process of introducing new hazard classes for persistent, mobile, and toxic (PMT) and very persistent and very mobile (vPvM) substances within its key chemical regulations CLP and REACH. The assessment of persistence in these regulations will likely be based on simulated half-life, t 1/2, thresholds; the assessment of mobility will likely be based on organic carbon–water distribution coefficient, K OC, thresholds. This study reviews the use of t 1/2 and K OC to describe persistence and mobility, considering the theory, history, suitability, data limitations, estimation methods, and alternative parameters. For this purpose, t 1/2, K OC, and alternative parameters were compiled for substances registered under REACH, known transformation products, and substances detected in wastewater treatment plant effluent, surface water, bank filtrate, groundwater, raw water, and drinking water. Experimental t 1/2 values were rare and only available for 2.2% of the 14 203 unique chemicals identified. K OC data were only available for a fifth of the substances. Therefore, the usage of alternative screening parameters was investigated to predict t 1/2 and K OC values, to assist weight-of-evidence based PMT/vPvM hazard assessments. Even when considering screening parameters, for 41% of substances, PMT/vPvM assessments could not be made due to data gaps; for 23% of substances, PMT/vPvM assessments were ambiguous. Further effort is needed to close these substantial data gaps. However, when data is available, the use of t 1/2 and K OC is considered fit-for-purpose for defining PMT/vPvM thresholds. Using currently discussed threshold values, between 1.9 and 2.6% of REACH registered substances were identified as PMT/vPvM. Among the REACH registered substances detected in drinking water sources, 24–30% were PMT/vPvM substances. |
Author | Hale, Sarah E. Arp, Hans Peter H. |
AuthorAffiliation | Department of Chemistry Norwegian University of Science and Technology (NTNU) Norwegian Geotechnical Institute (NGI) |
AuthorAffiliation_xml | – name: Norwegian University of Science and Technology (NTNU) – name: Norwegian Geotechnical Institute (NGI) – name: Department of Chemistry |
Author_xml | – sequence: 1 givenname: Hans Peter H. orcidid: 0000-0002-0747-8838 surname: Arp fullname: Arp, Hans Peter H. email: hans.peter.arp@ngi.no organization: Norwegian University of Science and Technology (NTNU) – sequence: 2 givenname: Sarah E. orcidid: 0000-0002-7743-9199 surname: Hale fullname: Hale, Sarah E. organization: Norwegian Geotechnical Institute (NGI) |
BookMark | eNqFkU9LJDEQxYMo6KrfwEOOXkbTSaan24Mgsu4uuCj-uQmhkqmeifQkmkq7-O3NMMOiHjSXBN77vQr1frDNEAMydlCJo0rI6hgcYXjxKQYYjqQTQki9wXZk3eqRHFfN5rv3NtsnelxaxpWSdbXDHs6IkMiHGc9z5NeYyFPG4JBDmPK_0fre51ceO36VZhC847eDpQzFQTxHfp1iRpf5RUKa_4OMid8gxSEVfY9tddAT7q_vXXZ_8fPu_Pfo8urXn_OzyxHoVuaRlbVEmCpUyrmJtq7pRCPG0LSqGNrOouusBFehhbpzSmtrm0ZojVJIVVu1y05XuU-DXeDUYcgJevOU_ALSq4ngzUcl-LmZxRfT1hM1VqoEHK4DUnwekLJZeHLY9xAwDmTkRLWiLkcXq15ZXYpECbv_YyphloWY94WYdSEFO_mEOZ8h-7j8kO-_g8UKLqp5LLsNZZtfI2-07ay5 |
CitedBy_id | crossref_primary_10_1002_ps_8541 crossref_primary_10_1016_j_scitotenv_2024_177868 crossref_primary_10_1021_acs_est_4c10360 crossref_primary_10_1016_j_wroa_2024_100219 crossref_primary_10_1021_acs_est_4c14182 crossref_primary_10_1038_s44221_023_00176_4 crossref_primary_10_1016_j_envres_2024_118799 crossref_primary_10_1186_s12302_024_00919_4 crossref_primary_10_1021_acs_est_4c00577 crossref_primary_10_1021_acsestwater_4c00930 crossref_primary_10_1016_j_watres_2024_122607 crossref_primary_10_1093_toxsci_kfae131 crossref_primary_10_3985_mcwmr_35_265 crossref_primary_10_1021_acs_est_4c12926 crossref_primary_10_1007_s11356_025_35979_3 crossref_primary_10_1021_acs_est_4c07879 crossref_primary_10_1016_j_jhazmat_2023_131376 crossref_primary_10_1080_28378083_2024_2420108 crossref_primary_10_1016_j_scitotenv_2022_159821 crossref_primary_10_1007_s11367_023_02263_w crossref_primary_10_1021_acs_est_4c11085 crossref_primary_10_1186_s12302_024_01035_z crossref_primary_10_1016_j_isci_2024_109012 crossref_primary_10_1016_j_watres_2024_122436 crossref_primary_10_1016_j_watres_2023_120610 crossref_primary_10_1080_01480545_2023_2232563 crossref_primary_10_1007_s00204_023_03485_5 crossref_primary_10_1039_D3EW00160A crossref_primary_10_1016_j_scitotenv_2023_162618 crossref_primary_10_1016_j_scitotenv_2022_161228 crossref_primary_10_1021_acs_est_4c00125 crossref_primary_10_1021_acs_est_3c05008 crossref_primary_10_1016_j_envpol_2024_124488 crossref_primary_10_1016_j_scitotenv_2023_165927 crossref_primary_10_1021_acs_est_4c00264 crossref_primary_10_1016_j_jhazmat_2024_135788 crossref_primary_10_1021_acsestwater_4c00731 crossref_primary_10_1021_acs_estlett_3c00943 crossref_primary_10_1021_acs_estlett_3c00526 crossref_primary_10_1021_acs_est_2c09854 crossref_primary_10_1016_j_comtox_2022_100254 crossref_primary_10_1016_j_biortech_2024_131013 |
Cites_doi | 10.1021/acs.est.2c00570 10.1002/ieam.4450 10.1016/j.scitotenv.2008.04.028 10.1016/j.watres.2016.05.082 10.1039/C6EM00311G 10.1021/acs.est.1c06896 10.1016/j.scitotenv.2012.08.029 10.1016/0043-1354(79)90201-X 10.1039/C8EM00515J 10.1007/s00216-015-8681-7 10.1787/9789264069602-en 10.1016/j.marpolbul.2009.04.028 10.1029/97WR02227 10.1016/j.watres.2013.08.024 10.1021/es403187w 10.1021/es030653q 10.1021/es990855f 10.1016/j.scitotenv.2007.01.095 10.3390/toxics9050100 10.1126/science.1236281 10.1016/j.watres.2019.01.008 10.1021/acs.est.6b04806 10.1016/j.watres.2009.08.023 10.1021/acs.est.9b06379 10.1021/es4031886 10.1002/ieam.4548 10.1021/acs.est.9b05104 10.1021/es801845a 10.1016/j.watres.2006.07.002 10.1021/es703094u 10.1002/ieam.4575 10.1021/es303853x 10.1021/es3033499 10.1016/j.scitotenv.2015.11.085 10.1016/j.ijheh.2011.08.002 10.1016/j.scitotenv.2017.10.210 10.1021/acs.est.8b02348 10.1016/j.watres.2021.117645 10.1039/D0EM00147C 10.1186/s12302-022-00604-4 10.1007/398_2019_37 10.1016/j.hazl.2021.100026 10.1080/10807039991289644 10.1002/poc.2956 10.1039/C7EM00158D 10.2166/ws.2020.289 10.1016/j.scitotenv.2012.08.060 10.1093/nar/gkv1229 10.1016/j.scitotenv.2018.05.325 10.1021/acs.est.5b00788 10.1021/es102576e 10.3390/w10121861 10.1088/1748-9326/aaf4d7 10.1021/acs.est.8b07163 10.1021/es902272j 10.1039/C6EM00697C 10.1039/c0cp00695e 10.1016/j.envint.2008.10.008 10.1021/es991011z 10.1186/1758-2946-3-33 10.1021/acs.est.6b01095 10.1021/acs.est.9b07089 10.1016/j.watres.2019.114972 10.1021/es503369t 10.1021/acs.est.6b03786 10.1021/es051380x 10.1016/j.watres.2022.118122 10.1016/j.envpol.2011.12.034 10.1007/s00244-012-9754-7 10.1016/j.watres.2004.03.029 10.1016/j.scitotenv.2013.04.020 10.1016/0045-6535(91)90213-W 10.1016/j.watres.2013.09.057 10.1007/978-1-4419-6880-7_1 10.1021/es304568w 10.6027/TN2019-516 10.1016/j.envint.2019.104994 10.5094/APR.2012.044 10.1016/j.watres.2021.116994 10.1016/S0015-6264(76)80522-6 10.1021/es9012905 10.1016/j.scitotenv.2011.07.015 10.1016/j.chemosphere.2011.12.025 10.2134/jeq1996.00472425002500010002x 10.1021/es3002713 10.1021/acs.est.1c04158 10.1016/B978-0-08-098259-5.00013-5 10.1128/aem.57.10.2981-2985.1991 10.1007/s11356-011-0661-7 10.1021/acsestwater.0c00237 10.1021/acs.est.9b01750 10.1016/j.envpol.2019.113826 10.1080/10934529.2014.910036 10.1016/j.watres.2009.07.004 10.1186/s12302-021-00470-6 10.1186/s12302-020-00427-1 10.1021/es102553y 10.1016/j.scitotenv.2008.03.003 10.3133/cir1292 10.1002/etc.5620080411 10.1021/acs.est.0c05257 10.1016/S0883-2927(02)00205-6 10.1111/j.1745-6584.1997.tb00087.x 10.1016/j.watres.2010.10.036 10.1016/j.scitotenv.2013.04.010 10.1016/j.chemosphere.2013.02.024 10.1021/acs.est.7b02488 10.1021/es800106g 10.1016/j.scitotenv.2008.02.021 10.1016/j.watres.2010.05.032 10.1016/j.scitotenv.2018.01.277 10.2166/aqua.2013.007 10.1021/acs.est.0c02444 10.1186/s13321-018-0263-1 10.1016/j.watres.2013.06.031 10.1787/9789264069909-en 10.1021/es048917b 10.2134/jeq2004.0301 10.1039/c0em00039f 10.1039/D1AY00434D 10.1021/acs.est.6b03338 10.1021/acs.est.0c04281 10.1021/es0003021 10.1186/s12302-020-00440-4 10.1007/s00244-013-9942-0 10.1016/j.envpol.2007.02.013 10.1016/j.watres.2017.07.070 10.1016/j.watres.2017.09.045 10.1016/j.scitotenv.2018.06.088 10.1021/es204449r 10.1126/science.abg5433 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society. 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society. – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION 7X8 5PM |
DOI | 10.1021/acsenvironau.2c00024 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Environmental Sciences |
EISSN | 2694-2518 |
EndPage | 509 |
ExternalDocumentID | PMC9673533 10_1021_acsenvironau_2c00024 a047281418 |
GrantInformation_xml | – fundername: ; grantid: 101036756 – fundername: ; grantid: FKZ3719654080 |
GroupedDBID | ACS ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ N~. OK1 AAYXX ABBLG ADUCK AELXD CITATION EBS M~E PGMZT RPM 7X8 5PM |
ID | FETCH-LOGICAL-a492t-b262ead3e33cc74bc8f0805a893a499fbecfb2ac1eba6fc344bb88044e20236b3 |
IEDL.DBID | N~. |
ISSN | 2694-2518 |
IngestDate | Thu Aug 21 18:39:56 EDT 2025 Fri Jul 11 06:06:30 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Tue Jul 01 00:18:51 EDT 2025 Fri Nov 18 13:41:05 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | mobility environmental monitoring weight-of-evidence hazard assessment persistence groundwater drinking water |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a492t-b262ead3e33cc74bc8f0805a893a499fbecfb2ac1eba6fc344bb88044e20236b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-0747-8838 0000-0002-7743-9199 |
OpenAccessLink | http://dx.doi.org/10.1021/acsenvironau.2c00024 |
PQID | 2739066664 |
PQPubID | 23479 |
PageCount | 28 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9673533 proquest_miscellaneous_2739066664 crossref_primary_10_1021_acsenvironau_2c00024 crossref_citationtrail_10_1021_acsenvironau_2c00024 acs_journals_10_1021_acsenvironau_2c00024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-16 |
PublicationDateYYYYMMDD | 2022-11-16 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | ACS Environmental Au |
PublicationTitleAlternate | ACS Environ. Au |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref107/cit107 ref120/cit120 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref136/cit136 ref137/cit137 ECHA (ref32/cit32) 2017 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ECHA (ref47/cit47) 2016 ref76/cit76 ref86/cit86 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 Heberer T. (ref96/cit96) 2001; 201 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref1311/cit1311 ref9/cit9 ref152/cit152 ref153/cit153 ref154/cit154 ref27/cit27 Hofman-Caris R. (ref156/cit156) 2020 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref155/cit155 ref8/cit8 Schwarzenbach R. P. (ref147/cit147) 2016 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 Arp H. P. H. (ref21/cit21) 2019 ref82/cit82 ref143/cit143 ref53/cit53 ref145/cit145 ref149/cit149 ref46/cit46 ref49/cit49 European Commission (ref18/cit18) 2021 ref75/cit75 ref24/cit24 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 Goldenman G. (ref16/cit16) 2019 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref4/cit4 ref30/cit30 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref61/cit61 doi: 10.1021/acs.est.2c00570 – ident: ref130/cit130 doi: 10.1002/ieam.4450 – ident: ref105/cit105 doi: 10.1016/j.scitotenv.2008.04.028 – ident: ref132/cit132 – ident: ref121/cit121 doi: 10.1016/j.watres.2016.05.082 – ident: ref31/cit31 doi: 10.1039/C6EM00311G – ident: ref129/cit129 doi: 10.1021/acs.est.1c06896 – ident: ref98/cit98 doi: 10.1016/j.scitotenv.2012.08.029 – ident: ref148/cit148 doi: 10.1016/0043-1354(79)90201-X – ident: ref40/cit40 doi: 10.1039/C8EM00515J – ident: ref12/cit12 doi: 10.1007/s00216-015-8681-7 – ident: ref45/cit45 doi: 10.1787/9789264069602-en – ident: ref78/cit78 doi: 10.1016/j.marpolbul.2009.04.028 – ident: ref55/cit55 doi: 10.1029/97WR02227 – ident: ref87/cit87 doi: 10.1016/j.watres.2013.08.024 – ident: ref22/cit22 – ident: ref51/cit51 doi: 10.1021/es403187w – ident: ref81/cit81 doi: 10.1021/es030653q – ident: ref99/cit99 doi: 10.1021/es990855f – ident: ref125/cit125 doi: 10.1016/j.scitotenv.2007.01.095 – ident: ref9/cit9 doi: 10.3390/toxics9050100 – ident: ref136/cit136 doi: 10.1126/science.1236281 – ident: ref2/cit2 doi: 10.1016/j.watres.2019.01.008 – ident: ref127/cit127 doi: 10.1021/acs.est.6b04806 – ident: ref118/cit118 doi: 10.1016/j.watres.2009.08.023 – ident: ref104/cit104 – ident: ref1/cit1 doi: 10.1021/acs.est.9b06379 – ident: ref60/cit60 doi: 10.1021/es4031886 – ident: ref154/cit154 doi: 10.1002/ieam.4548 – ident: ref68/cit68 doi: 10.1021/acs.est.9b05104 – ident: ref114/cit114 doi: 10.1021/es801845a – ident: ref116/cit116 doi: 10.1016/j.watres.2006.07.002 – ident: ref75/cit75 – volume-title: REACH: Improvement of Guidance Methods for the Identification and Evaluation of PM/PMT Substances year: 2019 ident: ref21/cit21 – ident: ref145/cit145 doi: 10.1021/es703094u – ident: ref35/cit35 doi: 10.1002/ieam.4575 – ident: ref58/cit58 doi: 10.1021/es303853x – ident: ref72/cit72 doi: 10.1021/es3033499 – ident: ref107/cit107 – ident: ref43/cit43 – ident: ref36/cit36 doi: 10.1016/j.scitotenv.2015.11.085 – ident: ref83/cit83 doi: 10.1016/j.ijheh.2011.08.002 – ident: ref124/cit124 doi: 10.1016/j.scitotenv.2017.10.210 – ident: ref56/cit56 doi: 10.1021/acs.est.8b02348 – ident: ref3/cit3 doi: 10.1016/j.watres.2021.117645 – ident: ref128/cit128 doi: 10.1039/D0EM00147C – ident: ref155/cit155 doi: 10.1186/s12302-022-00604-4 – ident: ref71/cit71 doi: 10.1007/398_2019_37 – ident: ref91/cit91 doi: 10.1016/j.hazl.2021.100026 – ident: ref120/cit120 doi: 10.1080/10807039991289644 – ident: ref135/cit135 doi: 10.1002/poc.2956 – ident: ref41/cit41 doi: 10.1039/C7EM00158D – ident: ref137/cit137 – ident: ref7/cit7 doi: 10.2166/ws.2020.289 – ident: ref100/cit100 doi: 10.1016/j.scitotenv.2012.08.060 – ident: ref73/cit73 doi: 10.1093/nar/gkv1229 – ident: ref26/cit26 doi: 10.1016/j.scitotenv.2018.05.325 – start-page: 178 volume-title: Guidance on Information Requirements and Chemical Safety Assessment year: 2016 ident: ref47/cit47 – ident: ref33/cit33 doi: 10.1021/acs.est.5b00788 – ident: ref49/cit49 doi: 10.1021/es102576e – ident: ref95/cit95 doi: 10.3390/w10121861 – ident: ref66/cit66 doi: 10.1088/1748-9326/aaf4d7 – ident: ref141/cit141 doi: 10.1021/acs.est.8b07163 – ident: ref50/cit50 doi: 10.1021/es902272j – ident: ref74/cit74 doi: 10.1039/C6EM00697C – volume-title: Environmental Organic Chemistry year: 2016 ident: ref147/cit147 – ident: ref134/cit134 doi: 10.1039/c0cp00695e – ident: ref117/cit117 doi: 10.1016/j.envint.2008.10.008 – ident: ref28/cit28 doi: 10.1021/es991011z – ident: ref131/cit131 – ident: ref77/cit77 doi: 10.1186/1758-2946-3-33 – ident: ref20/cit20 – ident: ref34/cit34 doi: 10.1021/acs.est.6b01095 – ident: ref151/cit151 doi: 10.1021/acs.est.9b07089 – ident: ref4/cit4 doi: 10.1016/j.watres.2019.114972 – ident: ref133/cit133 doi: 10.1021/es503369t – ident: ref30/cit30 doi: 10.1021/acs.est.6b03786 – ident: ref115/cit115 doi: 10.1021/es051380x – ident: ref139/cit139 doi: 10.1016/j.watres.2022.118122 – ident: ref106/cit106 doi: 10.1016/j.envpol.2011.12.034 – ident: ref113/cit113 doi: 10.1007/s00244-012-9754-7 – ident: ref69/cit69 – ident: ref82/cit82 doi: 10.1016/j.watres.2004.03.029 – ident: ref94/cit94 doi: 10.1016/j.scitotenv.2013.04.020 – volume: 201 start-page: 2 issue: 1 year: 2001 ident: ref96/cit96 publication-title: J. Contemp. Water Res. Educ. – ident: ref149/cit149 doi: 10.1016/0045-6535(91)90213-W – ident: ref119/cit119 doi: 10.1016/j.watres.2013.09.057 – ident: ref142/cit142 doi: 10.1007/978-1-4419-6880-7_1 – ident: ref57/cit57 doi: 10.1021/es304568w – volume-title: The Cost of Inaction: A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS year: 2019 ident: ref16/cit16 doi: 10.6027/TN2019-516 – ident: ref90/cit90 doi: 10.1016/j.envint.2019.104994 – start-page: 158 volume-title: Guidance on Information Requirements and Chemical Safety Assessment year: 2017 ident: ref32/cit32 – ident: ref65/cit65 doi: 10.5094/APR.2012.044 – ident: ref5/cit5 doi: 10.1016/j.watres.2021.116994 – ident: ref153/cit153 doi: 10.1016/S0015-6264(76)80522-6 – ident: ref52/cit52 doi: 10.1021/es9012905 – ident: ref64/cit64 – ident: ref86/cit86 doi: 10.1016/j.scitotenv.2011.07.015 – ident: ref84/cit84 doi: 10.1016/j.chemosphere.2011.12.025 – ident: ref37/cit37 doi: 10.2134/jeq1996.00472425002500010002x – ident: ref140/cit140 doi: 10.1021/es3002713 – ident: ref42/cit42 – ident: ref6/cit6 doi: 10.1021/acs.est.1c04158 – ident: ref150/cit150 doi: 10.1016/B978-0-08-098259-5.00013-5 – ident: ref23/cit23 doi: 10.1128/aem.57.10.2981-2985.1991 – ident: ref89/cit89 doi: 10.1007/s11356-011-0661-7 – ident: ref92/cit92 doi: 10.1021/acsestwater.0c00237 – ident: ref97/cit97 doi: 10.1021/acs.est.9b01750 – ident: ref53/cit53 doi: 10.1016/j.envpol.2019.113826 – volume-title: Ad Hoc Meeting of CARACAL PBT/VPvB/PMT/VPvM Criteria 30 September 2021 year: 2021 ident: ref18/cit18 – ident: ref25/cit25 doi: 10.1080/10934529.2014.910036 – ident: ref88/cit88 doi: 10.1016/j.watres.2009.07.004 – ident: ref15/cit15 doi: 10.1186/s12302-021-00470-6 – ident: ref39/cit39 doi: 10.1186/s12302-020-00427-1 – ident: ref48/cit48 doi: 10.1021/es102553y – ident: ref110/cit110 doi: 10.1016/j.scitotenv.2008.03.003 – ident: ref108/cit108 doi: 10.3133/cir1292 – ident: ref62/cit62 doi: 10.1002/etc.5620080411 – ident: ref44/cit44 doi: 10.1021/acs.est.0c05257 – ident: ref59/cit59 doi: 10.1016/S0883-2927(02)00205-6 – ident: ref24/cit24 doi: 10.1111/j.1745-6584.1997.tb00087.x – ident: ref111/cit111 doi: 10.1016/j.watres.2010.10.036 – ident: ref85/cit85 doi: 10.1016/j.scitotenv.2013.04.010 – ident: ref144/cit144 doi: 10.1016/j.chemosphere.2013.02.024 – ident: ref101/cit101 doi: 10.1021/acs.est.7b02488 – ident: ref29/cit29 doi: 10.1021/es800106g – ident: ref67/cit67 – ident: ref112/cit112 doi: 10.1016/j.scitotenv.2008.02.021 – ident: ref103/cit103 doi: 10.1016/j.watres.2010.05.032 – ident: ref102/cit102 doi: 10.1016/j.scitotenv.2018.01.277 – ident: ref11/cit11 doi: 10.2166/aqua.2013.007 – ident: ref8/cit8 doi: 10.1021/acs.est.0c02444 – ident: ref17/cit17 – ident: ref1311/cit1311 doi: 10.1186/s13321-018-0263-1 – ident: ref76/cit76 doi: 10.1016/j.watres.2013.06.031 – ident: ref122/cit122 – volume-title: Persistence of Gabapentin, 1Hbenzotriazole, Diglyme, DTPA, 1,4- Dioxane, Melamine and Urotropin in Surface Water: Testing of Chemicals According to the OECD 309 Guideline year: 2020 ident: ref156/cit156 – ident: ref46/cit46 doi: 10.1787/9789264069909-en – ident: ref63/cit63 – ident: ref27/cit27 doi: 10.1021/es048917b – ident: ref54/cit54 doi: 10.2134/jeq2004.0301 – ident: ref80/cit80 – ident: ref123/cit123 – ident: ref138/cit138 doi: 10.1039/c0em00039f – ident: ref13/cit13 doi: 10.1039/D1AY00434D – ident: ref14/cit14 doi: 10.1021/acs.est.6b03338 – ident: ref19/cit19 doi: 10.1021/acs.est.0c04281 – ident: ref146/cit146 doi: 10.1021/es0003021 – ident: ref10/cit10 doi: 10.1186/s12302-020-00440-4 – ident: ref126/cit126 – ident: ref109/cit109 doi: 10.1007/s00244-013-9942-0 – ident: ref38/cit38 doi: 10.1016/j.envpol.2007.02.013 – ident: ref70/cit70 doi: 10.1016/j.watres.2017.07.070 – ident: ref93/cit93 doi: 10.1016/j.watres.2017.09.045 – ident: ref79/cit79 doi: 10.1016/j.scitotenv.2018.06.088 – ident: ref143/cit143 doi: 10.1021/es204449r – ident: ref152/cit152 doi: 10.1126/science.abg5433 |
SSID | ssj0002513261 |
Score | 2.4183216 |
SecondaryResourceType | review_article |
Snippet | Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels,... Persistent and mobile organic substances are those with the highest propensity to be widely distributed in groundwater and thereby, when emitted at low-levels,... |
SourceID | pubmedcentral proquest crossref acs |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 482 |
SubjectTerms | Review |
Title | Assessing the Persistence and Mobility of Organic Substances to Protect Freshwater Resources |
URI | http://dx.doi.org/10.1021/acsenvironau.2c00024 https://www.proquest.com/docview/2739066664 https://pubmed.ncbi.nlm.nih.gov/PMC9673533 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aL17EV_G5RPDiIZUm2ddRSksRWgQt9CAsSTZLBdmV7hbx4m93Zh99CFI8LnnAZjKZbzLzTQi5lXAoxip0GfJImIyVZmAWQuZL1dVgLhOlkY08GnvDiXycutOVo_g7gs-798rkNedLLTrcoArLXbLHvSBARRx_d5Z3KmCrAY2gj4X8TAafQcOW-2MitEkm37RJK6C5mSa5ZncGh-SgBoz0oZLwEdmx6TFp91f8NGisFTQ_Ia9VEBfsEQVkRzG_HeUIjVSlMR1lZS7sF80SWrEwDcWjo0DZ57TI6FNVt4EOwA2ffQIQndPmhj8_JZNB_6U3ZPUDCkzJkBdMc4_DThFWCGN8qU2QAEB0FWAU6BAmIL9Ec2W6ViuQlZBSa9BnKS0-qu5p0SatNEvtGaGuq1zlCVsSabWVYSDB93GFEir2uQzOyR0sZFQrQB6VsW3ejdYXPaoX_ZyIZrkjU1cixwcx3reMYstRH1Ulji39bxpJRqAyGAdRqc0WeQRbMES3zYM-_oaIlxNj0e3NlvRtVhbfDj1fAES--Mf_XpJ9jqQJTB70rkirmC_sNUCZQjsA5XvPTnkR4JR72Snvm34Ae4756w |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZKGWBBvCrK00gsDC5qbOcxItSqQFsxtFIHpMhOHIGEEtSkQiz8du7yaJsBVYyJH0p8d77PPn9nQm4ETIqh8iRDHgkTodIM3ILHHKG6GtxlpDSykUdjezAVTzM5axBZcWHgI1LoKc2D-KvsAt07eFdSv9SiYwVoyWKLbAMekWiP45_OcmsFXDaAElxqIU2TwaNbkeb-6AhdU5DWXdMKb9ZPS665n_4-2StxI70vBH1AGiY-JK3eiqYGhaWdpkfktYjlgluiAPAoHnNHcUIhVXFIR0l-JPabJhEtyJgBxRkkQxVIaZbQlyJ9A-3DavztC_DonFYb_ekxmfZ7k4cBK-9RYEp4Vsa0ZVugMNxwHgSO0IEbAU6UCqAKVPAiEGOkLRV0jVYgMi6E1mDWQhi8W93WvEWacRKbE0KlVFLZ3OR8Wm2E5wpYAkmuuAodS7htcgsD6Zd2kPp5iNvq-uuD7peD3ia8Gm4_KBOS470YHxtasWWrzyIhx4b615UkfbAcDIeo2CSL1AdN9HD1ZkMdpybiZceYe7teEr-_5Tm4PdvhgJRP__G_V2RnMBkN_eHj-PmM7FrIo8DzhPY5aWbzhbkAdJPpy1yXfwFmKPyT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gngRX8X6XMGLh602u3kdRRvqo6UHCz0IYTfZUEGS0qSIF3-7M3m0zUGKx2QfJDs7O9_uzjdDyLWARTGUrsmQR8JEKBUDs-AyW8iOAnMZSYVs5P7A6o3E89gcr6T6go9Ioac0v8RHrZ6GURlhoHML70v6l5y3jQC1WWySLUAkd6iTg5_24ngFzDYAE9xuIVWTwaNTEef-6AjNU5DWzdMSc9Y9JldMkLdHdkvsSO8LYe-TDR0fkGZ3SVWDwlJX00PyXtzngmmiAPIourqjSKGQyjik_SR3i_2mSUQLQmZAcRXJcBqkNEvosAjhQD3YkU--AJPOaHXYnx6Rkdd9e-ixMpcCk8I1MqYMy4BJwzXnQWALFTgRYEVTAlyBCm4EooyUIYOOVhLExoVQClRbCI351S3Fm6QRJ7E-JtQ0pSktrnNOrdLCdQRsg0wuuQxtQzgtcgMD6Ze6kPr5NbfR8VcH3S8HvUV4Ndx-UAYlx9wYn2tasUWraRGUY039q0qSPmgPXonIWCfz1IfZ6OIOzoI6dk3Ei44x_na9JP6Y5HG4XcvmgJZP_vG_l2R7-Oj5r0-Dl1OyYyCVAl0KrTPSyGZzfQ4AJ1MX-VT-Bewt_aA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Persistence+and+Mobility+of+Organic+Substances+to+Protect+Freshwater+Resources&rft.jtitle=ACS+Environmental+Au&rft.au=Arp%2C+Hans+Peter+H.&rft.au=Hale%2C+Sarah+E.&rft.date=2022-11-16&rft.pub=American+Chemical+Society&rft.eissn=2694-2518&rft.volume=2&rft.issue=6&rft.spage=482&rft.epage=509&rft_id=info:doi/10.1021%2Facsenvironau.2c00024&rft.externalDocID=PMC9673533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2694-2518&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2694-2518&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2694-2518&client=summon |