Biodegradable Materials for Sustainable Health Monitoring Devices
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflamma...
Saved in:
Published in | ACS applied bio materials Vol. 4; no. 1; pp. 163 - 194 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
18.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented. |
---|---|
AbstractList | The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented. The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented. The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented. |
Author | Hosseini, Ensieh S Dahiya, Ravinder Dervin, Saoirse Ganguly, Priyanka |
AuthorAffiliation | Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering |
AuthorAffiliation_xml | – name: Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering |
Author_xml | – sequence: 1 givenname: Ensieh S surname: Hosseini fullname: Hosseini, Ensieh S – sequence: 2 givenname: Saoirse surname: Dervin fullname: Dervin, Saoirse – sequence: 3 givenname: Priyanka surname: Ganguly fullname: Ganguly, Priyanka – sequence: 4 givenname: Ravinder orcidid: 0000-0002-3858-3841 surname: Dahiya fullname: Dahiya, Ravinder email: Ravinder.Dahiya@glasgow.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33842859$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLxDAUhYMovrcupUsRZsyjadON4FthBhfqOtymyRjpJJqkgv_e6IyigquE3O-cG87ZQqvOO43QHsFjgik5AhWhnY-xwoSwZgVtUl5Xo6qkdPXHfQPtxviEMaYYMyKadbTBmCip4M0mOjm1vtOzAB20vS6mkHSw0MfC-FDcDTGBdZ-Taw19eiym3tnkg3Wz4ly_WqXjDlozWaB3l-c2eri8uD-7Hk1ur27OTiYjKBuSRpUghtctrZjiLVOmaoXBTHBgSmNhTMtqTlnHDNAOuCi5IMAM5YoyEHWn2DY6Xvg-D-1cd0q7FKCXz8HOIbxJD1b-njj7KGf-VQpMKWd1NjhYGgT_MuiY5NxGpfsenPZDlJSTnE6TE8vo_s9d30u-csvAeAGo4GMM2nwjBMuPbuSiG7nsJgvKPwJlEyTrP_5q-_9lhwtZfpdPfgguR_wf_A5ZCaKv |
CitedBy_id | crossref_primary_10_1016_j_envres_2023_116333 crossref_primary_10_1021_acs_chemrev_3c00425 crossref_primary_10_20517_ss_2024_06 crossref_primary_10_1002_pi_6697 crossref_primary_10_3390_polym16050686 crossref_primary_10_1002_admt_202401038 crossref_primary_10_1021_acs_chemrev_3c00301 crossref_primary_10_1002_anbr_202400126 crossref_primary_10_1016_j_ijbiomac_2024_132125 crossref_primary_10_3390_s25010133 crossref_primary_10_1016_j_nanoen_2024_110196 crossref_primary_10_32604_jrm_2024_047022 crossref_primary_10_3390_nano12081295 crossref_primary_10_1016_j_nantod_2023_101945 crossref_primary_10_1002_aisy_202100091 crossref_primary_10_1002_aelm_202101348 crossref_primary_10_1109_LSENS_2023_3281429 crossref_primary_10_1016_j_cej_2024_148772 crossref_primary_10_1038_s41528_025_00385_9 crossref_primary_10_1016_j_snb_2022_132731 crossref_primary_10_1002_advs_202307232 crossref_primary_10_1016_j_measurement_2023_113261 crossref_primary_10_1039_D4TC03256J crossref_primary_10_1016_j_nanoen_2024_109750 crossref_primary_10_1063_5_0217297 crossref_primary_10_3390_ma16113940 crossref_primary_10_3390_fluids7070238 crossref_primary_10_1002_admt_202100439 crossref_primary_10_1002_adfm_202109492 crossref_primary_10_1039_D3TC01128C crossref_primary_10_1016_j_talanta_2024_127397 crossref_primary_10_3390_polym15204171 crossref_primary_10_1002_adma_202203193 crossref_primary_10_3390_su17052102 crossref_primary_10_1021_acsapm_2c01366 crossref_primary_10_1016_j_nanoen_2023_108325 crossref_primary_10_1002_adma_202411151 crossref_primary_10_1002_marc_202400475 crossref_primary_10_1021_acssuschemeng_3c03620 crossref_primary_10_1039_D3SC02868B crossref_primary_10_53759_7669_jmc202404054 crossref_primary_10_20517_ss_2024_09 crossref_primary_10_1016_j_ijbiomac_2023_125333 crossref_primary_10_1021_acssuschemeng_2c00872 crossref_primary_10_3390_coatings12121888 crossref_primary_10_3390_coatings13030486 crossref_primary_10_1109_JIOT_2021_3081772 crossref_primary_10_1016_j_eurpolymj_2021_110861 crossref_primary_10_1002_adma_202401560 crossref_primary_10_1039_D4AY01124D crossref_primary_10_1007_s00289_022_04565_9 crossref_primary_10_1109_JSEN_2023_3287291 crossref_primary_10_1016_j_apmt_2024_102508 crossref_primary_10_1088_1361_6528_ac8811 crossref_primary_10_1002_adma_202100899 crossref_primary_10_3390_electronics12102270 crossref_primary_10_1002_aelm_202200098 crossref_primary_10_1038_s41467_023_41594_y crossref_primary_10_3390_s22103880 crossref_primary_10_1016_j_microc_2024_111491 crossref_primary_10_1002_admt_202400450 crossref_primary_10_1016_j_sintl_2022_100171 crossref_primary_10_29026_oea_2023_220020 crossref_primary_10_1002_adfm_202403562 crossref_primary_10_1002_smll_202205598 crossref_primary_10_1016_j_snr_2023_100183 crossref_primary_10_1002_mame_202100978 crossref_primary_10_1088_2399_1984_ad36ff crossref_primary_10_3390_polym14142875 crossref_primary_10_3390_ijms241210312 crossref_primary_10_1109_TIM_2023_3265746 crossref_primary_10_1002_aisy_202100122 crossref_primary_10_1002_adma_202310505 crossref_primary_10_1016_j_matt_2023_09_017 crossref_primary_10_3390_polym14245551 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1039_D1TA09128J