Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock

Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural co...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 40; no. 9; pp. 1748 - 1753
Main Authors Girard, Lucas, Gruber, Stephan, Weber, Samuel, Beutel, Jan
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 16.05.2013
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Key Points Rock liquid water content has an important impact on the freezing-induced damage Sustained freezing can yield stronger damage than repeated freeze-thaw cycling Frost cracking occurs on a wide range of temperatures extending from 0 to -15C
AbstractList Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Key Points Rock liquid water content has an important impact on the freezing-induced damage Sustained freezing can yield stronger damage than repeated freeze-thaw cycling Frost cracking occurs on a wide range of temperatures extending from 0 to -15C
Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing-induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze-thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to -15 degree C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Key Points * Rock liquid water content has an important impact on the freezing-induced damage * Sustained freezing can yield stronger damage than repeated freeze-thaw cycling * Frost cracking occurs on a wide range of temperatures extending from 0 to -15C
Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1 year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing‐induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze‐thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to −15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role. Rock liquid water content has an important impact on the freezing-induced damage Sustained freezing can yield stronger damage than repeated freeze-thaw cycling Frost cracking occurs on a wide range of temperatures extending from 0 to -15C
Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the mechanisms driving frost cracking stem mainly from laboratory and theoretical studies. Transferring insights from such studies to natural conditions, involving jointed bedrock and heterogeneous thermal and hydrological properties, is a major challenge. We address this problem with simultaneous in situ measurements of acoustic emissions, used as proxy of rock damage, and rock temperature/moisture content. The 1year data set acquired in an Alpine rock wall shows that (1) liquid water content has an important impact on freezing-induced rock damage, (2) sustained freezing can yield much stronger damage than repeated freeze-thaw cycling, and (3) that frost cracking occurs over the full range of temperatures measured extending from 0 down to -15°C. These new measurements yield a slightly different picture than previous field studies where ice segregation appears to play an important role.
Author Beutel, Jan
Gruber, Stephan
Girard, Lucas
Weber, Samuel
Author_xml – sequence: 1
  givenname: Lucas
  surname: Girard
  fullname: Girard, Lucas
  email: lucas.girard@geo.uzh.ch
  organization: Glaciology and Geomorphodynamics, Department of Geography, University of Zurich, Switzerland
– sequence: 2
  givenname: Stephan
  surname: Gruber
  fullname: Gruber, Stephan
  organization: Glaciology and Geomorphodynamics, Department of Geography, University of Zurich, Switzerland
– sequence: 3
  givenname: Samuel
  surname: Weber
  fullname: Weber, Samuel
  organization: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland
– sequence: 4
  givenname: Jan
  surname: Beutel
  fullname: Beutel, Jan
  organization: Computer Engineering and Networks Laboratory, Swiss Federal Institute of Technology Zurich, Switzerland
BookMark eNp9kM1OGzEYRa0KpIafRd_AUjftYuDz2PPjZYtoQIqKhAJlZ3k8nmDi2MH2UHh7HFK6QIKNPy_Ovbo6e2jHeacR-kLgiACUx4tgjyqgLfuEJoQzVrQAzQ6aAPD8L5v6M9qL8Q4AKFAyQfen7sEE71baJWmx8i4FbyP2Ax6CjwmrINXSuAUO-kFLq3ucboMfF7fYOBxNGrFUfozJKKxXJkbjHV5pGcegN53xBUtar3Gn--DV8gDtDtJGffjv7qOrX6fzk7NidjE9P_kxKyTjJSsoIWVFKOtIB7LreKt63tYMKlUzwgbaUkIrpSTPT99Co5pm4KxifcMq3nNK99G3be86-PtRxyTyPKWtlU7nwYJUuSd31JDRr2_QOz8Gl9cJUrMSstCSZOr7llJZTAx6EOtgVjI8CQJiI19k-eJFfmaP37DKJJnMRq809qPEX2P10_vVYno5e00U24TJfh__J2RYirqhTSX-_J6Km59zKK-nc3FJnwEfrafK
CitedBy_id crossref_primary_10_1007_s00603_014_0687_5
crossref_primary_10_1007_s00603_018_1488_z
crossref_primary_10_1016_j_epsl_2016_08_019
crossref_primary_10_1016_j_geomorph_2019_03_023
crossref_primary_10_1109_JIOT_2021_3089159
crossref_primary_10_1002_esp_5034
crossref_primary_10_1016_j_coldregions_2020_103141
crossref_primary_10_3389_fphy_2018_00123
crossref_primary_10_5026_jgeography_126_369
crossref_primary_10_5194_esurf_9_977_2021
crossref_primary_10_1029_2020GL090305
crossref_primary_10_1130_B31422_1
crossref_primary_10_1007_s12517_023_11312_5
crossref_primary_10_1002_esp_5713
crossref_primary_10_1016_j_coldregions_2023_103866
crossref_primary_10_3389_feart_2022_1006642
crossref_primary_10_1038_s43247_022_00348_2
crossref_primary_10_1155_2023_8861524
crossref_primary_10_1016_j_enggeo_2017_12_024
crossref_primary_10_1016_j_geomorph_2016_01_008
crossref_primary_10_1016_j_earscirev_2020_103143
crossref_primary_10_1016_j_geomorph_2018_03_013
crossref_primary_10_1002_2017RG000557
crossref_primary_10_1016_j_epsl_2017_03_030
crossref_primary_10_1186_s10086_021_01990_8
crossref_primary_10_1016_j_enggeo_2025_107960
crossref_primary_10_1007_s10064_019_01686_w
crossref_primary_10_1016_j_ijrmms_2023_105498
crossref_primary_10_1038_s41467_017_02728_1
crossref_primary_10_5194_tc_11_81_2017
crossref_primary_10_1002_esp_3961
crossref_primary_10_1016_j_engfailanal_2018_04_046
crossref_primary_10_1016_j_ijrmms_2022_105112
crossref_primary_10_1002_stc_2249
crossref_primary_10_5026_jgeography_125_133
crossref_primary_10_1002_esp_5100
crossref_primary_10_1007_s00603_023_03663_y
crossref_primary_10_1016_j_earscirev_2016_02_006
crossref_primary_10_1002_2017JB014612
crossref_primary_10_1002_esp_3640
crossref_primary_10_1007_s00603_024_04318_2
crossref_primary_10_1029_2023GL102951
crossref_primary_10_1016_j_coldregions_2023_104049
crossref_primary_10_1016_j_ijrmms_2021_104642
crossref_primary_10_3390_sym13081492
crossref_primary_10_1016_j_coldregions_2019_102920
crossref_primary_10_1088_1742_2140_aa949f
crossref_primary_10_1029_2021JF006163
crossref_primary_10_1016_j_coldregions_2024_104398
crossref_primary_10_1007_s11629_021_7280_7
crossref_primary_10_1029_2021JF006127
crossref_primary_10_1016_j_geomorph_2022_108351
crossref_primary_10_1016_j_addlet_2023_100130
crossref_primary_10_1002_ppp_1806
crossref_primary_10_1007_s00603_021_02509_9
crossref_primary_10_5194_esurf_8_729_2020
crossref_primary_10_1002_esp_3992
crossref_primary_10_1007_s10064_016_0903_5
crossref_primary_10_1016_j_coldregions_2019_03_013
crossref_primary_10_1155_2019_2549603
crossref_primary_10_1007_s10064_021_02410_3
crossref_primary_10_1029_2020GL089062
crossref_primary_10_5194_esurf_8_637_2020
crossref_primary_10_1007_s00603_022_03111_3
crossref_primary_10_1007_s12517_018_4115_0
crossref_primary_10_1016_j_geomorph_2024_109496
crossref_primary_10_1016_j_pss_2017_05_005
crossref_primary_10_1109_ACCESS_2019_2956289
crossref_primary_10_1029_2021JF006353
crossref_primary_10_1051_e3sconf_20183802015
crossref_primary_10_1016_j_compgeo_2024_106240
crossref_primary_10_1007_s00603_023_03627_2
crossref_primary_10_1029_2019JF005369
crossref_primary_10_5194_esurf_10_997_2022
crossref_primary_10_1080_14432471_2022_2087935
crossref_primary_10_1029_2018JF004615
crossref_primary_10_1016_j_geomorph_2016_05_005
crossref_primary_10_5194_essd_11_1203_2019
crossref_primary_10_1002_esp_3984
crossref_primary_10_1016_j_coldregions_2020_103115
crossref_primary_10_5194_esurf_12_35_2024
crossref_primary_10_1002_esp_4155
crossref_primary_10_1016_j_coldregions_2020_103077
crossref_primary_10_1007_s00603_024_04311_9
crossref_primary_10_1016_j_autcon_2019_102989
crossref_primary_10_1088_1742_6596_2005_1_012048
crossref_primary_10_1177_03091333221111480
crossref_primary_10_1007_s12517_019_4936_5
crossref_primary_10_1016_j_compgeo_2024_106412
crossref_primary_10_1130_B36459_1
crossref_primary_10_1088_1361_6439_aaabf6
crossref_primary_10_5194_tc_18_2847_2024
crossref_primary_10_1017_qua_2022_19
crossref_primary_10_1017_S0016756822000887
crossref_primary_10_1029_2019GL081981
crossref_primary_10_1016_j_enggeo_2023_107059
Cites_doi 10.1016/j.geomorph.2007.11.013
10.1016/S0950‐0618(00)00058‐1
10.1029/2006JF000616
10.3189/002214310791968494
10.1016/j.epsl.2012.06.014
10.2307/1552008
10.1002/ppp.3430020404
10.1002/esp.3374
10.1016/j.scriptamat.2005.10.056
10.1209/0295‐5075/96/24003
10.1016/0148-9062(93)90172-A
10.1088/0034-4885/58/1/003
10.1088/0022‐3727/42/21/214017
10.1126/science.1132127
10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4
10.1029/2006JF000547
10.5194/tc‐5‐977‐2011
10.1190/1.1439954
10.1007/BF00853317
10.1002/ppp.620
10.1029/2011JF002006
10.5194/gi‐1‐155‐2012
10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2
10.5194/tc‐6‐1163‐2012
ContentType Journal Article
Copyright 2013. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2013. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/grl.50384
DatabaseName Istex
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Technology Research Database
CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 1753
ExternalDocumentID 3545542721
10_1002_grl_50384
GRL50384
ark_67375_WNG_XBT02VGT_R
Genre article
GrantInformation_xml – fundername: Forschungskredit of the University of Zurich
– fundername: International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat
– fundername: Swiss National Foundation (SNF) NCCR MICS
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
AAESR
AAHHS
AAIHA
AANHP
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AFGKR
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
AVUZU
AVWKF
AZFZN
AZVAB
BDRZF
BENPR
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZCG
ZZTAW
~02
~OA
~~A
A00
AEUQT
AFPWT
WIH
WYJ
AAFWJ
AAYXX
ACTHY
AGQPQ
CITATION
7TG
7TN
8FD
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a4924-31125134b1b0abb98cd986405c6414f383135cca95ccd807c77f9454d7459d933
ISSN 0094-8276
IngestDate Sun Aug 24 03:42:20 EDT 2025
Fri Jul 25 19:02:08 EDT 2025
Tue Jul 01 01:05:22 EDT 2025
Thu Apr 24 22:51:53 EDT 2025
Wed Jan 22 17:07:20 EST 2025
Wed Mar 05 09:12:33 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a4924-31125134b1b0abb98cd986405c6414f383135cca95ccd807c77f9454d7459d933
Notes ArticleID:GRL50384
Forschungskredit of the University of Zurich
istex:5C674155693E89FA1B8F0A43BB58B948F2A3EF3F
Swiss National Foundation (SNF) NCCR MICS
International Foundation High Altitude Research Stations Jungfraujoch and Gornergrat
ark:/67375/WNG-XBT02VGT-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/grl.50384
PQID 1642050321
PQPubID 54723
PageCount 6
ParticipantIDs proquest_miscellaneous_1541413560
proquest_journals_1642050321
crossref_primary_10_1002_grl_50384
crossref_citationtrail_10_1002_grl_50384
wiley_primary_10_1002_grl_50384_GRL50384
istex_primary_ark_67375_WNG_XBT02VGT_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 16 May 2013
PublicationDateYYYYMMDD 2013-05-16
PublicationDate_xml – month: 05
  year: 2013
  text: 16 May 2013
  day: 16
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationTitleAlternate Geophys. Res. Lett
PublicationYear 2013
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References Wegmann, M., and H. R. Keusen (1998), Recent geophysical investigations at a high alpine permafrost construction site in Switzerland, Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada, pp. 1119-1123.
Gischig, V. S., J. R. Moore, K. F. Evans, F. Amann, and S. Loew (2011), Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope, J. Geophys. Res., 116, doi:10.1029/2011JF002006.
Draebing, D., and M. Krautblatter (2012), P-wave velocity changes in freezing hard low-porosity rocks: A laboratory-based time-average model, The Cryosphere, 6, 1163-1174, doi:10.5194/tc-6-1163-2012.
Anderson, R. S. (1998), Near-surface thermal profiles in alpine bedrock: Implications for the frost-weathering of rock, Arctic Alpine Res., 30, 362-372.
Girard, L., J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber (2012), A custom acoustic emission monitoring system for harsh environments: Application to freezing-induced damage in alpine rock walls, Geosci. Instrum. Method. Data Syst., 1, 155-167, doi:10.5194/gi-1-155-2012.
Røyne, A., P. Meakin, A. Malthe-Sørenssen, B. Jamtveit, and D. K. Dysthe (2011), Crack propagation driven by crystal growth, EPL, 96(24003), doi:10.1209/0295-5075/96/24003.
Hallet, B., J. S. Walder, and C. W. Stubbs (1991), Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: Verification from an experimental study using acoustic emissions, Permafrost Periglac., 2(4), 283-300.
Sakharov, I. I. (1994), Nature of acoustic emission during phase transformations and adequacy of the Stefan condition, J. Eng. Phys. Thermophys., 67, 699-702.
Basheer, L., J. Kropp, and D. J. Cleland (2001), Assessment of the durability of concrete from its permeation properties: A review, Construct. Build. Mater., 15, 93-103, doi:10.1016/S0950-0618(00)00058-1.
Hales, T. C., and J. J. Roering (2007), Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, doi:10.1029/2006JF000616.
Vlahou, I., and M. G. Worster (2010), Ice growth in a spherical cavity of a porous medium, J. Glaciol., 56(196), 271-277.
Prick, A. (1997), Critical degree of saturation as a threshold moisture level in frost weathering of limestones, Permafrost Periglac., 8, 91-99.
Weiss, J., and F. Louchet (2006), Seismology of plastic deformation, Scripta Mater., 54, 747-751.
Cox, S. J. D., and P. G. Meredith (1993), Microcrack formation and material softening in rock measured by monitoring acoustic emissions, Int. J. Rock Mech. Min. Sci., 30(1), 11-24.
Matsuoka, N. (2008), Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations, Geomorphology, 99, 353-368.
Hasler, A., S. Gruber, and W. Haeberli (2011), Temperature variability and thermal offset in steep alpine rock and ice faces, The Cryosphere, 5, 977-988, doi:10.5194/tc-5-977-2011.
Timur, A. (1968), Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584-595, doi:10.1190/1.1439954.
Dash, J., H. -Y. Fu, and J. Wettlaufer (1995), The premelting of ice and its environmental consequences, Rep. Progr. Phys., 58, 115-167.
Krautblatter, M., D. Funk, and F. K. Gunzel (2013), Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., doi:10.1002/esp.3374.
Weber, S., S. Gruber, L. Girard, and J. Beutel (2012), Design of a measurement assembly to study in-situ rock damage driven by freezing, Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437-442.
Murton, J. B., R. Peterson, and J. C. Ozouf (2006), Bedrock fracture by ice segregation in cold regions, Science, 314(5802), 1127-1129.
Walder, J., and B. Hallet (1985), A theoretical model of the fracture of rock during freezing, Bull. Geol. Soc. Am., 96, 336-346.
Weiss, J., and E. M. Schulson (2009), Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice, J. Phys. D Appl. Phys., 42(214017), doi:10.1088/0022-3727/42/21/214017.
Gruber, S., and W. Haeberli (2007), Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res. Earth Surf., 112(F02S18), doi:10.1029/2006JF000547.
Matsuoka, N., and J. B. Murton (2008), Frost weathering: Recent advances and future directions, Permafrost Periglac., 19, 195-210.
Amitrano, D., S. Gruber, and L. Girard (2012), Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall, Earth Planet. Sci. Lett., 341-344, 86-93, doi:10.1016/j.epsl.2012.06.014.
2011; 116
2010; 56
1991; 2
2009; 42
2012
2006; 54
1995; 58
2008; 19
1994; 67
1998
2011; 96
2008; 99
2003
2006; 314
2011; 5
1997; 8
2007; 112
2012; 1
1993; 30
2001; 15
1985; 96
2013
1998; 30
2012; 6
1968; 33
2012; 341‐344
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Weber S. (e_1_2_9_25_1) 2012
Wegmann M. (e_1_2_9_26_1) 1998
e_1_2_9_9_1
e_1_2_9_28_1
e_1_2_9_27_1
References_xml – reference: Weiss, J., and E. M. Schulson (2009), Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice, J. Phys. D Appl. Phys., 42(214017), doi:10.1088/0022-3727/42/21/214017.
– reference: Wegmann, M., and H. R. Keusen (1998), Recent geophysical investigations at a high alpine permafrost construction site in Switzerland, Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada, pp. 1119-1123.
– reference: Krautblatter, M., D. Funk, and F. K. Gunzel (2013), Why permafrost rocks become unstable: A rock-ice-mechanical model in time and space, Earth Surf. Proc. Land., doi:10.1002/esp.3374.
– reference: Hasler, A., S. Gruber, and W. Haeberli (2011), Temperature variability and thermal offset in steep alpine rock and ice faces, The Cryosphere, 5, 977-988, doi:10.5194/tc-5-977-2011.
– reference: Draebing, D., and M. Krautblatter (2012), P-wave velocity changes in freezing hard low-porosity rocks: A laboratory-based time-average model, The Cryosphere, 6, 1163-1174, doi:10.5194/tc-6-1163-2012.
– reference: Amitrano, D., S. Gruber, and L. Girard (2012), Evidence of frost-cracking inferred from acoustic emissions in a high-alpine rock-wall, Earth Planet. Sci. Lett., 341-344, 86-93, doi:10.1016/j.epsl.2012.06.014.
– reference: Hales, T. C., and J. J. Roering (2007), Climatic controls on frost cracking and implications for the evolution of bedrock landscapes, J. Geophys. Res., 112, doi:10.1029/2006JF000616.
– reference: Vlahou, I., and M. G. Worster (2010), Ice growth in a spherical cavity of a porous medium, J. Glaciol., 56(196), 271-277.
– reference: Matsuoka, N. (2008), Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long-term (1994-2006) observations, Geomorphology, 99, 353-368.
– reference: Røyne, A., P. Meakin, A. Malthe-Sørenssen, B. Jamtveit, and D. K. Dysthe (2011), Crack propagation driven by crystal growth, EPL, 96(24003), doi:10.1209/0295-5075/96/24003.
– reference: Sakharov, I. I. (1994), Nature of acoustic emission during phase transformations and adequacy of the Stefan condition, J. Eng. Phys. Thermophys., 67, 699-702.
– reference: Prick, A. (1997), Critical degree of saturation as a threshold moisture level in frost weathering of limestones, Permafrost Periglac., 8, 91-99.
– reference: Girard, L., J. Beutel, S. Gruber, J. Hunziker, R. Lim, and S. Weber (2012), A custom acoustic emission monitoring system for harsh environments: Application to freezing-induced damage in alpine rock walls, Geosci. Instrum. Method. Data Syst., 1, 155-167, doi:10.5194/gi-1-155-2012.
– reference: Gischig, V. S., J. R. Moore, K. F. Evans, F. Amann, and S. Loew (2011), Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope, J. Geophys. Res., 116, doi:10.1029/2011JF002006.
– reference: Basheer, L., J. Kropp, and D. J. Cleland (2001), Assessment of the durability of concrete from its permeation properties: A review, Construct. Build. Mater., 15, 93-103, doi:10.1016/S0950-0618(00)00058-1.
– reference: Dash, J., H. -Y. Fu, and J. Wettlaufer (1995), The premelting of ice and its environmental consequences, Rep. Progr. Phys., 58, 115-167.
– reference: Cox, S. J. D., and P. G. Meredith (1993), Microcrack formation and material softening in rock measured by monitoring acoustic emissions, Int. J. Rock Mech. Min. Sci., 30(1), 11-24.
– reference: Timur, A. (1968), Velocity of compressional waves in porous media at permafrost temperatures, Geophysics, 33, 584-595, doi:10.1190/1.1439954.
– reference: Walder, J., and B. Hallet (1985), A theoretical model of the fracture of rock during freezing, Bull. Geol. Soc. Am., 96, 336-346.
– reference: Gruber, S., and W. Haeberli (2007), Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change, J. Geophys. Res. Earth Surf., 112(F02S18), doi:10.1029/2006JF000547.
– reference: Weber, S., S. Gruber, L. Girard, and J. Beutel (2012), Design of a measurement assembly to study in-situ rock damage driven by freezing, Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437-442.
– reference: Murton, J. B., R. Peterson, and J. C. Ozouf (2006), Bedrock fracture by ice segregation in cold regions, Science, 314(5802), 1127-1129.
– reference: Weiss, J., and F. Louchet (2006), Seismology of plastic deformation, Scripta Mater., 54, 747-751.
– reference: Anderson, R. S. (1998), Near-surface thermal profiles in alpine bedrock: Implications for the frost-weathering of rock, Arctic Alpine Res., 30, 362-372.
– reference: Hallet, B., J. S. Walder, and C. W. Stubbs (1991), Weathering by segregation ice growth in microcracks at sustained sub-zero temperatures: Verification from an experimental study using acoustic emissions, Permafrost Periglac., 2(4), 283-300.
– reference: Matsuoka, N., and J. B. Murton (2008), Frost weathering: Recent advances and future directions, Permafrost Periglac., 19, 195-210.
– volume: 8
  start-page: 91
  year: 1997
  end-page: 99.
  article-title: Critical degree of saturation as a threshold moisture level in frost weathering of limestones
  publication-title: Permafrost Periglac.
– volume: 112
  year: 2007
  article-title: Climatic controls on frost cracking and implications for the evolution of bedrock landscapes
  publication-title: J. Geophys. Res.
– volume: 33
  start-page: 584
  year: 1968
  end-page: 595
  article-title: Velocity of compressional waves in porous media at permafrost temperatures
  publication-title: Geophysics
– volume: 30
  start-page: 362
  year: 1998
  end-page: 372.
  article-title: Near‐surface thermal profiles in alpine bedrock: Implications for the frost‐weathering of rock
  publication-title: Arctic Alpine Res.
– volume: 30
  start-page: 11
  issue: 1
  year: 1993
  end-page: 24.
  article-title: Microcrack formation and material softening in rock measured by monitoring acoustic emissions
  publication-title: Int. J. Rock Mech. Min. Sci.
– volume: 314
  start-page: 1127
  issue: 5802
  year: 2006
  end-page: 1129.
  article-title: Bedrock fracture by ice segregation in cold regions
  publication-title: Science
– volume: 116
  year: 2011
  article-title: Thermomechanical forcing of deep rock slope deformation: 1. Conceptual study of a simplified slope
  publication-title: J. Geophys. Res.
– year: 2013
  article-title: Why permafrost rocks become unstable: A rock‐ice‐mechanical model in time and space
  publication-title: Earth Surf. Proc. Land., doi:10.1002/esp.3374.
– volume: 2
  start-page: 283
  issue: 4
  year: 1991
  end-page: 300.
  article-title: Weathering by segregation ice growth in microcracks at sustained sub‐zero temperatures: Verification from an experimental study using acoustic emissions
  publication-title: Permafrost Periglac.
– volume: 5
  start-page: 977
  year: 2011
  end-page: 988
  article-title: Temperature variability and thermal offset in steep alpine rock and ice faces
  publication-title: The Cryosphere
– volume: 19
  start-page: 195
  year: 2008
  end-page: 210.
  article-title: Frost weathering: Recent advances and future directions
  publication-title: Permafrost Periglac.
– volume: 96
  start-page: 336
  year: 1985
  end-page: 346.
  article-title: A theoretical model of the fracture of rock during freezing
  publication-title: Bull. Geol. Soc. Am.
– volume: 99
  start-page: 353
  year: 2008
  end-page: 368.
  article-title: Frost weathering and rockwall erosion in the southeastern Swiss Alps: Long‐term (1994–2006) observations
  publication-title: Geomorphology
– volume: 112
  issue: F02S18
  year: 2007
  article-title: Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change
  publication-title: J. Geophys. Res. Earth Surf.
– year: 2003
  article-title: Acoustic Emission/Microseismic Activity ‐ Principles, Techniques and Geotechnical Applications
– volume: 1
  start-page: 155
  year: 2012
  end-page: 167
  article-title: A custom acoustic emission monitoring system for harsh environments: Application to freezing‐induced damage in alpine rock walls
  publication-title: Geosci. Instrum. Method. Data Syst.
– volume: 54
  start-page: 747
  year: 2006
  end-page: 751.
  article-title: Seismology of plastic deformation
  publication-title: Scripta Mater.
– year: 2012
  article-title: Design of a measurement assembly to study in‐situ rock damage driven by freezing
  publication-title: Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437–442.
– volume: 67
  start-page: 699
  year: 1994
  end-page: 702.
  article-title: Nature of acoustic emission during phase transformations and adequacy of the Stefan condition
  publication-title: J. Eng. Phys. Thermophys.
– volume: 341‐344
  start-page: 86
  year: 2012
  end-page: 93
  article-title: Evidence of frost‐cracking inferred from acoustic emissions in a high‐alpine rock‐wall
  publication-title: Earth Planet. Sci. Lett.
– volume: 58
  start-page: 115
  year: 1995
  end-page: 167.
  article-title: The premelting of ice and its environmental consequences
  publication-title: Rep. Progr. Phys.
– volume: 96
  issue: 24003
  year: 2011
  article-title: Crack propagation driven by crystal growth
  publication-title: EPL
– volume: 6
  start-page: 1163
  year: 2012
  end-page: 1174
  article-title: P‐wave velocity changes in freezing hard low‐porosity rocks: A laboratory‐based time‐average model
  publication-title: The Cryosphere
– volume: 15
  start-page: 93
  year: 2001
  end-page: 103
  article-title: Assessment of the durability of concrete from its permeation properties: A review
  publication-title: Construct. Build. Mater.
– volume: 56
  start-page: 271
  issue: 196
  year: 2010
  end-page: 277.
  article-title: Ice growth in a spherical cavity of a porous medium
  publication-title: J. Glaciol.
– volume: 42
  issue: 214017
  year: 2009
  article-title: Coulombic faulting from the grain scale to the geophysical scale: Lessons from ice
  publication-title: J. Phys. D Appl. Phys.
– start-page: pp. 1119
  year: 1998
  end-page: 1123.
  article-title: Recent geophysical investigations at a high alpine permafrost construction site in Switzerland
  publication-title: Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada
– ident: e_1_2_9_16_1
  doi: 10.1016/j.geomorph.2007.11.013
– ident: e_1_2_9_4_1
  doi: 10.1016/S0950‐0618(00)00058‐1
– ident: e_1_2_9_11_1
  doi: 10.1029/2006JF000616
– ident: e_1_2_9_23_1
  doi: 10.3189/002214310791968494
– ident: e_1_2_9_2_1
  doi: 10.1016/j.epsl.2012.06.014
– ident: e_1_2_9_3_1
  doi: 10.2307/1552008
– ident: e_1_2_9_12_1
  doi: 10.1002/ppp.3430020404
– ident: e_1_2_9_15_1
  doi: 10.1002/esp.3374
– ident: e_1_2_9_27_1
  doi: 10.1016/j.scriptamat.2005.10.056
– ident: e_1_2_9_20_1
  doi: 10.1209/0295‐5075/96/24003
– ident: e_1_2_9_5_1
  doi: 10.1016/0148-9062(93)90172-A
– ident: e_1_2_9_6_1
  doi: 10.1088/0034-4885/58/1/003
– ident: e_1_2_9_28_1
  doi: 10.1088/0022‐3727/42/21/214017
– ident: e_1_2_9_18_1
  doi: 10.1126/science.1132127
– ident: e_1_2_9_13_1
– ident: e_1_2_9_19_1
  doi: 10.1002/(SICI)1099-1530(199701)8:1<91::AID-PPP238>3.0.CO;2-4
– ident: e_1_2_9_10_1
  doi: 10.1029/2006JF000547
– start-page: pp. 1119
  year: 1998
  ident: e_1_2_9_26_1
  article-title: Recent geophysical investigations at a high alpine permafrost construction site in Switzerland
  publication-title: Proceedings of the Seventh International Conference on Permafrost, Yellowknife, Northwest Territories, Canada
– ident: e_1_2_9_14_1
  doi: 10.5194/tc‐5‐977‐2011
– ident: e_1_2_9_22_1
  doi: 10.1190/1.1439954
– year: 2012
  ident: e_1_2_9_25_1
  article-title: Design of a measurement assembly to study in‐situ rock damage driven by freezing
  publication-title: Proceeding of the 10th International Conference on Permafrost, Salekhard, Russia, pp. 437–442.
– ident: e_1_2_9_21_1
  doi: 10.1007/BF00853317
– ident: e_1_2_9_17_1
  doi: 10.1002/ppp.620
– ident: e_1_2_9_9_1
  doi: 10.1029/2011JF002006
– ident: e_1_2_9_8_1
  doi: 10.5194/gi‐1‐155‐2012
– ident: e_1_2_9_24_1
  doi: 10.1130/0016-7606(1985)96<336:ATMOTF>2.0.CO;2
– ident: e_1_2_9_7_1
  doi: 10.5194/tc‐6‐1163‐2012
SSID ssj0003031
Score 2.4264338
Snippet Frost cracking, the breakdown of rock by freezing, is one of the most important mechanical weathering processes acting on Earth's surface. Insights on the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1748
SubjectTerms Acoustic emission
Bedrock
Cracking (fracturing)
Damage
Emission measurements
Fracture mechanics
Freezing
Frost
Geophysics
Ice
In situ measurement
Moisture content
permafrost
Rock
rock mechanics
Rocks
Water
Water content
weathering
Title Environmental controls of frost cracking revealed through in situ acoustic emission measurements in steep bedrock
URI https://api.istex.fr/ark:/67375/WNG-XBT02VGT-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fgrl.50384
https://www.proquest.com/docview/1642050321
https://www.proquest.com/docview/1541413560
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF5cm0JfSk_qJi3bUkpBKNWxuh6TkiqENA_BTkxfFh3r1sSRE9uCtj-uv60ze0hycSAtGCHWa1ve-TQ7M_pmhpB3cehEAsxaGzvW2UzkoZ2HcWaLKGfwAgsixzjkl9PwaMyOJ8Gk1_vdYS3V63yv-LU1r-R_pApjIFfMkv0HyTZfCgNwDvKFI0gYjneS8WGbpSbLfEjWueRmTDGZwyqWWYGhcExQQYOwbNryzCprNVvXFuhD2c7LwrZvGDizrtqgoaTKAgoE0rlK2Okuu6ZsKhbXRsi6ZNB3ay6zgxo7PZ0tM8WdP8Hmai3Zp851wy8kmbUAvRBmPLuqRUP-OBD1WrEJjvVcHadwJStQpVFui0eq-FrLXJLKOWF27EW6MrbSxwmDMUc1xjUKW9V30sBMOtoXvKu4s5NjEdKtu4SqOvttOd_DYjis3QrN4_-_dsiGt5gtL5EIFwX84jTlk4OR452nI352jww8cFO8Phnsn4-_jhtbAAwE1bNR_zVT28rxPjY_v2ERDfDm_rHh7nSdJmn1jB6Rh9pdofsKe49JT1RPyP1UtoP-CWeSQFysnpKbDSxSg0W6mFKJRWqwSA0WqcYinVUUsUgNFqnBIu1iUU5DLFKNxWdk_Plw9OnI1u087IyBlw-7PRrTPsvd3MnyPImLEnsDOEERMpdN_dh3_QAUSgKHMnaiIoqmCQtYGbEgKRPff0761aISLwgN4jLxwNAM_AQ-6foxfCphURZ6XllE03JIPpgl5YWudY8tV-ZcVen2OKw-l6s_JG-bqdeqwMu2Se-lXJoZtwFhSHaN4LhWFCvugo-PZZc8d0jeNG_DUuKzuawSsLgcPBkX7EnwP-DapcBvvxqenp3Ik5d3vawd8qC9JXdJf72sxSswptf5a43YP7i10CY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED66hLG9jP2k6dpNG2Psxasty5INfelGm2xL81CSLuxFWJY8Slu3i1NY__veyY6zwgYDYwQ-gXxn3Z3O0vcBvEtlqBymtQEx1gXCGRkYmeaBU0bghRmEoTrk0USOZuLrPJlvwN7qLEyDD9EV3GhmeH9NE5wK0rtr1NCfi_OPBGYi7kGfspq0B_39k9mPWeeJ0T03jHmZCFKu5ApZKOS7Xec78ahPqv19J9n8M2X1MefwMTxqk0W231j3CWy46incH3oy3hts-e2bRf0Mfh2sz6thh3b_ec0uS1bSsQ5WLPKCiuKMEJswJljWEvSw04rVp8trhp7RE3sxIoCjEhq7WJcPay-2dO6KGWcx5p09h9nhwfTzKGjJFIJc4BoLfS2lMrEwkQlzY7K0sITMHiaFFJEocaEaxQmaM8ObTUNVKFVmIhFWiSSzWRy_gF51WblNYElqM45hPokz7BnFKfbKhMol57ZQpR3Ah5VKddEijRPhxbluMJK5Ru1rr_0BvO1Erxp4jb8Jvfd26STyxRntR1OJ_j4Z6vmnachPhlN9PIDtleF0OxVrjetBTqA3PBrAm-4xqpL-jOSVQ-XqiMjQ8f1liGP3Bv_3aPTweOwbW_8v-hoejKZHYz3-Mvn2Eh5yT6mRBJHcht5yce12MLFZmlft93sLwKvytQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qD8UX8RNPq64i4ktsstmPBJ-q9q5qPaTc1cOXJZvdSGlNz8sV9L93ZpPLWVAQQghkFjYzuzOzk93fD-B5pmLtMa2NiLEuEt6qyKqsiLy2Ai_MICzVIT9N1MFMfJjL-Ra8Xp-FafEh-oIbzYzgr2mCL1y1uwEN_bY8e0VYJuIKDAglD4f0YO949nXWO2L0zi1hXi6ijGu1BhaK-W7f-FI4GpBmf17KNf_MWEPIGd2EG12uyPZa496CLV_fhqvjwMX7C5_C7s2yuQM_9jfH1bBBt_28YecVq-hUByuXRUk1cUaATRgSHOv4edhJzZqT1QVDxxh4vRjxv1EFjX3fVA-bILbyfsGsdxjyTu_CbLQ_fXsQdVwKUSFwiYWuljKZVNjExoW1eVY6AmaPZalEIipcpyapRGvmeHNZrEutq1xI4bSQucvT9B5s1-e1vw9MZi7nGOVlmmPLJM2wVS50oTh3pa7cEF6uVWrKDmic-C7OTAuRzA1q3wTtD-FZL7po0TX-JvQi2KWXKJantB1NS_NlMjbzN9OYH4-n5mgIO2vDmW4mNgaXg5wwb3gyhKf9a1Ql_Rgpao_KNQlxoeP3qxj7Hgz-796Y8dFheHjw_6JP4NrndyNz-H7y8SFc54FQQ0aJ2oHt1fLCP8K0ZmUfd8P3N0ms8d4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+controls+of+frost+cracking+revealed+through+in+situ+acoustic+emission+measurements+in+steep+bedrock&rft.jtitle=Geophysical+research+letters&rft.au=Girard%2C+Lucas&rft.au=Gruber%2C+Stephan&rft.au=Weber%2C+Samuel&rft.au=Beutel%2C+Jan&rft.date=2013-05-16&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=40&rft.issue=9&rft.spage=1748&rft.epage=1753&rft_id=info:doi/10.1002%2Fgrl.50384&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_XBT02VGT_R
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon