The Physics of Foraging An Introduction to Random Searches and Biological Encounters

Do the movements of animals, including humans, follow patterns that can be described quantitatively by simple laws of motion? If so, then why? These questions have attracted the attention of scientists in many disciplines, and stimulated debates ranging from ecological matters to queries such as �...

Full description

Saved in:
Bibliographic Details
Main Authors Viswanathan, Gandhimohan. M., da Luz, Marcos G. E., Raposo, Ernesto P., Stanley, H. Eugene
Format eBook Book
LanguageEnglish
Published Cambridge Cambridge University Press 2011
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Environmentally induced superdiffusion -- Conspecific avoidance -- Chemotactically driven superdiffusion -- Internally generated superdiffusion -- Feedback with long-range memory -- Decision-based queuing -- Neurophysiological mechanisms -- 14.3 Determinism, randomness, and free will -- 14.4 Globally optimum random searches -- 14.5 Final remarks -- Empirical data: State of the art -- Epilogue: The main challenges for the future -- Appendix A: Data analysis -- A.1 A criterion for inferring superdiffusion -- A.2 Log-log plots and surrounding controversies -- A.3 Maximum likelihood estimation -- Appendix B: Levy walkers inside absorbing boundaries -- References -- Index
  • 7.3 GPS tracking of humans -- 7.4 Fishermen as foragers -- 7.5 Austronesians in Madagascar -- 8 How strong is the evidence? -- 8.1 Measurement and data analysis -- 8.2 Special issues related to power laws -- 8.3 Anomalous diffusion: Not if, but when and why -- Part III: Theory of foraging -- 9 Optimizing encounter rates -- 9.1 A general theory of searchers and targets -- 9.2 A limiting but general model of optimal foraging -- 9.3 Random walk propagators and encounter rates -- 10 Levy flight foraging -- 10.1 The Levy flight foraging hypothesis -- 10.2 Analytical and numerical results -- Destructive and nondestructive foraging -- Generalization to regenerative targets -- 10.3 Discrete versus continuous media -- Random search on lattices and networks -- Efficient navigation in a small world -- 10.4 Energy and entropy -- Energy -- Entropy, information, and patchiness -- 11 Other search models -- 11.1 Correlated random walks with a single scale -- Levy-modulated CRWs and correlated Levy walks -- 11.2 Intermittent searches with two scales -- Scale-free intermittent searches -- 11.3 A unified approach -- Part IV: Finale: A broader context -- 12 Superdiffusive random searches -- 12.1 Submarine warfare and operations research -- 12.2 Enzymatic searches on DNA -- 12.3 Robot foraging -- 12.4 Eye microsaccades -- 12.5 Learning, memory, and databases -- 12.6 Genetically modified crops and disease vectors -- 13 Adaptational versus emergent superdiffusion -- 13.1 Are Levy walks really adaptive? -- 13.2 Self-organization and emergence -- 13.3 Deterministic induction of Levy behavior -- 13.4 Why the answer is crucial -- 14 Perspectives and open problems -- 14.1 The flavor of foraging research -- Foraging on the edge of extinction -- Levy searches on small-world networks -- Variations on a theme -- 14.2 Biological mechanisms underlying superdiffusion
  • Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- Part I: Introduction: Movement -- 1 Empirical motivation for studying movement -- 1.1 How do organisms really move, and why? -- 1.2 Biological encounters as a reaction-diffusion process -- 1.3 Impact and scientific importance -- 1.4 Follow the data -- 1.5 Beyond model comparison -- 2 Statistical physics of biological motion -- 2.1 Optimal foraging theory -- 2.2 Microscopic versus macroscopic levels of description -- 2.3 Disorder and incomplete information -- 2.4 Scaling and universality -- 2.5 The extraordinary success of limiting models -- 3 Random walks and Levy flights -- 3.1 Central limit theorems -- 3.2 Normal diffusion and Brownian motion -- 3.3 Anomalous diffusion -- Subdiffusion and superdiffusion -- Anomalous diffusion with H=1/2 -- Generalized Hurst exponents -- Mathematical formalisms for anomalous diffusion -- 3.4 Levy flights and Levy walks -- 4 The wandering albatross -- 4.1 Do good theories always come from good data? -- 4.2 Levy flights of the wandering albatross -- 4.3 Power laws and Pareto's principle -- 4.4 Scientific progress as a random walk -- Part II: Experimental findings -- 5 Early studies -- 5.1 Fickian transport -- 5.2 Directional persistence -- 5.3 A new idea: Levy flights and walks -- 6 Evidence of anomalous diffusion -- 6.1 Arthropods and mollusks -- Honey bees, fruit flies, and desert ants -- Butterflies and moths -- Root-feeding insects -- Snails -- 6.2 Marine and aquatic animals -- Sharks -- Gray seals -- Stream fish -- Bony fish, sharks, sea turtles, and penguins -- 6.3 Mammals -- Reindeer -- Deer -- Jackals -- Spider monkeys -- Elephants -- Goats -- 6.4 Micro-organisms -- Dinoflagellates -- 6.5 Birds -- 7 Human dispersal -- 7.1 Hunter-gatherers and archaeological evidence -- 7.2 Levy flights of dollar bills