Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation

Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 15; no. 1; p. e0212523
Main Authors Chong, Trisha N., Panjalingam, Mayura, Saurabh, Saumya, Shapiro, Lucy
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 16.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC P er- A rnt- S im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation. The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro . PleC mutants that are unable to bind PodJ have increased kinase activity in vivo , resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
AbstractList The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity . PleC mutants that are unable to bind PodJ have increased kinase activity , resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the cell cycle.
Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC P er- A rnt- S im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation. The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro . PleC mutants that are unable to bind PodJ have increased kinase activity in vivo , resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC P er- A rnt- S im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation.
Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC Per-Arnt-Sim (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
ABSTRACTCell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC Per-Arnt-Sim (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.
Author Saurabh, Saumya
Chong, Trisha N.
Shapiro, Lucy
Panjalingam, Mayura
Author_xml – sequence: 1
  givenname: Trisha N.
  orcidid: 0000-0002-0888-8441
  surname: Chong
  fullname: Chong, Trisha N.
  organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
– sequence: 2
  givenname: Mayura
  surname: Panjalingam
  fullname: Panjalingam, Mayura
  organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
– sequence: 3
  givenname: Saumya
  orcidid: 0000-0002-7524-7548
  surname: Saurabh
  fullname: Saurabh, Saumya
  organization: Department of Chemistry, New York University, New York, New York, USA
– sequence: 4
  givenname: Lucy
  orcidid: 0000-0003-2591-8013
  surname: Shapiro
  fullname: Shapiro, Lucy
  organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38055339$$D View this record in MEDLINE/PubMed
BookMark eNp1kctvFSEUxompsbV26dbM0phM5XFhYGVM46NJE13ompwB5l6uM3AFRtP-9WXubU1rlA0n8J3feXzP0VGIwSH0kuBzQqh8O_U-nmNKKG8pe4JOKOG47TghRw_iY3SW8xbXwxiRDD9Dx0xizhlTJ0h_3cS820CB7JoSmx8-LFH-7YvZNHFooDHJF29gbFy4uZ5cY2IoyfdzcXnJKH7yYb1IjRvHxvphcMmF4qH4GF6gpwOM2Z3d3afo-8cP3y4-t1dfPl1evL9qYSVVaaFTEiviJJbCKiEGKyReGctWMKyYdEZYaxXvuh5bRwYB3Ik6ALW0ViMG2Cm6PHBthK3eJT9ButYRvN4_xLTWkOoYo9OSUtUJajve85W0RFLcA8OdtVxWsqisdwfWbu4nZ00dJsH4CPr4J_iNXsdfmuBOYaFoJby-I6T4c3a56MnnZT0QXJyzplIp1lEmSZW-OUghT1Rv45xC3VNF6cVhvTis9w5ryqr41cPO_rR072cVsIPApJhzcoM2vuyNqI368b_Y9q-se_C_9bfsg8TI
CitedBy_id crossref_primary_10_1038_s41467_024_53395_y
crossref_primary_10_1128_mbio_00758_24
Cites_doi 10.1126/science.173.4000.884
10.1073/pnas.1920143117
10.1146/annurev.mi.44.100190.003353
10.1093/emboj/cdf454
10.1046/j.1365-2443.1997.d01-311.x
10.1128/mBio.03266-20
10.1371/journal.pone.0018179
10.1038/s41467-022-35000-2
10.1016/j.devcel.2011.01.007
10.1128/br.28.3.231-295.1964
10.1016/j.cell.2004.08.019
10.1371/journal.pbio.1001979
10.1073/pnas.1614795113
10.1074/jbc.R115.711507
10.1111/j.1365-2958.2010.07088.x
10.1073/pnas.1808543115
10.1038/nature14473
10.1038/nmicrobiol.2016.77
10.1111/j.1365-2958.2005.04935.x
10.1128/jb.176.24.7587-7600.1994
10.1073/pnas.1920291117
10.1038/sj.emboj.7600935
10.1016/s1097-2765(00)80379-2
10.1021/cb800025k
10.1074/mcp.T500024-MCP200
10.1073/pnas.95.1.120
10.1016/j.molcel.2012.03.023
10.1111/j.1365-2958.2004.04443.x
10.1016/j.bpj.2016.03.028
10.1371/journal.pgen.1003744
10.7554/eLife.03587
10.1128/JB.183.17.5001-5007.2001
10.1111/j.1365-2958.2012.08055.x
10.1128/JB.00607-10
10.1073/pnas.182411999
10.1038/nmeth.2019
10.1073/pnas.97.14.7808
10.1038/s41467-022-33221-z
10.1016/j.cell.2015.09.030
10.1371/journal.pgen.1004831
10.1038/ncomms11454
10.1038/s41564-019-0647-7
10.1126/science.aan5353
10.1371/journal.pcbi.1004862
10.1128/ecosalplus.ESP-0001-2019
10.1101/gad.289504
10.1016/j.ab.2008.02.004
10.1016/j.cell.2008.02.045
10.1126/sciadv.abm6570
10.1128/jb.179.18.5849-5853.1997
10.1093/emboj/19.13.3223
10.1046/j.1365-2958.2003.03344.x
10.1016/0022-2836(72)90090-3
10.1016/j.devcel.2021.06.014
10.1038/s41467-017-02310-9
10.1126/science.aan5706
10.1016/j.str.2009.08.011
10.1073/pnas.062065699
10.1073/pnas.0807448105
10.1038/s41467-020-14585-6
10.1016/j.jbc.2022.101683
10.1016/j.ymeth.2016.09.016
10.1016/j.jmb.2009.05.007
10.1128/JB.00345-20
10.1126/science.1188658
10.1074/jbc.M704702200
10.1046/j.1365-2958.2003.03349.x
10.1073/pnas.1012388108
ContentType Journal Article
Copyright Copyright © 2023 Chong et al.
Copyright © 2023 Chong et al. 2023 Chong et al.
Copyright_xml – notice: Copyright © 2023 Chong et al.
– notice: Copyright © 2023 Chong et al. 2023 Chong et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.02125-23
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Hiller, N. Luisa
Editor_xml – sequence: 1
  givenname: N. Luisa
  surname: Hiller
  fullname: Hiller, N. Luisa
ExternalDocumentID oai_doaj_org_article_8229762d75b548d1820ba307dd58f6a6
PMC10790692
02125-23
38055339
10_1128_mbio_02125_23
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM118071
– fundername: Chan Zuckerberg Initiative (CZI)
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R35-GM118071
– fundername: National Science Foundation (NSF)
  grantid: NSFGRFP
– fundername: ;
– fundername: ;
  grantid: NSFGRFP
– fundername: ;
  grantid: R35-GM118071
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-a489t-a798091e8086d966fd6804cd34af438ec6ddd9577b0de1f6a5e65332d2ffe1ca3
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:21:43 EDT 2025
Thu Aug 21 18:35:43 EDT 2025
Fri Jul 11 15:20:44 EDT 2025
Tue Jan 16 18:22:09 EST 2024
Wed Feb 19 02:10:47 EST 2025
Tue Jul 01 00:57:44 EDT 2025
Thu Apr 24 22:50:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords PAS domain
cell differentiation
histidine kinase
phosphatase
two-component systems
Caulobacter
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a489t-a798091e8086d966fd6804cd34af438ec6ddd9577b0de1f6a5e65332d2ffe1ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-0888-8441
0000-0003-2591-8013
0000-0002-7524-7548
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02125-23
PMID 38055339
PQID 2899372381
PQPubID 23479
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_8229762d75b548d1820ba307dd58f6a6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10790692
proquest_miscellaneous_2899372381
asm2_journals_10_1128_mbio_02125_23
pubmed_primary_38055339
crossref_citationtrail_10_1128_mbio_02125_23
crossref_primary_10_1128_mbio_02125_23
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-16
PublicationDateYYYYMMDD 2024-01-16
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-16
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2024
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_9_2
Weiss V (e_1_3_4_54_2) 2002; 4
e_1_3_4_63_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_69_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_65_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_70_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_60_2
e_1_3_4_62_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
e_1_3_4_18_2
e_1_3_4_39_2
Schrader, JM, Li, G-W, Childers, WS, Perez, AM, Weissman, JS, Shapiro, L, McAdams, HH (B48) 2016; 113
Hershey, DM, Fiebig, A, Crosson, S (B11) 2021; 12
Tan, W, Cheng, S, Li, Y, Li, XY, Lu, N, Sun, J, Tang, G, Yang, Y, Cai, K, Li, X, Ou, X, Gao, X, Zhao, GP, Childers, WS, Zhao, W (B62) 2022; 13
Joshi, KK, Bergé, M, Radhakrishnan, SK, Viollier, PH, Chien, P (B4) 2015; 163
Möglich, A, Ayers, RA, Moffat, K (B63) 2009; 17
Britos, L, Abeliuk, E, Taverner, T, Lipton, M, McAdams, H, Shapiro, L (B67) 2011; 6
Tsokos, CG, Perchuk, BS, Laub, MT (B8) 2011; 20
Coppine, J, Kaczmarczyk, A, Petit, K, Brochier, T, Jenal, U, Hallez, R (B21) 2020; 202
Kenney, LJ, Anand, GS (B52) 2020; 9
Hug, I, Deshpande, S, Sprecher, KS, Pfohl, T, Jenal, U (B13) 2017; 358
Quon, KC, Yang, B, Domian, IJ, Shapiro, L, Marczynski, GT (B39) 1998; 95
Upadhyay, AA, Fleetwood, AD, Adebali, O, Finn, RD, Zhulin, IB (B23) 2016; 12
Zhou, B, Schrader, JM, Kalogeraki, VS, Abeliuk, E, Dinh, CB, Pham, JQ, Cui, ZZ, Dill, DL, McAdams, HH, Shapiro, L, Casadesús, J (B32) 2015; 11
Tsai, JW, Alley, MRK (B37) 2001; 183
Weiss, V, Kramer, G, Dünnebier, T, Flotho, A (B53) 2002; 4
Guzzo, M, Sanderlin, AG, Castro, LK, Laub, MT (B30) 2021; 56
Wheeler, RT, Shapiro, L (B6) 1999; 4
Saurabh, S, Chong, TN, Bayas, C, Dahlberg, PD, Cartwright, HN, Moerner, WE, Shapiro, L (B59) 2022; 8
Guerrero-Ferreira, RC, Viollier, PH, Ely, B, Poindexter, JS, Georgieva, M, Jensen, GJ, Wright, ER (B45) 2011; 108
Plate, L, Marletta, MA (B57) 2012; 46
Ardissone, S, Fumeaux, C, Bergé, M, Beaussart, A, Théraulaz, L, Radhakrishnan, SK, Dufrêne, YF, Viollier, PH (B35) 2014; 3
Paul, R, Jaeger, T, Abel, S, Wiederkehr, I, Folcher, M, Biondi, EG, Laub, MT, Jenal, U (B5) 2008; 133
Newton, A, Ohta, N (B2) 1990; 44
Tinevez, JY, Perry, N, Schindelin, J, Hoopes, GM, Reynolds, GD, Laplantine, E, Bednarek, SY, Shorte, SL, Eliceiri, KW (B36) 2017; 115
Egger, LA, Park, H, Inouye, M (B50) 1997; 2
Matroule, JY, Lam, H, Burnette, DT, Jacobs-Wagner, C (B7) 2004; 118
Ramakrishnan, G, Zhao, JL, Newton, A (B34) 1994; 176
Barbieri, CM, Stock, AM (B25) 2008; 376
Childers, WS, Xu, Q, Mann, TH, Mathews, II, Blair, JA, Deacon, AM, Shapiro, L, Stock, AM (B42) 2014; 12
Laub, MT, Chen, SL, Shapiro, L, McAdams, HH (B44) 2002; 99
Christen, M, Kulasekara, HD, Christen, B, Kulasekara, BR, Hoffman, LR, Miller, SI (B64) 2010; 328
Valentini, M, Filloux, A (B27) 2016; 291
Poindexter, JS (B66) 1964; 28
Kinoshita, E, Kinoshita-Kikuta, E, Takiyama, K, Koike, T (B26) 2006; 5
Alves, R, Savageau, MA (B58) 2003; 48
Chen, JC, Hottes, AK, McAdams, HH, McGrath, PT, Viollier, PH, Shapiro, L (B18) 2006; 25
Del Medico, L, Cerletti, D, Schächle, P, Christen, M, Christen, B (B10) 2020; 117
Bowman, GR, Comolli, LR, Gaietta, GM, Fero, M, Hong, SH, Jones, Y, Lee, JH, Downing, KH, Ellisman, MH, McAdams, HH, Shapiro, L (B38) 2010; 76
Liu, Y, Rose, J, Huang, S, Hu, Y, Wu, Q, Wang, D, Li, C, Liu, M, Zhou, P, Jiang, L (B51) 2017; 8
Shapiro, L, Agabian-Keshishian, N, Bendis, I (B1) 1971; 173
Zhang, C, Zhao, W, Duvall, SW, Kowallis, KA, Childers, WS (B17) 2022; 298
Toro, E, Hong, SH, McAdams, HH, Shapiro, L (B41) 2008; 105
Lori, C, Ozaki, S, Steiner, S, Böhm, R, Abel, S, Dubey, BN, Schirmer, T, Hiller, S, Jenal, U (B55) 2015; 523
Viollier, PH, Sternheim, N, Shapiro, L (B22) 2002; 21
Mann, TH, Seth Childers, W, Blair, JA, Eckart, MR, Shapiro, L (B54) 2016; 7
Los, GV, Encell, LP, McDougall, MG, Hartzell, DD, Karassina, N, Zimprich, C, Wood, MG, Learish, R, Ohana, RF, Urh, M, Simpson, D, Mendez, J, Zimmerman, K, Otto, P, Vidugiris, G, Zhu, J, Darzins, A, Klaubert, DH, Bulleit, RF, Wood, KV (B19) 2008; 3
Groban, ES, Clarke, EJ, Salis, HM, Miller, SM, Voigt, CA (B56) 2009; 390
Mann, TH, Shapiro, L (B43) 2018; 115
Kaczmarczyk, A, Hempel, AM, von Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B47) 2020; 11
Lasker, K, von Diezmann, L, Zhou, X, Ahrens, DG, Mann, TH, Moerner, WE, Shapiro, L (B65) 2020; 5
Zhu, Y, Qin, L, Yoshida, T, Inouye, M (B49) 2000; 97
Lasker, K, Boeynaems, S, Lam, V, Scholl, D, Stainton, E, Briner, A, Jacquemyn, M, Daelemans, D, Deniz, A, Villa, E, Holehouse, AS, Gitler, AD, Shapiro, L (B60) 2022; 13
Degnen, ST, Newton, A (B14) 1972; 64
Viollier, PH, Sternheim, N, Shapiro, L (B20) 2002; 99
Ducret, A, Quardokus, EM, Brun, YV (B69) 2016; 1
Morse, M, Colin, R, Wilson, LG, Tang, JX (B33) 2016; 110
Burton, GJ, Hecht, GB, Newton, A (B29) 1997; 179
Yeh, YC, Comolli, LR, Downing, KH, Shapiro, L, McAdams, HH (B40) 2010; 192
Paul, R, Abel, S, Wassmann, P, Beck, A, Heerklotz, H, Jenal, U (B24) 2007; 282
Lawler, ML, Larson, DE, Hinz, AJ, Klein, D, Brun, YV (B16) 2006; 59
Snyder, RA, Ellison, CK, Severin, GB, Whitfield, GB, Waters, CM, Brun, YV (B9) 2020; 117
Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, JY, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A (B68) 2012; 9
Skerker, JM, Shapiro, L (B46) 2000; 19
Ellison, CK, Kan, J, Dillard, RS, Kysela, DT, Ducret, A, Berne, C, Hampton, CM, Ke, Z, Wright, ER, Biais, N, Dalia, AB, Brun, YV (B12) 2017; 358
Hinz, AJ, Larson, DE, Smith, CS, Brun, YV (B15) 2003; 47
Curtis, PD, Quardokus, EM, Lawler, ML, Guo, X, Klein, D, Chen, JC, Arnold, RJ, Brun, YV (B31) 2012; 84
Chen, JC, Viollier, PH, Shapiro, L (B61) 2005; 55
Paul, R, Weiser, S, Amiot, NC, Chan, C, Schirmer, T, Giese, B, Jenal, U (B3) 2004; 18
Abel, S, Bucher, T, Nicollier, M, Hug, I, Kaever, V, Abel Zur Wiesch, P, Jenal, U (B28) 2013; 9
References_xml – ident: e_1_3_4_2_2
  doi: 10.1126/science.173.4000.884
– ident: e_1_3_4_11_2
  doi: 10.1073/pnas.1920143117
– ident: e_1_3_4_3_2
  doi: 10.1146/annurev.mi.44.100190.003353
– ident: e_1_3_4_23_2
  doi: 10.1093/emboj/cdf454
– ident: e_1_3_4_51_2
  doi: 10.1046/j.1365-2443.1997.d01-311.x
– ident: e_1_3_4_12_2
  doi: 10.1128/mBio.03266-20
– volume: 4
  start-page: 229
  year: 2002
  ident: e_1_3_4_54_2
  article-title: Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli
  publication-title: J Mol Microbiol Biotechnol
– ident: e_1_3_4_68_2
  doi: 10.1371/journal.pone.0018179
– ident: e_1_3_4_63_2
  doi: 10.1038/s41467-022-35000-2
– ident: e_1_3_4_9_2
  doi: 10.1016/j.devcel.2011.01.007
– ident: e_1_3_4_67_2
  doi: 10.1128/br.28.3.231-295.1964
– ident: e_1_3_4_8_2
  doi: 10.1016/j.cell.2004.08.019
– ident: e_1_3_4_43_2
  doi: 10.1371/journal.pbio.1001979
– ident: e_1_3_4_49_2
  doi: 10.1073/pnas.1614795113
– ident: e_1_3_4_28_2
  doi: 10.1074/jbc.R115.711507
– ident: e_1_3_4_39_2
  doi: 10.1111/j.1365-2958.2010.07088.x
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1808543115
– ident: e_1_3_4_56_2
  doi: 10.1038/nature14473
– ident: e_1_3_4_70_2
  doi: 10.1038/nmicrobiol.2016.77
– ident: e_1_3_4_17_2
  doi: 10.1111/j.1365-2958.2005.04935.x
– ident: e_1_3_4_35_2
  doi: 10.1128/jb.176.24.7587-7600.1994
– ident: e_1_3_4_10_2
  doi: 10.1073/pnas.1920291117
– ident: e_1_3_4_19_2
  doi: 10.1038/sj.emboj.7600935
– ident: e_1_3_4_7_2
  doi: 10.1016/s1097-2765(00)80379-2
– ident: e_1_3_4_20_2
  doi: 10.1021/cb800025k
– ident: e_1_3_4_27_2
  doi: 10.1074/mcp.T500024-MCP200
– ident: e_1_3_4_40_2
  doi: 10.1073/pnas.95.1.120
– ident: e_1_3_4_58_2
  doi: 10.1016/j.molcel.2012.03.023
– ident: e_1_3_4_62_2
  doi: 10.1111/j.1365-2958.2004.04443.x
– ident: e_1_3_4_34_2
  doi: 10.1016/j.bpj.2016.03.028
– ident: e_1_3_4_29_2
  doi: 10.1371/journal.pgen.1003744
– ident: e_1_3_4_36_2
  doi: 10.7554/eLife.03587
– ident: e_1_3_4_38_2
  doi: 10.1128/JB.183.17.5001-5007.2001
– ident: e_1_3_4_32_2
  doi: 10.1111/j.1365-2958.2012.08055.x
– ident: e_1_3_4_41_2
  doi: 10.1128/JB.00607-10
– ident: e_1_3_4_21_2
  doi: 10.1073/pnas.182411999
– ident: e_1_3_4_69_2
  doi: 10.1038/nmeth.2019
– ident: e_1_3_4_50_2
  doi: 10.1073/pnas.97.14.7808
– ident: e_1_3_4_61_2
  doi: 10.1038/s41467-022-33221-z
– ident: e_1_3_4_5_2
  doi: 10.1016/j.cell.2015.09.030
– ident: e_1_3_4_33_2
  doi: 10.1371/journal.pgen.1004831
– ident: e_1_3_4_55_2
  doi: 10.1038/ncomms11454
– ident: e_1_3_4_66_2
  doi: 10.1038/s41564-019-0647-7
– ident: e_1_3_4_14_2
  doi: 10.1126/science.aan5353
– ident: e_1_3_4_24_2
  doi: 10.1371/journal.pcbi.1004862
– ident: e_1_3_4_53_2
  doi: 10.1128/ecosalplus.ESP-0001-2019
– ident: e_1_3_4_4_2
  doi: 10.1101/gad.289504
– ident: e_1_3_4_26_2
  doi: 10.1016/j.ab.2008.02.004
– ident: e_1_3_4_6_2
  doi: 10.1016/j.cell.2008.02.045
– ident: e_1_3_4_60_2
  doi: 10.1126/sciadv.abm6570
– ident: e_1_3_4_30_2
  doi: 10.1128/jb.179.18.5849-5853.1997
– ident: e_1_3_4_47_2
  doi: 10.1093/emboj/19.13.3223
– ident: e_1_3_4_59_2
  doi: 10.1046/j.1365-2958.2003.03344.x
– ident: e_1_3_4_15_2
  doi: 10.1016/0022-2836(72)90090-3
– ident: e_1_3_4_31_2
  doi: 10.1016/j.devcel.2021.06.014
– ident: e_1_3_4_52_2
  doi: 10.1038/s41467-017-02310-9
– ident: e_1_3_4_13_2
  doi: 10.1126/science.aan5706
– ident: e_1_3_4_64_2
  doi: 10.1016/j.str.2009.08.011
– ident: e_1_3_4_45_2
  doi: 10.1073/pnas.062065699
– ident: e_1_3_4_42_2
  doi: 10.1073/pnas.0807448105
– ident: e_1_3_4_48_2
  doi: 10.1038/s41467-020-14585-6
– ident: e_1_3_4_18_2
  doi: 10.1016/j.jbc.2022.101683
– ident: e_1_3_4_37_2
  doi: 10.1016/j.ymeth.2016.09.016
– ident: e_1_3_4_57_2
  doi: 10.1016/j.jmb.2009.05.007
– ident: e_1_3_4_22_2
  doi: 10.1128/JB.00345-20
– ident: e_1_3_4_65_2
  doi: 10.1126/science.1188658
– ident: e_1_3_4_25_2
  doi: 10.1074/jbc.M704702200
– ident: e_1_3_4_16_2
  doi: 10.1046/j.1365-2958.2003.03349.x
– ident: e_1_3_4_46_2
  doi: 10.1073/pnas.1012388108
– volume: 6
  year: 2011
  ident: B67
  article-title: Regulatory response to carbon starvation in Caulobacter crescentus
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018179
– volume: 95
  start-page: 120
  year: 1998
  end-page: 125
  ident: B39
  article-title: Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.95.1.120
– volume: 9
  year: 2013
  ident: B28
  article-title: Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003744
– volume: 59
  start-page: 301
  year: 2006
  end-page: 316
  ident: B16
  article-title: Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04935.x
– volume: 8
  year: 2022
  ident: B59
  article-title: ATP-responsive biomolecular condensates tune bacterial kinase signaling
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abm6570
– volume: 176
  start-page: 7587
  year: 1994
  end-page: 7600
  ident: B34
  article-title: Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.24.7587-7600.1994
– volume: 84
  start-page: 712
  year: 2012
  end-page: 735
  ident: B31
  article-title: The scaffolding and signalling functions of a localization factor impact polar development
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2012.08055.x
– volume: 44
  start-page: 689
  year: 1990
  end-page: 719
  ident: B2
  article-title: Regulation of the cell division cycle and differentiation in bacteria
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.mi.44.100190.003353
– volume: 18
  start-page: 715
  year: 2004
  end-page: 727
  ident: B3
  article-title: Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain
  publication-title: Genes Dev
  doi: 10.1101/gad.289504
– volume: 133
  start-page: 452
  year: 2008
  end-page: 461
  ident: B5
  article-title: Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2008.02.045
– volume: 5
  start-page: 749
  year: 2006
  end-page: 757
  ident: B26
  article-title: Phosphate-binding tag, a new tool to visualize phosphorylated proteins
  publication-title: Mol Cell Proteomics
  doi: 10.1074/mcp.T500024-MCP200
– volume: 3
  start-page: 1
  year: 2014
  end-page: 30
  ident: B35
  article-title: Cell cycle constraints on capsulation and bacteriophage susceptibility
  publication-title: Elife
  doi: 10.7554/eLife.03587
– volume: 358
  start-page: 535
  year: 2017
  end-page: 538
  ident: B12
  article-title: Obstruction of pilus retraction stimulates bacterial surface sensing
  publication-title: Science
  doi: 10.1126/science.aan5706
– volume: 3
  start-page: 373
  year: 2008
  end-page: 382
  ident: B19
  article-title: HaloTag: a novel protein labeling technology for cell imaging and protein analysis
  publication-title: ACS Chem Biol
  doi: 10.1021/cb800025k
– volume: 115
  start-page: E7166
  year: 2018
  end-page: E7173
  ident: B43
  article-title: Integration of cell cycle signals by multi-PAS domain kinases
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1808543115
– volume: 7
  year: 2016
  ident: B54
  article-title: A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues
  publication-title: Nat Commun
  doi: 10.1038/ncomms11454
– volume: 118
  start-page: 579
  year: 2004
  end-page: 590
  ident: B7
  article-title: Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.019
– volume: 328
  start-page: 1295
  year: 2010
  end-page: 1297
  ident: B64
  article-title: Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division
  publication-title: Science
  doi: 10.1126/science.1188658
– volume: 376
  start-page: 73
  year: 2008
  end-page: 82
  ident: B25
  article-title: Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using PhoS-tag-based reagents
  publication-title: Anal Biochem
  doi: 10.1016/j.ab.2008.02.004
– volume: 115
  start-page: 80
  year: 2017
  end-page: 90
  ident: B36
  article-title: TrackMate: an open and extensible platform for single-particle tracking
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.09.016
– volume: 5
  start-page: 418
  year: 2020
  end-page: 429
  ident: B65
  article-title: Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0647-7
– volume: 11
  year: 2015
  ident: B32
  article-title: The global regulatory architecture of transcription during the Caulobacter cell cycle
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004831
– volume: 192
  start-page: 4847
  year: 2010
  end-page: 4858
  ident: B40
  article-title: The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor
  publication-title: J Bacteriol
  doi: 10.1128/JB.00607-10
– volume: 11
  year: 2020
  ident: B47
  article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14585-6
– volume: 13
  start-page: 7181
  year: 2022
  ident: B62
  article-title: Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-35000-2
– volume: 113
  start-page: E6859
  year: 2016
  end-page: E6867
  ident: B48
  article-title: Dynamic translation regulation in Caulobacter cell cycle control
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1614795113
– volume: 8
  year: 2017
  ident: B51
  article-title: A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02310-9
– volume: 4
  start-page: 683
  year: 1999
  end-page: 694
  ident: B6
  article-title: Differential localization of two histidine kinases controlling bacterial cell differentiation
  publication-title: Mol Cell
  doi: 10.1016/s1097-2765(00)80379-2
– volume: 46
  start-page: 449
  year: 2012
  end-page: 460
  ident: B57
  article-title: Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2012.03.023
– volume: 163
  start-page: 419
  year: 2015
  end-page: 431
  ident: B4
  article-title: An adaptor hierarchy regulates proteolysis during a bacterial cell cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.030
– volume: 108
  start-page: 9963
  year: 2011
  end-page: 9968
  ident: B45
  article-title: Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1012388108
– volume: 523
  start-page: 236
  year: 2015
  end-page: 239
  ident: B55
  article-title: Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication
  publication-title: Nature
  doi: 10.1038/nature14473
– volume: 2
  start-page: 167
  year: 1997
  end-page: 184
  ident: B50
  article-title: Signal Transduction via the histidyl-aspartyl phosphorelay
  publication-title: Genes Cells
  doi: 10.1046/j.1365-2443.1997.d01-311.x
– volume: 13
  year: 2022
  ident: B60
  article-title: The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33221-z
– volume: 12
  year: 2021
  ident: B11
  article-title: Flagellar perturbations activate adhesion through two distinct pathways in Caulobacter crescentus
  publication-title: mBio
  doi: 10.1128/mBio.03266-20
– volume: 56
  start-page: 2145
  year: 2021
  end-page: 2159
  ident: B30
  article-title: Activation of a signaling pathway by the physical translocation of a chromosome
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2021.06.014
– volume: 117
  start-page: 17984
  year: 2020
  end-page: 17991
  ident: B9
  article-title: Surface sensing stimulates cellular differentiation in Caulobacter crescentus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1920291117
– volume: 99
  start-page: 13831
  year: 2002
  end-page: 13836
  ident: B20
  article-title: Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.182411999
– volume: 76
  start-page: 173
  year: 2010
  end-page: 189
  ident: B38
  article-title: Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2010.07088.x
– volume: 12
  year: 2014
  ident: B42
  article-title: Cell fate regulation governed by a repurposed bacterial histidine kinase
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001979
– volume: 202
  year: 2020
  ident: B21
  article-title: Regulation of bacterial cell cycle progression by redundant phosphatases
  publication-title: J Bacteriol
  doi: 10.1128/JB.00345-20
– volume: 9
  start-page: 676
  year: 2012
  end-page: 682
  ident: B68
  article-title: Fiji: an open-source platform for biological-image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
– volume: 291
  start-page: 12547
  year: 2016
  end-page: 12555
  ident: B27
  article-title: Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R115.711507
– volume: 183
  start-page: 5001
  year: 2001
  end-page: 5007
  ident: B37
  article-title: Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway
  publication-title: J Bacteriol
  doi: 10.1128/JB.183.17.5001-5007.2001
– volume: 298
  year: 2022
  ident: B17
  article-title: Regulation of the activity of the bacterial histidine kinase PleC by the scaffolding protein PodJ
  publication-title: J Biol Chem
  doi: 10.1016/j.jbc.2022.101683
– volume: 282
  start-page: 29170
  year: 2007
  end-page: 29177
  ident: B24
  article-title: Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M704702200
– volume: 179
  start-page: 5849
  year: 1997
  end-page: 5853
  ident: B29
  article-title: Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.18.5849-5853.1997
– volume: 99
  start-page: 4632
  year: 2002
  end-page: 4637
  ident: B44
  article-title: Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.062065699
– volume: 28
  start-page: 231
  year: 1964
  end-page: 295
  ident: B66
  article-title: Biological properties and classification of the Caulobacter group
  publication-title: Bacteriol Rev
  doi: 10.1128/br.28.3.231-295.1964
– volume: 390
  start-page: 380
  year: 2009
  end-page: 393
  ident: B56
  article-title: Kinetic buffering of cross talk between bacterial two-component sensors
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2009.05.007
– volume: 358
  start-page: 531
  year: 2017
  end-page: 534
  ident: B13
  article-title: Second messenger–mediated tactile response by a bacterial rotary motor
  publication-title: Science
  doi: 10.1126/science.aan5353
– volume: 4
  start-page: 229
  year: 2002
  end-page: 233
  ident: B53
  article-title: Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli
  publication-title: J Mol Microbiol Biotechnol
– volume: 19
  start-page: 3223
  year: 2000
  end-page: 3234
  ident: B46
  article-title: Identification and cell cycle control of a novel pilus system in Caulobacter crescentus
  publication-title: EMBO J
  doi: 10.1093/emboj/19.13.3223
– volume: 47
  start-page: 929
  year: 2003
  end-page: 941
  ident: B15
  article-title: The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03349.x
– volume: 105
  start-page: 15435
  year: 2008
  end-page: 15440
  ident: B41
  article-title: Caulobacter requires a dedicated mechanism to initiate chromosome segregation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0807448105
– volume: 17
  start-page: 1282
  year: 2009
  end-page: 1294
  ident: B63
  article-title: Structure and signaling mechanism of Per-ARNT-Sim domains
  publication-title: Structure
  doi: 10.1016/j.str.2009.08.011
– volume: 12
  year: 2016
  ident: B23
  article-title: Comprise the largest superfamily of extracellular sensors in prokaryotes
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004862
– volume: 9
  year: 2020
  ident: B52
  article-title: EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically
  publication-title: EcoSal Plus
  doi: 10.1128/ecosalplus.ESP-0001-2019
– volume: 64
  start-page: 671
  year: 1972
  end-page: 680
  ident: B14
  article-title: Chromosome replication during development in Caulobacter crescentus
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(72)90090-3
– volume: 55
  start-page: 1085
  year: 2005
  end-page: 1103
  ident: B61
  article-title: A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2004.04443.x
– volume: 173
  start-page: 884
  year: 1971
  end-page: 892
  ident: B1
  article-title: Bacterial differentiation
  publication-title: Science
  doi: 10.1126/science.173.4000.884
– volume: 20
  start-page: 329
  year: 2011
  end-page: 341
  ident: B8
  article-title: A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2011.01.007
– volume: 117
  start-page: 9546
  year: 2020
  end-page: 9553
  ident: B10
  article-title: The type IV pilin PilA couples surface attachment and cell-cycle initiation in Caulobacter crescentus
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1920143117
– volume: 110
  start-page: 2076
  year: 2016
  end-page: 2084
  ident: B33
  article-title: The aerotactic response of Caulobacter crescentus
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2016.03.028
– volume: 48
  start-page: 25
  year: 2003
  end-page: 51
  ident: B58
  article-title: Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03344.x
– volume: 1
  start-page: 16077
  year: 2016
  ident: B69
  article-title: Microbej, a tool for high throughput bacterial cell detection and quantitative analysis
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.77
– volume: 21
  start-page: 4420
  year: 2002
  end-page: 4428
  ident: B22
  article-title: A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins
  publication-title: EMBO J
  doi: 10.1093/emboj/cdf454
– volume: 25
  start-page: 377
  year: 2006
  end-page: 386
  ident: B18
  article-title: Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600935
– volume: 97
  start-page: 7808
  year: 2000
  end-page: 7813
  ident: B49
  article-title: Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.97.14.7808
SSID ssj0000331830
Score 2.3783615
Snippet Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate...
The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, , undergoes programmed cell...
Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate...
The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes...
ABSTRACTCell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0212523
SubjectTerms Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Caulobacter
Caulobacter crescentus
Cell Cycle
Cell Differentiation
histidine kinase
Molecular and Cellular Biology
PAS domain
phosphatase
Phosphoric Monoester Hydrolases - metabolism
Phosphorylation
Protein Kinases - metabolism
Research Article
two-component systems
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVkhcEG9SHjICcSLFsePEPi6IqgLxOLBSb5Yd290VbFI1qVD59czkJbaiEpcoSsZOMjO2Z2zn-wh55VgecQEnFTHoNK-ymCoh4OCdK6VVXvc0nZ-_FMer_OOJPNkjfPoXZtRge2jbbb-QP7dsrt5u3aY5RExymXJxg-xLrnO2IPvL5errp3lmhQn0UzYBal4tB30v1M13xqEerv9fMebVrZJ_jT1Hd8jtMWiky8HKd8leqO-RmwON5OV9Yr6tm_ZsbTsYkWjX0B-bGs_aXxswCW0itbQaGQ1oqH9fbgPtd6gj1VVosUSH3F6nKIoT-XRiTekGuz0gq6MP398fpyNxQmpzpbvUllpBHBAU5Cse8pnoC8XyyovcxlyoUBXeey3L0jEfslhYGQoI-7jnUHtWWfGQLOqmDo8JDbmIIjiWuQIiJy-djogIU1VZVSodbUJeojbNZDfTJxVcGdS56XVuuEjIm0nZphqxx5EC4-d14q9n8bMBdOM6wXdouVkIsbL7C-A5Zmx6BiHtocv3pXSQnnlErHcWujbvpYJvLxLyYrK7gbaFerZ1aC5ag8moQFa2LCGPBj-YHyUUk6AznRC14yE777J7p96se_xuyLg1KzQ_-C_dPSG3OARSOO2TFU_Joju_CM8gEOrc89Hz_wAYxAZx
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7koOCLaP2VasuK4pPxkmw22X1sxXIIig8e9G3Zn95hLylNSrn-9c5scsedWHzxJYRkkizfzGZmkuX7CHlnsjLgD5yUBS_T0uYhFYzBxhlTcy2cjDKdX79Vs3n55YJf7Eh94ZqwgR54AG6KhOQwYV3NDRTXDvnGjYbAdI6LUOlItg05b6eZiu9ghrGabUg1CzFdmWX7EfnMeYrSRBPdrYq9XBQp-_9WZ_65XHIn_5w_Jo_GwpGeDgN-Qh745pAcDFKS66dEfV-03dVC95CVaN_SX8sG97rbJbiFtoFqakdVA-qbu_XK07hKHeWufIdX9Kjv9RNN8WM-3Sin9IPvnpH5-ecfn2bpKJ6Q6lLIPtW1FICLF9CzOOhpgqtEVlrHSh1KJrytnHOS17XJnM8BSe4rKP0KV8Ddc6vZczJp2sa_JNSXLDBvstxUUD05bmRAVhhrc1sLGXRC3iKaaoz-TsXGohAKMVcRc1WwhHzYgK3syD-OMhiX95m_35pfDcQb9xmeoee2RsiXHQ9AFKkxitS_oighbzZ-VzC_EGfd-PamU9iQMlRmyxPyYoiD7aOYyDhgJhMi9iJkbyz7Z5rlInJ4Q9cts0oWR_9j9K_IwwJqLfwylFevyaS_vvHHUCv15iROi9-ZVhGl
  priority: 102
  providerName: Directory of Open Access Journals
Title Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation
URI https://www.ncbi.nlm.nih.gov/pubmed/38055339
https://journals.asm.org/doi/10.1128/mbio.02125-23
https://www.proquest.com/docview/2899372381
https://pubmed.ncbi.nlm.nih.gov/PMC10790692
https://doaj.org/article/8229762d75b548d1820ba307dd58f6a6
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgExIvaPwOg8oIxBMZSZwf9sM0FcSYQAMeqNQ3y47ttWJNtibTKH89d05S6LRJvERRc03SO5_vOzf5PkJe6yh1-AdOyJwVYVrGLuSMwcZoXWSKG-FlOo-_5keT9PM0m_6lFOod2Fzb2qGe1GR5uvfrfHUACb_fvQDD3y30vN5DqvIsTNhtsg1FqcAcPe6Rvp-UGQ5eXHGBGheFBeCMgXHz6hlgclbNItkoVJ7P_zoQevVZyn-K0-EOudejSjruhsF9cstWD8idTmdy9ZDI77O6OZupFkoWbWv6c17hXnM5h5jR2lFFy17ygNrq92phqX-EHbWwbIPfaFH86wRNcaWfDrIqbRfYR2Ry-PHHh6OwV1YIVcpFG6pCcAAKlkNDY6DhcSbnUVoaliqXMm7L3BgjsqLQkbGxy1Vmc8CFiUng7HGp2GOyVdWVfUqoTZljVkexzgFamUwLh5QxZRmXBRdOBeQVelMOkZW-60i4RJ9L73OZsIC8HZwty56cHDUyTm8yf7M2P-tYOW4yfI-RWxshmbb_oF6eyD43JXLeQ00wRaahfzNIaa8VzH3GZBx-ex6Ql0PcJSQf-llVtr5oJHarDGXb4oA86cbB-lKMRxn4TASEb4yQjXvZPFLNZ57gG1pyEeUiefYfF94ldxPAWbgqFOfPyVa7vLAvACe1ekS2x-PJty8jv84A20_TeOSz4g-DbxQ3
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgguiDfhaQTiREoSJ459XBDVQh9w6Eq9WXZsswvdpCKpUPn1zCTZFVtRiUsUJeM4mRnbM7bzfQCvbZIHWsCJefAqzqs0xJJzPDhry8JIp3qazsMjMZ3ln0-Kky0Qq39hvhMv72m7a9plv45PDZsmokc-QvluaRfNLuGSF3HGr8EOrRuiZ-9MJrMv--vZlYSTryYrUM3L5bD_xQqyjbGoh-z_V5x5ebvkX-PP3m24NQaObDJY-g5s-fouXB-oJC_ugf46b9qzuelwVGJdw34sajprfy3QLKwJzLBqZDVgvv59sfSs36VOdFe-pRId8Xt9I1GazGcr5pRusN19mO19PP4wjUfyhNjkUnWxKZXEWMBLzFkcqig4IZO8cjw3IefSV8I5p4qytInzaRCm8AJDv8xl-PS0MvwBbNdN7R8B8zkP3NsktQKjJ1dYFQgVpqrSqpQqmAhekTb16P2t7hOLTGrSue51rjMewduVsnU14o8TDcbpVeJv1uJnA_DGVYLvyXJrIcLL7i-g--ix-WmCtcdu35WFxRTNEWq9Ndi9OVdI_HYRwcuV3TW2L9KzqX1z3mpKSDkxs6URPBz8YF0Vl0mBOlMRyA0P2XiXzTv1Yt5jeGPWrRKhssf_pbsXcGN6fHigDz4d7T-BmxkGVjQNlIqnsN39PPfPMDDq7POxFfwBj9MK1A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VViAuiDfhaQTiRNokThz7uDxWhULpgZV6s-zYZlewyYqkQuXXM5NNVmxFJS5RlIydZGZsz9jO9wG8tEkeaAEn5sGrOK_SEEvO8eCsLQsjneppOj8fi8NZ_vG0ON0BMf4LM2iw3Tftsl_Ip5a9cmHgI5QHS7to9gmXvIgzfgX2aKEK_XtvMpl9OdrMriScfDUZQTUvlsP-F-vPtsaiHrL_X3Hmxe2Sf40_05twYwgc2WRt6Vuw4-vbcHVNJXl-B_TJvGlXc9PhqMS6hn1f1HTW_lqgWVgTmGHVwGrAfP37fOlZv0ud6K58SyU64vf6RqI0mc9G5pRubbu7MJu-__r2MB7IE2KTS9XFplQSYwEvMWdxmNMEJ2SSV47nJuRc-ko451RRljZxPg3CFF5g6Je5DGtPK8PvwW7d1P4BMJ_zwL1NUiswenKFVYFQYaoqrUqpgongBWlTj7bTfWKRSU06173OdcYjeD0qW1cD_jjRYPy4TPzVRny1Bt64TPANWW4jRHjZ_QX0Hj00P02w9tjtu7KwmKI5Qq23Brs35wqJ3y4ieD7aXWP7Ij2b2jdnraaElBMzWxrB_bUfbB7FZVKgzlQEcstDtt5l-069mPcY3ph1q0So7OF_6e4ZXDt5N9WfPhwfPYLrGcZVNAuUisew2_08808wLurs06ER_AFoMApw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatase+to+kinase+switch+of+a+critical+enzyme+contributes+to+timing+of+cell+differentiation&rft.jtitle=mBio&rft.au=Chong%2C+Trisha+N&rft.au=Panjalingam%2C+Mayura&rft.au=Saurabh%2C+Saumya&rft.au=Shapiro%2C+Lucy&rft.date=2024-01-16&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=15&rft.issue=1&rft.spage=e0212523&rft_id=info:doi/10.1128%2Fmbio.02125-23&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon