Mechanism of Ligand Binding to Theophylline RNA Aptamer
Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the th...
Saved in:
Published in | Journal of chemical information and modeling Vol. 64; no. 3; pp. 1017 - 1029 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
12.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the theophylline-binding RNA as a model system. All-atom simulations using a Ligand Gaussian accelerated Molecular Dynamics method (LiGaMD) have captured repetitive binding and dissociation of theophylline and caffeine to RNA. Theophylline’s binding free energy and kinetic rate constants align with our experimental data, while caffeine’s binding affinity is over 10,000 times weaker, and its kinetics could not be determined. LiGaMD simulations allowed us to identify distinct low-energy conformations and multiple ligand binding pathways to RNA. Simulations revealed a “conformational selection” mechanism for ligand binding to the flexible RNA aptamer, which provides important mechanistic insights into ligand binding to the theophylline-binding model. Our findings suggest that compound docking using a structural ensemble of representative RNA conformations would be necessary for structure-based drug design of flexible RNA. |
---|---|
AbstractList | Not provided. Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the theophylline-binding RNA as a model system. All-atom simulations using a Ligand Gaussian accelerated Molecular Dynamics method (LiGaMD) have captured repetitive binding and dissociation of theophylline and caffeine to RNA. Theophylline's binding free energy and kinetic rate constants align with our experimental data, while caffeine's binding affinity is over 10,000 times weaker, and its kinetics could not be determined. LiGaMD simulations allowed us to identify distinct low-energy conformations and multiple ligand binding pathways to RNA. Simulations revealed a "conformational selection" mechanism for ligand binding to the flexible RNA aptamer, which provides important mechanistic insights into ligand binding to the theophylline-binding model. Our findings suggest that compound docking using a structural ensemble of representative RNA conformations would be necessary for structure-based drug design of flexible RNA. Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the theophylline-binding RNA as a model system. All-atom simulations using a Ligand Gaussian accelerated Molecular Dynamics method (LiGaMD) have captured repetitive binding and dissociation of theophylline and caffeine to RNA. Theophylline's binding free energy and kinetic rate constants align with our experimental data, while caffeine's binding affinity is over 10,000 times weaker, and its kinetics could not be determined. LiGaMD simulations allowed us to identify distinct low-energy conformations and multiple ligand binding pathways to RNA. Simulations revealed a "conformational selection" mechanism for ligand binding to the flexible RNA aptamer, which provides important mechanistic insights into ligand binding to the theophylline-binding model. Our findings suggest that compound docking using a structural ensemble of representative RNA conformations would be necessary for structure-based drug design of flexible RNA.Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we combined biochemical binding assays and accelerated molecular simulations to investigate ligand binding and dissociation in RNA using the theophylline-binding RNA as a model system. All-atom simulations using a Ligand Gaussian accelerated Molecular Dynamics method (LiGaMD) have captured repetitive binding and dissociation of theophylline and caffeine to RNA. Theophylline's binding free energy and kinetic rate constants align with our experimental data, while caffeine's binding affinity is over 10,000 times weaker, and its kinetics could not be determined. LiGaMD simulations allowed us to identify distinct low-energy conformations and multiple ligand binding pathways to RNA. Simulations revealed a "conformational selection" mechanism for ligand binding to the flexible RNA aptamer, which provides important mechanistic insights into ligand binding to the theophylline-binding model. Our findings suggest that compound docking using a structural ensemble of representative RNA conformations would be necessary for structure-based drug design of flexible RNA. |
Author | Tang, Zhichao Wang, Jingxin Miao, Yinglong Haboro, Mercy Holmstrom, Erik D Wang, Jinan Akhter, Sana |
AuthorAffiliation | Computational Biology Program and Department of Molecular Biosciences Department of Molecular Biosciences and Department of Chemistry Department of Medicinal Chemistry |
AuthorAffiliation_xml | – name: Department of Medicinal Chemistry – name: Computational Biology Program and Department of Molecular Biosciences – name: Department of Molecular Biosciences and Department of Chemistry |
Author_xml | – sequence: 1 givenname: Sana surname: Akhter fullname: Akhter, Sana organization: Computational Biology Program and Department of Molecular Biosciences – sequence: 2 givenname: Zhichao surname: Tang fullname: Tang, Zhichao organization: Department of Medicinal Chemistry – sequence: 3 givenname: Jinan orcidid: 0000-0003-0162-212X surname: Wang fullname: Wang, Jinan organization: Computational Biology Program and Department of Molecular Biosciences – sequence: 4 givenname: Mercy surname: Haboro fullname: Haboro, Mercy organization: Department of Medicinal Chemistry – sequence: 5 givenname: Erik D orcidid: 0000-0003-2624-0806 surname: Holmstrom fullname: Holmstrom, Erik D organization: Department of Molecular Biosciences and Department of Chemistry – sequence: 6 givenname: Jingxin orcidid: 0000-0002-9414-4093 surname: Wang fullname: Wang, Jingxin email: wang.jingxin@ku.edu organization: Department of Medicinal Chemistry – sequence: 7 givenname: Yinglong orcidid: 0000-0003-3714-1395 surname: Miao fullname: Miao, Yinglong email: Yinglong_Miao@med.unc.edu organization: Computational Biology Program and Department of Molecular Biosciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38226603$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2581479$$D View this record in Osti.gov |
BookMark | eNp9kc1rGzEQxUVJaT6ae09lSS851O5IWn2dihOStuC2UFLoTcharS2zKzkrOZD_PnJthzTQnDQwvzd6M-8YHYQYHELvMIwxEPzJ2DReWt-PqQVcs_oVOsKsViPF4c_BvmaKH6LjlJYAlCpO3qBDKgnhHOgREt-dXZjgU1_Ftpr6uQlNdeFD48O8yrG6Wbi4Wtx3nQ-u-vVjUk1W2fRueItet6ZL7nT3nqDf11c3l19H059fvl1OpiNTS5VHjQWKJZNUgHRECYaFBNrimSTKAiPKtMpaVTsiZlxYbhtjDEjWMkMdZS09QZ-3c1frWe8a60IeTKdXg-_NcK-j8frfTvALPY93GmNgErgoE862E2LKXifrc9nYxhCczZowiWuhCnS--2aIt2uXsu59sq7rTHBxnTRRmDGBKeCCfniGLuN6COUIhSIcK2CUF-r9U9-PhveXLwBsATvElAbXPiIY9CZcXcLVm3D1Ltwi4c8kZRmTfdxs7ruXhB-3wr-dvdv_4g_2y7fP |
CitedBy_id | crossref_primary_10_1021_acs_jctc_4c00773 |
Cites_doi | 10.1038/nrd3141 10.1021/ja028383j 10.1016/j.bbagen.2014.08.004 10.1021/acscentsci.2c00149 10.1109/WCCAIS.2014.6916622 10.1063/1.1942487 10.1021/acs.jctc.2c01085 10.1016/j.biotechadv.2014.11.011 10.1080/15476286.2016.1274853 10.1038/srep10658 10.1021/acs.jctc.0c00395 10.1073/pnas.2213117119 10.1021/acssynbio.9b00475 10.1021/acs.jctc.0c00194 10.1371/journal.pone.0176229 10.1038/s41419-022-05075-2 10.1021/ct500918t 10.1021/acs.jpcb.6b02654 10.1063/1.445869 10.1021/acs.jpclett.0c01390 10.1063/1.3432761 10.1038/nrd.2018.93 10.1021/acs.jcim.0c01390 10.1073/pnas.1103547108 10.1002/jcc.10349 10.1093/nar/gkab602 10.1021/jp8001614 10.1038/nsb0902-646 10.1063/5.0019056 10.1016/0263-7855(96)00018-5 10.1177/2472555219885373 10.1063/1.5024217 10.1021/ct400341p 10.1021/acs.jctc.2c01194 10.1073/pnas.1104614108 10.1038/s41598-018-35266-x 10.1021/ct1005399 10.1002/wcms.1521 10.1063/1.5083227 10.1038/d41573-020-00078-0 10.1017/S1355838200000169 10.1038/nsb0897-644 10.1021/acs.jctc.3c00641 10.1002/minf.201501018 10.1016/j.bpj.2018.02.038 10.1002/wcms.1121 10.1007/978-1-4939-7000-1_26 10.1021/ct900200k 10.1126/science.7510417 10.1021/ct200162x 10.1073/pnas.221593598 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society Feb 12, 2024 |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Feb 12, 2024 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
DOI | 10.1021/acs.jcim.3c01454 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Computer Science |
EISSN | 1549-960X |
EndPage | 1029 |
ExternalDocumentID | PMC11058067 2581479 38226603 10_1021_acs_jcim_3c01454 b822024883 |
Genre | Journal Article |
GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI ABFRP ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABLBI CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a489t-dc0318583708e297517803f1b829c0529af9cc94e27b67c6cdaaa085f5a3e35f3 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Thu Aug 21 18:34:32 EDT 2025 Mon Aug 25 02:20:59 EDT 2025 Fri Jul 11 00:46:05 EDT 2025 Mon Jun 30 08:58:33 EDT 2025 Mon Jul 21 05:16:26 EDT 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 03:04:56 EDT 2025 Tue Feb 13 03:17:19 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a489t-dc0318583708e297517803f1b829c0529af9cc94e27b67c6cdaaa085f5a3e35f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE AC02-05CH11231 None |
ORCID | 0000-0003-3714-1395 0000-0003-2624-0806 0000-0002-9414-4093 0000-0003-0162-212X 0000000294144093 0000000337141395 000000030162212X 0000000326240806 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/11058067 |
PMID | 38226603 |
PQID | 2926190536 |
PQPubID | 28739 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11058067 osti_scitechconnect_2581479 proquest_miscellaneous_2915571301 proquest_journals_2926190536 pubmed_primary_38226603 crossref_primary_10_1021_acs_jcim_3c01454 crossref_citationtrail_10_1021_acs_jcim_3c01454 acs_journals_10_1021_acs_jcim_3c01454 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-02-12 |
PublicationDateYYYYMMDD | 2024-02-12 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J. Chem. Inf. Model |
PublicationYear | 2024 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref17/cit17 ref10/cit10 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref19/cit19a ref24/cit24 ref38/cit38 ref35/cit35a ref6/cit6 ref36/cit36 ref35/cit35c ref19/cit19b ref35/cit35b ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref18/cit18b ref18/cit18a ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref10/cit10 doi: 10.1038/nrd3141 – ident: ref27/cit27 doi: 10.1021/ja028383j – ident: ref18/cit18a doi: 10.1016/j.bbagen.2014.08.004 – ident: ref15/cit15 doi: 10.1021/acscentsci.2c00149 – ident: ref39/cit39 doi: 10.1109/WCCAIS.2014.6916622 – ident: ref26/cit26 doi: 10.1063/1.1942487 – ident: ref42/cit42 doi: 10.1021/acs.jctc.2c01085 – ident: ref5/cit5 doi: 10.1016/j.biotechadv.2014.11.011 – ident: ref47/cit47 doi: 10.1080/15476286.2016.1274853 – ident: ref46/cit46 doi: 10.1038/srep10658 – ident: ref6/cit6 doi: 10.1021/acs.jctc.0c00395 – ident: ref2/cit2 doi: 10.1073/pnas.2213117119 – ident: ref11/cit11 doi: 10.1021/acssynbio.9b00475 – ident: ref34/cit34 doi: 10.1021/acs.jctc.0c00194 – ident: ref12/cit12 doi: 10.1371/journal.pone.0176229 – ident: ref8/cit8 doi: 10.1038/s41419-022-05075-2 – ident: ref35/cit35b doi: 10.1021/ct500918t – ident: ref25/cit25 doi: 10.1021/acs.jpcb.6b02654 – ident: ref33/cit33 doi: 10.1063/1.445869 – ident: ref16/cit16 doi: 10.1021/acs.jpclett.0c01390 – ident: ref38/cit38 doi: 10.1063/1.3432761 – ident: ref9/cit9 doi: 10.1038/nrd.2018.93 – ident: ref35/cit35c doi: 10.1021/acs.jcim.0c01390 – ident: ref21/cit21 doi: 10.1073/pnas.1103547108 – ident: ref18/cit18b doi: 10.1002/jcc.10349 – ident: ref17/cit17 doi: 10.1093/nar/gkab602 – ident: ref35/cit35a doi: 10.1021/jp8001614 – ident: ref4/cit4 doi: 10.1038/nsb0902-646 – ident: ref31/cit31 doi: 10.1063/5.0019056 – ident: ref36/cit36 doi: 10.1016/0263-7855(96)00018-5 – ident: ref3/cit3 doi: 10.1177/2472555219885373 – ident: ref23/cit23 doi: 10.1063/1.5024217 – ident: ref37/cit37 doi: 10.1021/ct400341p – ident: ref20/cit20 doi: 10.1021/acs.jctc.2c01194 – ident: ref19/cit19a doi: 10.1073/pnas.1104614108 – ident: ref19/cit19b doi: 10.1038/s41598-018-35266-x – ident: ref24/cit24 doi: 10.1021/ct1005399 – ident: ref14/cit14 doi: 10.1002/wcms.1521 – ident: ref45/cit45 doi: 10.1063/1.5083227 – ident: ref7/cit7 doi: 10.1038/d41573-020-00078-0 – ident: ref28/cit28 doi: 10.1017/S1355838200000169 – ident: ref13/cit13 doi: 10.1038/nsb0897-644 – ident: ref43/cit43 doi: 10.1021/acs.jctc.3c00641 – ident: ref22/cit22 doi: 10.1002/minf.201501018 – ident: ref44/cit44 doi: 10.1016/j.bpj.2018.02.038 – ident: ref32/cit32 doi: 10.1002/wcms.1121 – ident: ref41/cit41 doi: 10.1007/978-1-4939-7000-1_26 – ident: ref29/cit29 doi: 10.1021/ct900200k – ident: ref40/cit40 doi: 10.1126/science.7510417 – ident: ref30/cit30 doi: 10.1021/ct200162x – ident: ref1/cit1 doi: 10.1073/pnas.221593598 |
SSID | ssj0033962 |
Score | 2.4358764 |
Snippet | Studying RNA-ligand interactions and quantifying their binding thermodynamics and kinetics are of particular relevance in the field of drug discovery. Here, we... Not provided. |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1017 |
SubjectTerms | Binding Caffeine Chemistry Computer Science Free energy Kinetics Ligands Molecular dynamics Pharmaceutical Modeling Pharmacology & Pharmacy Rate constants Simulation Theophylline |
Title | Mechanism of Ligand Binding to Theophylline RNA Aptamer |
URI | http://dx.doi.org/10.1021/acs.jcim.3c01454 https://www.ncbi.nlm.nih.gov/pubmed/38226603 https://www.proquest.com/docview/2926190536 https://www.proquest.com/docview/2915571301 https://www.osti.gov/biblio/2581479 https://pubmed.ncbi.nlm.nih.gov/PMC11058067 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcCllGdDHzISHDhkG9uJYx-3K6oK0R6ASr1Fju1AgE2qJnvh1zPjTbZsqapeYzuyPTP2NxrPN4S8M-BzSOmT2DtnYvA3WKwdmHtVKm205dKEKhGnZ_LkPP10kV1c0-TcjOBzdmhsN_1p68VUWAyBpQ_JIy7BhhEGzb-Op64QOhQPRcaxWGd6DEne9ge8iGy3cRFNWjCo20DmzbeS_1w-x09XVYy6wFmIb05-TZd9ObV__md0vMe6tsnWgEHpbKU0z8gD3zwnj-dj6bcXJD_1mBBcdwvaVvRz_d00jh7VIQGG9i3FhH4QD9J5e_rlbEZnl71Z-KuX5Pz447f5STxUWIhNqnQfO4s2nSEBjvKYY8tylYiKlYprizFAU2lrdep5XsrcSuuMMQDSqswIL7JKvCKTpm38DqE8sZUUzksPEI0xWyonyrRUqXI6rXITkfew4mKwkK4IwW_OivARtqEYtiEih6NYCjvQlGO1jN93jPiwHnG5oui4o-8uSroAeIEcuRYfE9m-4Jliaa4jsjcqwPVEuUYnE84qGZG362YQCEZWTOPbJfYBWAbufsIi8nqlL-upCIBgUiYiImpDk9YdkOB7s6WpfwSib4BmmQI48eaee7dLnnDAXHGoV7NHJv3V0u8DZurLg2AsfwHXFRAe |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V5VAu5U1DCwQJDhyyTeLEsY_LimqB3T2UVuotchynBNikarIXfj0z3iRlq6qCq1-yPTP2Z43nG4B3Ct8cnBvfM3muPHxvBJ7M0dyLTEgldciVzRKxWPLZWfTlPD7fgaCPhcFJNDhSY5341-wCwRGV_dDlasw0ecKie3AfsUhISj2ZfusPX8akzSFKxGOejGXvmbxtBLqPdLN1H41qtKvbsObNL5N_3UHHD-FkmL39evJzvG6zsf59g9jxv5b3CPY6ROpONir0GHZM9QR2p30iuKeQLAyFB5fNyq0Ld15eqCp3P5Y2HMZta5fC-1FYRO5t3JPlxJ1ctmplrp7B2fGn0-nM6_IteCoSsvVyTRYeEx2OMBRxGyTCZ0WQiVBq8giqQmotIxMmGU8017lSCiFbEStmWFyw5zCq6srsgxv6uuAsN9wgYAsCnYmcZVEmIpHLqEiUA-9xxWlnL01qXeFhkNpC3Ia02wYHjnrppLojLafcGb_u6PFh6HG5Iey4o-0BCTxFsEGMuZq-Fuk2DWMRRIl04LDXg-uJhpKenHhycQfeDtUoEPKzqMrUa2qDIA0f_37gwIuN2gxTYQjIOPeZA2JLoYYGRPe9XVOV3y3tNwK1WCC4ePmPe_cGdmeni3k6_7z8egAPQkRjns1kcwij9mptXiGaarPX1n7-AKQ6GH8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VRQIuvAuhBYIEBw7ZbuLEsY_LwqpAu0JAUW-RYzsQYJNVk73w65nxJoGtqgqufsn2zNifNZ5vAJ4rfHNwbieBNUYF-N4IA2nQ3ItcSCV1xJXLEnG84Icn8bvT5HQHkj4WBifR4EiNc-KTVa9M0TEMhAdU_l2XyzHT5A2Lr8BV8tqRYk9nn_oDmDHp8ogS-VggE9l7Jy8age4k3WzdSaMabesivHn-2-Rf99D8FnwZVuC-n_wYr9t8rH-dI3f87yXehpsdMvWnG1W6Azu2ugvXZ31CuHuQHlsKEy6bpV8X_lH5VVXGf1W6sBi_rX0K80ehEcm39T8upv501aqlPbsPJ_M3n2eHQZd3IVCxkG1gNFl6QrQ4wlLkbZiKCSvCXERSk2dQFVJrGdsozXmquTZKKYRuRaKYZUnBdmFU1ZV9CH400QVnxnKLwC0MdS4My-NcxMLIuEiVBy9wxVlnN03mXOJRmLlC3Ias2wYPDnoJZbojL6ccGj8v6fFy6LHaEHdc0naPhJ4h6CDmXE1fjHSbRYkI41R6sN_rwp-JRpKenniCcQ-eDdUoEPK3qMrWa2qDYC1FkBB68GCjOsNUGAIzzifMA7GlVEMDov3erqnKb47-GwFbIhBkPPrHvXsK1z68nmdHbxfv9-BGhKAscAlt9mHUnq3tYwRVbf7EmdBvs14bAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanism+of+Ligand+Binding+to+Theophylline+RNA+Aptamer&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Akhter%2C+Sana&rft.au=Tang%2C+Zhichao&rft.au=Wang%2C+Jinan&rft.au=Haboro%2C+Mercy&rft.date=2024-02-12&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=64&rft.issue=3&rft.spage=1017&rft.epage=1029&rft_id=info:doi/10.1021%2Facs.jcim.3c01454&rft.externalDocID=b822024883 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |