Electrochemical SARS-CoV‑2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management
To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostic...
Saved in:
Published in | ACS applied bio materials Vol. 3; no. 11; pp. 7306 - 7325 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
16.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner. |
---|---|
AbstractList | To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner. To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner.To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner. To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome (SARS-CoV-2) virus protein detection is emerging as a necessary response to generate the bioinformatics needed for efficient smart diagnostics, optimization of therapy, and investigation of therapies of higher efficacy. The urgent need for such diagnostic systems is recommended by experts in order to achieve the mass and targeted SARS-CoV-2 detection required to manage the COVID-19 pandemic through the understanding of infection progression and timely therapy decisions. To achieve these tasks, there is a scope for developing smart sensors to rapidly and selectively detect SARS-CoV-2 protein at the picomolar level. COVID-19 infection, due to human-to-human transmission, demands diagnostics at the point-of-care (POC) without the need of experienced labor and sophisticated laboratories. Keeping the above-mentioned considerations, we propose to explore the compartmentalization approach by designing and developing nanoenabled miniaturized electrochemical biosensors to detect SARS-CoV-2 virus at the site of the epidemic as the best way to manage the pandemic. Such COVID-19 diagnostics approach based on a POC sensing technology can be interfaced with the Internet of things and artificial intelligence (AI) techniques (such as machine learning and deep learning for diagnostics) for investigating useful informatics via data storage, sharing, and analytics. Keeping COVID-19 management related challenges and aspects under consideration, our work in this review presents a collective approach involving electrochemical SARS-CoV-2 biosensing supported by AI to generate the bioinformatics needed for early stage COVID-19 diagnosis, correlation of viral load with pathogenesis, understanding of pandemic progression, therapy optimization, POC diagnostics, and diseases management in a personalized manner. |
Author | Mishra, Yogendra Kumar Kateb, Babak Goswami, Dharendra Yogi Gohel, Hardik Kaushik, Ajeet Kumar Dhau, Jaspreet Singh Kim, Nam-Young |
AuthorAffiliation | National Center for NanoBioElectronics, Brain Mapping Foundation, Brain Technology and Innovation Park Clean Energy Research Center University of Southern Denmark NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics Mads Clausen Institute, NanoSYD Society for Brain Mapping and Therapeutics Kwangwoon University Applied AI Research Lab RFIC Bio Center, Department of Electronics Engineering Molecule Inc |
AuthorAffiliation_xml | – name: Molecule Inc – name: Applied AI Research Lab – name: RFIC Bio Center, Department of Electronics Engineering – name: Clean Energy Research Center – name: Kwangwoon University – name: NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics – name: University of Southern Denmark – name: National Center for NanoBioElectronics, Brain Mapping Foundation, Brain Technology and Innovation Park – name: Society for Brain Mapping and Therapeutics – name: Mads Clausen Institute, NanoSYD |
Author_xml | – sequence: 1 givenname: Ajeet Kumar orcidid: 0000-0003-4206-1541 surname: Kaushik fullname: Kaushik, Ajeet Kumar email: akaushik@floridapoly.edu, ajeet.npl@gmail.com organization: NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics – sequence: 2 givenname: Jaspreet Singh orcidid: 0000-0002-3894-4301 surname: Dhau fullname: Dhau, Jaspreet Singh organization: Molecule Inc – sequence: 3 givenname: Hardik surname: Gohel fullname: Gohel, Hardik organization: Applied AI Research Lab – sequence: 4 givenname: Yogendra Kumar orcidid: 0000-0002-8786-9379 surname: Mishra fullname: Mishra, Yogendra Kumar organization: University of Southern Denmark – sequence: 5 givenname: Babak surname: Kateb fullname: Kateb, Babak organization: Society for Brain Mapping and Therapeutics – sequence: 6 givenname: Nam-Young surname: Kim fullname: Kim, Nam-Young organization: Kwangwoon University – sequence: 7 givenname: Dharendra Yogi surname: Goswami fullname: Goswami, Dharendra Yogi organization: Clean Energy Research Center |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35019473$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UcuKFDEUDTLiPJytS8lShGpvUqlHNkJTzmjDyIitsw2pVNKToSoZk5Tgzl_wF_0S03SPtMKs7uXkPMg9p-jIeacRekFgQYCSN1JF2U8LUEAA2BN0QqumLmpG6dHBfozOY7wDAApQkpY_Q8dlBYSzpjxB88WoVQpe3erJKjni9fLzuuj8ze-fvyheaxet22CZ8CdvXSq8KToZNJZuwMuQrLHKZtHKJT2OdqOd0tj4cAAk3F3frN4VhOOP0smNnjL2HD01coz6fD_P0NfLiy_dh-Lq-v2qW14VknGSip42oNtes5aCNpTQ0hjODW_B1AOrlKwH0_OqpARqw4xRfduXreTSKG4aOpRn6O3O937uJz2oHB3kKO6DnWT4Iby04t8XZ2_Fxn8XTQ1VyUg2eLU3CP7brGMSk40qf0067ecoaE04JRVvttSXh1l_Qx5unQlsR1DBxxi0EcommazfRttREBDbVsWuVbFvNcsW_8kenB8VvN4JMi7u_BxcPvFj5D-9yLUA |
CitedBy_id | crossref_primary_10_3390_bios12070473 crossref_primary_10_1016_j_chemosphere_2024_141269 crossref_primary_10_1016_j_mtadv_2022_100208 crossref_primary_10_3389_fnano_2024_1434014 crossref_primary_10_1016_j_talanta_2022_123630 crossref_primary_10_1016_j_trac_2024_117809 crossref_primary_10_1016_j_bioelechem_2023_108462 crossref_primary_10_1039_D1TB01182K crossref_primary_10_1016_j_matt_2021_05_003 crossref_primary_10_1360_SSV_2024_0304 crossref_primary_10_3389_fnano_2022_1004729 crossref_primary_10_3390_mi13081238 crossref_primary_10_1021_acs_jpcc_3c05200 crossref_primary_10_1016_j_mtchem_2021_100443 crossref_primary_10_1002_admt_202200208 crossref_primary_10_1038_s41598_022_27111_z crossref_primary_10_3390_catal11020191 crossref_primary_10_1016_j_btre_2022_e00712 crossref_primary_10_1021_acsabm_2c00123 crossref_primary_10_1021_acsami_1c24475 crossref_primary_10_1039_D1AN01718G crossref_primary_10_1039_D1NR02409D crossref_primary_10_3390_s22020610 crossref_primary_10_1016_j_coelec_2021_100829 crossref_primary_10_1021_acsaelm_5c00055 crossref_primary_10_1149_2754_2726_ad9f7e crossref_primary_10_1002_btm2_10481 crossref_primary_10_1021_acsami_2c20499 crossref_primary_10_1039_D1TB00674F crossref_primary_10_1109_RBME_2022_3212038 crossref_primary_10_1016_j_cobme_2021_100363 crossref_primary_10_1021_acsomega_1c04012 crossref_primary_10_3390_s21020390 crossref_primary_10_1016_j_bios_2021_113074 crossref_primary_10_1002_jmv_28075 crossref_primary_10_1016_j_heliyon_2024_e37964 crossref_primary_10_4103_1673_5374_346486 crossref_primary_10_1016_j_compbiomed_2023_107191 crossref_primary_10_1016_j_bios_2022_114168 crossref_primary_10_3389_frfst_2023_1253227 crossref_primary_10_3390_chemosensors10070269 crossref_primary_10_2147_IJN_S283686 crossref_primary_10_1039_D1TB02277F crossref_primary_10_1016_j_bios_2022_114847 crossref_primary_10_1109_JSEN_2022_3198598 crossref_primary_10_1039_D2NA00463A crossref_primary_10_1021_acsabm_2c00503 crossref_primary_10_1039_D3LC00674C crossref_primary_10_1016_j_biosx_2023_100324 crossref_primary_10_1039_D1AY01570B crossref_primary_10_1016_j_talanta_2024_126576 crossref_primary_10_1038_s41598_023_50501_w crossref_primary_10_20964_2022_05_13 crossref_primary_10_1149_2754_2726_ac5ac6 crossref_primary_10_1007_s00277_022_04907_7 crossref_primary_10_1016_j_snb_2024_135851 crossref_primary_10_1039_D3SD00333G crossref_primary_10_1007_s00706_022_02913_z crossref_primary_10_1002_advs_202400595 crossref_primary_10_1016_j_mtchem_2022_101182 crossref_primary_10_1093_pnasnexus_pgad031 crossref_primary_10_1007_s40097_022_00472_7 crossref_primary_10_1016_j_snb_2022_133193 crossref_primary_10_1016_j_cogsc_2023_100817 crossref_primary_10_1021_acsanm_3c04834 crossref_primary_10_1016_j_iot_2023_100781 crossref_primary_10_1021_acs_analchem_2c05112 crossref_primary_10_1002_hsr2_1244 crossref_primary_10_1016_j_nanoen_2022_107514 crossref_primary_10_1016_j_trac_2022_116635 crossref_primary_10_1016_j_coelec_2023_101411 crossref_primary_10_1016_j_microc_2024_112236 crossref_primary_10_1016_j_trac_2022_116878 crossref_primary_10_1038_s41598_022_24540_8 crossref_primary_10_1016_j_measen_2024_101117 crossref_primary_10_1007_s41204_021_00109_0 crossref_primary_10_1021_acs_langmuir_1c00896 crossref_primary_10_3390_chemosensors11020122 crossref_primary_10_3390_inorganics11050197 crossref_primary_10_3390_mi14091744 crossref_primary_10_1021_acssuschemeng_1c00483 crossref_primary_10_1039_D4SD00017J crossref_primary_10_1021_acs_analchem_0c05154 crossref_primary_10_1007_s42247_021_00184_8 crossref_primary_10_1007_s40097_022_00486_1 crossref_primary_10_1039_D1AN00893E crossref_primary_10_1155_2021_9495126 crossref_primary_10_3390_bios13010062 crossref_primary_10_1007_s42765_022_00179_y crossref_primary_10_3390_diagnostics12030589 crossref_primary_10_3390_diagnostics13111886 crossref_primary_10_3390_mi14081518 crossref_primary_10_3390_s21248362 crossref_primary_10_3390_bios11100359 crossref_primary_10_1016_j_micpath_2021_104908 crossref_primary_10_1039_D2EM00333C crossref_primary_10_1039_D1NA00470K crossref_primary_10_1016_j_mtelec_2023_100055 crossref_primary_10_1016_j_bios_2021_113286 crossref_primary_10_3390_chemosensors10070287 crossref_primary_10_1016_j_snb_2021_130355 crossref_primary_10_1080_10408347_2023_2186693 crossref_primary_10_1080_17425247_2021_1860938 crossref_primary_10_1007_s00604_021_04751_y crossref_primary_10_1109_TIM_2021_3119147 crossref_primary_10_1016_j_bios_2022_114130 crossref_primary_10_1021_acsaelm_2c00017 crossref_primary_10_1007_s13237_024_00489_z crossref_primary_10_2139_ssrn_4057071 crossref_primary_10_1016_j_apsadv_2022_100236 crossref_primary_10_1039_D1EM00154J crossref_primary_10_1016_j_ccr_2021_214305 crossref_primary_10_1021_acsami_4c17869 crossref_primary_10_1007_s42247_021_00169_7 crossref_primary_10_1007_s11696_023_02795_3 crossref_primary_10_1021_acsabm_1c00102 crossref_primary_10_3390_mi14081529 crossref_primary_10_1016_j_tibtech_2021_01_005 crossref_primary_10_1039_D1TB02576G crossref_primary_10_1039_D3NR05648A crossref_primary_10_1039_D2RA01293F crossref_primary_10_3390_diagnostics13142418 crossref_primary_10_1016_j_isci_2022_104055 crossref_primary_10_1021_acsnano_2c01697 crossref_primary_10_1039_D1AY01478A crossref_primary_10_3390_jnt3040014 crossref_primary_10_1080_08830185_2021_1872566 crossref_primary_10_1016_j_ecoenv_2023_115487 crossref_primary_10_1002_sstr_202400647 crossref_primary_10_1002_admt_202401976 crossref_primary_10_1039_D2TB00849A crossref_primary_10_1515_ntrev_2022_0093 crossref_primary_10_1016_j_jtemb_2022_126977 crossref_primary_10_1042_BSR20230293 crossref_primary_10_1016_j_bios_2022_114406 crossref_primary_10_1016_j_bpc_2021_106564 crossref_primary_10_1039_D1TB00071C crossref_primary_10_1149_1945_7111_ad4c57 crossref_primary_10_1016_j_iot_2020_100354 crossref_primary_10_3390_s22145463 crossref_primary_10_1016_j_trac_2021_116424 crossref_primary_10_3390_bios14030135 crossref_primary_10_1149_1945_7111_ac9b95 crossref_primary_10_1002_adem_202100896 crossref_primary_10_1016_j_biosx_2022_100284 crossref_primary_10_3390_s23188002 crossref_primary_10_1021_acsomega_4c02466 crossref_primary_10_1080_03639045_2021_1994989 crossref_primary_10_1038_s41598_022_22249_2 crossref_primary_10_1186_s13104_021_05816_0 crossref_primary_10_1002_btm2_10305 crossref_primary_10_1016_j_mtphys_2022_100812 crossref_primary_10_3390_diagnostics11061030 crossref_primary_10_1021_acsabm_4c01457 crossref_primary_10_3389_fnano_2021_700888 crossref_primary_10_1186_s11671_023_03842_4 crossref_primary_10_53360_2788_7995_2023_3_11__6 crossref_primary_10_1088_1361_6528_acc8da crossref_primary_10_1016_j_trac_2021_116374 crossref_primary_10_1021_acsmeasuresciau_2c00032 crossref_primary_10_3390_v15010120 crossref_primary_10_1016_j_matlet_2021_131089 crossref_primary_10_1039_D2MH00879C crossref_primary_10_1002_mco2_119 crossref_primary_10_1002_eng2_12672 crossref_primary_10_1016_j_electacta_2023_142823 crossref_primary_10_1016_j_matpr_2021_09_428 crossref_primary_10_3390_bios12080562 crossref_primary_10_1038_s41598_025_92104_7 crossref_primary_10_1002_jgm_3435 crossref_primary_10_1016_j_mtelec_2023_100067 crossref_primary_10_1016_j_onano_2022_100078 crossref_primary_10_1016_j_bios_2021_113012 crossref_primary_10_1088_2053_1583_ac7339 crossref_primary_10_3390_bios14030124 crossref_primary_10_1016_j_talo_2023_100225 crossref_primary_10_1088_1361_6528_ac1bdb crossref_primary_10_1016_j_tifs_2021_11_018 crossref_primary_10_1016_j_jelechem_2023_117867 |
Cites_doi | 10.1021/acsnano.0c02439 10.1016/j.jaut.2020.102433 10.1038/s41565-020-0751-0 10.1016/S2213-2600(20)30066-7 10.1016/j.cell.2020.04.011 10.1021/acs.analchem.7b00255 10.1056/NEJMc2004973 10.1001/jama.2020.3151 10.1126/science.367.6485.1412 10.1126/science.abb2507 10.1007/s12195-020-00642-z 10.1001/jama.2020.2783 10.1038/s41421-020-0153-3 10.1038/s41587-020-0513-4 10.1126/science.368.6489.356 10.1021/ac035367b 10.1093/cid/ciaa149 10.1056/NEJMp2004211 10.1021/acssensors.0c00979 10.1016/j.bios.2013.09.060 10.1021/acsnano.0c03972 10.1016/j.mtchem.2020.100306 10.1038/s41598-018-28035-3 10.1016/j.biopha.2020.110446 10.1038/d41586-020-01221-y 10.1016/j.isci.2020.101406 10.1088/0957-0233/17/11/015 10.1021/acsnano.0c05025 10.1148/radiol.2020200230 10.3390/healthcare8010046 10.1021/acsnano.0c05975 10.1038/s41591-020-0820-9 10.1148/radiol.2020200642 10.1056/NEJMp2005492 10.1017/ice.2020.61 10.1016/j.immuni.2020.03.007 10.1016/j.jpha.2020.02.010 10.1101/2020.04.03.20052084 10.1016/j.bios.2015.08.040 10.1021/acs.analchem.0c02475 10.3390/ijms21145126 10.1016/j.molcel.2019.09.013 10.1016/j.ceh.2020.02.001 10.1021/acsnano.0c02624 10.3233/JAD-200831 10.1542/peds.113.1.e73 10.1038/s41564-020-0690-4 10.1016/S0140-6736(20)31142-9 10.1056/NEJMe2009758 10.2214/AJR.20.22954 10.1109/JSEN.2018.2829084 10.1021/acsnano.0c02823 10.1016/j.cell.2020.02.052 10.1001/jama.2020.6019 10.1021/acsnano.0c03252 10.1056/NEJMp2003762 10.1021/acs.analchem.0c00784 10.1016/j.tibtech.2016.10.001 10.1056/NEJMp2006372 10.1056/NEJMc1509458 10.1007/s12539-020-00376-6 10.1016/j.jare.2020.03.005 10.3390/jfb11020043 10.7326/M20-1342 10.1021/acsnano.0c03697 10.1021/acs.nanolett.0c02278 10.4161/viru.26475 10.1016/j.ceh.2020.03.001 10.1039/D0AN00629G 10.1001/jama.2020.3072 10.1038/d41573-020-00073-5 10.1038/s41591-020-0843-2 10.1016/j.crgsc.2020.100011 10.3201/eid1602.090469 10.1021/nn900086c 10.3389/fnano.2020.571284 10.1038/d41573-020-00016-0 10.1016/S0140-6736(20)30154-9 10.1126/sciadv.abb8097 10.1001/jamainternmed.2020.2020 10.1016/j.mtchem.2020.100300 10.1021/acsnano.0c03822 10.1148/radiol.2020200241 10.1001/jama.2020.6644 10.1016/j.bios.2016.01.065 10.1021/acsanm.0c01562 10.1021/acsnano.0c02857 10.1128/JVI.00737-08 10.3201/eid1002.030736 10.3390/s18124303 10.1016/S0140-6736(20)30566-3 10.1016/j.bios.2020.112274 10.1021/acsnano.0c04006 10.1073/pnas.2004999117 10.1126/science.abb2762 10.1021/acs.chemrev.9b00553 |
ContentType | Journal Article |
Copyright | 2020 American Chemical Society 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society – notice: 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsabm.0c01004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 7325 |
ExternalDocumentID | PMC7605341 35019473 10_1021_acsabm_0c01004 b923435745 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | ABUCX ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a491t-b270e8be4820ef2123ff99f980f6d45ca6dfb9532106f4ffcb8b38a9afc9f72d3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Thu Aug 21 14:30:49 EDT 2025 Fri Jul 11 08:47:32 EDT 2025 Wed Feb 19 02:28:06 EST 2025 Tue Jul 01 04:25:35 EDT 2025 Thu Apr 24 22:50:06 EDT 2025 Thu Nov 19 16:41:37 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | COVID-19 pandemic Internet of things diseases management smart diagnostics infectious diseases smart sensing point-of-care artificial intelligence |
Language | English |
License | https://doi.org/10.15223/policy-017 https://doi.org/10.15223/policy-009 https://doi.org/10.15223/policy-001 This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a491t-b270e8be4820ef2123ff99f980f6d45ca6dfb9532106f4ffcb8b38a9afc9f72d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-8786-9379 0000-0002-3894-4301 0000-0003-4206-1541 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7605341 |
PMID | 35019473 |
PQID | 2619215971 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7605341 proquest_miscellaneous_2619215971 pubmed_primary_35019473 crossref_citationtrail_10_1021_acsabm_0c01004 crossref_primary_10_1021_acsabm_0c01004 acs_journals_10_1021_acsabm_0c01004 |
ProviderPackageCode | ACS VG9 ABUCX VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-16 |
PublicationDateYYYYMMDD | 2020-11-16 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref102/cit102 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 ref43/cit43 ref80/cit80 ref28/cit28 ref91/cit91 ref55/cit55 ref12/cit12 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref82/cit82 doi: 10.1021/acsnano.0c02439 – ident: ref9/cit9 doi: 10.1016/j.jaut.2020.102433 – ident: ref56/cit56 doi: 10.1038/s41565-020-0751-0 – ident: ref43/cit43 doi: 10.1016/S2213-2600(20)30066-7 – ident: ref32/cit32 doi: 10.1016/j.cell.2020.04.011 – ident: ref79/cit79 doi: 10.1021/acs.analchem.7b00255 – ident: ref49/cit49 doi: 10.1056/NEJMc2004973 – ident: ref90/cit90 doi: 10.1001/jama.2020.3151 – ident: ref70/cit70 – ident: ref36/cit36 doi: 10.1126/science.367.6485.1412 – ident: ref26/cit26 doi: 10.1126/science.abb2507 – ident: ref103/cit103 doi: 10.1007/s12195-020-00642-z – ident: ref46/cit46 doi: 10.1001/jama.2020.2783 – ident: ref97/cit97 doi: 10.1038/s41421-020-0153-3 – ident: ref81/cit81 doi: 10.1038/s41587-020-0513-4 – ident: ref39/cit39 doi: 10.1126/science.368.6489.356 – ident: ref77/cit77 doi: 10.1021/ac035367b – ident: ref68/cit68 doi: 10.1093/cid/ciaa149 – ident: ref17/cit17 doi: 10.1056/NEJMp2004211 – ident: ref57/cit57 doi: 10.1021/acssensors.0c00979 – ident: ref75/cit75 doi: 10.1016/j.bios.2013.09.060 – ident: ref13/cit13 doi: 10.1021/acsnano.0c03972 – ident: ref1/cit1 doi: 10.1016/j.mtchem.2020.100306 – ident: ref89/cit89 doi: 10.1038/s41598-018-28035-3 – ident: ref2/cit2 doi: 10.1016/j.biopha.2020.110446 – ident: ref35/cit35 doi: 10.1038/d41586-020-01221-y – ident: ref98/cit98 doi: 10.1016/j.isci.2020.101406 – ident: ref71/cit71 – ident: ref76/cit76 doi: 10.1088/0957-0233/17/11/015 – ident: ref11/cit11 doi: 10.1021/acsnano.0c05025 – ident: ref66/cit66 doi: 10.1148/radiol.2020200230 – ident: ref92/cit92 doi: 10.3390/healthcare8010046 – ident: ref100/cit100 doi: 10.1021/acsnano.0c05975 – ident: ref19/cit19 doi: 10.1038/s41591-020-0820-9 – ident: ref69/cit69 doi: 10.1148/radiol.2020200642 – ident: ref10/cit10 – ident: ref42/cit42 doi: 10.1056/NEJMp2005492 – ident: ref95/cit95 doi: 10.1017/ice.2020.61 – ident: ref38/cit38 doi: 10.1016/j.immuni.2020.03.007 – ident: ref44/cit44 doi: 10.1016/j.jpha.2020.02.010 – ident: ref93/cit93 doi: 10.1101/2020.04.03.20052084 – ident: ref85/cit85 doi: 10.1016/j.bios.2015.08.040 – ident: ref99/cit99 doi: 10.1021/acs.analchem.0c02475 – ident: ref102/cit102 doi: 10.3390/ijms21145126 – ident: ref45/cit45 doi: 10.1016/j.molcel.2019.09.013 – ident: ref91/cit91 doi: 10.1016/j.ceh.2020.02.001 – ident: ref24/cit24 doi: 10.1021/acsnano.0c02624 – ident: ref29/cit29 doi: 10.3233/JAD-200831 – ident: ref59/cit59 doi: 10.1542/peds.113.1.e73 – ident: ref22/cit22 doi: 10.1038/s41564-020-0690-4 – ident: ref48/cit48 doi: 10.1016/S0140-6736(20)31142-9 – ident: ref7/cit7 – ident: ref21/cit21 doi: 10.1056/NEJMe2009758 – ident: ref67/cit67 doi: 10.2214/AJR.20.22954 – ident: ref80/cit80 doi: 10.1109/JSEN.2018.2829084 – ident: ref84/cit84 doi: 10.1021/acsnano.0c02823 – ident: ref30/cit30 doi: 10.1016/j.cell.2020.02.052 – ident: ref34/cit34 doi: 10.1001/jama.2020.6019 – ident: ref47/cit47 doi: 10.1021/acsnano.0c03252 – ident: ref20/cit20 doi: 10.1056/NEJMp2003762 – ident: ref83/cit83 doi: 10.1021/acs.analchem.0c00784 – ident: ref88/cit88 doi: 10.1016/j.tibtech.2016.10.001 – ident: ref16/cit16 doi: 10.1056/NEJMp2006372 – ident: ref61/cit61 doi: 10.1056/NEJMc1509458 – ident: ref96/cit96 doi: 10.1007/s12539-020-00376-6 – ident: ref72/cit72 – ident: ref8/cit8 doi: 10.1016/j.jare.2020.03.005 – ident: ref63/cit63 doi: 10.3390/jfb11020043 – ident: ref14/cit14 doi: 10.7326/M20-1342 – ident: ref55/cit55 doi: 10.1021/acsnano.0c03697 – ident: ref54/cit54 doi: 10.1021/acs.nanolett.0c02278 – ident: ref50/cit50 doi: 10.4161/viru.26475 – ident: ref94/cit94 doi: 10.1016/j.ceh.2020.03.001 – ident: ref64/cit64 doi: 10.1039/D0AN00629G – ident: ref73/cit73 – ident: ref40/cit40 doi: 10.1001/jama.2020.3072 – ident: ref33/cit33 doi: 10.1038/d41573-020-00073-5 – ident: ref15/cit15 doi: 10.1038/s41591-020-0843-2 – ident: ref51/cit51 doi: 10.1016/j.crgsc.2020.100011 – ident: ref60/cit60 doi: 10.3201/eid1602.090469 – ident: ref78/cit78 doi: 10.1021/nn900086c – ident: ref6/cit6 doi: 10.3389/fnano.2020.571284 – ident: ref4/cit4 doi: 10.1038/d41573-020-00016-0 – ident: ref18/cit18 doi: 10.1016/S0140-6736(20)30154-9 – ident: ref37/cit37 doi: 10.1126/sciadv.abb8097 – ident: ref41/cit41 doi: 10.1001/jamainternmed.2020.2020 – ident: ref52/cit52 doi: 10.1016/j.mtchem.2020.100300 – ident: ref101/cit101 doi: 10.1021/acsnano.0c03822 – ident: ref65/cit65 doi: 10.1148/radiol.2020200241 – ident: ref5/cit5 doi: 10.1001/jama.2020.6644 – ident: ref74/cit74 – ident: ref86/cit86 doi: 10.1016/j.bios.2016.01.065 – ident: ref12/cit12 doi: 10.1021/acsanm.0c01562 – ident: ref28/cit28 doi: 10.1021/acsnano.0c02857 – ident: ref62/cit62 doi: 10.1128/JVI.00737-08 – ident: ref58/cit58 doi: 10.3201/eid1002.030736 – ident: ref87/cit87 doi: 10.3390/s18124303 – ident: ref3/cit3 doi: 10.1016/S0140-6736(20)30566-3 – ident: ref23/cit23 doi: 10.1016/j.bios.2020.112274 – ident: ref31/cit31 doi: 10.1021/acsnano.0c04006 – ident: ref25/cit25 doi: 10.1073/pnas.2004999117 – ident: ref27/cit27 doi: 10.1126/science.abb2762 – ident: ref53/cit53 doi: 10.1021/acs.chemrev.9b00553 |
SSID | ssj0002003189 |
Score | 2.5357397 |
SecondaryResourceType | review_article |
Snippet | To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome... To manage the COVID-19 pandemic, development of rapid, selective, sensitive diagnostic systems for early stage β-coronavirus severe acute respiratory syndrome... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7306 |
SubjectTerms | Artificial Intelligence COVID-19 - epidemiology COVID-19 - therapy COVID-19 - virology Electrochemical Techniques - methods Humans Pandemics Point-of-Care Systems Review SARS-CoV-2 - isolation & purification |
Title | Electrochemical SARS-CoV‑2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management |
URI | http://dx.doi.org/10.1021/acsabm.0c01004 https://www.ncbi.nlm.nih.gov/pubmed/35019473 https://www.proquest.com/docview/2619215971 https://pubmed.ncbi.nlm.nih.gov/PMC7605341 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QXLjwEK_xUhBInDLaNGua4zRAgMRDDBC3KkljQECLaHfhxF_gL_JLSNpubEwIro1lKa4tf46dLwjtGOElUiSCQGBCYvMxI5IGnADnPAKbQI12heLpWXh0zU5uW7ff5x0_O_jU35M6l-q56WnPL4k_p2gYcVdmtTvdwWkKLZ3TYV0HoIkF1bTP0DimwuUhnY_moTFw-XNGcijpHM5WDEh5yVXoZk0em71CNfXbOJPjn_uZQzM18sTtylXm0YRJF1DvoHoGR9e8AbjbvuySTnbz-f5BcddNt6d3WBb4IntIC5IBcReWsEyTUlFFP4GPh3g9sUXBQx8K3Dm_Od4nvsDfkzaL6Prw4KpzROqXGIhkwi-IotwzkTLM4gUDLtsBCAEi8iBMWEvLMAElWu4-UAgMQKtIBZEUErQATpNgCU2mWWpWEOZRILX2AqMt8ARfi1AoxpTVmfgJRK0G2rYWiutIyuOySU79uDJbXJutgUj_78W6JjN3b2o8_Sq_O5B_qWg8fpXc6jtDbCPNtU9karJeHpe1pkV_3G-g5co5Brpce1YwHjQQH3GbgYBj8R5dSR_uSzZvbgtKCyVW_7XvNTRNXcHv5hDDdTRZvPbMhkVFhdosA-ILYi8I0Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VcoALP-Jv-TUCxMlL4njj-MBhtW21S39AbFv1ltqODRWQIJIVghOvwBPwKjwLT8I4yaa7rSpxqcTVGY3szNjzjT3-DPDUyiBTMpPURTamGI85VSwS1AkhEocB1BqfKG7vxOM9_upgcLACv-Z3YbATJWoq60P8Y3aB8AW2Kf2pH5jAc5y1VZSb9ttXzNHKl5M1NOgzxjbWd0dj2j4jQBWXYUU1E4FNtOUY7KzzS7VzUjqZBC7O-MCoOHNaDvxllthx54xOdJQoqZyRTrAsQr0X4CIiH-azu-Fo2m3isHpOeIjtcTtFLM_mxJCnuuzDnymXw98pTHuyNHMh1m1chd_dX6pLXD70Z5Xum-8nCCT_4994Da60OJsMm4lxHVZsfgNm682jP6ZlSSDT4dspHRX7f378ZGTqa_nzd0RV5E1xlFe0cNRfzyIqz2pFDdkGmSywmBLE_AsNFRm93p-s0VCS47qim7B3LiO9Bat5kds7QEQSKWOCyBqE2S40Mpaac406szBzyaAHT9AiabtulGldEsDCtDFT2pqpB3TuNKlpqdv9CyIfz5R_3sl_bkhLzpR8PPfBFNcVf1ikclvMyrTOrBHrirAHtxuf7HT5w2jJRdQDseStnYDnLF_-kh-9r7nLBabPCJzu_tO4H8Gl8e72Vro12dm8B5eZ3-rwFZjxfVitvszsA8SDlX5Yz0kCh-ftvX8Bgmttng |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB6VIiEu_Ii_5dcIECcvieON4wOH1W5XXQqlYmnVW2o7NlRAUpGsEJx4BZ6BV-FJeBLGSTbstqrEpRJXZzSy4xnPN_b4M8BjK4NMyUxSF9mYYjzmVLFIUCeESBwGUGt8ovhqO97c5S_2B_tr8HNxFwY7UaKmsj7E9159lLmWYSB8hu1Kf-oHJvA8Z20l5Zb9-gXztPL5dIyT-oSxycbb0SZtnxKgisuwopqJwCbacgx41vnl2jkpnUwCF2d8YFScOS0H_kJL7LhzRic6SpRUzkgnWBah3nNw3p8R-gxvOJp1Gzms9gsPsz12p4jn2YIc8kSXfQg05WoIPIFrj5dnLsW7yWX41f2puszlQ39e6b75doxE8j__lVfgUou3ybBxkKuwZvNrMN9oHv8xLVsCmQ3fzOio2Pv9_QcjM1_Tn78jqiI7xWFe0cJRf02LqDyrFTWkG2S6xGZKEPsvNVRk9HpvOqahJH_ri67D7pmM9Aas50VubwERSaSMCSJrEG670MhYas416szCzCWDHjzCGUnb9aNM69IAFqbNNKXtNPWALgwnNS2Fu39J5OOp8k87-aOGvORUyYcLO0xxffGHRiq3xbxM6wwbMa8Ie3CzsctOlz-UllxEPRArFtsJeO7y1S_54fuaw1xgGo0A6vY_jfsBXNgZT9KX0-2tO3CR-R0PX4gZ34X16vPc3kNYWOn7tVsSODhr4_0DYe5wIQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+SARS-CoV-2+Sensing+at+Point-of-Care+and+Artificial+Intelligence+for+Intelligent+COVID-19+Management&rft.jtitle=ACS+applied+bio+materials&rft.au=Kaushik%2C+Ajeet+Kumar&rft.au=Dhau%2C+Jaspreet+Singh&rft.au=Gohel%2C+Hardik&rft.au=Mishra%2C+Yogendra+Kumar&rft.date=2020-11-16&rft.issn=2576-6422&rft.eissn=2576-6422&rft.volume=3&rft.issue=11&rft.spage=7306&rft.epage=7325&rft_id=info:doi/10.1021%2Facsabm.0c01004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acsabm_0c01004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |