Electrochemical SARS-CoV‑2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management

To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostic...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 3; no. 11; pp. 7306 - 7325
Main Authors Kaushik, Ajeet Kumar, Dhau, Jaspreet Singh, Gohel, Hardik, Mishra, Yogendra Kumar, Kateb, Babak, Kim, Nam-Young, Goswami, Dharendra Yogi
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 16.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
AbstractList To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.
Author Mishra, Yogendra Kumar
Kateb, Babak
Goswami, Dharendra Yogi
Gohel, Hardik
Kaushik, Ajeet Kumar
Dhau, Jaspreet Singh
Kim, Nam-Young
AuthorAffiliation National Center for NanoBioElectronics, Brain Mapping Foundation, Brain Technology and Innovation Park
Clean Energy Research Center
University of Southern Denmark
NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics
Mads Clausen Institute, NanoSYD
Society for Brain Mapping and Therapeutics
Kwangwoon University
Applied AI Research Lab
RFIC Bio Center, Department of Electronics Engineering
Molecule Inc
AuthorAffiliation_xml – name: Molecule Inc
– name: Applied AI Research Lab
– name: RFIC Bio Center, Department of Electronics Engineering
– name: Clean Energy Research Center
– name: Kwangwoon University
– name: NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics
– name: University of Southern Denmark
– name: National Center for NanoBioElectronics, Brain Mapping Foundation, Brain Technology and Innovation Park
– name: Society for Brain Mapping and Therapeutics
– name: Mads Clausen Institute, NanoSYD
Author_xml – sequence: 1
  givenname: Ajeet Kumar
  orcidid: 0000-0003-4206-1541
  surname: Kaushik
  fullname: Kaushik, Ajeet Kumar
  email: akaushik@floridapoly.edu, ajeet.npl@gmail.com
  organization: NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics
– sequence: 2
  givenname: Jaspreet Singh
  orcidid: 0000-0002-3894-4301
  surname: Dhau
  fullname: Dhau, Jaspreet Singh
  organization: Molecule Inc
– sequence: 3
  givenname: Hardik
  surname: Gohel
  fullname: Gohel, Hardik
  organization: Applied AI Research Lab
– sequence: 4
  givenname: Yogendra Kumar
  orcidid: 0000-0002-8786-9379
  surname: Mishra
  fullname: Mishra, Yogendra Kumar
  organization: University of Southern Denmark
– sequence: 5
  givenname: Babak
  surname: Kateb
  fullname: Kateb, Babak
  organization: Society for Brain Mapping and Therapeutics
– sequence: 6
  givenname: Nam-Young
  surname: Kim
  fullname: Kim, Nam-Young
  organization: Kwangwoon University
– sequence: 7
  givenname: Dharendra Yogi
  surname: Goswami
  fullname: Goswami, Dharendra Yogi
  organization: Clean Energy Research Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35019473$$D View this record in MEDLINE/PubMed
BookMark eNp1UcuKFDEUDTLiPJytS8lShGpvUqlHNkJTzmjDyIitsw2pVNKToSoZk5Tgzl_wF_0S03SPtMKs7uXkPMg9p-jIeacRekFgQYCSN1JF2U8LUEAA2BN0QqumLmpG6dHBfozOY7wDAApQkpY_Q8dlBYSzpjxB88WoVQpe3erJKjni9fLzuuj8ze-fvyheaxet22CZ8CdvXSq8KToZNJZuwMuQrLHKZtHKJT2OdqOd0tj4cAAk3F3frN4VhOOP0smNnjL2HD01coz6fD_P0NfLiy_dh-Lq-v2qW14VknGSip42oNtes5aCNpTQ0hjODW_B1AOrlKwH0_OqpARqw4xRfduXreTSKG4aOpRn6O3O937uJz2oHB3kKO6DnWT4Iby04t8XZ2_Fxn8XTQ1VyUg2eLU3CP7brGMSk40qf0067ecoaE04JRVvttSXh1l_Qx5unQlsR1DBxxi0EcommazfRttREBDbVsWuVbFvNcsW_8kenB8VvN4JMi7u_BxcPvFj5D-9yLUA
CitedBy_id crossref_primary_10_3390_bios12070473
crossref_primary_10_1016_j_chemosphere_2024_141269
crossref_primary_10_1016_j_mtadv_2022_100208
crossref_primary_10_3389_fnano_2024_1434014
crossref_primary_10_1016_j_talanta_2022_123630
crossref_primary_10_1016_j_trac_2024_117809
crossref_primary_10_1016_j_bioelechem_2023_108462
crossref_primary_10_1039_D1TB01182K
crossref_primary_10_1016_j_matt_2021_05_003
crossref_primary_10_1360_SSV_2024_0304
crossref_primary_10_3389_fnano_2022_1004729
crossref_primary_10_3390_mi13081238
crossref_primary_10_1021_acs_jpcc_3c05200
crossref_primary_10_1016_j_mtchem_2021_100443
crossref_primary_10_1002_admt_202200208
crossref_primary_10_1038_s41598_022_27111_z
crossref_primary_10_3390_catal11020191
crossref_primary_10_1016_j_btre_2022_e00712
crossref_primary_10_1021_acsabm_2c00123
crossref_primary_10_1021_acsami_1c24475
crossref_primary_10_1039_D1AN01718G
crossref_primary_10_1039_D1NR02409D
crossref_primary_10_3390_s22020610
crossref_primary_10_1016_j_coelec_2021_100829
crossref_primary_10_1021_acsaelm_5c00055
crossref_primary_10_1149_2754_2726_ad9f7e
crossref_primary_10_1002_btm2_10481
crossref_primary_10_1021_acsami_2c20499
crossref_primary_10_1039_D1TB00674F
crossref_primary_10_1109_RBME_2022_3212038
crossref_primary_10_1016_j_cobme_2021_100363
crossref_primary_10_1021_acsomega_1c04012
crossref_primary_10_3390_s21020390
crossref_primary_10_1016_j_bios_2021_113074
crossref_primary_10_1002_jmv_28075
crossref_primary_10_1016_j_heliyon_2024_e37964
crossref_primary_10_4103_1673_5374_346486
crossref_primary_10_1016_j_compbiomed_2023_107191
crossref_primary_10_1016_j_bios_2022_114168
crossref_primary_10_3389_frfst_2023_1253227
crossref_primary_10_3390_chemosensors10070269
crossref_primary_10_2147_IJN_S283686
crossref_primary_10_1039_D1TB02277F
crossref_primary_10_1016_j_bios_2022_114847
crossref_primary_10_1109_JSEN_2022_3198598
crossref_primary_10_1039_D2NA00463A
crossref_primary_10_1021_acsabm_2c00503
crossref_primary_10_1039_D3LC00674C
crossref_primary_10_1016_j_biosx_2023_100324
crossref_primary_10_1039_D1AY01570B
crossref_primary_10_1016_j_talanta_2024_126576
crossref_primary_10_1038_s41598_023_50501_w
crossref_primary_10_20964_2022_05_13
crossref_primary_10_1149_2754_2726_ac5ac6
crossref_primary_10_1007_s00277_022_04907_7
crossref_primary_10_1016_j_snb_2024_135851
crossref_primary_10_1039_D3SD00333G
crossref_primary_10_1007_s00706_022_02913_z
crossref_primary_10_1002_advs_202400595
crossref_primary_10_1016_j_mtchem_2022_101182
crossref_primary_10_1093_pnasnexus_pgad031
crossref_primary_10_1007_s40097_022_00472_7
crossref_primary_10_1016_j_snb_2022_133193
crossref_primary_10_1016_j_cogsc_2023_100817
crossref_primary_10_1021_acsanm_3c04834
crossref_primary_10_1016_j_iot_2023_100781
crossref_primary_10_1021_acs_analchem_2c05112
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1016_j_nanoen_2022_107514
crossref_primary_10_1016_j_trac_2022_116635
crossref_primary_10_1016_j_coelec_2023_101411
crossref_primary_10_1016_j_microc_2024_112236
crossref_primary_10_1016_j_trac_2022_116878
crossref_primary_10_1038_s41598_022_24540_8
crossref_primary_10_1016_j_measen_2024_101117
crossref_primary_10_1007_s41204_021_00109_0
crossref_primary_10_1021_acs_langmuir_1c00896
crossref_primary_10_3390_chemosensors11020122
crossref_primary_10_3390_inorganics11050197
crossref_primary_10_3390_mi14091744
crossref_primary_10_1021_acssuschemeng_1c00483
crossref_primary_10_1039_D4SD00017J
crossref_primary_10_1021_acs_analchem_0c05154
crossref_primary_10_1007_s42247_021_00184_8
crossref_primary_10_1007_s40097_022_00486_1
crossref_primary_10_1039_D1AN00893E
crossref_primary_10_1155_2021_9495126
crossref_primary_10_3390_bios13010062
crossref_primary_10_1007_s42765_022_00179_y
crossref_primary_10_3390_diagnostics12030589
crossref_primary_10_3390_diagnostics13111886
crossref_primary_10_3390_mi14081518
crossref_primary_10_3390_s21248362
crossref_primary_10_3390_bios11100359
crossref_primary_10_1016_j_micpath_2021_104908
crossref_primary_10_1039_D2EM00333C
crossref_primary_10_1039_D1NA00470K
crossref_primary_10_1016_j_mtelec_2023_100055
crossref_primary_10_1016_j_bios_2021_113286
crossref_primary_10_3390_chemosensors10070287
crossref_primary_10_1016_j_snb_2021_130355
crossref_primary_10_1080_10408347_2023_2186693
crossref_primary_10_1080_17425247_2021_1860938
crossref_primary_10_1007_s00604_021_04751_y
crossref_primary_10_1109_TIM_2021_3119147
crossref_primary_10_1016_j_bios_2022_114130
crossref_primary_10_1021_acsaelm_2c00017
crossref_primary_10_1007_s13237_024_00489_z
crossref_primary_10_2139_ssrn_4057071
crossref_primary_10_1016_j_apsadv_2022_100236
crossref_primary_10_1039_D1EM00154J
crossref_primary_10_1016_j_ccr_2021_214305
crossref_primary_10_1021_acsami_4c17869
crossref_primary_10_1007_s42247_021_00169_7
crossref_primary_10_1007_s11696_023_02795_3
crossref_primary_10_1021_acsabm_1c00102
crossref_primary_10_3390_mi14081529
crossref_primary_10_1016_j_tibtech_2021_01_005
crossref_primary_10_1039_D1TB02576G
crossref_primary_10_1039_D3NR05648A
crossref_primary_10_1039_D2RA01293F
crossref_primary_10_3390_diagnostics13142418
crossref_primary_10_1016_j_isci_2022_104055
crossref_primary_10_1021_acsnano_2c01697
crossref_primary_10_1039_D1AY01478A
crossref_primary_10_3390_jnt3040014
crossref_primary_10_1080_08830185_2021_1872566
crossref_primary_10_1016_j_ecoenv_2023_115487
crossref_primary_10_1002_sstr_202400647
crossref_primary_10_1002_admt_202401976
crossref_primary_10_1039_D2TB00849A
crossref_primary_10_1515_ntrev_2022_0093
crossref_primary_10_1016_j_jtemb_2022_126977
crossref_primary_10_1042_BSR20230293
crossref_primary_10_1016_j_bios_2022_114406
crossref_primary_10_1016_j_bpc_2021_106564
crossref_primary_10_1039_D1TB00071C
crossref_primary_10_1149_1945_7111_ad4c57
crossref_primary_10_1016_j_iot_2020_100354
crossref_primary_10_3390_s22145463
crossref_primary_10_1016_j_trac_2021_116424
crossref_primary_10_3390_bios14030135
crossref_primary_10_1149_1945_7111_ac9b95
crossref_primary_10_1002_adem_202100896
crossref_primary_10_1016_j_biosx_2022_100284
crossref_primary_10_3390_s23188002
crossref_primary_10_1021_acsomega_4c02466
crossref_primary_10_1080_03639045_2021_1994989
crossref_primary_10_1038_s41598_022_22249_2
crossref_primary_10_1186_s13104_021_05816_0
crossref_primary_10_1002_btm2_10305
crossref_primary_10_1016_j_mtphys_2022_100812
crossref_primary_10_3390_diagnostics11061030
crossref_primary_10_1021_acsabm_4c01457
crossref_primary_10_3389_fnano_2021_700888
crossref_primary_10_1186_s11671_023_03842_4
crossref_primary_10_53360_2788_7995_2023_3_11__6
crossref_primary_10_1088_1361_6528_acc8da
crossref_primary_10_1016_j_trac_2021_116374
crossref_primary_10_1021_acsmeasuresciau_2c00032
crossref_primary_10_3390_v15010120
crossref_primary_10_1016_j_matlet_2021_131089
crossref_primary_10_1039_D2MH00879C
crossref_primary_10_1002_mco2_119
crossref_primary_10_1002_eng2_12672
crossref_primary_10_1016_j_electacta_2023_142823
crossref_primary_10_1016_j_matpr_2021_09_428
crossref_primary_10_3390_bios12080562
crossref_primary_10_1038_s41598_025_92104_7
crossref_primary_10_1002_jgm_3435
crossref_primary_10_1016_j_mtelec_2023_100067
crossref_primary_10_1016_j_onano_2022_100078
crossref_primary_10_1016_j_bios_2021_113012
crossref_primary_10_1088_2053_1583_ac7339
crossref_primary_10_3390_bios14030124
crossref_primary_10_1016_j_talo_2023_100225
crossref_primary_10_1088_1361_6528_ac1bdb
crossref_primary_10_1016_j_tifs_2021_11_018
crossref_primary_10_1016_j_jelechem_2023_117867
Cites_doi 10.1021/acsnano.0c02439
10.1016/j.jaut.2020.102433
10.1038/s41565-020-0751-0
10.1016/S2213-2600(20)30066-7
10.1016/j.cell.2020.04.011
10.1021/acs.analchem.7b00255
10.1056/NEJMc2004973
10.1001/jama.2020.3151
10.1126/science.367.6485.1412
10.1126/science.abb2507
10.1007/s12195-020-00642-z
10.1001/jama.2020.2783
10.1038/s41421-020-0153-3
10.1038/s41587-020-0513-4
10.1126/science.368.6489.356
10.1021/ac035367b
10.1093/cid/ciaa149
10.1056/NEJMp2004211
10.1021/acssensors.0c00979
10.1016/j.bios.2013.09.060
10.1021/acsnano.0c03972
10.1016/j.mtchem.2020.100306
10.1038/s41598-018-28035-3
10.1016/j.biopha.2020.110446
10.1038/d41586-020-01221-y
10.1016/j.isci.2020.101406
10.1088/0957-0233/17/11/015
10.1021/acsnano.0c05025
10.1148/radiol.2020200230
10.3390/healthcare8010046
10.1021/acsnano.0c05975
10.1038/s41591-020-0820-9
10.1148/radiol.2020200642
10.1056/NEJMp2005492
10.1017/ice.2020.61
10.1016/j.immuni.2020.03.007
10.1016/j.jpha.2020.02.010
10.1101/2020.04.03.20052084
10.1016/j.bios.2015.08.040
10.1021/acs.analchem.0c02475
10.3390/ijms21145126
10.1016/j.molcel.2019.09.013
10.1016/j.ceh.2020.02.001
10.1021/acsnano.0c02624
10.3233/JAD-200831
10.1542/peds.113.1.e73
10.1038/s41564-020-0690-4
10.1016/S0140-6736(20)31142-9
10.1056/NEJMe2009758
10.2214/AJR.20.22954
10.1109/JSEN.2018.2829084
10.1021/acsnano.0c02823
10.1016/j.cell.2020.02.052
10.1001/jama.2020.6019
10.1021/acsnano.0c03252
10.1056/NEJMp2003762
10.1021/acs.analchem.0c00784
10.1016/j.tibtech.2016.10.001
10.1056/NEJMp2006372
10.1056/NEJMc1509458
10.1007/s12539-020-00376-6
10.1016/j.jare.2020.03.005
10.3390/jfb11020043
10.7326/M20-1342
10.1021/acsnano.0c03697
10.1021/acs.nanolett.0c02278
10.4161/viru.26475
10.1016/j.ceh.2020.03.001
10.1039/D0AN00629G
10.1001/jama.2020.3072
10.1038/d41573-020-00073-5
10.1038/s41591-020-0843-2
10.1016/j.crgsc.2020.100011
10.3201/eid1602.090469
10.1021/nn900086c
10.3389/fnano.2020.571284
10.1038/d41573-020-00016-0
10.1016/S0140-6736(20)30154-9
10.1126/sciadv.abb8097
10.1001/jamainternmed.2020.2020
10.1016/j.mtchem.2020.100300
10.1021/acsnano.0c03822
10.1148/radiol.2020200241
10.1001/jama.2020.6644
10.1016/j.bios.2016.01.065
10.1021/acsanm.0c01562
10.1021/acsnano.0c02857
10.1128/JVI.00737-08
10.3201/eid1002.030736
10.3390/s18124303
10.1016/S0140-6736(20)30566-3
10.1016/j.bios.2020.112274
10.1021/acsnano.0c04006
10.1073/pnas.2004999117
10.1126/science.abb2762
10.1021/acs.chemrev.9b00553
ContentType Journal Article
Copyright 2020 American Chemical Society
2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
– notice: 2020 American Chemical Society 2020 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsabm.0c01004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 7325
ExternalDocumentID PMC7605341
35019473
10_1021_acsabm_0c01004
b923435745
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ABUCX
ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a491t-b270e8be4820ef2123ff99f980f6d45ca6dfb9532106f4ffcb8b38a9afc9f72d3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Thu Aug 21 14:30:49 EDT 2025
Fri Jul 11 08:47:32 EDT 2025
Wed Feb 19 02:28:06 EST 2025
Tue Jul 01 04:25:35 EDT 2025
Thu Apr 24 22:50:06 EDT 2025
Thu Nov 19 16:41:37 EST 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords COVID-19 pandemic
Internet of things
diseases management
smart diagnostics
infectious diseases
smart sensing
point-of-care
artificial intelligence
Language English
License https://doi.org/10.15223/policy-017
https://doi.org/10.15223/policy-009
https://doi.org/10.15223/policy-001
This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a491t-b270e8be4820ef2123ff99f980f6d45ca6dfb9532106f4ffcb8b38a9afc9f72d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-8786-9379
0000-0002-3894-4301
0000-0003-4206-1541
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7605341
PMID 35019473
PQID 2619215971
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7605341
proquest_miscellaneous_2619215971
pubmed_primary_35019473
crossref_citationtrail_10_1021_acsabm_0c01004
crossref_primary_10_1021_acsabm_0c01004
acs_journals_10_1021_acsabm_0c01004
ProviderPackageCode ACS
VG9
ABUCX
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-16
PublicationDateYYYYMMDD 2020-11-16
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref102/cit102
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
ref43/cit43
ref80/cit80
ref28/cit28
ref91/cit91
ref55/cit55
ref12/cit12
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref82/cit82
  doi: 10.1021/acsnano.0c02439
– ident: ref9/cit9
  doi: 10.1016/j.jaut.2020.102433
– ident: ref56/cit56
  doi: 10.1038/s41565-020-0751-0
– ident: ref43/cit43
  doi: 10.1016/S2213-2600(20)30066-7
– ident: ref32/cit32
  doi: 10.1016/j.cell.2020.04.011
– ident: ref79/cit79
  doi: 10.1021/acs.analchem.7b00255
– ident: ref49/cit49
  doi: 10.1056/NEJMc2004973
– ident: ref90/cit90
  doi: 10.1001/jama.2020.3151
– ident: ref70/cit70
– ident: ref36/cit36
  doi: 10.1126/science.367.6485.1412
– ident: ref26/cit26
  doi: 10.1126/science.abb2507
– ident: ref103/cit103
  doi: 10.1007/s12195-020-00642-z
– ident: ref46/cit46
  doi: 10.1001/jama.2020.2783
– ident: ref97/cit97
  doi: 10.1038/s41421-020-0153-3
– ident: ref81/cit81
  doi: 10.1038/s41587-020-0513-4
– ident: ref39/cit39
  doi: 10.1126/science.368.6489.356
– ident: ref77/cit77
  doi: 10.1021/ac035367b
– ident: ref68/cit68
  doi: 10.1093/cid/ciaa149
– ident: ref17/cit17
  doi: 10.1056/NEJMp2004211
– ident: ref57/cit57
  doi: 10.1021/acssensors.0c00979
– ident: ref75/cit75
  doi: 10.1016/j.bios.2013.09.060
– ident: ref13/cit13
  doi: 10.1021/acsnano.0c03972
– ident: ref1/cit1
  doi: 10.1016/j.mtchem.2020.100306
– ident: ref89/cit89
  doi: 10.1038/s41598-018-28035-3
– ident: ref2/cit2
  doi: 10.1016/j.biopha.2020.110446
– ident: ref35/cit35
  doi: 10.1038/d41586-020-01221-y
– ident: ref98/cit98
  doi: 10.1016/j.isci.2020.101406
– ident: ref71/cit71
– ident: ref76/cit76
  doi: 10.1088/0957-0233/17/11/015
– ident: ref11/cit11
  doi: 10.1021/acsnano.0c05025
– ident: ref66/cit66
  doi: 10.1148/radiol.2020200230
– ident: ref92/cit92
  doi: 10.3390/healthcare8010046
– ident: ref100/cit100
  doi: 10.1021/acsnano.0c05975
– ident: ref19/cit19
  doi: 10.1038/s41591-020-0820-9
– ident: ref69/cit69
  doi: 10.1148/radiol.2020200642
– ident: ref10/cit10
– ident: ref42/cit42
  doi: 10.1056/NEJMp2005492
– ident: ref95/cit95
  doi: 10.1017/ice.2020.61
– ident: ref38/cit38
  doi: 10.1016/j.immuni.2020.03.007
– ident: ref44/cit44
  doi: 10.1016/j.jpha.2020.02.010
– ident: ref93/cit93
  doi: 10.1101/2020.04.03.20052084
– ident: ref85/cit85
  doi: 10.1016/j.bios.2015.08.040
– ident: ref99/cit99
  doi: 10.1021/acs.analchem.0c02475
– ident: ref102/cit102
  doi: 10.3390/ijms21145126
– ident: ref45/cit45
  doi: 10.1016/j.molcel.2019.09.013
– ident: ref91/cit91
  doi: 10.1016/j.ceh.2020.02.001
– ident: ref24/cit24
  doi: 10.1021/acsnano.0c02624
– ident: ref29/cit29
  doi: 10.3233/JAD-200831
– ident: ref59/cit59
  doi: 10.1542/peds.113.1.e73
– ident: ref22/cit22
  doi: 10.1038/s41564-020-0690-4
– ident: ref48/cit48
  doi: 10.1016/S0140-6736(20)31142-9
– ident: ref7/cit7
– ident: ref21/cit21
  doi: 10.1056/NEJMe2009758
– ident: ref67/cit67
  doi: 10.2214/AJR.20.22954
– ident: ref80/cit80
  doi: 10.1109/JSEN.2018.2829084
– ident: ref84/cit84
  doi: 10.1021/acsnano.0c02823
– ident: ref30/cit30
  doi: 10.1016/j.cell.2020.02.052
– ident: ref34/cit34
  doi: 10.1001/jama.2020.6019
– ident: ref47/cit47
  doi: 10.1021/acsnano.0c03252
– ident: ref20/cit20
  doi: 10.1056/NEJMp2003762
– ident: ref83/cit83
  doi: 10.1021/acs.analchem.0c00784
– ident: ref88/cit88
  doi: 10.1016/j.tibtech.2016.10.001
– ident: ref16/cit16
  doi: 10.1056/NEJMp2006372
– ident: ref61/cit61
  doi: 10.1056/NEJMc1509458
– ident: ref96/cit96
  doi: 10.1007/s12539-020-00376-6
– ident: ref72/cit72
– ident: ref8/cit8
  doi: 10.1016/j.jare.2020.03.005
– ident: ref63/cit63
  doi: 10.3390/jfb11020043
– ident: ref14/cit14
  doi: 10.7326/M20-1342
– ident: ref55/cit55
  doi: 10.1021/acsnano.0c03697
– ident: ref54/cit54
  doi: 10.1021/acs.nanolett.0c02278
– ident: ref50/cit50
  doi: 10.4161/viru.26475
– ident: ref94/cit94
  doi: 10.1016/j.ceh.2020.03.001
– ident: ref64/cit64
  doi: 10.1039/D0AN00629G
– ident: ref73/cit73
– ident: ref40/cit40
  doi: 10.1001/jama.2020.3072
– ident: ref33/cit33
  doi: 10.1038/d41573-020-00073-5
– ident: ref15/cit15
  doi: 10.1038/s41591-020-0843-2
– ident: ref51/cit51
  doi: 10.1016/j.crgsc.2020.100011
– ident: ref60/cit60
  doi: 10.3201/eid1602.090469
– ident: ref78/cit78
  doi: 10.1021/nn900086c
– ident: ref6/cit6
  doi: 10.3389/fnano.2020.571284
– ident: ref4/cit4
  doi: 10.1038/d41573-020-00016-0
– ident: ref18/cit18
  doi: 10.1016/S0140-6736(20)30154-9
– ident: ref37/cit37
  doi: 10.1126/sciadv.abb8097
– ident: ref41/cit41
  doi: 10.1001/jamainternmed.2020.2020
– ident: ref52/cit52
  doi: 10.1016/j.mtchem.2020.100300
– ident: ref101/cit101
  doi: 10.1021/acsnano.0c03822
– ident: ref65/cit65
  doi: 10.1148/radiol.2020200241
– ident: ref5/cit5
  doi: 10.1001/jama.2020.6644
– ident: ref74/cit74
– ident: ref86/cit86
  doi: 10.1016/j.bios.2016.01.065
– ident: ref12/cit12
  doi: 10.1021/acsanm.0c01562
– ident: ref28/cit28
  doi: 10.1021/acsnano.0c02857
– ident: ref62/cit62
  doi: 10.1128/JVI.00737-08
– ident: ref58/cit58
  doi: 10.3201/eid1002.030736
– ident: ref87/cit87
  doi: 10.3390/s18124303
– ident: ref3/cit3
  doi: 10.1016/S0140-6736(20)30566-3
– ident: ref23/cit23
  doi: 10.1016/j.bios.2020.112274
– ident: ref31/cit31
  doi: 10.1021/acsnano.0c04006
– ident: ref25/cit25
  doi: 10.1073/pnas.2004999117
– ident: ref27/cit27
  doi: 10.1126/science.abb2762
– ident: ref53/cit53
  doi: 10.1021/acs.chemrev.9b00553
SSID ssj0002003189
Score 2.5357397
SecondaryResourceType review_article
Snippet To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome...
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7306
SubjectTerms Artificial Intelligence
COVID-19 - epidemiology
COVID-19 - therapy
COVID-19 - virology
Electrochemical Techniques - methods
Humans
Pandemics
Point-of-Care Systems
Review
SARS-CoV-2 - isolation & purification
Title Electrochemical SARS-CoV‑2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management
URI http://dx.doi.org/10.1021/acsabm.0c01004
https://www.ncbi.nlm.nih.gov/pubmed/35019473
https://www.proquest.com/docview/2619215971
https://pubmed.ncbi.nlm.nih.gov/PMC7605341
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QXLjwEK_xUhBInDLaNGua4zRAgMRDDBC3KkljQECLaHfhxF_gL_JLSNpubEwIro1lKa4tf46dLwjtGOElUiSCQGBCYvMxI5IGnADnPAKbQI12heLpWXh0zU5uW7ff5x0_O_jU35M6l-q56WnPL4k_p2gYcVdmtTvdwWkKLZ3TYV0HoIkF1bTP0DimwuUhnY_moTFw-XNGcijpHM5WDEh5yVXoZk0em71CNfXbOJPjn_uZQzM18sTtylXm0YRJF1DvoHoGR9e8AbjbvuySTnbz-f5BcddNt6d3WBb4IntIC5IBcReWsEyTUlFFP4GPh3g9sUXBQx8K3Dm_Od4nvsDfkzaL6Prw4KpzROqXGIhkwi-IotwzkTLM4gUDLtsBCAEi8iBMWEvLMAElWu4-UAgMQKtIBZEUErQATpNgCU2mWWpWEOZRILX2AqMt8ARfi1AoxpTVmfgJRK0G2rYWiutIyuOySU79uDJbXJutgUj_78W6JjN3b2o8_Sq_O5B_qWg8fpXc6jtDbCPNtU9karJeHpe1pkV_3G-g5co5Brpce1YwHjQQH3GbgYBj8R5dSR_uSzZvbgtKCyVW_7XvNTRNXcHv5hDDdTRZvPbMhkVFhdosA-ILYi8I0Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALP-Jv-TUCxMlL4njj-MBhtW21S39AbFv1ltqODRWQIJIVghOvwBPwKjwLT8I4yaa7rSpxqcTVGY3szNjzjT3-DPDUyiBTMpPURTamGI85VSwS1AkhEocB1BqfKG7vxOM9_upgcLACv-Z3YbATJWoq60P8Y3aB8AW2Kf2pH5jAc5y1VZSb9ttXzNHKl5M1NOgzxjbWd0dj2j4jQBWXYUU1E4FNtOUY7KzzS7VzUjqZBC7O-MCoOHNaDvxllthx54xOdJQoqZyRTrAsQr0X4CIiH-azu-Fo2m3isHpOeIjtcTtFLM_mxJCnuuzDnymXw98pTHuyNHMh1m1chd_dX6pLXD70Z5Xum-8nCCT_4994Da60OJsMm4lxHVZsfgNm682jP6ZlSSDT4dspHRX7f378ZGTqa_nzd0RV5E1xlFe0cNRfzyIqz2pFDdkGmSywmBLE_AsNFRm93p-s0VCS47qim7B3LiO9Bat5kds7QEQSKWOCyBqE2S40Mpaac406szBzyaAHT9AiabtulGldEsDCtDFT2pqpB3TuNKlpqdv9CyIfz5R_3sl_bkhLzpR8PPfBFNcVf1ikclvMyrTOrBHrirAHtxuf7HT5w2jJRdQDseStnYDnLF_-kh-9r7nLBabPCJzu_tO4H8Gl8e72Vro12dm8B5eZ3-rwFZjxfVitvszsA8SDlX5Yz0kCh-ftvX8Bgmttng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIiEu_Ii_5dcIECcvieON4wOH1W5XXQqlYmnVW2o7NlRAUpGsEJx4BZ6BV-FJeBLGSTbstqrEpRJXZzSy4xnPN_b4M8BjK4NMyUxSF9mYYjzmVLFIUCeESBwGUGt8ovhqO97c5S_2B_tr8HNxFwY7UaKmsj7E9159lLmWYSB8hu1Kf-oHJvA8Z20l5Zb9-gXztPL5dIyT-oSxycbb0SZtnxKgisuwopqJwCbacgx41vnl2jkpnUwCF2d8YFScOS0H_kJL7LhzRic6SpRUzkgnWBah3nNw3p8R-gxvOJp1Gzms9gsPsz12p4jn2YIc8kSXfQg05WoIPIFrj5dnLsW7yWX41f2puszlQ39e6b75doxE8j__lVfgUou3ybBxkKuwZvNrMN9oHv8xLVsCmQ3fzOio2Pv9_QcjM1_Tn78jqiI7xWFe0cJRf02LqDyrFTWkG2S6xGZKEPsvNVRk9HpvOqahJH_ri67D7pmM9Aas50VubwERSaSMCSJrEG670MhYas416szCzCWDHjzCGUnb9aNM69IAFqbNNKXtNPWALgwnNS2Fu39J5OOp8k87-aOGvORUyYcLO0xxffGHRiq3xbxM6wwbMa8Ie3CzsctOlz-UllxEPRArFtsJeO7y1S_54fuaw1xgGo0A6vY_jfsBXNgZT9KX0-2tO3CR-R0PX4gZ34X16vPc3kNYWOn7tVsSODhr4_0DYe5wIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+SARS-CoV-2+Sensing+at+Point-of-Care+and+Artificial+Intelligence+for+Intelligent+COVID-19+Management&rft.jtitle=ACS+applied+bio+materials&rft.au=Kaushik%2C+Ajeet+Kumar&rft.au=Dhau%2C+Jaspreet+Singh&rft.au=Gohel%2C+Hardik&rft.au=Mishra%2C+Yogendra+Kumar&rft.date=2020-11-16&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=3&rft.issue=11&rft.spage=7306&rft.epage=7325&rft_id=info:doi/10.1021%2Facsabm.0c01004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_0c01004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon