Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock
Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural co...
Saved in:
Published in | Geophysical research letters Vol. 40; no. 9; pp. 1748 - 1753 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Washington
Blackwell Publishing Ltd
16.05.2013
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role.
Key Points
Rock liquid water content has an important impact on the freezing-induced damage
Sustained freezing can yield stronger damage than repeated freeze-thaw cycling
Frost cracking occurs on a wide range of temperatures extending from 0 to -15C |
---|---|
AbstractList | Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role.
Key Points
Rock liquid water content has an important impact on the freezing-induced damage
Sustained freezing can yield stronger damage than repeated freeze-thaw cycling
Frost cracking occurs on a wide range of temperatures extending from 0 to -15C Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing-induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze-thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to -15 degree C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Key Points * Rock liquid water content has an important impact on the freezing-induced damage * Sustained freezing can yield stronger damage than repeated freeze-thaw cycling * Frost cracking occurs on a wide range of temperatures extending from 0 to -15C Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Rock liquid water content has an important impact on the freezing-induced damage Sustained freezing can yield stronger damage than repeated freeze-thaw cycling Frost cracking occurs on a wide range of temperatures extending from 0 to -15C Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing-induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze-thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to -15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. |
Author | Beutel, Jan Gruber, Stephan Girard, Lucas Weber, Samuel |
Author_xml | – sequence: 1 givenname: Lucas surname: Girard fullname: Girard, Lucas email: lucas.girard@geo.uzh.ch organization: Glaciology and Geomorphodynamics, Department of Geography, University of Zurich, Switzerland – sequence: 2 givenname: Stephan surname: Gruber fullname: Gruber, Stephan organization: Glaciology and Geomorphodynamics, Department of Geography, University of Zurich, Switzerland – sequence: 3 givenname: Samuel surname: Weber fullname: Weber, Samuel organization: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland – sequence: 4 givenname: Jan surname: Beutel fullname: Beutel, Jan organization: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland |
BookMark | eNp9kM1OGzEYRa0KpIafRd_AUjftYuDz2PPjZYtoQIqKhAJlZ3k8nmDi2MH2UHh7HFK6QIKNPy_Ovbo6e2jHeacR-kLgiACUx4tgjyqgLfuEJoQzVrQAzQ6aAPD8L5v6M9qL8Q4AKFAyQfen7sEE71baJWmx8i4FbyP2Ax6CjwmrINXSuAUO-kFLq3ucboMfF7fYOBxNGrFUfozJKKxXJkbjHV5pGcegN53xBUtar3Gn--DV8gDtDtJGffjv7qOrX6fzk7NidjE9P_kxKyTjJSsoIWVFKOtIB7LreKt63tYMKlUzwgbaUkIrpSTPT99Co5pm4KxifcMq3nNK99G3be86-PtRxyTyPKWtlU7nwYJUuSd31JDRr2_QOz8Gl9cJUrMSstCSZOr7llJZTAx6EOtgVjI8CQJiI19k-eJFfmaP37DKJJnMRq809qPEX2P10_vVYno5e00U24TJfh__J2RYirqhTSX-_J6Km59zKK-nc3FJnwEfrafK |
CitedBy_id | crossref_primary_10_1007_s00603_014_0687_5 crossref_primary_10_1007_s00603_018_1488_z crossref_primary_10_1016_j_epsl_2016_08_019 crossref_primary_10_1016_j_geomorph_2019_03_023 crossref_primary_10_1109_JIOT_2021_3089159 crossref_primary_10_1002_esp_5034 crossref_primary_10_1016_j_coldregions_2020_103141 crossref_primary_10_3389_fphy_2018_00123 crossref_primary_10_5026_jgeography_126_369 crossref_primary_10_5194_esurf_9_977_2021 crossref_primary_10_1029_2020GL090305 crossref_primary_10_1130_B31422_1 crossref_primary_10_1007_s12517_023_11312_5 crossref_primary_10_1002_esp_5713 crossref_primary_10_1016_j_coldregions_2023_103866 crossref_primary_10_3389_feart_2022_1006642 crossref_primary_10_1038_s43247_022_00348_2 crossref_primary_10_1155_2023_8861524 crossref_primary_10_1016_j_enggeo_2017_12_024 crossref_primary_10_1016_j_geomorph_2016_01_008 crossref_primary_10_1016_j_earscirev_2020_103143 crossref_primary_10_1016_j_geomorph_2018_03_013 crossref_primary_10_1002_2017RG000557 crossref_primary_10_1016_j_epsl_2017_03_030 crossref_primary_10_1186_s10086_021_01990_8 crossref_primary_10_1016_j_enggeo_2025_107960 crossref_primary_10_1007_s10064_019_01686_w crossref_primary_10_1016_j_ijrmms_2023_105498 crossref_primary_10_1038_s41467_017_02728_1 crossref_primary_10_5194_tc_11_81_2017 crossref_primary_10_1002_esp_3961 crossref_primary_10_1016_j_engfailanal_2018_04_046 crossref_primary_10_1016_j_ijrmms_2022_105112 crossref_primary_10_1002_stc_2249 crossref_primary_10_5026_jgeography_125_133 crossref_primary_10_1002_esp_5100 crossref_primary_10_1007_s00603_023_03663_y crossref_primary_10_1016_j_earscirev_2016_02_006 crossref_primary_10_1002_2017JB014612 crossref_primary_10_1002_esp_3640 crossref_primary_10_1007_s00603_024_04318_2 crossref_primary_10_1029_2023GL102951 crossref_primary_10_1016_j_coldregions_2023_104049 crossref_primary_10_1016_j_ijrmms_2021_104642 crossref_primary_10_3390_sym13081492 crossref_primary_10_1016_j_coldregions_2019_102920 crossref_primary_10_1088_1742_2140_aa949f crossref_primary_10_1029_2021JF006163 crossref_primary_10_1016_j_coldregions_2024_104398 crossref_primary_10_1007_s11629_021_7280_7 crossref_primary_10_1029_2021JF006127 crossref_primary_10_1016_j_geomorph_2022_108351 crossref_primary_10_1016_j_addlet_2023_100130 crossref_primary_10_1002_ppp_1806 crossref_primary_10_1007_s00603_021_02509_9 crossref_primary_10_5194_esurf_8_729_2020 crossref_primary_10_1002_esp_3992 crossref_primary_10_1007_s10064_016_0903_5 crossref_primary_10_1016_j_coldregions_2019_03_013 crossref_primary_10_1155_2019_2549603 crossref_primary_10_1007_s10064_021_02410_3 crossref_primary_10_1029_2020GL089062 crossref_primary_10_5194_esurf_8_637_2020 crossref_primary_10_1007_s00603_022_03111_3 crossref_primary_10_1007_s12517_018_4115_0 crossref_primary_10_1016_j_geomorph_2024_109496 crossref_primary_10_1016_j_pss_2017_05_005 crossref_primary_10_1109_ACCESS_2019_2956289 crossref_primary_10_1029_2021JF006353 crossref_primary_10_1051_e3sconf_20183802015 crossref_primary_10_1016_j_compgeo_2024_106240 crossref_primary_10_1007_s00603_023_03627_2 crossref_primary_10_1029_2019JF005369 crossref_primary_10_5194_esurf_10_997_2022 crossref_primary_10_1080_14432471_2022_2087935 crossref_primary_10_1029_2018JF004615 crossref_primary_10_1016_j_geomorph_2016_05_005 crossref_primary_10_5194_essd_11_1203_2019 crossref_primary_10_1002_esp_3984 crossref_primary_10_1016_j_coldregions_2020_103115 crossref_primary_10_5194_esurf_12_35_2024 crossref_primary_10_1002_esp_4155 crossref_primary_10_1016_j_coldregions_2020_103077 crossref_primary_10_1007_s00603_024_04311_9 crossref_primary_10_1016_j_autcon_2019_102989 crossref_primary_10_1088_1742_6596_2005_1_012048 crossref_primary_10_1177_03091333221111480 crossref_primary_10_1007_s12517_019_4936_5 crossref_primary_10_1016_j_compgeo_2024_106412 crossref_primary_10_1130_B36459_1 crossref_primary_10_1088_1361_6439_aaabf6 crossref_primary_10_5194_tc_18_2847_2024 crossref_primary_10_1017_qua_2022_19 crossref_primary_10_1017_S0016756822000887 crossref_primary_10_1029_2019GL081981 crossref_primary_10_1016_j_enggeo_2023_107059 |
Cites_doi | 10.1016/j.geomorph.2007.11.013 10.1016/S0950‐0618(00)00058‐1 10.1029/2006JF000616 10.3189/002214310791968494 10.1016/j.epsl.2012.06.014 10.2307/1552008 10.1002/ppp.3430020404 10.1002/esp.3374 10.1016/j.scriptamat.2005.10.056 10.1209/0295‐5075/96/24003 10.1016/0148-9062(93)90172-A 10.1088/0034-4885/58/1/003 10.1088/0022‐3727/42/21/214017 10.1126/science.1132127 10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4 10.1029/2006JF000547 10.5194/tc‐5‐977‐2011 10.1190/1.1439954 10.1007/BF00853317 10.1002/ppp.620 10.1029/2011JF002006 10.5194/gi‐1‐155‐2012 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2 10.5194/tc‐6‐1163‐2012 |
ContentType | Journal Article |
Copyright | 2013. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2013. American Geophysical Union. All Rights Reserved. |
DBID | BSCLL AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/grl.50384 |
DatabaseName | Istex CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Technology Research Database CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Physics |
EISSN | 1944-8007 |
EndPage | 1753 |
ExternalDocumentID | 3545542721 10_1002_grl_50384 GRL50384 ark_67375_WNG_XBT02VGT_R |
Genre | article |
GrantInformation_xml | – fundername: Forschungskredit of the University of Zurich – fundername: International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat – fundername: Swiss National Foundation (SNF) NCCR MICS |
GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 8R4 8R5 AAESR AAHHS AAIHA AANHP AASGY AAXRX AAZKR ABCUV ABPPZ ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AFGKR AFRAH AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG AVUZU AVWKF AZFZN AZVAB BDRZF BENPR BMXJE BRXPI BSCLL CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F5P G-S GODZA HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZCG ZZTAW ~02 ~OA ~~A A00 AEUQT AFPWT WIH WYJ AAFWJ AAYXX ACTHY AGQPQ CITATION 7TG 7TN 8FD AAMMB AEFGJ AFPKN AGXDD AIDQK AIDYY F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-a4924-31125134b1b0abb98cd986405c6414f383135cca95ccd807c77f9454d7459d933 |
ISSN | 0094-8276 |
IngestDate | Sun Aug 24 03:42:20 EDT 2025 Fri Jul 25 19:02:08 EDT 2025 Tue Jul 01 01:05:22 EDT 2025 Thu Apr 24 22:51:53 EDT 2025 Wed Jan 22 17:07:20 EST 2025 Wed Mar 05 09:12:33 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a4924-31125134b1b0abb98cd986405c6414f383135cca95ccd807c77f9454d7459d933 |
Notes | ArticleID:GRL50384 Forschungskredit of the University of Zurich istex:5C674155693E89FA1B8F0A43BB58B948F2A3EF3F Swiss National Foundation (SNF) NCCR MICS International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat ark:/67375/WNG-XBT02VGT-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/grl.50384 |
PQID | 1642050321 |
PQPubID | 54723 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1541413560 proquest_journals_1642050321 crossref_primary_10_1002_grl_50384 crossref_citationtrail_10_1002_grl_50384 wiley_primary_10_1002_grl_50384_GRL50384 istex_primary_ark_67375_WNG_XBT02VGT_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 16 May 2013 |
PublicationDateYYYYMMDD | 2013-05-16 |
PublicationDate_xml | – month: 05 year: 2013 text: 16 May 2013 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Geophysical research letters |
PublicationTitleAlternate | Geophys. Res. Lett |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Wegmann, M., and H. R. Keusen (1998), Recent geophysical investigations at a high alpine permafrost construction site in Switzerland, Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada, pp. 1119-1123. Gischig, V. S., J. R. Moore, K. F. Evans, F. Amann, and S. Loew (2011), Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope, J. Geophys. Res., 116, doi:10.1029/2011JF002006. Draebing, D., and M. Krautblatter (2012), P-wave velocity changes in freezing hard low-porosity rocks: A laboratory-based time-average model, The Cryosphere, 6, 1163-1174, doi:10.5194/tc-6-1163-2012. Anderson, R. S. (1998), Near-surface thermal profiles in alpine bedrock: Implications for the frost-weathering of rock, Arctic Alpine Res., 30, 362-372. Girard, L., J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber (2012), A custom acoustic emission monitoring system for harsh environments: Application to freezing-induced damage in alpine rock walls, Geosci. Instrum. Method. Data Syst., 1, 155-167, doi:10.5194/gi-1-155-2012. Røyne, A., P. Meakin, A. Malthe-Sørenssen, B. Jamtveit, and D. K. Dysthe (2011), Crack propagation driven by crystal growth, EPL, 96(24003), doi:10.1209/0295-5075/96/24003. Hallet, B., J. S. Walder, and C. W. Stubbs (1991), Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: Verification from an experimental study using acoustic emissions, Permafrost Periglac., 2(4), 283-300. Sakharov, I. I. (1994), Nature of acoustic emission during phase transformations and adequacy of the Stefan condition, J. Eng. Phys. Thermophys., 67, 699-702. Basheer, L., J. Kropp, and D. J. Cleland (2001), Assessment of the durability of concrete from its permeation properties: A review, Construct. Build. Mater., 15, 93-103, doi:10.1016/S0950-0618(00)00058-1. Hales, T. C., and J. J. Roering (2007), Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, doi:10.1029/2006JF000616. Vlahou, I., and M. G. Worster (2010), Ice growth in a spherical cavity of a porous medium, J. Glaciol., 56(196), 271-277. Prick, A. (1997), Critical degree of saturation as a threshold moisture level in frost weathering of limestones, Permafrost Periglac., 8, 91-99. Weiss, J., and F. Louchet (2006), Seismology of plastic deformation, Scripta Mater., 54, 747-751. Cox, S. J. D., and P. G. Meredith (1993), Microcrack formation and material softening in rock measured by monitoring acoustic emissions, Int. J. Rock Mech. Min. Sci., 30(1), 11-24. Matsuoka, N. (2008), Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations, Geomorphology, 99, 353-368. Hasler, A., S. Gruber, and W. Haeberli (2011), Temperature variability and thermal offset in steep alpine rock and ice faces, The Cryosphere, 5, 977-988, doi:10.5194/tc-5-977-2011. Timur, A. (1968), Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584-595, doi:10.1190/1.1439954. Dash, J., H. -Y. Fu, and J. Wettlaufer (1995), The premelting of ice and its environmental consequences, Rep. Progr. Phys., 58, 115-167. Krautblatter, M., D. Funk, and F. K. Gunzel (2013), Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., doi:10.1002/esp.3374. Weber, S., S. Gruber, L. Girard, and J. Beutel (2012), Design of a measurement assembly to study in-situ rock damage driven by freezing, Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437-442. Murton, J. B., R. Peterson, and J. C. Ozouf (2006), Bedrock fracture by ice segregation in cold regions, Science, 314(5802), 1127-1129. Walder, J., and B. Hallet (1985), A theoretical model of the fracture of rock during freezing, Bull. Geol. Soc. Am., 96, 336-346. Weiss, J., and E. M. Schulson (2009), Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice, J. Phys. D Appl. Phys., 42(214017), doi:10.1088/0022-3727/42/21/214017. Gruber, S., and W. Haeberli (2007), Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res. Earth Surf., 112(F02S18), doi:10.1029/2006JF000547. Matsuoka, N., and J. B. Murton (2008), Frost weathering: Recent advances and future directions, Permafrost Periglac., 19, 195-210. Amitrano, D., S. Gruber, and L. Girard (2012), Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall, Earth Planet. Sci. Lett., 341-344, 86-93, doi:10.1016/j.epsl.2012.06.014. 2011; 116 2010; 56 1991; 2 2009; 42 2012 2006; 54 1995; 58 2008; 19 1994; 67 1998 2011; 96 2008; 99 2003 2006; 314 2011; 5 1997; 8 2007; 112 2012; 1 1993; 30 2001; 15 1985; 96 2013 1998; 30 2012; 6 1968; 33 2012; 341‐344 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Weber S. (e_1_2_9_25_1) 2012 Wegmann M. (e_1_2_9_26_1) 1998 e_1_2_9_9_1 e_1_2_9_28_1 e_1_2_9_27_1 |
References_xml | – reference: Weiss, J., and E. M. Schulson (2009), Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice, J. Phys. D Appl. Phys., 42(214017), doi:10.1088/0022-3727/42/21/214017. – reference: Wegmann, M., and H. R. Keusen (1998), Recent geophysical investigations at a high alpine permafrost construction site in Switzerland, Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada, pp. 1119-1123. – reference: Krautblatter, M., D. Funk, and F. K. Gunzel (2013), Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., doi:10.1002/esp.3374. – reference: Hasler, A., S. Gruber, and W. Haeberli (2011), Temperature variability and thermal offset in steep alpine rock and ice faces, The Cryosphere, 5, 977-988, doi:10.5194/tc-5-977-2011. – reference: Draebing, D., and M. Krautblatter (2012), P-wave velocity changes in freezing hard low-porosity rocks: A laboratory-based time-average model, The Cryosphere, 6, 1163-1174, doi:10.5194/tc-6-1163-2012. – reference: Amitrano, D., S. Gruber, and L. Girard (2012), Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall, Earth Planet. Sci. Lett., 341-344, 86-93, doi:10.1016/j.epsl.2012.06.014. – reference: Hales, T. C., and J. J. Roering (2007), Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, doi:10.1029/2006JF000616. – reference: Vlahou, I., and M. G. Worster (2010), Ice growth in a spherical cavity of a porous medium, J. Glaciol., 56(196), 271-277. – reference: Matsuoka, N. (2008), Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations, Geomorphology, 99, 353-368. – reference: Røyne, A., P. Meakin, A. Malthe-Sørenssen, B. Jamtveit, and D. K. Dysthe (2011), Crack propagation driven by crystal growth, EPL, 96(24003), doi:10.1209/0295-5075/96/24003. – reference: Sakharov, I. I. (1994), Nature of acoustic emission during phase transformations and adequacy of the Stefan condition, J. Eng. Phys. Thermophys., 67, 699-702. – reference: Prick, A. (1997), Critical degree of saturation as a threshold moisture level in frost weathering of limestones, Permafrost Periglac., 8, 91-99. – reference: Girard, L., J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber (2012), A custom acoustic emission monitoring system for harsh environments: Application to freezing-induced damage in alpine rock walls, Geosci. Instrum. Method. Data Syst., 1, 155-167, doi:10.5194/gi-1-155-2012. – reference: Gischig, V. S., J. R. Moore, K. F. Evans, F. Amann, and S. Loew (2011), Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope, J. Geophys. Res., 116, doi:10.1029/2011JF002006. – reference: Basheer, L., J. Kropp, and D. J. Cleland (2001), Assessment of the durability of concrete from its permeation properties: A review, Construct. Build. Mater., 15, 93-103, doi:10.1016/S0950-0618(00)00058-1. – reference: Dash, J., H. -Y. Fu, and J. Wettlaufer (1995), The premelting of ice and its environmental consequences, Rep. Progr. Phys., 58, 115-167. – reference: Cox, S. J. D., and P. G. Meredith (1993), Microcrack formation and material softening in rock measured by monitoring acoustic emissions, Int. J. Rock Mech. Min. Sci., 30(1), 11-24. – reference: Timur, A. (1968), Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584-595, doi:10.1190/1.1439954. – reference: Walder, J., and B. Hallet (1985), A theoretical model of the fracture of rock during freezing, Bull. Geol. Soc. Am., 96, 336-346. – reference: Gruber, S., and W. Haeberli (2007), Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res. Earth Surf., 112(F02S18), doi:10.1029/2006JF000547. – reference: Weber, S., S. Gruber, L. Girard, and J. Beutel (2012), Design of a measurement assembly to study in-situ rock damage driven by freezing, Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437-442. – reference: Murton, J. B., R. Peterson, and J. C. Ozouf (2006), Bedrock fracture by ice segregation in cold regions, Science, 314(5802), 1127-1129. – reference: Weiss, J., and F. Louchet (2006), Seismology of plastic deformation, Scripta Mater., 54, 747-751. – reference: Anderson, R. S. (1998), Near-surface thermal profiles in alpine bedrock: Implications for the frost-weathering of rock, Arctic Alpine Res., 30, 362-372. – reference: Hallet, B., J. S. Walder, and C. W. Stubbs (1991), Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: Verification from an experimental study using acoustic emissions, Permafrost Periglac., 2(4), 283-300. – reference: Matsuoka, N., and J. B. Murton (2008), Frost weathering: Recent advances and future directions, Permafrost Periglac., 19, 195-210. – volume: 8 start-page: 91 year: 1997 end-page: 99. article-title: Critical degree of saturation as a threshold moisture level in frost weathering of limestones publication-title: Permafrost Periglac. – volume: 112 year: 2007 article-title: Climatic controls on frost cracking and implications for the evolution of bedrock landscapes publication-title: J. Geophys. Res. – volume: 33 start-page: 584 year: 1968 end-page: 595 article-title: Velocity of compressional waves in porous media at permafrost temperatures publication-title: Geophysics – volume: 30 start-page: 362 year: 1998 end-page: 372. article-title: Near‐surface thermal profiles in alpine bedrock: Implications for the frost‐weathering of rock publication-title: Arctic Alpine Res. – volume: 30 start-page: 11 issue: 1 year: 1993 end-page: 24. article-title: Microcrack formation and material softening in rock measured by monitoring acoustic emissions publication-title: Int. J. Rock Mech. Min. Sci. – volume: 314 start-page: 1127 issue: 5802 year: 2006 end-page: 1129. article-title: Bedrock fracture by ice segregation in cold regions publication-title: Science – volume: 116 year: 2011 article-title: Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope publication-title: J. Geophys. Res. – year: 2013 article-title: Why permafrost rocks become unstable: A rock‐ice‐mechanical model in time and space publication-title: Earth Surf. Proc. Land., doi:10.1002/esp.3374. – volume: 2 start-page: 283 issue: 4 year: 1991 end-page: 300. article-title: Weathering by segregation ice growth in microcracks at sustained sub‐zero temperatures: Verification from an experimental study using acoustic emissions publication-title: Permafrost Periglac. – volume: 5 start-page: 977 year: 2011 end-page: 988 article-title: Temperature variability and thermal offset in steep alpine rock and ice faces publication-title: The Cryosphere – volume: 19 start-page: 195 year: 2008 end-page: 210. article-title: Frost weathering: Recent advances and future directions publication-title: Permafrost Periglac. – volume: 96 start-page: 336 year: 1985 end-page: 346. article-title: A theoretical model of the fracture of rock during freezing publication-title: Bull. Geol. Soc. Am. – volume: 99 start-page: 353 year: 2008 end-page: 368. article-title: Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long‐term (1994–2006) observations publication-title: Geomorphology – volume: 112 issue: F02S18 year: 2007 article-title: Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change publication-title: J. Geophys. Res. Earth Surf. – year: 2003 article-title: Acoustic Emission/Microseismic Activity ‐ Principles, Techniques and Geotechnical Applications – volume: 1 start-page: 155 year: 2012 end-page: 167 article-title: A custom acoustic emission monitoring system for harsh environments: Application to freezing‐induced damage in alpine rock walls publication-title: Geosci. Instrum. Method. Data Syst. – volume: 54 start-page: 747 year: 2006 end-page: 751. article-title: Seismology of plastic deformation publication-title: Scripta Mater. – year: 2012 article-title: Design of a measurement assembly to study in‐situ rock damage driven by freezing publication-title: Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437–442. – volume: 67 start-page: 699 year: 1994 end-page: 702. article-title: Nature of acoustic emission during phase transformations and adequacy of the Stefan condition publication-title: J. Eng. Phys. Thermophys. – volume: 341‐344 start-page: 86 year: 2012 end-page: 93 article-title: Evidence of frost‐cracking inferred from acoustic emissions in a high‐alpine rock‐wall publication-title: Earth Planet. Sci. Lett. – volume: 58 start-page: 115 year: 1995 end-page: 167. article-title: The premelting of ice and its environmental consequences publication-title: Rep. Progr. Phys. – volume: 96 issue: 24003 year: 2011 article-title: Crack propagation driven by crystal growth publication-title: EPL – volume: 6 start-page: 1163 year: 2012 end-page: 1174 article-title: P‐wave velocity changes in freezing hard low‐porosity rocks: A laboratory‐based time‐average model publication-title: The Cryosphere – volume: 15 start-page: 93 year: 2001 end-page: 103 article-title: Assessment of the durability of concrete from its permeation properties: A review publication-title: Construct. Build. Mater. – volume: 56 start-page: 271 issue: 196 year: 2010 end-page: 277. article-title: Ice growth in a spherical cavity of a porous medium publication-title: J. Glaciol. – volume: 42 issue: 214017 year: 2009 article-title: Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice publication-title: J. Phys. D Appl. Phys. – start-page: pp. 1119 year: 1998 end-page: 1123. article-title: Recent geophysical investigations at a high alpine permafrost construction site in Switzerland publication-title: Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada – ident: e_1_2_9_16_1 doi: 10.1016/j.geomorph.2007.11.013 – ident: e_1_2_9_4_1 doi: 10.1016/S0950‐0618(00)00058‐1 – ident: e_1_2_9_11_1 doi: 10.1029/2006JF000616 – ident: e_1_2_9_23_1 doi: 10.3189/002214310791968494 – ident: e_1_2_9_2_1 doi: 10.1016/j.epsl.2012.06.014 – ident: e_1_2_9_3_1 doi: 10.2307/1552008 – ident: e_1_2_9_12_1 doi: 10.1002/ppp.3430020404 – ident: e_1_2_9_15_1 doi: 10.1002/esp.3374 – ident: e_1_2_9_27_1 doi: 10.1016/j.scriptamat.2005.10.056 – ident: e_1_2_9_20_1 doi: 10.1209/0295‐5075/96/24003 – ident: e_1_2_9_5_1 doi: 10.1016/0148-9062(93)90172-A – ident: e_1_2_9_6_1 doi: 10.1088/0034-4885/58/1/003 – ident: e_1_2_9_28_1 doi: 10.1088/0022‐3727/42/21/214017 – ident: e_1_2_9_18_1 doi: 10.1126/science.1132127 – ident: e_1_2_9_13_1 – ident: e_1_2_9_19_1 doi: 10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4 – ident: e_1_2_9_10_1 doi: 10.1029/2006JF000547 – start-page: pp. 1119 year: 1998 ident: e_1_2_9_26_1 article-title: Recent geophysical investigations at a high alpine permafrost construction site in Switzerland publication-title: Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada – ident: e_1_2_9_14_1 doi: 10.5194/tc‐5‐977‐2011 – ident: e_1_2_9_22_1 doi: 10.1190/1.1439954 – year: 2012 ident: e_1_2_9_25_1 article-title: Design of a measurement assembly to study in‐situ rock damage driven by freezing publication-title: Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437–442. – ident: e_1_2_9_21_1 doi: 10.1007/BF00853317 – ident: e_1_2_9_17_1 doi: 10.1002/ppp.620 – ident: e_1_2_9_9_1 doi: 10.1029/2011JF002006 – ident: e_1_2_9_8_1 doi: 10.5194/gi‐1‐155‐2012 – ident: e_1_2_9_24_1 doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2 – ident: e_1_2_9_7_1 doi: 10.5194/tc‐6‐1163‐2012 |
SSID | ssj0003031 |
Score | 2.4264338 |
Snippet | Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1748 |
SubjectTerms | Acoustic emission Bedrock Cracking (fracturing) Damage Emission measurements Fracture mechanics Freezing Frost Geophysics Ice In situ measurement Moisture content permafrost Rock rock mechanics Rocks Water Water content weathering |
Title | Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock |
URI | https://api.istex.fr/ark:/67375/WNG-XBT02VGT-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgrl.50384 https://www.proquest.com/docview/1642050321 https://www.proquest.com/docview/1541413560 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF5cm0JfSk_qJi3bUkpBKNWxuh6TkiqENA_BTkxfFh3r1sSRE9uCtj-uv60ze0hycSAtGCHWa1ve-TQ7M_pmhpB3cehEAsxaGzvW2UzkoZ2HcWaLKGfwAgsixzjkl9PwaMyOJ8Gk1_vdYS3V63yv-LU1r-R_pApjIFfMkv0HyTZfCgNwDvKFI0gYjneS8WGbpSbLfEjWueRmTDGZwyqWWYGhcExQQYOwbNryzCprNVvXFuhD2c7LwrZvGDizrtqgoaTKAgoE0rlK2Okuu6ZsKhbXRsi6ZNB3ay6zgxo7PZ0tM8WdP8Hmai3Zp851wy8kmbUAvRBmPLuqRUP-OBD1WrEJjvVcHadwJStQpVFui0eq-FrLXJLKOWF27EW6MrbSxwmDMUc1xjUKW9V30sBMOtoXvKu4s5NjEdKtu4SqOvttOd_DYjis3QrN4_-_dsiGt5gtL5EIFwX84jTlk4OR452nI352jww8cFO8Phnsn4-_jhtbAAwE1bNR_zVT28rxPjY_v2ERDfDm_rHh7nSdJmn1jB6Rh9pdofsKe49JT1RPyP1UtoP-CWeSQFysnpKbDSxSg0W6mFKJRWqwSA0WqcYinVUUsUgNFqnBIu1iUU5DLFKNxWdk_Plw9OnI1u087IyBlw-7PRrTPsvd3MnyPImLEnsDOEERMpdN_dh3_QAUSgKHMnaiIoqmCQtYGbEgKRPff0761aISLwgN4jLxwNAM_AQ-6foxfCphURZ6XllE03JIPpgl5YWudY8tV-ZcVen2OKw-l6s_JG-bqdeqwMu2Se-lXJoZtwFhSHaN4LhWFCvugo-PZZc8d0jeNG_DUuKzuawSsLgcPBkX7EnwP-DapcBvvxqenp3Ik5d3vawd8qC9JXdJf72sxSswptf5a43YP7i10CY |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66hLG9jP2k6dpNG2Psxasty5INfelGm2xL81CSLuxFWJY8Slu3i1NY__veyY6zwgYDYwQ-gXxn3Z3O0vcBvEtlqBymtQEx1gXCGRkYmeaBU0bghRmEoTrk0USOZuLrPJlvwN7qLEyDD9EV3GhmeH9NE5wK0rtr1NCfi_OPBGYi7kGfspq0B_39k9mPWeeJ0T03jHmZCFKu5ApZKOS7Xec78ahPqv19J9n8M2X1MefwMTxqk0W231j3CWy46incH3oy3hts-e2bRf0Mfh2sz6thh3b_ec0uS1bSsQ5WLPKCiuKMEJswJljWEvSw04rVp8trhp7RE3sxIoCjEhq7WJcPay-2dO6KGWcx5p09h9nhwfTzKGjJFIJc4BoLfS2lMrEwkQlzY7K0sITMHiaFFJEocaEaxQmaM8ObTUNVKFVmIhFWiSSzWRy_gF51WblNYElqM45hPokz7BnFKfbKhMol57ZQpR3Ah5VKddEijRPhxbluMJK5Ru1rr_0BvO1Erxp4jb8Jvfd26STyxRntR1OJ_j4Z6vmnachPhlN9PIDtleF0OxVrjetBTqA3PBrAm-4xqpL-jOSVQ-XqiMjQ8f1liGP3Bv_3aPTweOwbW_8v-hoejKZHYz3-Mvn2Eh5yT6mRBJHcht5yce12MLFZmlft93sLwKvytQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qD8UX8RNPq64i4ktsstmPBJ-q9q5qPaTc1cOXJZvdSGlNz8sV9L93ZpPLWVAQQghkFjYzuzOzk93fD-B5pmLtMa2NiLEuEt6qyKqsiLy2Ai_MICzVIT9N1MFMfJjL-Ra8Xp-FafEh-oIbzYzgr2mCL1y1uwEN_bY8e0VYJuIKDAglD4f0YO949nXWO2L0zi1hXi6ijGu1BhaK-W7f-FI4GpBmf17KNf_MWEPIGd2EG12uyPZa496CLV_fhqvjwMX7C5_C7s2yuQM_9jfH1bBBt_28YecVq-hUByuXRUk1cUaATRgSHOv4edhJzZqT1QVDxxh4vRjxv1EFjX3fVA-bILbyfsGsdxjyTu_CbLQ_fXsQdVwKUSFwiYWuljKZVNjExoW1eVY6AmaPZalEIipcpyapRGvmeHNZrEutq1xI4bSQucvT9B5s1-e1vw9MZi7nGOVlmmPLJM2wVS50oTh3pa7cEF6uVWrKDmic-C7OTAuRzA1q3wTtD-FZL7po0TX-JvQi2KWXKJantB1NS_NlMjbzN9OYH4-n5mgIO2vDmW4mNgaXg5wwb3gyhKf9a1Ql_Rgpao_KNQlxoeP3qxj7Hgz-796Y8dFheHjw_6JP4NrndyNz-H7y8SFc54FQQ0aJ2oHt1fLCP8K0ZmUfd8P3N0ms8d4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+controls+of+frost+cracking+revealed+through+in+situ+acoustic+emission+measurements+in+steep+bedrock&rft.jtitle=Geophysical+research+letters&rft.au=Girard%2C+Lucas&rft.au=Gruber%2C+Stephan&rft.au=Weber%2C+Samuel&rft.au=Beutel%2C+Jan&rft.date=2013-05-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=40&rft.issue=9&rft.spage=1748&rft.epage=1753&rft_id=info:doi/10.1002%2Fgrl.50384&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XBT02VGT_R |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |