Biodegradable Materials for Sustainable Health Monitoring Devices

The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflamma...

Full description

Saved in:
Bibliographic Details
Published inACS applied bio materials Vol. 4; no. 1; pp. 163 - 194
Main Authors Hosseini, Ensieh S, Dervin, Saoirse, Ganguly, Priyanka, Dahiya, Ravinder
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 18.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
AbstractList The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Author Hosseini, Ensieh S
Dahiya, Ravinder
Dervin, Saoirse
Ganguly, Priyanka
AuthorAffiliation Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering
AuthorAffiliation_xml – name: Bendable Electronics and Sensing Technologies (BEST) Group, James Watt School of Engineering
Author_xml – sequence: 1
  givenname: Ensieh S
  surname: Hosseini
  fullname: Hosseini, Ensieh S
– sequence: 2
  givenname: Saoirse
  surname: Dervin
  fullname: Dervin, Saoirse
– sequence: 3
  givenname: Priyanka
  surname: Ganguly
  fullname: Ganguly, Priyanka
– sequence: 4
  givenname: Ravinder
  orcidid: 0000-0002-3858-3841
  surname: Dahiya
  fullname: Dahiya, Ravinder
  email: Ravinder.Dahiya@glasgow.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33842859$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLxDAUhYMovrcupUsRZsyjadON4FthBhfqOtymyRjpJJqkgv_e6IyigquE3O-cG87ZQqvOO43QHsFjgik5AhWhnY-xwoSwZgVtUl5Xo6qkdPXHfQPtxviEMaYYMyKadbTBmCip4M0mOjm1vtOzAB20vS6mkHSw0MfC-FDcDTGBdZ-Taw19eiym3tnkg3Wz4ly_WqXjDlozWaB3l-c2eri8uD-7Hk1ur27OTiYjKBuSRpUghtctrZjiLVOmaoXBTHBgSmNhTMtqTlnHDNAOuCi5IMAM5YoyEHWn2DY6Xvg-D-1cd0q7FKCXz8HOIbxJD1b-njj7KGf-VQpMKWd1NjhYGgT_MuiY5NxGpfsenPZDlJSTnE6TE8vo_s9d30u-csvAeAGo4GMM2nwjBMuPbuSiG7nsJgvKPwJlEyTrP_5q-_9lhwtZfpdPfgguR_wf_A5ZCaKv
CitedBy_id crossref_primary_10_1016_j_envres_2023_116333
crossref_primary_10_1021_acs_chemrev_3c00425
crossref_primary_10_20517_ss_2024_06
crossref_primary_10_1002_pi_6697
crossref_primary_10_3390_polym16050686
crossref_primary_10_1002_admt_202401038
crossref_primary_10_1021_acs_chemrev_3c00301
crossref_primary_10_1002_anbr_202400126
crossref_primary_10_1016_j_ijbiomac_2024_132125
crossref_primary_10_3390_s25010133
crossref_primary_10_1016_j_nanoen_2024_110196
crossref_primary_10_32604_jrm_2024_047022
crossref_primary_10_3390_nano12081295
crossref_primary_10_1016_j_nantod_2023_101945
crossref_primary_10_1002_aisy_202100091
crossref_primary_10_1002_aelm_202101348
crossref_primary_10_1109_LSENS_2023_3281429
crossref_primary_10_1016_j_cej_2024_148772
crossref_primary_10_1038_s41528_025_00385_9
crossref_primary_10_1016_j_snb_2022_132731
crossref_primary_10_1002_advs_202307232
crossref_primary_10_1016_j_measurement_2023_113261
crossref_primary_10_1039_D4TC03256J
crossref_primary_10_1016_j_nanoen_2024_109750
crossref_primary_10_1063_5_0217297
crossref_primary_10_3390_ma16113940
crossref_primary_10_3390_fluids7070238
crossref_primary_10_1002_admt_202100439
crossref_primary_10_1002_adfm_202109492
crossref_primary_10_1039_D3TC01128C
crossref_primary_10_1016_j_talanta_2024_127397
crossref_primary_10_3390_polym15204171
crossref_primary_10_1002_adma_202203193
crossref_primary_10_3390_su17052102
crossref_primary_10_1021_acsapm_2c01366
crossref_primary_10_1016_j_nanoen_2023_108325
crossref_primary_10_1002_adma_202411151
crossref_primary_10_1002_marc_202400475
crossref_primary_10_1021_acssuschemeng_3c03620
crossref_primary_10_1039_D3SC02868B
crossref_primary_10_53759_7669_jmc202404054
crossref_primary_10_20517_ss_2024_09
crossref_primary_10_1016_j_ijbiomac_2023_125333
crossref_primary_10_1021_acssuschemeng_2c00872
crossref_primary_10_3390_coatings12121888
crossref_primary_10_3390_coatings13030486
crossref_primary_10_1109_JIOT_2021_3081772
crossref_primary_10_1016_j_eurpolymj_2021_110861
crossref_primary_10_1002_adma_202401560
crossref_primary_10_1039_D4AY01124D
crossref_primary_10_1007_s00289_022_04565_9
crossref_primary_10_1109_JSEN_2023_3287291
crossref_primary_10_1016_j_apmt_2024_102508
crossref_primary_10_1088_1361_6528_ac8811
crossref_primary_10_1002_adma_202100899
crossref_primary_10_3390_electronics12102270
crossref_primary_10_1002_aelm_202200098
crossref_primary_10_1038_s41467_023_41594_y
crossref_primary_10_3390_s22103880
crossref_primary_10_1016_j_microc_2024_111491
crossref_primary_10_1002_admt_202400450
crossref_primary_10_1016_j_sintl_2022_100171
crossref_primary_10_29026_oea_2023_220020
crossref_primary_10_1002_adfm_202403562
crossref_primary_10_1002_smll_202205598
crossref_primary_10_1016_j_snr_2023_100183
crossref_primary_10_1002_mame_202100978
crossref_primary_10_1088_2399_1984_ad36ff
crossref_primary_10_3390_polym14142875
crossref_primary_10_3390_ijms241210312
crossref_primary_10_1109_TIM_2023_3265746
crossref_primary_10_1002_aisy_202100122
crossref_primary_10_1002_adma_202310505
crossref_primary_10_1016_j_matt_2023_09_017
crossref_primary_10_3390_polym14245551
crossref_primary_10_1021_acs_chemrev_3c00502
crossref_primary_10_1039_D1TA09128J
crossref_primary_10_1016_j_bios_2024_116328
crossref_primary_10_1088_1361_6528_ad32d5
crossref_primary_10_1016_j_eurpolymj_2021_110643
crossref_primary_10_1021_acssensors_3c01512
crossref_primary_10_1021_acsomega_2c06335
crossref_primary_10_1021_acssensors_3c01755
crossref_primary_10_1039_D2TB01475K
crossref_primary_10_1109_JSEN_2021_3073287
crossref_primary_10_1002_adhm_202303797
crossref_primary_10_1039_D3CS00202K
crossref_primary_10_1016_j_sna_2022_113613
crossref_primary_10_1021_acssuschemeng_3c01870
crossref_primary_10_1002_mabi_202100472
crossref_primary_10_2494_photopolymer_36_277
crossref_primary_10_1038_s41598_023_40749_7
crossref_primary_10_1016_j_matchemphys_2022_127081
crossref_primary_10_1002_aesr_202100223
crossref_primary_10_3389_fmats_2022_918890
crossref_primary_10_1021_acssuschemeng_2c07516
crossref_primary_10_1177_19322968221105895
crossref_primary_10_1002_adma_202200724
crossref_primary_10_3390_gels11040220
crossref_primary_10_3390_mi12091036
crossref_primary_10_1016_j_matlet_2023_134814
crossref_primary_10_1039_D3TB01820B
crossref_primary_10_1002_adsu_202300428
crossref_primary_10_1021_acsapm_3c02246
crossref_primary_10_1002_advs_202410289
crossref_primary_10_1021_acsnano_3c11832
crossref_primary_10_1126_sciadv_adg6075
crossref_primary_10_3390_bios15030139
crossref_primary_10_2147_IJN_S429279
crossref_primary_10_1016_j_ijbiomac_2022_10_150
crossref_primary_10_1016_j_tifs_2025_104880
crossref_primary_10_1063_5_0236154
crossref_primary_10_1109_JSEN_2024_3458041
crossref_primary_10_1109_LSENS_2023_3270665
crossref_primary_10_1021_acssensors_4c00015
crossref_primary_10_1002_adma_202211273
crossref_primary_10_1002_admt_202401213
crossref_primary_10_1063_5_0177086
crossref_primary_10_3389_felec_2022_985681
crossref_primary_10_1007_s10338_024_00493_5
crossref_primary_10_1021_acs_chemrev_3c00408
crossref_primary_10_1109_ACCESS_2024_3515274
crossref_primary_10_1016_j_apmt_2021_101257
crossref_primary_10_1016_j_carbpol_2022_119967
crossref_primary_10_1109_JFLEX_2022_3159258
crossref_primary_10_1126_scirobotics_abl7344
crossref_primary_10_1039_D4EM00594E
crossref_primary_10_2196_43871
crossref_primary_10_1002_aisy_202300367
crossref_primary_10_1186_s11671_024_04001_z
crossref_primary_10_1021_acsnano_2c07723
crossref_primary_10_1016_j_carpta_2023_100366
crossref_primary_10_3390_pr12071535
crossref_primary_10_1002_ijch_202100103
crossref_primary_10_1088_2631_7990_ad8735
crossref_primary_10_1021_acssuschemeng_3c05534
crossref_primary_10_1002_aelm_202200170
crossref_primary_10_1002_aisy_202100036
crossref_primary_10_1021_acsami_3c13541
crossref_primary_10_3390_bioengineering11040358
crossref_primary_10_1016_j_nanoen_2023_109196
crossref_primary_10_1016_j_aca_2022_339989
crossref_primary_10_1039_D3QM00964E
crossref_primary_10_1021_acssuschemeng_3c06112
crossref_primary_10_1016_j_ijpharm_2024_124734
crossref_primary_10_1021_acsaelm_4c01257
crossref_primary_10_1002_smtd_202300170
crossref_primary_10_1088_2051_672X_ac5780
crossref_primary_10_1007_s12541_024_01027_2
crossref_primary_10_1021_acsmaterialslett_3c01474
crossref_primary_10_1016_j_jelechem_2022_116592
crossref_primary_10_1002_adfm_202413324
crossref_primary_10_1016_j_trac_2024_117968
crossref_primary_10_1109_JFLEX_2023_3266414
crossref_primary_10_1002_mus_28029
crossref_primary_10_1002_adma_202106787
crossref_primary_10_1016_j_bios_2024_116461
crossref_primary_10_1021_acsaelm_2c01561
Cites_doi 10.1002/smll.201901558
10.1039/C4TB01350F
10.1109/ACCESS.2018.2886780
10.1038/s41551-018-0300-4
10.1049/htl.2019.0108
10.1016/B978-0-323-39040-8.00007-9
10.1016/j.actbio.2019.01.035
10.1208/s12249-011-9714-y
10.1088/0034-4885/72/12/126501
10.1109/JLT.2017.2756095
10.1038/nmat4624
10.1016/j.msec.2018.01.007
10.1063/1.1806283
10.1021/nl503997m
10.1088/1674-4926/39/1/011003
10.1038/nature20102
10.1002/adma.201700172
10.1021/acsami.9b21739
10.1039/C3CS60235D
10.1017/CBO9781139629539.023
10.1038/nmat2542
10.1002/jbm.b.31568
10.1016/j.progpolymsci.2007.05.013
10.1002/adfm.201404535
10.1126/sciadv.aaw1899
10.1002/adma.201404579
10.1126/scirobotics.aaz7946
10.1016/j.orgel.2013.02.010
10.1063/1.2197973
10.1021/acsnano.7b06697
10.1073/pnas.1119948109
10.1039/C9TC00709A
10.1088/0022-3727/36/20/L02
10.1039/c3gc40388b
10.1002/0471440264.pst027.pub2
10.1186/1743-7075-10-2
10.1002/adma.201801895
10.1016/j.sna.2012.08.039
10.1021/acs.macromol.5b00194
10.1016/S0142-9612(00)00148-4
10.3389/fbioe.2014.00023
10.1126/science.1206157
10.1023/A:1020200822435
10.1002/polb.22259
10.1063/1.371708
10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
10.1002/jbm.a.34223
10.1063/1.2220488
10.1073/pnas.1407743111
10.1039/D0RA00016G
10.1016/j.jneumeth.2011.03.012
10.1002/smll.201700065
10.1002/adma.201704955
10.1016/j.matlet.2014.04.003
10.1038/nphoton.2006.56
10.1126/science.1226325
10.21037/jtd.2017.07.104
10.1002/adfm.201301847
10.1038/s41467-018-03956-9
10.1021/acsnano.9b08268
10.1533/9781845695033.3.145
10.1021/nn500847g
10.1002/adma.201306304
10.3390/s18092838
10.1021/nn103097q
10.1117/1.JBO.20.9.095012
10.1016/j.sna.2019.05.021
10.1111/j.1151-2916.1997.tb03245.x
10.1007/978-3-030-34467-2_2
10.1021/acscentsci.9b00850
10.1002/adma.201004071
10.1021/acscentsci.7b00595
10.1021/cr0501590
10.1109/10.664202
10.1016/j.jbiosc.2016.07.010
10.1016/j.progpolymsci.2018.05.002
10.1016/j.progpolymsci.2012.02.001
10.1002/adma.201702665
10.1002/adma.201403045
10.1038/s41551-019-0435-y
10.1002/adma.201800129
10.1002/adma.201402625
10.1039/c3ee40492g
10.1109/ACCESS.2018.2859383
10.1073/pnas.1701478114
10.1016/j.actbio.2011.11.014
10.1002/adma.201300226
10.1038/s41578-019-0150-z
10.1021/acsami.5b06059
10.1088/0964-1726/22/5/055025
10.1109/JSEN.2020.2992087
10.1016/S0142-9612(00)00101-0
10.1002/adfm.201304293
10.1016/j.proeng.2014.12.280
10.1063/1.2378400
10.1016/j.progpolymsci.2013.09.005
10.1002/advs.201902872
10.3389/fbioe.2019.00243
10.1080/15421406.2012.635982
10.1016/S1369-703X(03)00040-8
10.1039/C4SC02073A
10.1002/adma.201204426
10.1073/pnas.1910343117
10.1016/j.progpolymsci.2014.02.008
10.1016/j.progpolymsci.2011.06.004
10.1002/admt.201600228
10.1016/j.colsurfb.2015.04.040
10.1016/j.biomaterials.2009.02.018
10.1088/0022-3727/37/20/006
10.1016/j.bioactmat.2017.12.001
10.1016/j.actbio.2010.02.028
10.1063/1.3238552
10.1039/C1JM14168F
10.1557/mrs.2020.25
10.1016/j.addr.2012.09.004
10.1002/smtd.201900868
10.1002/aelm.202000232
10.1111/j.1541-4337.2010.00126.x
10.1002/adhm.201500002
10.1039/D0GC00658K
10.1002/elan.200403113
10.1038/s41467-020-14446-2
10.3390/ma2020307
10.1016/j.bios.2016.03.010
10.1002/adma.201404627
10.1002/adma.201707624
10.1038/ncomms8647
10.1039/C5TC00901D
10.1002/adma.201502535
10.1002/adma.201306050
10.1021/acsami.9b16675
10.1021/cm000869g
10.1021/acs.nanolett.8b04514
10.1002/adma.201904765
10.1126/sciadv.1501478
10.1002/adma.201907254
10.1038/nmat2745
10.1126/science.aav7057
10.1002/adfm.201502592
10.1088/0953-8984/2/28/011
10.1039/c0jm00519c
10.1088/0957-4484/25/9/094008
10.1038/nature02070
10.1063/1.3674287
10.1002/adma.201403051
10.1039/C3EE43024C
10.1038/pj.2012.165
10.1063/1.366796
10.1002/adma.201204039
10.1021/acs.accounts.7b00548
10.1021/acsami.9b03546
10.1002/adma.201302652
10.1021/acs.chemmater.5b04931
10.1016/0304-3886(82)90052-3
10.1109/JPROC.2019.2941366
10.1002/adma.201504736
10.1093/rb/rbz034
10.1038/ncomms1767
10.1021/acsaelm.9b00022
10.1021/cr9001275
10.1002/adfm.201001031
10.1002/adfm.201300127
10.1002/mabi.201300156
10.1002/smll.201801332
10.3390/ma11112108
10.1021/acs.jpcb.9b08897
10.1002/adhm.201900342
10.1049/el:19950805
10.1098/rsta.2019.0156
10.1002/adfm.201808695
10.1063/1.3278592
10.1016/j.biomaterials.2003.09.032
10.1002/adfm.201902771
10.1021/acsnano.5b00651
10.34133/2020/8716847
10.1016/j.bios.2019.111781
10.1002/smll.201300146
10.1021/bm300897j
10.1063/1.332406
10.1016/j.tsf.2009.03.187
10.1002/adma.200501740
10.1002/adfm.201090104
10.1016/j.compscitech.2013.04.004
10.1038/nature16492
10.1002/cbic.201402166
10.1002/adfm.201403469
10.1021/acsami.8b04291
10.1038/s41563-020-0699-3
10.1021/jp0343786
10.3390/s16060809
10.1021/acsami.0c07278
10.1016/S0013-4686(98)00180-7
10.1007/12_2009_6
10.1038/micronano.2015.24
10.1109/JSEN.2019.2928807
10.1007/s40204-018-0091-4
10.1109/JMEMS.2013.2290111
10.1016/j.jddst.2019.02.007
10.1109/MEMSYS.1999.746810
10.1016/S1369-7021(12)70139-6
10.1016/j.biomaterials.2004.09.020
10.1364/OL.44.002907
10.1007/978-3-030-16538-3_2
10.1002/adsu.202000056
10.1016/j.als.2016.04.001
10.1063/1.3687398
10.1126/science.1127798
10.1002/adfm.201702390
10.1002/aelm.201600104
10.1016/B978-0-08-087780-8.00022-X
10.1007/s10853-008-3124-x
10.1021/ja052035a
10.1126/science.aah5035
10.1016/j.foodcont.2020.107350
10.1039/C9RA09847J
10.1002/adma.201102124
10.1021/jp0653050
10.1016/j.bios.2020.112333
10.1039/C7EE00865A
10.1016/S0927-796X(01)00035-3
10.1021/acsami.5b02526
10.1002/adfm.201203088
10.1021/ja066965l
10.1039/C6TC00678G
10.1002/adma.201401537
10.1021/acsami.0c13637
10.1002/smll.201805084
10.1016/j.bios.2018.02.025
10.3389/fnins.2017.00501
10.1002/marc.201800084
10.1557/mrs2010.583
10.2147/DDDT.S165440
10.3390/s20123609
10.1016/j.jcis.2019.10.003
10.1002/chem.200701717
10.1016/j.tibtech.2015.07.008
10.3390/polym5031115
10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
10.3390/bios9010014
10.1088/0953-8984/16/49/021
10.1002/adfm.201910718
10.1002/adma.201300920
10.1109/JPROC.2018.2890729
10.1073/pnas.1710874115
10.1080/02688690500495299
10.1002/adma.201506243
10.1016/j.polymdegradstab.2011.07.011
10.1016/j.progpolymsci.2007.05.017
10.1002/adma.202001591
10.3390/ijms10041514
10.1007/s11036-010-0260-8
10.1016/j.biomaterials.2004.01.037
10.1002/adma.201304821
10.1002/admt.201900733
10.1016/j.eurpolymj.2019.02.005
10.1533/9781845695033
10.1038/s41928-018-0071-7
10.1016/B978-0-08-102407-2.00006-0
10.1103/PhysRevLett.39.1098
10.1038/s41551-018-0336-5
10.1016/S0378-5173(01)00691-3
10.1021/acsami.9b21052
10.1533/9781845695033.2.43
10.1039/C0JM02444A
10.1021/acssensors.9b01403
10.3390/electronics3030444
10.1002/adfm.201905451
10.1039/C8TC02123F
10.3390/s20123487
ContentType Journal Article
Copyright 2020 American Chemical Society
2020 American Chemical Society.
2020 American Chemical Society 2020 American Chemical Society
Copyright_xml – notice: 2020 American Chemical Society
– notice: 2020 American Chemical Society.
– notice: 2020 American Chemical Society 2020 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1021/acsabm.0c01139
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2576-6422
EndPage 194
ExternalDocumentID PMC8022537
33842859
10_1021_acsabm_0c01139
a082618364
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ABUCX
ACS
ALMA_UNASSIGNED_HOLDINGS
EBS
VF5
VG9
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
AHGAQ
BAANH
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-a491t-681f57b263c5b3cf6b8f0385a3ce08ffb37523d3fa2da584581a3f25c23a87dc3
IEDL.DBID ACS
ISSN 2576-6422
IngestDate Thu Aug 21 17:52:54 EDT 2025
Fri Jul 11 10:03:15 EDT 2025
Wed Feb 19 02:26:23 EST 2025
Thu Apr 24 23:01:50 EDT 2025
Tue Jul 01 04:25:37 EDT 2025
Sun Feb 14 03:10:36 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords sustainable electronics
biodegradable materials
implantable sensors
health monitoring
bioresorbable materials
naturally degrading sensors
Language English
License https://creativecommons.org/licenses/by/4.0
2020 American Chemical Society.
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a491t-681f57b263c5b3cf6b8f0385a3ce08ffb37523d3fa2da584581a3f25c23a87dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3858-3841
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8022537
PMID 33842859
PQID 2511899422
PQPubID 23479
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8022537
proquest_miscellaneous_2511899422
pubmed_primary_33842859
crossref_primary_10_1021_acsabm_0c01139
crossref_citationtrail_10_1021_acsabm_0c01139
acs_journals_10_1021_acsabm_0c01139
ProviderPackageCode ACS
VG9
ABUCX
VF5
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-18
PublicationDateYYYYMMDD 2021-01-18
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-18
  day: 18
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied bio materials
PublicationTitleAlternate ACS Appl. Bio Mater
PublicationYear 2021
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Cameron R. (ref58/cit58) 2008
ref3/cit3
ref81/cit81
ref16/cit16
ref185/cit185
ref23/cit23
ref115/cit115
ref259/cit259
ref187/cit187
ref181/cit181
ref111/cit111
ref255/cit255
ref113/cit113
ref183/cit183
ref257/cit257
ref117/cit117
ref48/cit48
ref74/cit74
ref189/cit189
ref119/cit119
ref35/cit35
ref93/cit93
ref251/cit251
ref253/cit253
ref42/cit42
ref120/cit120
ref178/cit178
ref122/cit122
ref248/cit248
ref61/cit61
ref176/cit176
ref67/cit67
ref128/cit128
ref124/cit124
ref126/cit126
ref54/cit54
ref240/cit240
ref137/cit137
ref11/cit11
Buchanan F. J. (ref55/cit55) 2008
ref102/cit102
ref29/cit29
ref174/cit174
ref86/cit86
ref170/cit170
ref244/cit244
Dahiya R. S. (ref18/cit18) 2015
ref271/cit271
ref5/cit5
ref43/cit43
ref80/cit80
ref133/cit133
ref207/cit207
ref28/cit28
ref203/cit203
ref275/cit275
ref233/cit233
ref148/cit148
ref144/cit144
ref218/cit218
ref167/cit167
ref163/cit163
ref237/cit237
ref66/cit66
ref264/cit264
ref22/cit22
ref260/cit260
ref87/cit87
ref106/cit106
ref190/cit190
ref140/cit140
ref198/cit198
ref214/cit214
ref194/cit194
ref98/cit98
ref210/cit210
ref268/cit268
ref153/cit153
ref227/cit227
ref222/cit222
ref150/cit150
ref63/cit63
ref224/cit224
ref56/cit56
ref155/cit155
ref229/cit229
ref156/cit156
Prestwich G. D. (ref31/cit31) 2013
ref158/cit158
ref8/cit8
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref221/cit221
ref60/cit60
ref17/cit17
ref219/cit219
ref82/cit82
ref147/cit147
ref232/cit232
ref230/cit230
ref145/cit145
Mabilleau G. (ref57/cit57) 2008
ref238/cit238
ref21/cit21
ref166/cit166
ref164/cit164
ref213/cit213
ref78/cit78
ref211/cit211
Elieh-Ali-Komi D. (ref108/cit108) 2016; 4
ref36/cit36
ref83/cit83
ref79/cit79
ref139/cit139
ref172/cit172
ref246/cit246
ref243/cit243
ref270/cit270
ref200/cit200
ref14/cit14
ref169/cit169
ref134/cit134
ref208/cit208
ref40/cit40
ref273/cit273
ref131/cit131
ref205/cit205
ref161/cit161
ref142/cit142
ref216/cit216
Navaraj W. (ref10/cit10) 2020
ref15/cit15
ref180/cit180
ref235/cit235
ref62/cit62
ref41/cit41
ref104/cit104
ref262/cit262
ref177/cit177
ref84/cit84
ref1/cit1
ref123/cit123
ref196/cit196
ref7/cit7
Jiang L. (ref99/cit99) 2017
ref45/cit45
ref52/cit52
ref184/cit184
ref114/cit114
ref258/cit258
ref186/cit186
ref116/cit116
ref110/cit110
ref254/cit254
ref182/cit182
ref2/cit2
ref112/cit112
ref256/cit256
ref77/cit77
ref71/cit71
Singh T. B. (ref173/cit173) 2009
ref188/cit188
ref20/cit20
ref118/cit118
ref89/cit89
ref19/cit19
ref96/cit96
ref191/cit191
ref265/cit265
ref109/cit109
ref13/cit13
ref193/cit193
ref105/cit105
ref261/cit261
ref263/cit263
ref197/cit197
ref38/cit38
ref199/cit199
ref90/cit90
ref267/cit267
ref269/cit269
ref64/cit64
ref6/cit6
ref136/cit136
ref65/cit65
ref171/cit171
ref97/cit97
ref101/cit101
ref245/cit245
ref241/cit241
ref76/cit76
ref32/cit32
ref39/cit39
ref272/cit272
ref202/cit202
ref168/cit168
ref206/cit206
ref132/cit132
ref276/cit276
ref91/cit91
ref252/cit252
ref12/cit12
ref179/cit179
ref121/cit121
ref175/cit175
ref33/cit33
ref249/cit249
ref129/cit129
ref44/cit44
ref70/cit70
ref125/cit125
ref9/cit9
ref152/cit152
ref225/cit225
ref226/cit226
ref154/cit154
ref27/cit27
ref228/cit228
Morin-Crini N. (ref107/cit107) 2019
ref223/cit223
ref151/cit151
ref159/cit159
ref92/cit92
ref157/cit157
ref220/cit220
ref88/cit88
ref160/cit160
ref234/cit234
ref143/cit143
ref217/cit217
ref53/cit53
ref149/cit149
ref162/cit162
Kuzma M. (ref195/cit195) 2020
ref46/cit46
ref236/cit236
ref49/cit49
ref75/cit75
ref24/cit24
ref141/cit141
ref215/cit215
ref50/cit50
ref209/cit209
ref138/cit138
ref100/cit100
ref25/cit25
ref103/cit103
ref247/cit247
ref72/cit72
ref242/cit242
ref201/cit201
ref51/cit51
ref135/cit135
ref68/cit68
ref94/cit94
ref130/cit130
ref274/cit274
ref204/cit204
ref146/cit146
ref26/cit26
ref73/cit73
ref231/cit231
ref69/cit69
ref165/cit165
ref239/cit239
ref250/cit250
ref95/cit95
ref192/cit192
ref266/cit266
ref4/cit4
ref30/cit30
ref212/cit212
ref47/cit47
ref127/cit127
References_xml – ident: ref244/cit244
  doi: 10.1002/smll.201901558
– ident: ref39/cit39
  doi: 10.1039/C4TB01350F
– ident: ref263/cit263
  doi: 10.1109/ACCESS.2018.2886780
– ident: ref229/cit229
  doi: 10.1038/s41551-018-0300-4
– ident: ref121/cit121
  doi: 10.1049/htl.2019.0108
– start-page: 127
  volume-title: Applied Plastics Engineering Handbook
  year: 2017
  ident: ref99/cit99
  doi: 10.1016/B978-0-323-39040-8.00007-9
– ident: ref80/cit80
  doi: 10.1016/j.actbio.2019.01.035
– ident: ref38/cit38
  doi: 10.1208/s12249-011-9714-y
– ident: ref188/cit188
  doi: 10.1088/0034-4885/72/12/126501
– ident: ref250/cit250
  doi: 10.1109/JLT.2017.2756095
– ident: ref143/cit143
  doi: 10.1038/nmat4624
– ident: ref87/cit87
  doi: 10.1016/j.msec.2018.01.007
– ident: ref153/cit153
  doi: 10.1063/1.1806283
– ident: ref180/cit180
  doi: 10.1021/nl503997m
– ident: ref144/cit144
  doi: 10.1088/1674-4926/39/1/011003
– ident: ref209/cit209
  doi: 10.1038/nature20102
– ident: ref126/cit126
  doi: 10.1002/adma.201700172
– ident: ref239/cit239
  doi: 10.1021/acsami.9b21739
– ident: ref219/cit219
  doi: 10.1039/C3CS60235D
– start-page: 245
  volume-title: Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems
  year: 2015
  ident: ref18/cit18
  doi: 10.1017/CBO9781139629539.023
– ident: ref85/cit85
  doi: 10.1038/nmat2542
– ident: ref48/cit48
  doi: 10.1002/jbm.b.31568
– ident: ref51/cit51
  doi: 10.1016/j.progpolymsci.2007.05.013
– ident: ref132/cit132
  doi: 10.1002/adfm.201404535
– ident: ref241/cit241
  doi: 10.1126/sciadv.aaw1899
– ident: ref63/cit63
  doi: 10.1002/adma.201404579
– ident: ref258/cit258
  doi: 10.1126/scirobotics.aaz7946
– ident: ref166/cit166
  doi: 10.1016/j.orgel.2013.02.010
– ident: ref171/cit171
  doi: 10.1063/1.2197973
– ident: ref64/cit64
  doi: 10.1021/acsnano.7b06697
– ident: ref215/cit215
  doi: 10.1073/pnas.1119948109
– ident: ref202/cit202
  doi: 10.1039/C9TC00709A
– ident: ref186/cit186
  doi: 10.1088/0022-3727/36/20/L02
– ident: ref167/cit167
  doi: 10.1039/c3gc40388b
– ident: ref52/cit52
  doi: 10.1002/0471440264.pst027.pub2
– ident: ref32/cit32
– ident: ref83/cit83
  doi: 10.1186/1743-7075-10-2
– volume: 4
  start-page: 411
  issue: 3
  year: 2016
  ident: ref108/cit108
  publication-title: Int. J. Adv. Res.
– ident: ref256/cit256
  doi: 10.1002/adma.201801895
– ident: ref253/cit253
  doi: 10.1016/j.sna.2012.08.039
– ident: ref208/cit208
  doi: 10.1021/acs.macromol.5b00194
– ident: ref118/cit118
  doi: 10.1016/S0142-9612(00)00148-4
– ident: ref40/cit40
  doi: 10.3389/fbioe.2014.00023
– ident: ref134/cit134
  doi: 10.1126/science.1206157
– ident: ref130/cit130
  doi: 10.1023/A:1020200822435
– ident: ref45/cit45
  doi: 10.1002/polb.22259
– ident: ref184/cit184
  doi: 10.1063/1.371708
– ident: ref223/cit223
  doi: 10.1002/1521-3773(20010716)40:14<2581::AID-ANIE2581>3.0.CO;2-2
– ident: ref82/cit82
  doi: 10.1002/jbm.a.34223
– ident: ref175/cit175
  doi: 10.1063/1.2220488
– ident: ref2/cit2
  doi: 10.1073/pnas.1407743111
– ident: ref6/cit6
  doi: 10.1039/D0RA00016G
– ident: ref77/cit77
  doi: 10.1016/j.jneumeth.2011.03.012
– ident: ref220/cit220
  doi: 10.1002/smll.201700065
– ident: ref226/cit226
  doi: 10.1002/adma.201704955
– ident: ref162/cit162
  doi: 10.1016/j.matlet.2014.04.003
– ident: ref170/cit170
  doi: 10.1038/nphoton.2006.56
– ident: ref12/cit12
  doi: 10.1126/science.1226325
– ident: ref44/cit44
  doi: 10.21037/jtd.2017.07.104
– ident: ref70/cit70
  doi: 10.1002/adfm.201301847
– ident: ref73/cit73
  doi: 10.1038/s41467-018-03956-9
– ident: ref252/cit252
  doi: 10.1021/acsnano.9b08268
– start-page: 145
  volume-title: Degradation Rate of Bioresorbable Materials
  year: 2008
  ident: ref57/cit57
  doi: 10.1533/9781845695033.3.145
– ident: ref61/cit61
  doi: 10.1021/nn500847g
– ident: ref254/cit254
  doi: 10.1002/adma.201306304
– ident: ref33/cit33
– ident: ref102/cit102
  doi: 10.3390/s18092838
– ident: ref158/cit158
  doi: 10.1021/nn103097q
– ident: ref264/cit264
  doi: 10.1117/1.JBO.20.9.095012
– ident: ref147/cit147
  doi: 10.1016/j.sna.2019.05.021
– ident: ref189/cit189
  doi: 10.1111/j.1151-2916.1997.tb03245.x
– start-page: 29
  volume-title: Interfacing Bioelectronics and Biomedical Sensing
  year: 2020
  ident: ref195/cit195
  doi: 10.1007/978-3-030-34467-2_2
– ident: ref207/cit207
  doi: 10.1021/acscentsci.9b00850
– ident: ref165/cit165
  doi: 10.1002/adma.201004071
– ident: ref23/cit23
  doi: 10.1021/acscentsci.7b00595
– ident: ref200/cit200
  doi: 10.1021/cr0501590
– ident: ref269/cit269
  doi: 10.1109/10.664202
– ident: ref205/cit205
  doi: 10.1016/j.jbiosc.2016.07.010
– ident: ref43/cit43
  doi: 10.1016/j.progpolymsci.2018.05.002
– ident: ref49/cit49
  doi: 10.1016/j.progpolymsci.2012.02.001
– ident: ref227/cit227
  doi: 10.1002/adma.201702665
– ident: ref26/cit26
  doi: 10.1002/adma.201403045
– ident: ref247/cit247
  doi: 10.1038/s41551-019-0435-y
– ident: ref97/cit97
  doi: 10.1002/adma.201800129
– ident: ref193/cit193
  doi: 10.1002/adma.201402625
– ident: ref101/cit101
  doi: 10.1039/c3ee40492g
– ident: ref276/cit276
  doi: 10.1109/ACCESS.2018.2859383
– ident: ref91/cit91
  doi: 10.1073/pnas.1701478114
– ident: ref74/cit74
  doi: 10.1016/j.actbio.2011.11.014
– ident: ref75/cit75
  doi: 10.1002/adma.201300226
– ident: ref30/cit30
  doi: 10.1038/s41578-019-0150-z
– ident: ref228/cit228
  doi: 10.1021/acsami.5b06059
– ident: ref156/cit156
  doi: 10.1088/0964-1726/22/5/055025
– ident: ref16/cit16
  doi: 10.1109/JSEN.2020.2992087
– ident: ref34/cit34
  doi: 10.1016/S0142-9612(00)00101-0
– ident: ref65/cit65
  doi: 10.1002/adfm.201304293
– ident: ref161/cit161
  doi: 10.1016/j.proeng.2014.12.280
– ident: ref172/cit172
  doi: 10.1063/1.2378400
– ident: ref201/cit201
  doi: 10.1016/j.progpolymsci.2013.09.005
– ident: ref28/cit28
  doi: 10.1002/advs.201902872
– ident: ref109/cit109
  doi: 10.3389/fbioe.2019.00243
– ident: ref41/cit41
  doi: 10.1080/15421406.2012.635982
– ident: ref131/cit131
  doi: 10.1016/S1369-703X(03)00040-8
– ident: ref211/cit211
  doi: 10.1039/C4SC02073A
– ident: ref225/cit225
  doi: 10.1002/adma.201204426
– ident: ref233/cit233
  doi: 10.1073/pnas.1910343117
– ident: ref112/cit112
  doi: 10.1016/j.progpolymsci.2014.02.008
– ident: ref36/cit36
  doi: 10.1016/j.progpolymsci.2011.06.004
– ident: ref105/cit105
  doi: 10.1002/admt.201600228
– ident: ref42/cit42
  doi: 10.1016/j.colsurfb.2015.04.040
– ident: ref216/cit216
  doi: 10.1016/j.biomaterials.2009.02.018
– ident: ref182/cit182
  doi: 10.1088/0022-3727/37/20/006
– ident: ref14/cit14
  doi: 10.1016/j.bioactmat.2017.12.001
– ident: ref81/cit81
  doi: 10.1016/j.actbio.2010.02.028
– ident: ref19/cit19
  doi: 10.1063/1.3238552
– ident: ref204/cit204
  doi: 10.1039/C1JM14168F
– ident: ref67/cit67
  doi: 10.1557/mrs.2020.25
– ident: ref46/cit46
  doi: 10.1016/j.addr.2012.09.004
– ident: ref123/cit123
  doi: 10.1002/smtd.201900868
– ident: ref141/cit141
  doi: 10.1002/aelm.202000232
– ident: ref128/cit128
  doi: 10.1111/j.1541-4337.2010.00126.x
– ident: ref88/cit88
  doi: 10.1002/adhm.201500002
– ident: ref122/cit122
  doi: 10.1039/D0GC00658K
– ident: ref222/cit222
  doi: 10.1002/elan.200403113
– ident: ref238/cit238
  doi: 10.1038/s41467-020-14446-2
– ident: ref35/cit35
  doi: 10.3390/ma2020307
– ident: ref90/cit90
  doi: 10.1016/j.bios.2016.03.010
– ident: ref164/cit164
  doi: 10.1002/adma.201404627
– ident: ref20/cit20
  doi: 10.1002/adma.201707624
– ident: ref159/cit159
  doi: 10.1038/ncomms8647
– ident: ref194/cit194
  doi: 10.1039/C5TC00901D
– ident: ref234/cit234
  doi: 10.1002/adma.201502535
– ident: ref86/cit86
  doi: 10.1002/adma.201306050
– ident: ref136/cit136
  doi: 10.1021/acsami.9b16675
– ident: ref176/cit176
  doi: 10.1021/cm000869g
– ident: ref133/cit133
  doi: 10.1021/acs.nanolett.8b04514
– ident: ref150/cit150
  doi: 10.1002/adma.201904765
– ident: ref257/cit257
  doi: 10.1126/sciadv.1501478
– ident: ref25/cit25
  doi: 10.1002/adma.201907254
– ident: ref94/cit94
  doi: 10.1038/nmat2745
– ident: ref272/cit272
  doi: 10.1126/science.aav7057
– ident: ref221/cit221
  doi: 10.1002/adfm.201502592
– ident: ref183/cit183
  doi: 10.1088/0953-8984/2/28/011
– ident: ref157/cit157
  doi: 10.1039/c0jm00519c
– ident: ref163/cit163
  doi: 10.1088/0957-4484/25/9/094008
– ident: ref199/cit199
  doi: 10.1038/nature02070
– ident: ref181/cit181
  doi: 10.1063/1.3674287
– ident: ref71/cit71
  doi: 10.1002/adma.201403051
– ident: ref100/cit100
  doi: 10.1039/C3EE43024C
– ident: ref169/cit169
  doi: 10.1038/pj.2012.165
– ident: ref185/cit185
  doi: 10.1063/1.366796
– ident: ref214/cit214
  doi: 10.1002/adma.201204039
– ident: ref22/cit22
  doi: 10.1021/acs.accounts.7b00548
– ident: ref60/cit60
  doi: 10.1021/acsami.9b03546
– ident: ref212/cit212
  doi: 10.1002/adma.201302652
– ident: ref21/cit21
  doi: 10.1021/acs.chemmater.5b04931
– ident: ref160/cit160
  doi: 10.1016/0304-3886(82)90052-3
– ident: ref273/cit273
  doi: 10.1109/JPROC.2019.2941366
– ident: ref5/cit5
  doi: 10.1126/science.1206157
– ident: ref96/cit96
  doi: 10.1002/adma.201504736
– ident: ref111/cit111
  doi: 10.1093/rb/rbz034
– ident: ref95/cit95
  doi: 10.1038/ncomms1767
– ident: ref103/cit103
  doi: 10.1021/acsaelm.9b00022
– ident: ref149/cit149
  doi: 10.1021/cr9001275
– ident: ref177/cit177
  doi: 10.1002/adfm.201001031
– ident: ref142/cit142
  doi: 10.1002/adfm.201300127
– ident: ref53/cit53
  doi: 10.1002/0471440264.pst027.pub2
– ident: ref89/cit89
  doi: 10.1002/mabi.201300156
– ident: ref191/cit191
  doi: 10.1002/smll.201801332
– ident: ref24/cit24
  doi: 10.3390/ma11112108
– ident: ref115/cit115
  doi: 10.1021/acs.jpcb.9b08897
– ident: ref106/cit106
  doi: 10.1002/adhm.201900342
– ident: ref179/cit179
  doi: 10.1049/el:19950805
– ident: ref274/cit274
  doi: 10.1098/rsta.2019.0156
– ident: ref98/cit98
  doi: 10.1002/adfm.201808695
– ident: ref174/cit174
  doi: 10.1063/1.3278592
– ident: ref203/cit203
  doi: 10.1016/j.biomaterials.2003.09.032
– ident: ref245/cit245
  doi: 10.1002/adfm.201902771
– ident: ref246/cit246
  doi: 10.1021/acsnano.5b00651
– ident: ref248/cit248
  doi: 10.34133/2020/8716847
– ident: ref8/cit8
  doi: 10.1016/j.bios.2019.111781
– ident: ref72/cit72
  doi: 10.1002/smll.201300146
– ident: ref206/cit206
  doi: 10.1021/bm300897j
– ident: ref197/cit197
  doi: 10.1063/1.332406
– ident: ref146/cit146
  doi: 10.1016/j.tsf.2009.03.187
– ident: ref145/cit145
  doi: 10.1002/adma.200501740
– ident: ref116/cit116
  doi: 10.1002/adfm.201090104
– ident: ref155/cit155
  doi: 10.1016/j.compscitech.2013.04.004
– ident: ref1/cit1
  doi: 10.1038/nature16492
– ident: ref59/cit59
  doi: 10.1002/cbic.201402166
– ident: ref66/cit66
  doi: 10.1002/adfm.201403469
– ident: ref113/cit113
  doi: 10.1021/acsami.8b04291
– ident: ref140/cit140
  doi: 10.1038/s41563-020-0699-3
– ident: ref217/cit217
  doi: 10.1021/jp0343786
– ident: ref266/cit266
  doi: 10.3390/s16060809
– ident: ref267/cit267
  doi: 10.1021/acsami.0c07278
– ident: ref76/cit76
  doi: 10.1016/S0013-4686(98)00180-7
– start-page: 73
  volume-title: Organic Electronics
  year: 2009
  ident: ref173/cit173
  doi: 10.1007/12_2009_6
– ident: ref255/cit255
  doi: 10.1038/micronano.2015.24
– ident: ref9/cit9
  doi: 10.1109/JSEN.2019.2928807
– ident: ref79/cit79
  doi: 10.1007/s40204-018-0091-4
– ident: ref265/cit265
  doi: 10.1038/nmat4624
– ident: ref231/cit231
  doi: 10.1109/JMEMS.2013.2290111
– ident: ref50/cit50
  doi: 10.1016/j.jddst.2019.02.007
– ident: ref78/cit78
  doi: 10.1109/MEMSYS.1999.746810
– ident: ref13/cit13
  doi: 10.1016/S1369-7021(12)70139-6
– ident: ref93/cit93
  doi: 10.1016/j.biomaterials.2004.09.020
– ident: ref249/cit249
  doi: 10.1364/OL.44.002907
– start-page: 49
  volume-title: Sustainable Agriculture Reviews 35
  year: 2019
  ident: ref107/cit107
  doi: 10.1007/978-3-030-16538-3_2
– ident: ref237/cit237
  doi: 10.1002/adsu.202000056
– ident: ref110/cit110
  doi: 10.1016/j.als.2016.04.001
– ident: ref138/cit138
  doi: 10.1063/1.3687398
– ident: ref148/cit148
  doi: 10.1126/science.1127798
– ident: ref243/cit243
  doi: 10.1002/adfm.201702390
– ident: ref210/cit210
  doi: 10.1002/aelm.201600104
– start-page: 195
  volume-title: Biomaterials Science
  year: 2013
  ident: ref31/cit31
  doi: 10.1016/B978-0-08-087780-8.00022-X
– ident: ref129/cit129
  doi: 10.1007/s10853-008-3124-x
– ident: ref152/cit152
  doi: 10.1021/ja052035a
– ident: ref271/cit271
  doi: 10.1126/science.aah5035
– ident: ref251/cit251
  doi: 10.1016/j.foodcont.2020.107350
– ident: ref135/cit135
  doi: 10.1039/C9RA09847J
– ident: ref178/cit178
  doi: 10.1002/adma.201102124
– ident: ref196/cit196
  doi: 10.1021/jp0653050
– ident: ref15/cit15
  doi: 10.1016/j.bios.2020.112333
– ident: ref259/cit259
  doi: 10.1039/C7EE00865A
– ident: ref124/cit124
  doi: 10.1016/S0927-796X(01)00035-3
– ident: ref68/cit68
  doi: 10.1021/acsami.5b02526
– ident: ref69/cit69
  doi: 10.1002/adfm.201203088
– ident: ref151/cit151
  doi: 10.1021/ja066965l
– ident: ref125/cit125
  doi: 10.1039/C6TC00678G
– ident: ref127/cit127
  doi: 10.1002/adma.201401537
– ident: ref114/cit114
  doi: 10.1021/acsami.0c13637
– ident: ref240/cit240
  doi: 10.1002/smll.201805084
– ident: ref11/cit11
  doi: 10.1016/j.bios.2018.02.025
– ident: ref275/cit275
  doi: 10.3389/fnins.2017.00501
– ident: ref190/cit190
  doi: 10.1002/marc.201800084
– ident: ref224/cit224
  doi: 10.1557/mrs2010.583
– ident: ref119/cit119
  doi: 10.2147/DDDT.S165440
– ident: ref120/cit120
  doi: 10.3390/s20123609
– ident: ref168/cit168
  doi: 10.1016/j.jcis.2019.10.003
– ident: ref198/cit198
  doi: 10.1002/chem.200701717
– ident: ref84/cit84
  doi: 10.1016/j.tibtech.2015.07.008
– ident: ref54/cit54
  doi: 10.3390/polym5031115
– ident: ref56/cit56
  doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F
– ident: ref4/cit4
  doi: 10.3390/bios9010014
– ident: ref187/cit187
  doi: 10.1088/0953-8984/16/49/021
– ident: ref235/cit235
  doi: 10.1002/adfm.201910718
– ident: ref268/cit268
  doi: 10.1002/adma.201300920
– ident: ref3/cit3
  doi: 10.1109/JPROC.2018.2890729
– ident: ref232/cit232
  doi: 10.1073/pnas.1710874115
– ident: ref17/cit17
  doi: 10.1080/02688690500495299
– ident: ref154/cit154
  doi: 10.1002/adma.201506243
– ident: ref37/cit37
  doi: 10.1016/j.polymdegradstab.2011.07.011
– ident: ref29/cit29
  doi: 10.1016/j.progpolymsci.2007.05.017
– ident: ref139/cit139
  doi: 10.1002/adma.202001591
– ident: ref92/cit92
  doi: 10.3390/ijms10041514
– ident: ref262/cit262
  doi: 10.1007/s11036-010-0260-8
– ident: ref47/cit47
  doi: 10.1016/j.biomaterials.2004.01.037
– ident: ref62/cit62
  doi: 10.1002/adma.201304821
– ident: ref270/cit270
  doi: 10.1002/admt.201900733
– ident: ref27/cit27
  doi: 10.1016/j.eurpolymj.2019.02.005
– volume-title: Degradation rate of bioresorbable materials: prediction and evaluation
  year: 2008
  ident: ref55/cit55
  doi: 10.1533/9781845695033
– ident: ref137/cit137
  doi: 10.1038/s41928-018-0071-7
– start-page: 133
  volume-title: Wearable Bioelectronics
  year: 2020
  ident: ref10/cit10
  doi: 10.1016/B978-0-08-102407-2.00006-0
– ident: ref192/cit192
  doi: 10.1103/PhysRevLett.39.1098
– ident: ref230/cit230
  doi: 10.1038/s41551-018-0336-5
– ident: ref117/cit117
  doi: 10.1016/S0378-5173(01)00691-3
– ident: ref7/cit7
  doi: 10.1021/acsami.9b21052
– ident: ref236/cit236
  doi: 10.1021/acsami.0c07278
– start-page: 43
  volume-title: Degradation rate of bioresorbable materials
  year: 2008
  ident: ref58/cit58
  doi: 10.1533/9781845695033.2.43
– ident: ref213/cit213
  doi: 10.1039/C0JM02444A
– ident: ref104/cit104
  doi: 10.1021/acssensors.9b01403
– ident: ref218/cit218
  doi: 10.3390/electronics3030444
– ident: ref261/cit261
  doi: 10.1002/adfm.201905451
– ident: ref242/cit242
  doi: 10.1039/C8TC02123F
– ident: ref260/cit260
  doi: 10.3390/s20123487
SSID ssj0002003189
Score 2.5484147
SecondaryResourceType review_article
Snippet The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after...
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 163
SubjectTerms Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
Biopolymers - chemistry
Biopolymers - metabolism
Body Temperature
Breath Tests
Electrodes, Implanted
Humans
Monitoring, Physiologic - instrumentation
Monitoring, Physiologic - methods
Pressure
Review
Semiconductors
Sweat - chemistry
Sweat - metabolism
Title Biodegradable Materials for Sustainable Health Monitoring Devices
URI http://dx.doi.org/10.1021/acsabm.0c01139
https://www.ncbi.nlm.nih.gov/pubmed/33842859
https://www.proquest.com/docview/2511899422
https://pubmed.ncbi.nlm.nih.gov/PMC8022537
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8MgFCc6L178iF_1KzWaeGKu0EI5zumymMzLXLJbAxTionbGdhf_eoF2nduy6LkvTeD94P14j_cDgBstkZSUCmh877JVCjImQkgop1ybIKGdqE__mfSG4dMoGs3zHcsVfBTccZlz8dFsSYNEzDbBFiJmBVsS1BnU2RTkwGm5riXQ0JBqNFNoXPmFjUMyX4xDK-Ry-Y7kr6DT3S0VkHKnVWjvmrw1p4Voyu9VJcc_x7MHdirm6bdLqOyDDZUdgPb9eJJavYjUtlD5fV6UiPQNl_UH8-Yqv2xX8sstwOYC_QflNplDMOw-vnR6sHpVAfKQBQUkcaAjKhDBMhJYaiJibcuDHEvVirUWmJrDaYo1Ryk39CSKA441iiTCPKapxEegkU0ydQL8lBCkVMSkYmFIURhzKZjQ1DbbYs60B67NaJNqVeSJK3ijICmnIKmmwANw5olEVsLk9n2M97X2t7X9ZynJsdbyaubYxKwaWwrhmZpM88QdrBgzMPHAceno-l_m0B5aWT8P0AUI1AZWkXvxSzZ-dcrctm85wvT0X-M-A9vIXpBpBTCIz0Gj-JqqC8NwCnHpwP0DXKT2ng
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT8MgFD7x8qAvXuJtXms08Ym5QlvK47xl6mZM1MS3BijERe2M7V789QLtqpsx0deWEOB8cD44nA-AQy2xlJQKZGzvTqsUYkwEKKKccm2chHaiPr2bqPMQXD2Gj1NwPMqFMY3ITU25C-J_qQv4x-YbF6_NljSAJGwaZg0TwRbS7dO7-lAFO4xaymt5NDLcGo-EGn9UYd2RzMfd0Q-OOXlV8pvvuViE27rV7srJc3NYiKb8mBB0_Ee3lmCh4qFeuwTOMkypbAXaJ_1BatUjUptQ5fV4UeLTM8zWu_tKtfLK5CWvXBDsyaB3ptySswoPF-f3px1UvbGAeMD8AkWxr0MqcERkKIjUkYi1DRZyIlUr1loQaraqKdEcp9yQlTD2OdE4lJjwmKaSrMFMNsjUBnhpFGGlQiYVCwKKg5hLwYSmNvWWcKYbcGB6m1RzJE9c-Bv7STkESTUEDUAjgySykim3r2W8_Fr-qC7_Vgp0_Fpyf2TfxMwhGxjhmRoM88RtsxgzaGnAemnvui6zhQ-syF8D6BgS6gJWn3v8T9Z_cjrdNos5JHTzT_3eg7nOfa-bdC9vrrdgHturMy0f-fE2zBTvQ7VjuE8hdh3ePwE6V_7_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD54AfHFXfE27rpWFHzKOE3apnkcdQfvCCr4VpI0QVE7Yjsv_vrNSTt1RxH0tT2EXL7kfMnJ-QKwYzXVmnNF3Nj70ypDhFARSbjk0jonYb2oz_lFcnQTndzGt00eN-bCuEqUrqTSB_FxVj_ntlEYCPfcd6meuj3tQMnENMxizA5h3T-4ag9WqMcp0l7k0sTxazoWa_xQBLokXU66pA888_11yf_8z-AHXLc199dOHrqjSnX16ztRx2827ScsNHw06NcAWoQpUyxBf_9-mKOKRI6JVcG5rGqcBo7hBldvKVdBncQU1AsDnhAGh8YvPctwM_h7fXBEmrcWiIxEWJEkDW3MFU2YjhXTNlGpxaChZNr0UmsV427LmjMraS4daYnTUDJLY02ZTHmu2QrMFMPCrEGQJwk1JhbaiCjiNEqlVkJZjim4TArbgW3X2qyZK2Xmw-A0zOouyJou6AAZD0qmG7lyfDXj8VP73db-uRbq-NRyazzGmZtLGCCRhRmOysxvt4RwiOnAaj3mbVluKx-h2F8H-AQaWgPU6Z78U9zfeb1uzGaOGV__Urs3Ye7ycJCdHV-c_oJ5ijdoeiEJ098wU72MzIajQJX64yH_D3enAZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biodegradable+Materials+for+Sustainable+Health+Monitoring+Devices&rft.jtitle=ACS+applied+bio+materials&rft.au=Hosseini%2C+Ensieh+S&rft.au=Dervin%2C+Saoirse&rft.au=Ganguly%2C+Priyanka&rft.au=Dahiya%2C+Ravinder&rft.date=2021-01-18&rft.eissn=2576-6422&rft.volume=4&rft.issue=1&rft.spage=163&rft_id=info:doi/10.1021%2Facsabm.0c01139&rft_id=info%3Apmid%2F33842859&rft.externalDocID=33842859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2576-6422&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2576-6422&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2576-6422&client=summon