crossref_primary_10_1016_j_bios_2024_116328 crossref_primary_10_1088_1361_6528_ad32d5 crossref_primary_10_1016_j_eurpolymj_2021_110643 crossref_primary_10_1021_acssensors_3c01512 crossref_primary_10_1021_acsomega_2c06335 crossref_primary_10_1021_acssensors_3c01755 crossref_primary_10_1039_D2TB01475K crossref_primary_10_1109_JSEN_2021_3073287 crossref_primary_10_1002_adhm_202303797 crossref_primary_10_1039_D3CS00202K crossref_primary_10_1016_j_sna_2022_113613 crossref_primary_10_1021_acssuschemeng_3c01870 crossref_primary_10_1002_mabi_202100472 crossref_primary_10_2494_photopolymer_36_277 crossref_primary_10_1038_s41598_023_40749_7 crossref_primary_10_1016_j_matchemphys_2022_127081 crossref_primary_10_1002_aesr_202100223 crossref_primary_10_3389_fmats_2022_918890 crossref_primary_10_1021_acssuschemeng_2c07516 crossref_primary_10_1177_19322968221105895 crossref_primary_10_1002_adma_202200724 crossref_primary_10_3390_gels11040220 crossref_primary_10_3390_mi12091036 crossref_primary_10_1016_j_matlet_2023_134814 crossref_primary_10_1039_D3TB01820B crossref_primary_10_1002_adsu_202300428 crossref_primary_10_1021_acsapm_3c02246 crossref_primary_10_1002_advs_202410289 crossref_primary_10_1021_acsnano_3c11832 crossref_primary_10_1126_sciadv_adg6075 crossref_primary_10_3390_bios15030139 crossref_primary_10_2147_IJN_S429279 crossref_primary_10_1016_j_ijbiomac_2022_10_150 crossref_primary_10_1016_j_tifs_2025_104880 crossref_primary_10_1063_5_0236154 crossref_primary_10_1109_JSEN_2024_3458041 crossref_primary_10_1109_LSENS_2023_3270665 crossref_primary_10_1021_acssensors_4c00015 crossref_primary_10_1002_adma_202211273 crossref_primary_10_1002_admt_202401213 crossref_primary_10_1063_5_0177086 crossref_primary_10_3389_felec_2022_985681 crossref_primary_10_1007_s10338_024_00493_5 crossref_primary_10_1021_acs_chemrev_3c00408 crossref_primary_10_1109_ACCESS_2024_3515274 crossref_primary_10_1016_j_apmt_2021_101257 crossref_primary_10_1016_j_carbpol_2022_119967 crossref_primary_10_1109_JFLEX_2022_3159258 crossref_primary_10_1126_scirobotics_abl7344 crossref_primary_10_1039_D4EM00594E crossref_primary_10_2196_43871 crossref_primary_10_1002_aisy_202300367 crossref_primary_10_1186_s11671_024_04001_z crossref_primary_10_1021_acsnano_2c07723 crossref_primary_10_1016_j_carpta_2023_100366 crossref_primary_10_3390_pr12071535 crossref_primary_10_1002_ijch_202100103 crossref_primary_10_1088_2631_7990_ad8735 crossref_primary_10_1021_acssuschemeng_3c05534 crossref_primary_10_1002_aelm_202200170 crossref_primary_10_1002_aisy_202100036 crossref_primary_10_1021_acsami_3c13541 crossref_primary_10_3390_bioengineering11040358 crossref_primary_10_1016_j_nanoen_2023_109196 crossref_primary_10_1016_j_aca_2022_339989 crossref_primary_10_1039_D3QM00964E crossref_primary_10_1021_acssuschemeng_3c06112 crossref_primary_10_1016_j_ijpharm_2024_124734 crossref_primary_10_1021_acsaelm_4c01257 crossref_primary_10_1002_smtd_202300170 crossref_primary_10_1088_2051_672X_ac5780 crossref_primary_10_1007_s12541_024_01027_2 crossref_primary_10_1021_acsmaterialslett_3c01474 crossref_primary_10_1016_j_jelechem_2022_116592 crossref_primary_10_1002_adfm_202413324 crossref_primary_10_1016_j_trac_2024_117968 crossref_primary_10_1109_JFLEX_2023_3266414 crossref_primary_10_1002_mus_28029 crossref_primary_10_1002_adma_202106787 crossref_primary_10_1016_j_bios_2024_116461 crossref_primary_10_1021_acsaelm_2c01561 |
Cites_doi | 10.1002/smll.201901558 10.1039/C4TB01350F 10.1109/ACCESS.2018.2886780 10.1038/s41551-018-0300-4 10.1049/htl.2019.0108 10.1016/B978-0-323-39040-8.00007-9 10.1016/j.actbio.2019.01.035 10.1208/s12249-011-9714-y 10.1088/0034-4885/72/12/126501 10.1109/JLT.2017.2756095 10.1038/nmat4624 10.1016/j.msec.2018.01.007 10.1063/1.1806283 10.1021/nl503997m 10.1088/1674-4926/39/1/011003 10.1038/nature20102 10.1002/adma.201700172 10.1021/acsami.9b21739 10.1039/C3CS60235D 10.1017/CBO9781139629539.023 10.1038/nmat2542 10.1002/jbm.b.31568 10.1016/j.progpolymsci.2007.05.013 10.1002/adfm.201404535 10.1126/sciadv.aaw1899 10.1002/adma.201404579 10.1126/scirobotics.aaz7946 10.1016/j.orgel.2013.02.010 10.1063/1.2197973 10.1021/acsnano.7b06697 10.1073/pnas.1119948109 10.1039/C9TC00709A 10.1088/0022-3727/36/20/L02 10.1039/c3gc40388b 10.1002/0471440264.pst027.pub2 10.1186/1743-7075-10-2 10.1002/adma.201801895 10.1016/j.sna.2012.08.039 10.1021/acs.macromol.5b00194 10.1016/S0142-9612(00)00148-4 10.3389/fbioe.2014.00023 10.1126/science.1206157 10.1023/A:1020200822435 10.1002/polb.22259 10.1063/1.371708 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2 10.1002/jbm.a.34223 10.1063/1.2220488 10.1073/pnas.1407743111 10.1039/D0RA00016G 10.1016/j.jneumeth.2011.03.012 10.1002/smll.201700065 10.1002/adma.201704955 10.1016/j.matlet.2014.04.003 10.1038/nphoton.2006.56 10.1126/science.1226325 10.21037/jtd.2017.07.104 10.1002/adfm.201301847 10.1038/s41467-018-03956-9 10.1021/acsnano.9b08268 10.1533/9781845695033.3.145 10.1021/nn500847g 10.1002/adma.201306304 10.3390/s18092838 10.1021/nn103097q 10.1117/1.JBO.20.9.095012 10.1016/j.sna.2019.05.021 10.1111/j.1151-2916.1997.tb03245.x 10.1007/978-3-030-34467-2_2 10.1021/acscentsci.9b00850 10.1002/adma.201004071 10.1021/acscentsci.7b00595 10.1021/cr0501590 10.1109/10.664202 10.1016/j.jbiosc.2016.07.010 10.1016/j.progpolymsci.2018.05.002 10.1016/j.progpolymsci.2012.02.001 10.1002/adma.201702665 10.1002/adma.201403045 10.1038/s41551-019-0435-y 10.1002/adma.201800129 10.1002/adma.201402625 10.1039/c3ee40492g 10.1109/ACCESS.2018.2859383 10.1073/pnas.1701478114 10.1016/j.actbio.2011.11.014 10.1002/adma.201300226 10.1038/s41578-019-0150-z 10.1021/acsami.5b06059 10.1088/0964-1726/22/5/055025 10.1109/JSEN.2020.2992087 10.1016/S0142-9612(00)00101-0 10.1002/adfm.201304293 10.1016/j.proeng.2014.12.280 10.1063/1.2378400 10.1016/j.progpolymsci.2013.09.005 10.1002/advs.201902872 10.3389/fbioe.2019.00243 10.1080/15421406.2012.635982 10.1016/S1369-703X(03)00040-8 10.1039/C4SC02073A 10.1002/adma.201204426 10.1073/pnas.1910343117 10.1016/j.progpolymsci.2014.02.008 10.1016/j.progpolymsci.2011.06.004 10.1002/admt.201600228 10.1016/j.colsurfb.2015.04.040 10.1016/j.biomaterials.2009.02.018 10.1088/0022-3727/37/20/006 10.1016/j.bioactmat.2017.12.001 10.1016/j.actbio.2010.02.028 10.1063/1.3238552 10.1039/C1JM14168F 10.1557/mrs.2020.25 10.1016/j.addr.2012.09.004 10.1002/smtd.201900868 10.1002/aelm.202000232 10.1111/j.1541-4337.2010.00126.x 10.1002/adhm.201500002 10.1039/D0GC00658K 10.1002/elan.200403113 10.1038/s41467-020-14446-2 10.3390/ma2020307 10.1016/j.bios.2016.03.010 10.1002/adma.201404627 10.1002/adma.201707624 10.1038/ncomms8647 10.1039/C5TC00901D 10.1002/adma.201502535 10.1002/adma.201306050 10.1021/acsami.9b16675 10.1021/cm000869g 10.1021/acs.nanolett.8b04514 10.1002/adma.201904765 10.1126/sciadv.1501478 10.1002/adma.201907254 10.1038/nmat2745 10.1126/science.aav7057 10.1002/adfm.201502592 10.1088/0953-8984/2/28/011 10.1039/c0jm00519c 10.1088/0957-4484/25/9/094008 10.1038/nature02070 10.1063/1.3674287 10.1002/adma.201403051 10.1039/C3EE43024C 10.1038/pj.2012.165 10.1063/1.366796 10.1002/adma.201204039 10.1021/acs.accounts.7b00548 10.1021/acsami.9b03546 10.1002/adma.201302652 10.1021/acs.chemmater.5b04931 10.1016/0304-3886(82)90052-3 10.1109/JPROC.2019.2941366 10.1002/adma.201504736 10.1093/rb/rbz034 10.1038/ncomms1767 10.1021/acsaelm.9b00022 10.1021/cr9001275 10.1002/adfm.201001031 10.1002/adfm.201300127 10.1002/mabi.201300156 10.1002/smll.201801332 10.3390/ma11112108 10.1021/acs.jpcb.9b08897 10.1002/adhm.201900342 10.1049/el:19950805 10.1098/rsta.2019.0156 10.1002/adfm.201808695 10.1063/1.3278592 10.1016/j.biomaterials.2003.09.032 10.1002/adfm.201902771 10.1021/acsnano.5b00651 10.34133/2020/8716847 10.1016/j.bios.2019.111781 10.1002/smll.201300146 10.1021/bm300897j 10.1063/1.332406 10.1016/j.tsf.2009.03.187 10.1002/adma.200501740 10.1002/adfm.201090104 10.1016/j.compscitech.2013.04.004 10.1038/nature16492 10.1002/cbic.201402166 10.1002/adfm.201403469 10.1021/acsami.8b04291 10.1038/s41563-020-0699-3 10.1021/jp0343786 10.3390/s16060809 10.1021/acsami.0c07278 10.1016/S0013-4686(98)00180-7 10.1007/12_2009_6 10.1038/micronano.2015.24 10.1109/JSEN.2019.2928807 10.1007/s40204-018-0091-4 10.1109/JMEMS.2013.2290111 10.1016/j.jddst.2019.02.007 10.1109/MEMSYS.1999.746810 10.1016/S1369-7021(12)70139-6 10.1016/j.biomaterials.2004.09.020 10.1364/OL.44.002907 10.1007/978-3-030-16538-3_2 10.1002/adsu.202000056 10.1016/j.als.2016.04.001 10.1063/1.3687398 10.1126/science.1127798 10.1002/adfm.201702390 10.1002/aelm.201600104 10.1016/B978-0-08-087780-8.00022-X 10.1007/s10853-008-3124-x 10.1021/ja052035a 10.1126/science.aah5035 10.1016/j.foodcont.2020.107350 10.1039/C9RA09847J 10.1002/adma.201102124 10.1021/jp0653050 10.1016/j.bios.2020.112333 10.1039/C7EE00865A 10.1016/S0927-796X(01)00035-3 10.1021/acsami.5b02526 10.1002/adfm.201203088 10.1021/ja066965l 10.1039/C6TC00678G 10.1002/adma.201401537 10.1021/acsami.0c13637 10.1002/smll.201805084 10.1016/j.bios.2018.02.025 10.3389/fnins.2017.00501 10.1002/marc.201800084 10.1557/mrs2010.583 10.2147/DDDT.S165440 10.3390/s20123609 10.1016/j.jcis.2019.10.003 10.1002/chem.200701717 10.1016/j.tibtech.2015.07.008 10.3390/polym5031115 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F 10.3390/bios9010014 10.1088/0953-8984/16/49/021 10.1002/adfm.201910718 10.1002/adma.201300920 10.1109/JPROC.2018.2890729 10.1073/pnas.1710874115 10.1080/02688690500495299 10.1002/adma.201506243 10.1016/j.polymdegradstab.2011.07.011 10.1016/j.progpolymsci.2007.05.017 10.1002/adma.202001591 10.3390/ijms10041514 10.1007/s11036-010-0260-8 10.1016/j.biomaterials.2004.01.037 10.1002/adma.201304821 10.1002/admt.201900733 10.1016/j.eurpolymj.2019.02.005 10.1533/9781845695033 10.1038/s41928-018-0071-7 10.1016/B978-0-08-102407-2.00006-0 10.1103/PhysRevLett.39.1098 10.1038/s41551-018-0336-5 10.1016/S0378-5173(01)00691-3 10.1021/acsami.9b21052 10.1533/9781845695033.2.43 10.1039/C0JM02444A 10.1021/acssensors.9b01403 10.3390/electronics3030444 10.1002/adfm.201905451 10.1039/C8TC02123F 10.3390/s20123487 |
ContentType | Journal Article |
Copyright | 2020 American
Chemical Society 2020 American Chemical Society. 2020 American Chemical Society 2020 American Chemical Society |
Copyright_xml | – notice: 2020 American Chemical Society – notice: 2020 American Chemical Society. – notice: 2020 American Chemical Society 2020 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1021/acsabm.0c01139 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2576-6422 |
EndPage | 194 |
ExternalDocumentID | PMC8022537 33842859 10_1021_acsabm_0c01139 a082618364 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | ABUCX ACS ALMA_UNASSIGNED_HOLDINGS EBS VF5 VG9 53G AAYXX ABBLG ABJNI ABLBI ABQRX AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-a491t-681f57b263c5b3cf6b8f0385a3ce08ffb37523d3fa2da584581a3f25c23a87dc3 |
IEDL.DBID | ACS |
ISSN | 2576-6422 |
IngestDate | Thu Aug 21 17:52:54 EDT 2025 Fri Jul 11 10:03:15 EDT 2025 Wed Feb 19 02:26:23 EST 2025 Thu Apr 24 23:01:50 EDT 2025 Tue Jul 01 04:25:37 EDT 2025 Sun Feb 14 03:10:36 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | sustainable electronics biodegradable materials implantable sensors health monitoring bioresorbable materials naturally degrading sensors |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2020 American Chemical Society. Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a491t-681f57b263c5b3cf6b8f0385a3ce08ffb37523d3fa2da584581a3f25c23a87dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3858-3841 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8022537 |
PMID | 33842859 |
PQID | 2511899422 |
PQPubID | 23479 |
PageCount | 32 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022537 proquest_miscellaneous_2511899422 pubmed_primary_33842859 crossref_primary_10_1021_acsabm_0c01139 crossref_citationtrail_10_1021_acsabm_0c01139 acs_journals_10_1021_acsabm_0c01139 |
ProviderPackageCode | ACS VG9 ABUCX VF5 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-18 |
PublicationDateYYYYMMDD | 2021-01-18 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS applied bio materials |
PublicationTitleAlternate | ACS Appl. Bio Mater |
PublicationYear | 2021 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | Cameron R. (ref58/cit58) 2008 ref3/cit3 ref81/cit81 ref16/cit16 ref185/cit185 ref23/cit23 ref115/cit115 ref259/cit259 ref187/cit187 ref181/cit181 ref111/cit111 ref255/cit255 ref113/cit113 ref183/cit183 ref257/cit257 ref117/cit117 ref48/cit48 ref74/cit74 ref189/cit189 ref119/cit119 ref35/cit35 ref93/cit93 ref251/cit251 ref253/cit253 ref42/cit42 ref120/cit120 ref178/cit178 ref122/cit122 ref248/cit248 ref61/cit61 ref176/cit176 ref67/cit67 ref128/cit128 ref124/cit124 ref126/cit126 ref54/cit54 ref240/cit240 ref137/cit137 ref11/cit11 Buchanan F. J. (ref55/cit55) 2008 ref102/cit102 ref29/cit29 ref174/cit174 ref86/cit86 ref170/cit170 ref244/cit244 Dahiya R. S. (ref18/cit18) 2015 ref271/cit271 ref5/cit5 ref43/cit43 ref80/cit80 ref133/cit133 ref207/cit207 ref28/cit28 ref203/cit203 ref275/cit275 ref233/cit233 ref148/cit148 ref144/cit144 ref218/cit218 ref167/cit167 ref163/cit163 ref237/cit237 ref66/cit66 ref264/cit264 ref22/cit22 ref260/cit260 ref87/cit87 ref106/cit106 ref190/cit190 ref140/cit140 ref198/cit198 ref214/cit214 ref194/cit194 ref98/cit98 ref210/cit210 ref268/cit268 ref153/cit153 ref227/cit227 ref222/cit222 ref150/cit150 ref63/cit63 ref224/cit224 ref56/cit56 ref155/cit155 ref229/cit229 ref156/cit156 Prestwich G. D. (ref31/cit31) 2013 ref158/cit158 ref8/cit8 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref221/cit221 ref60/cit60 ref17/cit17 ref219/cit219 ref82/cit82 ref147/cit147 ref232/cit232 ref230/cit230 ref145/cit145 Mabilleau G. (ref57/cit57) 2008 ref238/cit238 ref21/cit21 ref166/cit166 ref164/cit164 ref213/cit213 ref78/cit78 ref211/cit211 Elieh-Ali-Komi D. (ref108/cit108) 2016; 4 ref36/cit36 ref83/cit83 ref79/cit79 ref139/cit139 ref172/cit172 ref246/cit246 ref243/cit243 ref270/cit270 ref200/cit200 ref14/cit14 ref169/cit169 ref134/cit134 ref208/cit208 ref40/cit40 ref273/cit273 ref131/cit131 ref205/cit205 ref161/cit161 ref142/cit142 ref216/cit216 Navaraj W. (ref10/cit10) 2020 ref15/cit15 ref180/cit180 ref235/cit235 ref62/cit62 ref41/cit41 ref104/cit104 ref262/cit262 ref177/cit177 ref84/cit84 ref1/cit1 ref123/cit123 ref196/cit196 ref7/cit7 Jiang L. (ref99/cit99) 2017 ref45/cit45 ref52/cit52 ref184/cit184 ref114/cit114 ref258/cit258 ref186/cit186 ref116/cit116 ref110/cit110 ref254/cit254 ref182/cit182 ref2/cit2 ref112/cit112 ref256/cit256 ref77/cit77 ref71/cit71 Singh T. B. (ref173/cit173) 2009 ref188/cit188 ref20/cit20 ref118/cit118 ref89/cit89 ref19/cit19 ref96/cit96 ref191/cit191 ref265/cit265 ref109/cit109 ref13/cit13 ref193/cit193 ref105/cit105 ref261/cit261 ref263/cit263 ref197/cit197 ref38/cit38 ref199/cit199 ref90/cit90 ref267/cit267 ref269/cit269 ref64/cit64 ref6/cit6 ref136/cit136 ref65/cit65 ref171/cit171 ref97/cit97 ref101/cit101 ref245/cit245 ref241/cit241 ref76/cit76 ref32/cit32 ref39/cit39 ref272/cit272 ref202/cit202 ref168/cit168 ref206/cit206 ref132/cit132 ref276/cit276 ref91/cit91 ref252/cit252 ref12/cit12 ref179/cit179 ref121/cit121 ref175/cit175 ref33/cit33 ref249/cit249 ref129/cit129 ref44/cit44 ref70/cit70 ref125/cit125 ref9/cit9 ref152/cit152 ref225/cit225 ref226/cit226 ref154/cit154 ref27/cit27 ref228/cit228 Morin-Crini N. (ref107/cit107) 2019 ref223/cit223 ref151/cit151 ref159/cit159 ref92/cit92 ref157/cit157 ref220/cit220 ref88/cit88 ref160/cit160 ref234/cit234 ref143/cit143 ref217/cit217 ref53/cit53 ref149/cit149 ref162/cit162 Kuzma M. (ref195/cit195) 2020 ref46/cit46 ref236/cit236 ref49/cit49 ref75/cit75 ref24/cit24 ref141/cit141 ref215/cit215 ref50/cit50 ref209/cit209 ref138/cit138 ref100/cit100 ref25/cit25 ref103/cit103 ref247/cit247 ref72/cit72 ref242/cit242 ref201/cit201 ref51/cit51 ref135/cit135 ref68/cit68 ref94/cit94 ref130/cit130 ref274/cit274 ref204/cit204 ref146/cit146 ref26/cit26 ref73/cit73 ref231/cit231 ref69/cit69 ref165/cit165 ref239/cit239 ref250/cit250 ref95/cit95 ref192/cit192 ref266/cit266 ref4/cit4 ref30/cit30 ref212/cit212 ref47/cit47 ref127/cit127 |
References_xml | – ident: ref244/cit244 doi: 10.1002/smll.201901558 – ident: ref39/cit39 doi: 10.1039/C4TB01350F – ident: ref263/cit263 doi: 10.1109/ACCESS.2018.2886780 – ident: ref229/cit229 doi: 10.1038/s41551-018-0300-4 – ident: ref121/cit121 doi: 10.1049/htl.2019.0108 – start-page: 127 volume-title: Applied Plastics Engineering Handbook year: 2017 ident: ref99/cit99 doi: 10.1016/B978-0-323-39040-8.00007-9 – ident: ref80/cit80 doi: 10.1016/j.actbio.2019.01.035 – ident: ref38/cit38 doi: 10.1208/s12249-011-9714-y – ident: ref188/cit188 doi: 10.1088/0034-4885/72/12/126501 – ident: ref250/cit250 doi: 10.1109/JLT.2017.2756095 – ident: ref143/cit143 doi: 10.1038/nmat4624 – ident: ref87/cit87 doi: 10.1016/j.msec.2018.01.007 – ident: ref153/cit153 doi: 10.1063/1.1806283 – ident: ref180/cit180 doi: 10.1021/nl503997m – ident: ref144/cit144 doi: 10.1088/1674-4926/39/1/011003 – ident: ref209/cit209 doi: 10.1038/nature20102 – ident: ref126/cit126 doi: 10.1002/adma.201700172 – ident: ref239/cit239 doi: 10.1021/acsami.9b21739 – ident: ref219/cit219 doi: 10.1039/C3CS60235D – start-page: 245 volume-title: Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems year: 2015 ident: ref18/cit18 doi: 10.1017/CBO9781139629539.023 – ident: ref85/cit85 doi: 10.1038/nmat2542 – ident: ref48/cit48 doi: 10.1002/jbm.b.31568 – ident: ref51/cit51 doi: 10.1016/j.progpolymsci.2007.05.013 – ident: ref132/cit132 doi: 10.1002/adfm.201404535 – ident: ref241/cit241 doi: 10.1126/sciadv.aaw1899 – ident: ref63/cit63 doi: 10.1002/adma.201404579 – ident: ref258/cit258 doi: 10.1126/scirobotics.aaz7946 – ident: ref166/cit166 doi: 10.1016/j.orgel.2013.02.010 – ident: ref171/cit171 doi: 10.1063/1.2197973 – ident: ref64/cit64 doi: 10.1021/acsnano.7b06697 – ident: ref215/cit215 doi: 10.1073/pnas.1119948109 – ident: ref202/cit202 doi: 10.1039/C9TC00709A – ident: ref186/cit186 doi: 10.1088/0022-3727/36/20/L02 – ident: ref167/cit167 doi: 10.1039/c3gc40388b – ident: ref52/cit52 doi: 10.1002/0471440264.pst027.pub2 – ident: ref32/cit32 – ident: ref83/cit83 doi: 10.1186/1743-7075-10-2 – volume: 4 start-page: 411 issue: 3 year: 2016 ident: ref108/cit108 publication-title: Int. J. Adv. Res. – ident: ref256/cit256 doi: 10.1002/adma.201801895 – ident: ref253/cit253 doi: 10.1016/j.sna.2012.08.039 – ident: ref208/cit208 doi: 10.1021/acs.macromol.5b00194 – ident: ref118/cit118 doi: 10.1016/S0142-9612(00)00148-4 – ident: ref40/cit40 doi: 10.3389/fbioe.2014.00023 – ident: ref134/cit134 doi: 10.1126/science.1206157 – ident: ref130/cit130 doi: 10.1023/A:1020200822435 – ident: ref45/cit45 doi: 10.1002/polb.22259 – ident: ref184/cit184 doi: 10.1063/1.371708 – ident: ref223/cit223 doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2 – ident: ref82/cit82 doi: 10.1002/jbm.a.34223 – ident: ref175/cit175 doi: 10.1063/1.2220488 – ident: ref2/cit2 doi: 10.1073/pnas.1407743111 – ident: ref6/cit6 doi: 10.1039/D0RA00016G – ident: ref77/cit77 doi: 10.1016/j.jneumeth.2011.03.012 – ident: ref220/cit220 doi: 10.1002/smll.201700065 – ident: ref226/cit226 doi: 10.1002/adma.201704955 – ident: ref162/cit162 doi: 10.1016/j.matlet.2014.04.003 – ident: ref170/cit170 doi: 10.1038/nphoton.2006.56 – ident: ref12/cit12 doi: 10.1126/science.1226325 – ident: ref44/cit44 doi: 10.21037/jtd.2017.07.104 – ident: ref70/cit70 doi: 10.1002/adfm.201301847 – ident: ref73/cit73 doi: 10.1038/s41467-018-03956-9 – ident: ref252/cit252 doi: 10.1021/acsnano.9b08268 – start-page: 145 volume-title: Degradation Rate of Bioresorbable Materials year: 2008 ident: ref57/cit57 doi: 10.1533/9781845695033.3.145 – ident: ref61/cit61 doi: 10.1021/nn500847g – ident: ref254/cit254 doi: 10.1002/adma.201306304 – ident: ref33/cit33 – ident: ref102/cit102 doi: 10.3390/s18092838 – ident: ref158/cit158 doi: 10.1021/nn103097q – ident: ref264/cit264 doi: 10.1117/1.JBO.20.9.095012 – ident: ref147/cit147 doi: 10.1016/j.sna.2019.05.021 – ident: ref189/cit189 doi: 10.1111/j.1151-2916.1997.tb03245.x – start-page: 29 volume-title: Interfacing Bioelectronics and Biomedical Sensing year: 2020 ident: ref195/cit195 doi: 10.1007/978-3-030-34467-2_2 – ident: ref207/cit207 doi: 10.1021/acscentsci.9b00850 – ident: ref165/cit165 doi: 10.1002/adma.201004071 – ident: ref23/cit23 doi: 10.1021/acscentsci.7b00595 – ident: ref200/cit200 doi: 10.1021/cr0501590 – ident: ref269/cit269 doi: 10.1109/10.664202 – ident: ref205/cit205 doi: 10.1016/j.jbiosc.2016.07.010 – ident: ref43/cit43 doi: 10.1016/j.progpolymsci.2018.05.002 – ident: ref49/cit49 doi: 10.1016/j.progpolymsci.2012.02.001 – ident: ref227/cit227 doi: 10.1002/adma.201702665 – ident: ref26/cit26 doi: 10.1002/adma.201403045 – ident: ref247/cit247 doi: 10.1038/s41551-019-0435-y – ident: ref97/cit97 doi: 10.1002/adma.201800129 – ident: ref193/cit193 doi: 10.1002/adma.201402625 – ident: ref101/cit101 doi: 10.1039/c3ee40492g – ident: ref276/cit276 doi: 10.1109/ACCESS.2018.2859383 – ident: ref91/cit91 doi: 10.1073/pnas.1701478114 – ident: ref74/cit74 doi: 10.1016/j.actbio.2011.11.014 – ident: ref75/cit75 doi: 10.1002/adma.201300226 – ident: ref30/cit30 doi: 10.1038/s41578-019-0150-z – ident: ref228/cit228 doi: 10.1021/acsami.5b06059 – ident: ref156/cit156 doi: 10.1088/0964-1726/22/5/055025 – ident: ref16/cit16 doi: 10.1109/JSEN.2020.2992087 – ident: ref34/cit34 doi: 10.1016/S0142-9612(00)00101-0 – ident: ref65/cit65 doi: 10.1002/adfm.201304293 – ident: ref161/cit161 doi: 10.1016/j.proeng.2014.12.280 – ident: ref172/cit172 doi: 10.1063/1.2378400 – ident: ref201/cit201 doi: 10.1016/j.progpolymsci.2013.09.005 – ident: ref28/cit28 doi: 10.1002/advs.201902872 – ident: ref109/cit109 doi: 10.3389/fbioe.2019.00243 – ident: ref41/cit41 doi: 10.1080/15421406.2012.635982 – ident: ref131/cit131 doi: 10.1016/S1369-703X(03)00040-8 – ident: ref211/cit211 doi: 10.1039/C4SC02073A – ident: ref225/cit225 doi: 10.1002/adma.201204426 – ident: ref233/cit233 doi: 10.1073/pnas.1910343117 – ident: ref112/cit112 doi: 10.1016/j.progpolymsci.2014.02.008 – ident: ref36/cit36 doi: 10.1016/j.progpolymsci.2011.06.004 – ident: ref105/cit105 doi: 10.1002/admt.201600228 – ident: ref42/cit42 doi: 10.1016/j.colsurfb.2015.04.040 – ident: ref216/cit216 doi: 10.1016/j.biomaterials.2009.02.018 – ident: ref182/cit182 doi: 10.1088/0022-3727/37/20/006 – ident: ref14/cit14 doi: 10.1016/j.bioactmat.2017.12.001 – ident: ref81/cit81 doi: 10.1016/j.actbio.2010.02.028 – ident: ref19/cit19 doi: 10.1063/1.3238552 – ident: ref204/cit204 doi: 10.1039/C1JM14168F – ident: ref67/cit67 doi: 10.1557/mrs.2020.25 – ident: ref46/cit46 doi: 10.1016/j.addr.2012.09.004 – ident: ref123/cit123 doi: 10.1002/smtd.201900868 – ident: ref141/cit141 doi: 10.1002/aelm.202000232 – ident: ref128/cit128 doi: 10.1111/j.1541-4337.2010.00126.x – ident: ref88/cit88 doi: 10.1002/adhm.201500002 – ident: ref122/cit122 doi: 10.1039/D0GC00658K – ident: ref222/cit222 doi: 10.1002/elan.200403113 – ident: ref238/cit238 doi: 10.1038/s41467-020-14446-2 – ident: ref35/cit35 doi: 10.3390/ma2020307 – ident: ref90/cit90 doi: 10.1016/j.bios.2016.03.010 – ident: ref164/cit164 doi: 10.1002/adma.201404627 – ident: ref20/cit20 doi: 10.1002/adma.201707624 – ident: ref159/cit159 doi: 10.1038/ncomms8647 – ident: ref194/cit194 doi: 10.1039/C5TC00901D – ident: ref234/cit234 doi: 10.1002/adma.201502535 – ident: ref86/cit86 doi: 10.1002/adma.201306050 – ident: ref136/cit136 doi: 10.1021/acsami.9b16675 – ident: ref176/cit176 doi: 10.1021/cm000869g – ident: ref133/cit133 doi: 10.1021/acs.nanolett.8b04514 – ident: ref150/cit150 doi: 10.1002/adma.201904765 – ident: ref257/cit257 doi: 10.1126/sciadv.1501478 – ident: ref25/cit25 doi: 10.1002/adma.201907254 – ident: ref94/cit94 doi: 10.1038/nmat2745 – ident: ref272/cit272 doi: 10.1126/science.aav7057 – ident: ref221/cit221 doi: 10.1002/adfm.201502592 – ident: ref183/cit183 doi: 10.1088/0953-8984/2/28/011 – ident: ref157/cit157 doi: 10.1039/c0jm00519c – ident: ref163/cit163 doi: 10.1088/0957-4484/25/9/094008 – ident: ref199/cit199 doi: 10.1038/nature02070 – ident: ref181/cit181 doi: 10.1063/1.3674287 – ident: ref71/cit71 doi: 10.1002/adma.201403051 – ident: ref100/cit100 doi: 10.1039/C3EE43024C – ident: ref169/cit169 doi: 10.1038/pj.2012.165 – ident: ref185/cit185 doi: 10.1063/1.366796 – ident: ref214/cit214 doi: 10.1002/adma.201204039 – ident: ref22/cit22 doi: 10.1021/acs.accounts.7b00548 – ident: ref60/cit60 doi: 10.1021/acsami.9b03546 – ident: ref212/cit212 doi: 10.1002/adma.201302652 – ident: ref21/cit21 doi: 10.1021/acs.chemmater.5b04931 – ident: ref160/cit160 doi: 10.1016/0304-3886(82)90052-3 – ident: ref273/cit273 doi: 10.1109/JPROC.2019.2941366 – ident: ref5/cit5 doi: 10.1126/science.1206157 – ident: ref96/cit96 doi: 10.1002/adma.201504736 – ident: ref111/cit111 doi: 10.1093/rb/rbz034 – ident: ref95/cit95 doi: 10.1038/ncomms1767 – ident: ref103/cit103 doi: 10.1021/acsaelm.9b00022 – ident: ref149/cit149 doi: 10.1021/cr9001275 – ident: ref177/cit177 doi: 10.1002/adfm.201001031 – ident: ref142/cit142 doi: 10.1002/adfm.201300127 – ident: ref53/cit53 doi: 10.1002/0471440264.pst027.pub2 – ident: ref89/cit89 doi: 10.1002/mabi.201300156 – ident: ref191/cit191 doi: 10.1002/smll.201801332 – ident: ref24/cit24 doi: 10.3390/ma11112108 – ident: ref115/cit115 doi: 10.1021/acs.jpcb.9b08897 – ident: ref106/cit106 doi: 10.1002/adhm.201900342 – ident: ref179/cit179 doi: 10.1049/el:19950805 – ident: ref274/cit274 doi: 10.1098/rsta.2019.0156 – ident: ref98/cit98 doi: 10.1002/adfm.201808695 – ident: ref174/cit174 doi: 10.1063/1.3278592 – ident: ref203/cit203 doi: 10.1016/j.biomaterials.2003.09.032 – ident: ref245/cit245 doi: 10.1002/adfm.201902771 – ident: ref246/cit246 doi: 10.1021/acsnano.5b00651 – ident: ref248/cit248 doi: 10.34133/2020/8716847 – ident: ref8/cit8 doi: 10.1016/j.bios.2019.111781 – ident: ref72/cit72 doi: 10.1002/smll.201300146 – ident: ref206/cit206 doi: 10.1021/bm300897j – ident: ref197/cit197 doi: 10.1063/1.332406 – ident: ref146/cit146 doi: 10.1016/j.tsf.2009.03.187 – ident: ref145/cit145 doi: 10.1002/adma.200501740 – ident: ref116/cit116 doi: 10.1002/adfm.201090104 – ident: ref155/cit155 doi: 10.1016/j.compscitech.2013.04.004 – ident: ref1/cit1 doi: 10.1038/nature16492 – ident: ref59/cit59 doi: 10.1002/cbic.201402166 – ident: ref66/cit66 doi: 10.1002/adfm.201403469 – ident: ref113/cit113 doi: 10.1021/acsami.8b04291 – ident: ref140/cit140 doi: 10.1038/s41563-020-0699-3 – ident: ref217/cit217 doi: 10.1021/jp0343786 – ident: ref266/cit266 doi: 10.3390/s16060809 – ident: ref267/cit267 doi: 10.1021/acsami.0c07278 – ident: ref76/cit76 doi: 10.1016/S0013-4686(98)00180-7 – start-page: 73 volume-title: Organic Electronics year: 2009 ident: ref173/cit173 doi: 10.1007/12_2009_6 – ident: ref255/cit255 doi: 10.1038/micronano.2015.24 – ident: ref9/cit9 doi: 10.1109/JSEN.2019.2928807 – ident: ref79/cit79 doi: 10.1007/s40204-018-0091-4 – ident: ref265/cit265 doi: 10.1038/nmat4624 – ident: ref231/cit231 doi: 10.1109/JMEMS.2013.2290111 – ident: ref50/cit50 doi: 10.1016/j.jddst.2019.02.007 – ident: ref78/cit78 doi: 10.1109/MEMSYS.1999.746810 – ident: ref13/cit13 doi: 10.1016/S1369-7021(12)70139-6 – ident: ref93/cit93 doi: 10.1016/j.biomaterials.2004.09.020 – ident: ref249/cit249 doi: 10.1364/OL.44.002907 – start-page: 49 volume-title: Sustainable Agriculture Reviews 35 year: 2019 ident: ref107/cit107 doi: 10.1007/978-3-030-16538-3_2 – ident: ref237/cit237 doi: 10.1002/adsu.202000056 – ident: ref110/cit110 doi: 10.1016/j.als.2016.04.001 – ident: ref138/cit138 doi: 10.1063/1.3687398 – ident: ref148/cit148 doi: 10.1126/science.1127798 – ident: ref243/cit243 doi: 10.1002/adfm.201702390 – ident: ref210/cit210 doi: 10.1002/aelm.201600104 – start-page: 195 volume-title: Biomaterials Science year: 2013 ident: ref31/cit31 doi: 10.1016/B978-0-08-087780-8.00022-X – ident: ref129/cit129 doi: 10.1007/s10853-008-3124-x – ident: ref152/cit152 doi: 10.1021/ja052035a – ident: ref271/cit271 doi: 10.1126/science.aah5035 – ident: ref251/cit251 doi: 10.1016/j.foodcont.2020.107350 – ident: ref135/cit135 doi: 10.1039/C9RA09847J – ident: ref178/cit178 doi: 10.1002/adma.201102124 – ident: ref196/cit196 doi: 10.1021/jp0653050 – ident: ref15/cit15 doi: 10.1016/j.bios.2020.112333 – ident: ref259/cit259 doi: 10.1039/C7EE00865A – ident: ref124/cit124 doi: 10.1016/S0927-796X(01)00035-3 – ident: ref68/cit68 doi: 10.1021/acsami.5b02526 – ident: ref69/cit69 doi: 10.1002/adfm.201203088 – ident: ref151/cit151 doi: 10.1021/ja066965l – ident: ref125/cit125 doi: 10.1039/C6TC00678G – ident: ref127/cit127 doi: 10.1002/adma.201401537 – ident: ref114/cit114 doi: 10.1021/acsami.0c13637 – ident: ref240/cit240 doi: 10.1002/smll.201805084 – ident: ref11/cit11 doi: 10.1016/j.bios.2018.02.025 – ident: ref275/cit275 doi: 10.3389/fnins.2017.00501 – ident: ref190/cit190 doi: 10.1002/marc.201800084 – ident: ref224/cit224 doi: 10.1557/mrs2010.583 – ident: ref119/cit119 doi: 10.2147/DDDT.S165440 – ident: ref120/cit120 doi: 10.3390/s20123609 – ident: ref168/cit168 doi: 10.1016/j.jcis.2019.10.003 – ident: ref198/cit198 doi: 10.1002/chem.200701717 – ident: ref84/cit84 doi: 10.1016/j.tibtech.2015.07.008 – ident: ref54/cit54 doi: 10.3390/polym5031115 – ident: ref56/cit56 doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F – ident: ref4/cit4 doi: 10.3390/bios9010014 – ident: ref187/cit187 doi: 10.1088/0953-8984/16/49/021 – ident: ref235/cit235 doi: 10.1002/adfm.201910718 – ident: ref268/cit268 doi: 10.1002/adma.201300920 – ident: ref3/cit3 doi: 10.1109/JPROC.2018.2890729 – ident: ref232/cit232 doi: 10.1073/pnas.1710874115 – ident: ref17/cit17 doi: 10.1080/02688690500495299 – ident: ref154/cit154 doi: 10.1002/adma.201506243 – ident: ref37/cit37 doi: 10.1016/j.polymdegradstab.2011.07.011 – ident: ref29/cit29 doi: 10.1016/j.progpolymsci.2007.05.017 – ident: ref139/cit139 doi: 10.1002/adma.202001591 – ident: ref92/cit92 doi: 10.3390/ijms10041514 – ident: ref262/cit262 doi: 10.1007/s11036-010-0260-8 – ident: ref47/cit47 doi: 10.1016/j.biomaterials.2004.01.037 – ident: ref62/cit62 doi: 10.1002/adma.201304821 – ident: ref270/cit270 doi: 10.1002/admt.201900733 – ident: ref27/cit27 doi: 10.1016/j.eurpolymj.2019.02.005 – volume-title: Degradation rate of bioresorbable materials: prediction and evaluation year: 2008 ident: ref55/cit55 doi: 10.1533/9781845695033 – ident: ref137/cit137 doi: 10.1038/s41928-018-0071-7 – start-page: 133 volume-title: Wearable Bioelectronics year: 2020 ident: ref10/cit10 doi: 10.1016/B978-0-08-102407-2.00006-0 – ident: ref192/cit192 doi: 10.1103/PhysRevLett.39.1098 – ident: ref230/cit230 doi: 10.1038/s41551-018-0336-5 – ident: ref117/cit117 doi: 10.1016/S0378-5173(01)00691-3 – ident: ref7/cit7 doi: 10.1021/acsami.9b21052 – ident: ref236/cit236 doi: 10.1021/acsami.0c07278 – start-page: 43 volume-title: Degradation rate of bioresorbable materials year: 2008 ident: ref58/cit58 doi: 10.1533/9781845695033.2.43 – ident: ref213/cit213 doi: 10.1039/C0JM02444A – ident: ref104/cit104 doi: 10.1021/acssensors.9b01403 – ident: ref218/cit218 doi: 10.3390/electronics3030444 – ident: ref261/cit261 doi: 10.1002/adfm.201905451 – ident: ref242/cit242 doi: 10.1039/C8TC02123F – ident: ref260/cit260 doi: 10.3390/s20123487 |
SSID | ssj0002003189 |
Score | 2.5484147 |
SecondaryResourceType | review_article |
Snippet | The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after... The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 163 |
SubjectTerms | Biocompatible Materials - chemistry Biocompatible Materials - metabolism Biopolymers - chemistry Biopolymers - metabolism Body Temperature Breath Tests Electrodes, Implanted Humans Monitoring, Physiologic - instrumentation Monitoring, Physiologic - methods Pressure Review Semiconductors Sweat - chemistry Sweat - metabolism |
Title | Biodegradable Materials for Sustainable Health Monitoring Devices |
URI | http://dx.doi.org/10.1021/acsabm.0c01139 https://www.ncbi.nlm.nih.gov/pubmed/33842859 https://www.proquest.com/docview/2511899422 https://pubmed.ncbi.nlm.nih.gov/PMC8022537 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCc6L178iF_1KzWaeGKu0EI5zumymMzLXLJbAxTionbGdhf_eoF2nduy6LkvTeD94P14j_cDgBstkZSUCmh877JVCjImQkgop1ybIKGdqE__mfSG4dMoGs3zHcsVfBTccZlz8dFsSYNEzDbBFiJmBVsS1BnU2RTkwGm5riXQ0JBqNFNoXPmFjUMyX4xDK-Ry-Y7kr6DT3S0VkHKnVWjvmrw1p4Voyu9VJcc_x7MHdirm6bdLqOyDDZUdgPb9eJJavYjUtlD5fV6UiPQNl_UH8-Yqv2xX8sstwOYC_QflNplDMOw-vnR6sHpVAfKQBQUkcaAjKhDBMhJYaiJibcuDHEvVirUWmJrDaYo1Ryk39CSKA441iiTCPKapxEegkU0ydQL8lBCkVMSkYmFIURhzKZjQ1DbbYs60B67NaJNqVeSJK3ijICmnIKmmwANw5olEVsLk9n2M97X2t7X9ZynJsdbyaubYxKwaWwrhmZpM88QdrBgzMPHAceno-l_m0B5aWT8P0AUI1AZWkXvxSzZ-dcrctm85wvT0X-M-A9vIXpBpBTCIz0Gj-JqqC8NwCnHpwP0DXKT2ng |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8MgFD7x8qAvXuJtXms08Ym5QlvK47xl6mZM1MS3BijERe2M7V789QLtqpsx0deWEOB8cD44nA-AQy2xlJQKZGzvTqsUYkwEKKKccm2chHaiPr2bqPMQXD2Gj1NwPMqFMY3ITU25C-J_qQv4x-YbF6_NljSAJGwaZg0TwRbS7dO7-lAFO4xaymt5NDLcGo-EGn9UYd2RzMfd0Q-OOXlV8pvvuViE27rV7srJc3NYiKb8mBB0_Ee3lmCh4qFeuwTOMkypbAXaJ_1BatUjUptQ5fV4UeLTM8zWu_tKtfLK5CWvXBDsyaB3ptySswoPF-f3px1UvbGAeMD8AkWxr0MqcERkKIjUkYi1DRZyIlUr1loQaraqKdEcp9yQlTD2OdE4lJjwmKaSrMFMNsjUBnhpFGGlQiYVCwKKg5hLwYSmNvWWcKYbcGB6m1RzJE9c-Bv7STkESTUEDUAjgySykim3r2W8_Fr-qC7_Vgp0_Fpyf2TfxMwhGxjhmRoM88RtsxgzaGnAemnvui6zhQ-syF8D6BgS6gJWn3v8T9Z_cjrdNos5JHTzT_3eg7nOfa-bdC9vrrdgHturMy0f-fE2zBTvQ7VjuE8hdh3ePwE6V_7_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54AfHFXfE27rpWFHzKOE3apnkcdQfvCCr4VpI0QVE7Yjsv_vrNSTt1RxH0tT2EXL7kfMnJ-QKwYzXVmnNF3Nj70ypDhFARSbjk0jonYb2oz_lFcnQTndzGt00eN-bCuEqUrqTSB_FxVj_ntlEYCPfcd6meuj3tQMnENMxizA5h3T-4ag9WqMcp0l7k0sTxazoWa_xQBLokXU66pA888_11yf_8z-AHXLc199dOHrqjSnX16ztRx2827ScsNHw06NcAWoQpUyxBf_9-mKOKRI6JVcG5rGqcBo7hBldvKVdBncQU1AsDnhAGh8YvPctwM_h7fXBEmrcWiIxEWJEkDW3MFU2YjhXTNlGpxaChZNr0UmsV427LmjMraS4daYnTUDJLY02ZTHmu2QrMFMPCrEGQJwk1JhbaiCjiNEqlVkJZjim4TArbgW3X2qyZK2Xmw-A0zOouyJou6AAZD0qmG7lyfDXj8VP73db-uRbq-NRyazzGmZtLGCCRhRmOysxvt4RwiOnAaj3mbVluKx-h2F8H-AQaWgPU6Z78U9zfeb1uzGaOGV__Urs3Ye7ycJCdHV-c_oJ5ijdoeiEJ098wU72MzIajQJX64yH_D3enAZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Materials+for+Sustainable+Health+Monitoring+Devices&rft.jtitle=ACS+applied+bio+materials&rft.au=Hosseini%2C+Ensieh+S&rft.au=Dervin%2C+Saoirse&rft.au=Ganguly%2C+Priyanka&rft.au=Dahiya%2C+Ravinder&rft.date=2021-01-18&rft.eissn=2576-6422&rft.volume=4&rft.issue=1&rft.spage=163&rft_id=info:doi/10.1021%2Facsabm.0c01139&rft_id=info%3Apmid%2F33842859&rft.externalDocID=33842859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon |