Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation
Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to...
Saved in:
Published in | mBio Vol. 15; no. 1; p. e0212523 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
16.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cell differentiation is an essential biological process that is subject to strict temporal regulation.
Caulobacter crescentus
undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC
P
er-
A
rnt-
S
im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits
in vivo
kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of
Caulobacter
cell differentiation.
The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium,
Caulobacter crescentus
, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity
in vitro
. PleC mutants that are unable to bind PodJ have increased kinase activity
in vivo
, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the
Caulobacter
cell cycle. |
---|---|
AbstractList | The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle. The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity . PleC mutants that are unable to bind PodJ have increased kinase activity , resulting in premature differentiation. We propose a model in which PodJ regulation of PleC's enzymatic activity contributes to the robust timing of cell differentiation during the cell cycle. Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC P er- A rnt- S im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation. The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro . PleC mutants that are unable to bind PodJ have increased kinase activity in vivo , resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle. Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC P er- A rnt- S im (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation. Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC Per-Arnt-Sim (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle. ABSTRACTCell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate differentiation from a swarmer cell to a stationary, replication-competent stalked cell with each cell cycle. We report that the switch from phosphatase to kinase activity of the histidine kinase PleC contributes to timing this differentiation event. PleC Per-Arnt-Sim (PAS) domain interaction with the polar scaffold protein PodJ localizes PleC to the cell pole and inhibits in vivo kinase activity. Upon PodJ degradation, released PleC switches to its kinase form and phosphorylates the PleD diguanylate cyclase, initiating the signaling pathway responsible for differentiation. While PodJ inhibits PleC kinase activity, it does not impact PleC phosphatase activity on DivK, which is required for pili biogenesis and flagellar rotation. Thus, PleC PAS domains affect enzymatic function on diverse substrates by relying on context-dependent binding partners, thereby controlling the timing of Caulobacter cell differentiation.IMPORTANCEThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels. Kinase activity of the bifunctional enzyme, PleC, is limited to a brief period when it initiates the molecular signaling cascade that results in cell differentiation. Conversely, PleC phosphatase activity is required for pili formation and flagellar rotation. We show that PleC is localized to the flagellar pole by the scaffold protein, PodJ, which is known to suppress PleC kinase activity in vitro. PleC mutants that are unable to bind PodJ have increased kinase activity in vivo, resulting in premature differentiation. We propose a model in which PodJ regulation of PleC’s enzymatic activity contributes to the robust timing of cell differentiation during the Caulobacter cell cycle. |
Author | Saurabh, Saumya Chong, Trisha N. Shapiro, Lucy Panjalingam, Mayura |
Author_xml | – sequence: 1 givenname: Trisha N. orcidid: 0000-0002-0888-8441 surname: Chong fullname: Chong, Trisha N. organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA – sequence: 2 givenname: Mayura surname: Panjalingam fullname: Panjalingam, Mayura organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA – sequence: 3 givenname: Saumya orcidid: 0000-0002-7524-7548 surname: Saurabh fullname: Saurabh, Saumya organization: Department of Chemistry, New York University, New York, New York, USA – sequence: 4 givenname: Lucy orcidid: 0000-0003-2591-8013 surname: Shapiro fullname: Shapiro, Lucy organization: Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38055339$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kctvFSEUxompsbV26dbM0phM5XFhYGVM46NJE13ompwB5l6uM3AFRtP-9WXubU1rlA0n8J3feXzP0VGIwSH0kuBzQqh8O_U-nmNKKG8pe4JOKOG47TghRw_iY3SW8xbXwxiRDD9Dx0xizhlTJ0h_3cS820CB7JoSmx8-LFH-7YvZNHFooDHJF29gbFy4uZ5cY2IoyfdzcXnJKH7yYb1IjRvHxvphcMmF4qH4GF6gpwOM2Z3d3afo-8cP3y4-t1dfPl1evL9qYSVVaaFTEiviJJbCKiEGKyReGctWMKyYdEZYaxXvuh5bRwYB3Ik6ALW0ViMG2Cm6PHBthK3eJT9ButYRvN4_xLTWkOoYo9OSUtUJajve85W0RFLcA8OdtVxWsqisdwfWbu4nZ00dJsH4CPr4J_iNXsdfmuBOYaFoJby-I6T4c3a56MnnZT0QXJyzplIp1lEmSZW-OUghT1Rv45xC3VNF6cVhvTis9w5ryqr41cPO_rR072cVsIPApJhzcoM2vuyNqI368b_Y9q-se_C_9bfsg8TI |
CitedBy_id | crossref_primary_10_1038_s41467_024_53395_y crossref_primary_10_1128_mbio_00758_24 |
Cites_doi | 10.1126/science.173.4000.884 10.1073/pnas.1920143117 10.1146/annurev.mi.44.100190.003353 10.1093/emboj/cdf454 10.1046/j.1365-2443.1997.d01-311.x 10.1128/mBio.03266-20 10.1371/journal.pone.0018179 10.1038/s41467-022-35000-2 10.1016/j.devcel.2011.01.007 10.1128/br.28.3.231-295.1964 10.1016/j.cell.2004.08.019 10.1371/journal.pbio.1001979 10.1073/pnas.1614795113 10.1074/jbc.R115.711507 10.1111/j.1365-2958.2010.07088.x 10.1073/pnas.1808543115 10.1038/nature14473 10.1038/nmicrobiol.2016.77 10.1111/j.1365-2958.2005.04935.x 10.1128/jb.176.24.7587-7600.1994 10.1073/pnas.1920291117 10.1038/sj.emboj.7600935 10.1016/s1097-2765(00)80379-2 10.1021/cb800025k 10.1074/mcp.T500024-MCP200 10.1073/pnas.95.1.120 10.1016/j.molcel.2012.03.023 10.1111/j.1365-2958.2004.04443.x 10.1016/j.bpj.2016.03.028 10.1371/journal.pgen.1003744 10.7554/eLife.03587 10.1128/JB.183.17.5001-5007.2001 10.1111/j.1365-2958.2012.08055.x 10.1128/JB.00607-10 10.1073/pnas.182411999 10.1038/nmeth.2019 10.1073/pnas.97.14.7808 10.1038/s41467-022-33221-z 10.1016/j.cell.2015.09.030 10.1371/journal.pgen.1004831 10.1038/ncomms11454 10.1038/s41564-019-0647-7 10.1126/science.aan5353 10.1371/journal.pcbi.1004862 10.1128/ecosalplus.ESP-0001-2019 10.1101/gad.289504 10.1016/j.ab.2008.02.004 10.1016/j.cell.2008.02.045 10.1126/sciadv.abm6570 10.1128/jb.179.18.5849-5853.1997 10.1093/emboj/19.13.3223 10.1046/j.1365-2958.2003.03344.x 10.1016/0022-2836(72)90090-3 10.1016/j.devcel.2021.06.014 10.1038/s41467-017-02310-9 10.1126/science.aan5706 10.1016/j.str.2009.08.011 10.1073/pnas.062065699 10.1073/pnas.0807448105 10.1038/s41467-020-14585-6 10.1016/j.jbc.2022.101683 10.1016/j.ymeth.2016.09.016 10.1016/j.jmb.2009.05.007 10.1128/JB.00345-20 10.1126/science.1188658 10.1074/jbc.M704702200 10.1046/j.1365-2958.2003.03349.x 10.1073/pnas.1012388108 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Chong et al. Copyright © 2023 Chong et al. 2023 Chong et al. |
Copyright_xml | – notice: Copyright © 2023 Chong et al. – notice: Copyright © 2023 Chong et al. 2023 Chong et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.02125-23 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Hiller, N. Luisa |
Editor_xml | – sequence: 1 givenname: N. Luisa surname: Hiller fullname: Hiller, N. Luisa |
ExternalDocumentID | oai_doaj_org_article_8229762d75b548d1820ba307dd58f6a6 PMC10790692 02125-23 38055339 10_1128_mbio_02125_23 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM118071 – fundername: Chan Zuckerberg Initiative (CZI) – fundername: HHS | National Institutes of Health (NIH) grantid: R35-GM118071 – fundername: National Science Foundation (NSF) grantid: NSFGRFP – fundername: ; – fundername: ; grantid: NSFGRFP – fundername: ; grantid: R35-GM118071 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-a489t-a798091e8086d966fd6804cd34af438ec6ddd9577b0de1f6a5e65332d2ffe1ca3 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:21:43 EDT 2025 Thu Aug 21 18:35:43 EDT 2025 Fri Jul 11 15:20:44 EDT 2025 Tue Jan 16 18:22:09 EST 2024 Wed Feb 19 02:10:47 EST 2025 Tue Jul 01 00:57:44 EDT 2025 Thu Apr 24 22:50:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | PAS domain cell differentiation histidine kinase phosphatase two-component systems Caulobacter |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a489t-a798091e8086d966fd6804cd34af438ec6ddd9577b0de1f6a5e65332d2ffe1ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-0888-8441 0000-0003-2591-8013 0000-0002-7524-7548 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02125-23 |
PMID | 38055339 |
PQID | 2899372381 |
PQPubID | 23479 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8229762d75b548d1820ba307dd58f6a6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10790692 proquest_miscellaneous_2899372381 asm2_journals_10_1128_mbio_02125_23 pubmed_primary_38055339 crossref_citationtrail_10_1128_mbio_02125_23 crossref_primary_10_1128_mbio_02125_23 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-16 |
PublicationDateYYYYMMDD | 2024-01-16 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2024 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_9_2 Weiss V (e_1_3_4_54_2) 2002; 4 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Schrader, JM, Li, G-W, Childers, WS, Perez, AM, Weissman, JS, Shapiro, L, McAdams, HH (B48) 2016; 113 Hershey, DM, Fiebig, A, Crosson, S (B11) 2021; 12 Tan, W, Cheng, S, Li, Y, Li, XY, Lu, N, Sun, J, Tang, G, Yang, Y, Cai, K, Li, X, Ou, X, Gao, X, Zhao, GP, Childers, WS, Zhao, W (B62) 2022; 13 Joshi, KK, Bergé, M, Radhakrishnan, SK, Viollier, PH, Chien, P (B4) 2015; 163 Möglich, A, Ayers, RA, Moffat, K (B63) 2009; 17 Britos, L, Abeliuk, E, Taverner, T, Lipton, M, McAdams, H, Shapiro, L (B67) 2011; 6 Tsokos, CG, Perchuk, BS, Laub, MT (B8) 2011; 20 Coppine, J, Kaczmarczyk, A, Petit, K, Brochier, T, Jenal, U, Hallez, R (B21) 2020; 202 Kenney, LJ, Anand, GS (B52) 2020; 9 Hug, I, Deshpande, S, Sprecher, KS, Pfohl, T, Jenal, U (B13) 2017; 358 Quon, KC, Yang, B, Domian, IJ, Shapiro, L, Marczynski, GT (B39) 1998; 95 Upadhyay, AA, Fleetwood, AD, Adebali, O, Finn, RD, Zhulin, IB (B23) 2016; 12 Zhou, B, Schrader, JM, Kalogeraki, VS, Abeliuk, E, Dinh, CB, Pham, JQ, Cui, ZZ, Dill, DL, McAdams, HH, Shapiro, L, Casadesús, J (B32) 2015; 11 Tsai, JW, Alley, MRK (B37) 2001; 183 Weiss, V, Kramer, G, Dünnebier, T, Flotho, A (B53) 2002; 4 Guzzo, M, Sanderlin, AG, Castro, LK, Laub, MT (B30) 2021; 56 Wheeler, RT, Shapiro, L (B6) 1999; 4 Saurabh, S, Chong, TN, Bayas, C, Dahlberg, PD, Cartwright, HN, Moerner, WE, Shapiro, L (B59) 2022; 8 Guerrero-Ferreira, RC, Viollier, PH, Ely, B, Poindexter, JS, Georgieva, M, Jensen, GJ, Wright, ER (B45) 2011; 108 Plate, L, Marletta, MA (B57) 2012; 46 Ardissone, S, Fumeaux, C, Bergé, M, Beaussart, A, Théraulaz, L, Radhakrishnan, SK, Dufrêne, YF, Viollier, PH (B35) 2014; 3 Paul, R, Jaeger, T, Abel, S, Wiederkehr, I, Folcher, M, Biondi, EG, Laub, MT, Jenal, U (B5) 2008; 133 Newton, A, Ohta, N (B2) 1990; 44 Tinevez, JY, Perry, N, Schindelin, J, Hoopes, GM, Reynolds, GD, Laplantine, E, Bednarek, SY, Shorte, SL, Eliceiri, KW (B36) 2017; 115 Egger, LA, Park, H, Inouye, M (B50) 1997; 2 Matroule, JY, Lam, H, Burnette, DT, Jacobs-Wagner, C (B7) 2004; 118 Ramakrishnan, G, Zhao, JL, Newton, A (B34) 1994; 176 Barbieri, CM, Stock, AM (B25) 2008; 376 Childers, WS, Xu, Q, Mann, TH, Mathews, II, Blair, JA, Deacon, AM, Shapiro, L, Stock, AM (B42) 2014; 12 Laub, MT, Chen, SL, Shapiro, L, McAdams, HH (B44) 2002; 99 Christen, M, Kulasekara, HD, Christen, B, Kulasekara, BR, Hoffman, LR, Miller, SI (B64) 2010; 328 Valentini, M, Filloux, A (B27) 2016; 291 Poindexter, JS (B66) 1964; 28 Kinoshita, E, Kinoshita-Kikuta, E, Takiyama, K, Koike, T (B26) 2006; 5 Alves, R, Savageau, MA (B58) 2003; 48 Chen, JC, Hottes, AK, McAdams, HH, McGrath, PT, Viollier, PH, Shapiro, L (B18) 2006; 25 Del Medico, L, Cerletti, D, Schächle, P, Christen, M, Christen, B (B10) 2020; 117 Bowman, GR, Comolli, LR, Gaietta, GM, Fero, M, Hong, SH, Jones, Y, Lee, JH, Downing, KH, Ellisman, MH, McAdams, HH, Shapiro, L (B38) 2010; 76 Liu, Y, Rose, J, Huang, S, Hu, Y, Wu, Q, Wang, D, Li, C, Liu, M, Zhou, P, Jiang, L (B51) 2017; 8 Shapiro, L, Agabian-Keshishian, N, Bendis, I (B1) 1971; 173 Zhang, C, Zhao, W, Duvall, SW, Kowallis, KA, Childers, WS (B17) 2022; 298 Toro, E, Hong, SH, McAdams, HH, Shapiro, L (B41) 2008; 105 Lori, C, Ozaki, S, Steiner, S, Böhm, R, Abel, S, Dubey, BN, Schirmer, T, Hiller, S, Jenal, U (B55) 2015; 523 Viollier, PH, Sternheim, N, Shapiro, L (B22) 2002; 21 Mann, TH, Seth Childers, W, Blair, JA, Eckart, MR, Shapiro, L (B54) 2016; 7 Los, GV, Encell, LP, McDougall, MG, Hartzell, DD, Karassina, N, Zimprich, C, Wood, MG, Learish, R, Ohana, RF, Urh, M, Simpson, D, Mendez, J, Zimmerman, K, Otto, P, Vidugiris, G, Zhu, J, Darzins, A, Klaubert, DH, Bulleit, RF, Wood, KV (B19) 2008; 3 Groban, ES, Clarke, EJ, Salis, HM, Miller, SM, Voigt, CA (B56) 2009; 390 Mann, TH, Shapiro, L (B43) 2018; 115 Kaczmarczyk, A, Hempel, AM, von Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B47) 2020; 11 Lasker, K, von Diezmann, L, Zhou, X, Ahrens, DG, Mann, TH, Moerner, WE, Shapiro, L (B65) 2020; 5 Zhu, Y, Qin, L, Yoshida, T, Inouye, M (B49) 2000; 97 Lasker, K, Boeynaems, S, Lam, V, Scholl, D, Stainton, E, Briner, A, Jacquemyn, M, Daelemans, D, Deniz, A, Villa, E, Holehouse, AS, Gitler, AD, Shapiro, L (B60) 2022; 13 Degnen, ST, Newton, A (B14) 1972; 64 Viollier, PH, Sternheim, N, Shapiro, L (B20) 2002; 99 Ducret, A, Quardokus, EM, Brun, YV (B69) 2016; 1 Morse, M, Colin, R, Wilson, LG, Tang, JX (B33) 2016; 110 Burton, GJ, Hecht, GB, Newton, A (B29) 1997; 179 Yeh, YC, Comolli, LR, Downing, KH, Shapiro, L, McAdams, HH (B40) 2010; 192 Paul, R, Abel, S, Wassmann, P, Beck, A, Heerklotz, H, Jenal, U (B24) 2007; 282 Lawler, ML, Larson, DE, Hinz, AJ, Klein, D, Brun, YV (B16) 2006; 59 Snyder, RA, Ellison, CK, Severin, GB, Whitfield, GB, Waters, CM, Brun, YV (B9) 2020; 117 Schindelin, J, Arganda-Carreras, I, Frise, E, Kaynig, V, Longair, M, Pietzsch, T, Preibisch, S, Rueden, C, Saalfeld, S, Schmid, B, Tinevez, JY, White, DJ, Hartenstein, V, Eliceiri, K, Tomancak, P, Cardona, A (B68) 2012; 9 Skerker, JM, Shapiro, L (B46) 2000; 19 Ellison, CK, Kan, J, Dillard, RS, Kysela, DT, Ducret, A, Berne, C, Hampton, CM, Ke, Z, Wright, ER, Biais, N, Dalia, AB, Brun, YV (B12) 2017; 358 Hinz, AJ, Larson, DE, Smith, CS, Brun, YV (B15) 2003; 47 Curtis, PD, Quardokus, EM, Lawler, ML, Guo, X, Klein, D, Chen, JC, Arnold, RJ, Brun, YV (B31) 2012; 84 Chen, JC, Viollier, PH, Shapiro, L (B61) 2005; 55 Paul, R, Weiser, S, Amiot, NC, Chan, C, Schirmer, T, Giese, B, Jenal, U (B3) 2004; 18 Abel, S, Bucher, T, Nicollier, M, Hug, I, Kaever, V, Abel Zur Wiesch, P, Jenal, U (B28) 2013; 9 |
References_xml | – ident: e_1_3_4_2_2 doi: 10.1126/science.173.4000.884 – ident: e_1_3_4_11_2 doi: 10.1073/pnas.1920143117 – ident: e_1_3_4_3_2 doi: 10.1146/annurev.mi.44.100190.003353 – ident: e_1_3_4_23_2 doi: 10.1093/emboj/cdf454 – ident: e_1_3_4_51_2 doi: 10.1046/j.1365-2443.1997.d01-311.x – ident: e_1_3_4_12_2 doi: 10.1128/mBio.03266-20 – volume: 4 start-page: 229 year: 2002 ident: e_1_3_4_54_2 article-title: Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli publication-title: J Mol Microbiol Biotechnol – ident: e_1_3_4_68_2 doi: 10.1371/journal.pone.0018179 – ident: e_1_3_4_63_2 doi: 10.1038/s41467-022-35000-2 – ident: e_1_3_4_9_2 doi: 10.1016/j.devcel.2011.01.007 – ident: e_1_3_4_67_2 doi: 10.1128/br.28.3.231-295.1964 – ident: e_1_3_4_8_2 doi: 10.1016/j.cell.2004.08.019 – ident: e_1_3_4_43_2 doi: 10.1371/journal.pbio.1001979 – ident: e_1_3_4_49_2 doi: 10.1073/pnas.1614795113 – ident: e_1_3_4_28_2 doi: 10.1074/jbc.R115.711507 – ident: e_1_3_4_39_2 doi: 10.1111/j.1365-2958.2010.07088.x – ident: e_1_3_4_44_2 doi: 10.1073/pnas.1808543115 – ident: e_1_3_4_56_2 doi: 10.1038/nature14473 – ident: e_1_3_4_70_2 doi: 10.1038/nmicrobiol.2016.77 – ident: e_1_3_4_17_2 doi: 10.1111/j.1365-2958.2005.04935.x – ident: e_1_3_4_35_2 doi: 10.1128/jb.176.24.7587-7600.1994 – ident: e_1_3_4_10_2 doi: 10.1073/pnas.1920291117 – ident: e_1_3_4_19_2 doi: 10.1038/sj.emboj.7600935 – ident: e_1_3_4_7_2 doi: 10.1016/s1097-2765(00)80379-2 – ident: e_1_3_4_20_2 doi: 10.1021/cb800025k – ident: e_1_3_4_27_2 doi: 10.1074/mcp.T500024-MCP200 – ident: e_1_3_4_40_2 doi: 10.1073/pnas.95.1.120 – ident: e_1_3_4_58_2 doi: 10.1016/j.molcel.2012.03.023 – ident: e_1_3_4_62_2 doi: 10.1111/j.1365-2958.2004.04443.x – ident: e_1_3_4_34_2 doi: 10.1016/j.bpj.2016.03.028 – ident: e_1_3_4_29_2 doi: 10.1371/journal.pgen.1003744 – ident: e_1_3_4_36_2 doi: 10.7554/eLife.03587 – ident: e_1_3_4_38_2 doi: 10.1128/JB.183.17.5001-5007.2001 – ident: e_1_3_4_32_2 doi: 10.1111/j.1365-2958.2012.08055.x – ident: e_1_3_4_41_2 doi: 10.1128/JB.00607-10 – ident: e_1_3_4_21_2 doi: 10.1073/pnas.182411999 – ident: e_1_3_4_69_2 doi: 10.1038/nmeth.2019 – ident: e_1_3_4_50_2 doi: 10.1073/pnas.97.14.7808 – ident: e_1_3_4_61_2 doi: 10.1038/s41467-022-33221-z – ident: e_1_3_4_5_2 doi: 10.1016/j.cell.2015.09.030 – ident: e_1_3_4_33_2 doi: 10.1371/journal.pgen.1004831 – ident: e_1_3_4_55_2 doi: 10.1038/ncomms11454 – ident: e_1_3_4_66_2 doi: 10.1038/s41564-019-0647-7 – ident: e_1_3_4_14_2 doi: 10.1126/science.aan5353 – ident: e_1_3_4_24_2 doi: 10.1371/journal.pcbi.1004862 – ident: e_1_3_4_53_2 doi: 10.1128/ecosalplus.ESP-0001-2019 – ident: e_1_3_4_4_2 doi: 10.1101/gad.289504 – ident: e_1_3_4_26_2 doi: 10.1016/j.ab.2008.02.004 – ident: e_1_3_4_6_2 doi: 10.1016/j.cell.2008.02.045 – ident: e_1_3_4_60_2 doi: 10.1126/sciadv.abm6570 – ident: e_1_3_4_30_2 doi: 10.1128/jb.179.18.5849-5853.1997 – ident: e_1_3_4_47_2 doi: 10.1093/emboj/19.13.3223 – ident: e_1_3_4_59_2 doi: 10.1046/j.1365-2958.2003.03344.x – ident: e_1_3_4_15_2 doi: 10.1016/0022-2836(72)90090-3 – ident: e_1_3_4_31_2 doi: 10.1016/j.devcel.2021.06.014 – ident: e_1_3_4_52_2 doi: 10.1038/s41467-017-02310-9 – ident: e_1_3_4_13_2 doi: 10.1126/science.aan5706 – ident: e_1_3_4_64_2 doi: 10.1016/j.str.2009.08.011 – ident: e_1_3_4_45_2 doi: 10.1073/pnas.062065699 – ident: e_1_3_4_42_2 doi: 10.1073/pnas.0807448105 – ident: e_1_3_4_48_2 doi: 10.1038/s41467-020-14585-6 – ident: e_1_3_4_18_2 doi: 10.1016/j.jbc.2022.101683 – ident: e_1_3_4_37_2 doi: 10.1016/j.ymeth.2016.09.016 – ident: e_1_3_4_57_2 doi: 10.1016/j.jmb.2009.05.007 – ident: e_1_3_4_22_2 doi: 10.1128/JB.00345-20 – ident: e_1_3_4_65_2 doi: 10.1126/science.1188658 – ident: e_1_3_4_25_2 doi: 10.1074/jbc.M704702200 – ident: e_1_3_4_16_2 doi: 10.1046/j.1365-2958.2003.03349.x – ident: e_1_3_4_46_2 doi: 10.1073/pnas.1012388108 – volume: 6 year: 2011 ident: B67 article-title: Regulatory response to carbon starvation in Caulobacter crescentus publication-title: PLoS One doi: 10.1371/journal.pone.0018179 – volume: 95 start-page: 120 year: 1998 end-page: 125 ident: B39 article-title: Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.95.1.120 – volume: 9 year: 2013 ident: B28 article-title: Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003744 – volume: 59 start-page: 301 year: 2006 end-page: 316 ident: B16 article-title: Dissection of functional domains of the polar localization factor PodJ in Caulobacter crescentus publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04935.x – volume: 8 year: 2022 ident: B59 article-title: ATP-responsive biomolecular condensates tune bacterial kinase signaling publication-title: Sci Adv doi: 10.1126/sciadv.abm6570 – volume: 176 start-page: 7587 year: 1994 end-page: 7600 ident: B34 article-title: Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes publication-title: J Bacteriol doi: 10.1128/jb.176.24.7587-7600.1994 – volume: 84 start-page: 712 year: 2012 end-page: 735 ident: B31 article-title: The scaffolding and signalling functions of a localization factor impact polar development publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.08055.x – volume: 44 start-page: 689 year: 1990 end-page: 719 ident: B2 article-title: Regulation of the cell division cycle and differentiation in bacteria publication-title: Annu Rev Microbiol doi: 10.1146/annurev.mi.44.100190.003353 – volume: 18 start-page: 715 year: 2004 end-page: 727 ident: B3 article-title: Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain publication-title: Genes Dev doi: 10.1101/gad.289504 – volume: 133 start-page: 452 year: 2008 end-page: 461 ident: B5 article-title: Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate publication-title: Cell doi: 10.1016/j.cell.2008.02.045 – volume: 5 start-page: 749 year: 2006 end-page: 757 ident: B26 article-title: Phosphate-binding tag, a new tool to visualize phosphorylated proteins publication-title: Mol Cell Proteomics doi: 10.1074/mcp.T500024-MCP200 – volume: 3 start-page: 1 year: 2014 end-page: 30 ident: B35 article-title: Cell cycle constraints on capsulation and bacteriophage susceptibility publication-title: Elife doi: 10.7554/eLife.03587 – volume: 358 start-page: 535 year: 2017 end-page: 538 ident: B12 article-title: Obstruction of pilus retraction stimulates bacterial surface sensing publication-title: Science doi: 10.1126/science.aan5706 – volume: 3 start-page: 373 year: 2008 end-page: 382 ident: B19 article-title: HaloTag: a novel protein labeling technology for cell imaging and protein analysis publication-title: ACS Chem Biol doi: 10.1021/cb800025k – volume: 115 start-page: E7166 year: 2018 end-page: E7173 ident: B43 article-title: Integration of cell cycle signals by multi-PAS domain kinases publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1808543115 – volume: 7 year: 2016 ident: B54 article-title: A cell cycle kinase with tandem sensory PAS domains integrates cell fate cues publication-title: Nat Commun doi: 10.1038/ncomms11454 – volume: 118 start-page: 579 year: 2004 end-page: 590 ident: B7 article-title: Cytokinesis monitoring during development: rapid pole-to-pole shuttling of a signaling protein by localized kinase and phosphatase in Caulobacter publication-title: Cell doi: 10.1016/j.cell.2004.08.019 – volume: 328 start-page: 1295 year: 2010 end-page: 1297 ident: B64 article-title: Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division publication-title: Science doi: 10.1126/science.1188658 – volume: 376 start-page: 73 year: 2008 end-page: 82 ident: B25 article-title: Universally applicable methods for monitoring response regulator aspartate phosphorylation both in vitro and in vivo using PhoS-tag-based reagents publication-title: Anal Biochem doi: 10.1016/j.ab.2008.02.004 – volume: 115 start-page: 80 year: 2017 end-page: 90 ident: B36 article-title: TrackMate: an open and extensible platform for single-particle tracking publication-title: Methods doi: 10.1016/j.ymeth.2016.09.016 – volume: 5 start-page: 418 year: 2020 end-page: 429 ident: B65 article-title: Selective sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of asymmetry in Caulobacter crescentus publication-title: Nat Microbiol doi: 10.1038/s41564-019-0647-7 – volume: 11 year: 2015 ident: B32 article-title: The global regulatory architecture of transcription during the Caulobacter cell cycle publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004831 – volume: 192 start-page: 4847 year: 2010 end-page: 4858 ident: B40 article-title: The Caulobacter Tol-Pal complex is essential for outer membrane integrity and the positioning of a polar localization factor publication-title: J Bacteriol doi: 10.1128/JB.00607-10 – volume: 11 year: 2020 ident: B47 article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter publication-title: Nat Commun doi: 10.1038/s41467-020-14585-6 – volume: 13 start-page: 7181 year: 2022 ident: B62 article-title: Phase separation modulates the assembly and dynamics of a polarity-related scaffold-signaling hub publication-title: Nat Commun doi: 10.1038/s41467-022-35000-2 – volume: 113 start-page: E6859 year: 2016 end-page: E6867 ident: B48 article-title: Dynamic translation regulation in Caulobacter cell cycle control publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1614795113 – volume: 8 year: 2017 ident: B51 article-title: A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases publication-title: Nat Commun doi: 10.1038/s41467-017-02310-9 – volume: 4 start-page: 683 year: 1999 end-page: 694 ident: B6 article-title: Differential localization of two histidine kinases controlling bacterial cell differentiation publication-title: Mol Cell doi: 10.1016/s1097-2765(00)80379-2 – volume: 46 start-page: 449 year: 2012 end-page: 460 ident: B57 article-title: Nitric oxide modulates bacterial biofilm formation through a multicomponent cyclic-di-GMP signaling network publication-title: Mol Cell doi: 10.1016/j.molcel.2012.03.023 – volume: 163 start-page: 419 year: 2015 end-page: 431 ident: B4 article-title: An adaptor hierarchy regulates proteolysis during a bacterial cell cycle publication-title: Cell doi: 10.1016/j.cell.2015.09.030 – volume: 108 start-page: 9963 year: 2011 end-page: 9968 ident: B45 article-title: Alternative mechanism for bacteriophage adsorption to the motile bacterium Caulobacter crescentus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1012388108 – volume: 523 start-page: 236 year: 2015 end-page: 239 ident: B55 article-title: Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication publication-title: Nature doi: 10.1038/nature14473 – volume: 2 start-page: 167 year: 1997 end-page: 184 ident: B50 article-title: Signal Transduction via the histidyl-aspartyl phosphorelay publication-title: Genes Cells doi: 10.1046/j.1365-2443.1997.d01-311.x – volume: 13 year: 2022 ident: B60 article-title: The material properties of a bacterial-derived biomolecular condensate tune biological function in natural and synthetic systems publication-title: Nat Commun doi: 10.1038/s41467-022-33221-z – volume: 12 year: 2021 ident: B11 article-title: Flagellar perturbations activate adhesion through two distinct pathways in Caulobacter crescentus publication-title: mBio doi: 10.1128/mBio.03266-20 – volume: 56 start-page: 2145 year: 2021 end-page: 2159 ident: B30 article-title: Activation of a signaling pathway by the physical translocation of a chromosome publication-title: Dev Cell doi: 10.1016/j.devcel.2021.06.014 – volume: 117 start-page: 17984 year: 2020 end-page: 17991 ident: B9 article-title: Surface sensing stimulates cellular differentiation in Caulobacter crescentus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1920291117 – volume: 99 start-page: 13831 year: 2002 end-page: 13836 ident: B20 article-title: Identification of a localization factor for the polar positioning of bacterial structural and regulatory proteins publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.182411999 – volume: 76 start-page: 173 year: 2010 end-page: 189 ident: B38 article-title: Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2010.07088.x – volume: 12 year: 2014 ident: B42 article-title: Cell fate regulation governed by a repurposed bacterial histidine kinase publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001979 – volume: 202 year: 2020 ident: B21 article-title: Regulation of bacterial cell cycle progression by redundant phosphatases publication-title: J Bacteriol doi: 10.1128/JB.00345-20 – volume: 9 start-page: 676 year: 2012 end-page: 682 ident: B68 article-title: Fiji: an open-source platform for biological-image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2019 – volume: 291 start-page: 12547 year: 2016 end-page: 12555 ident: B27 article-title: Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria publication-title: J Biol Chem doi: 10.1074/jbc.R115.711507 – volume: 183 start-page: 5001 year: 2001 end-page: 5007 ident: B37 article-title: Proteolysis of the Caulobacter McpA chemoreceptor is cell cycle regulated by a ClpX-dependent pathway publication-title: J Bacteriol doi: 10.1128/JB.183.17.5001-5007.2001 – volume: 298 year: 2022 ident: B17 article-title: Regulation of the activity of the bacterial histidine kinase PleC by the scaffolding protein PodJ publication-title: J Biol Chem doi: 10.1016/j.jbc.2022.101683 – volume: 282 start-page: 29170 year: 2007 end-page: 29177 ident: B24 article-title: Activation of the diguanylate cyclase PleD by phosphorylation-mediated dimerization publication-title: J Biol Chem doi: 10.1074/jbc.M704702200 – volume: 179 start-page: 5849 year: 1997 end-page: 5853 ident: B29 article-title: Roles of the histidine protein kinase pleC in Caulobacter crescentus motility and chemotaxis publication-title: J Bacteriol doi: 10.1128/jb.179.18.5849-5853.1997 – volume: 99 start-page: 4632 year: 2002 end-page: 4637 ident: B44 article-title: Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.062065699 – volume: 28 start-page: 231 year: 1964 end-page: 295 ident: B66 article-title: Biological properties and classification of the Caulobacter group publication-title: Bacteriol Rev doi: 10.1128/br.28.3.231-295.1964 – volume: 390 start-page: 380 year: 2009 end-page: 393 ident: B56 article-title: Kinetic buffering of cross talk between bacterial two-component sensors publication-title: J Mol Biol doi: 10.1016/j.jmb.2009.05.007 – volume: 358 start-page: 531 year: 2017 end-page: 534 ident: B13 article-title: Second messenger–mediated tactile response by a bacterial rotary motor publication-title: Science doi: 10.1126/science.aan5353 – volume: 4 start-page: 229 year: 2002 end-page: 233 ident: B53 article-title: Mechanism of regulation of the bifunctional histidine kinase NtrB in Escherichia coli publication-title: J Mol Microbiol Biotechnol – volume: 19 start-page: 3223 year: 2000 end-page: 3234 ident: B46 article-title: Identification and cell cycle control of a novel pilus system in Caulobacter crescentus publication-title: EMBO J doi: 10.1093/emboj/19.13.3223 – volume: 47 start-page: 929 year: 2003 end-page: 941 ident: B15 article-title: The Caulobacter crescentus polar organelle development protein PodJ is differentially localized and is required for polar targeting of the PleC development regulator publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03349.x – volume: 105 start-page: 15435 year: 2008 end-page: 15440 ident: B41 article-title: Caulobacter requires a dedicated mechanism to initiate chromosome segregation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0807448105 – volume: 17 start-page: 1282 year: 2009 end-page: 1294 ident: B63 article-title: Structure and signaling mechanism of Per-ARNT-Sim domains publication-title: Structure doi: 10.1016/j.str.2009.08.011 – volume: 12 year: 2016 ident: B23 article-title: Comprise the largest superfamily of extracellular sensors in prokaryotes publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004862 – volume: 9 year: 2020 ident: B52 article-title: EnvZ/OmpR two-component signaling: an archetype system that can function noncanonically publication-title: EcoSal Plus doi: 10.1128/ecosalplus.ESP-0001-2019 – volume: 64 start-page: 671 year: 1972 end-page: 680 ident: B14 article-title: Chromosome replication during development in Caulobacter crescentus publication-title: J Mol Biol doi: 10.1016/0022-2836(72)90090-3 – volume: 55 start-page: 1085 year: 2005 end-page: 1103 ident: B61 article-title: A membrane metalloprotease participates in the sequential degradation of a Caulobacter polarity determinant publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2004.04443.x – volume: 173 start-page: 884 year: 1971 end-page: 892 ident: B1 article-title: Bacterial differentiation publication-title: Science doi: 10.1126/science.173.4000.884 – volume: 20 start-page: 329 year: 2011 end-page: 341 ident: B8 article-title: A dynamic complex of signaling proteins uses polar localization to regulate cell-fate asymmetry in Caulobacter crescentus publication-title: Dev Cell doi: 10.1016/j.devcel.2011.01.007 – volume: 117 start-page: 9546 year: 2020 end-page: 9553 ident: B10 article-title: The type IV pilin PilA couples surface attachment and cell-cycle initiation in Caulobacter crescentus publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1920143117 – volume: 110 start-page: 2076 year: 2016 end-page: 2084 ident: B33 article-title: The aerotactic response of Caulobacter crescentus publication-title: Biophys J doi: 10.1016/j.bpj.2016.03.028 – volume: 48 start-page: 25 year: 2003 end-page: 51 ident: B58 article-title: Comparative analysis of prototype two-component systems with either bifunctional or monofunctional sensors: differences in molecular structure and physiological function publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03344.x – volume: 1 start-page: 16077 year: 2016 ident: B69 article-title: Microbej, a tool for high throughput bacterial cell detection and quantitative analysis publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.77 – volume: 21 start-page: 4420 year: 2002 end-page: 4428 ident: B22 article-title: A dynamically localized histidine kinase controls the asymmetric distribution of polar pili proteins publication-title: EMBO J doi: 10.1093/emboj/cdf454 – volume: 25 start-page: 377 year: 2006 end-page: 386 ident: B18 article-title: Cytokinesis signals truncation of the PodJ polarity factor by a cell cycle-regulated protease publication-title: EMBO J doi: 10.1038/sj.emboj.7600935 – volume: 97 start-page: 7808 year: 2000 end-page: 7813 ident: B49 article-title: Phosphatase activity of histidine kinase EnvZ without kinase catalytic domain publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.14.7808 |
SSID | ssj0000331830 |
Score | 2.3783615 |
Snippet | Cell differentiation is an essential biological process that is subject to strict temporal regulation.
Caulobacter crescentus
undergoes obligate... The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, , undergoes programmed cell... Cell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate... The process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, Caulobacter crescentus, undergoes... ABSTRACTCell differentiation is an essential biological process that is subject to strict temporal regulation. Caulobacter crescentus undergoes obligate... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0212523 |
SubjectTerms | Bacterial Proteins - genetics Bacterial Proteins - metabolism Caulobacter Caulobacter crescentus Cell Cycle Cell Differentiation histidine kinase Molecular and Cellular Biology PAS domain phosphatase Phosphoric Monoester Hydrolases - metabolism Phosphorylation Protein Kinases - metabolism Research Article two-component systems |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVkhcEG9SHjICcSLFsePEPi6IqgLxOLBSb5Yd290VbFI1qVD59czkJbaiEpcoSsZOMjO2Z2zn-wh55VgecQEnFTHoNK-ymCoh4OCdK6VVXvc0nZ-_FMer_OOJPNkjfPoXZtRge2jbbb-QP7dsrt5u3aY5RExymXJxg-xLrnO2IPvL5errp3lmhQn0UzYBal4tB30v1M13xqEerv9fMebVrZJ_jT1Hd8jtMWiky8HKd8leqO-RmwON5OV9Yr6tm_ZsbTsYkWjX0B-bGs_aXxswCW0itbQaGQ1oqH9fbgPtd6gj1VVosUSH3F6nKIoT-XRiTekGuz0gq6MP398fpyNxQmpzpbvUllpBHBAU5Cse8pnoC8XyyovcxlyoUBXeey3L0jEfslhYGQoI-7jnUHtWWfGQLOqmDo8JDbmIIjiWuQIiJy-djogIU1VZVSodbUJeojbNZDfTJxVcGdS56XVuuEjIm0nZphqxx5EC4-d14q9n8bMBdOM6wXdouVkIsbL7C-A5Zmx6BiHtocv3pXSQnnlErHcWujbvpYJvLxLyYrK7gbaFerZ1aC5ag8moQFa2LCGPBj-YHyUUk6AznRC14yE777J7p96se_xuyLg1KzQ_-C_dPSG3OARSOO2TFU_Joju_CM8gEOrc89Hz_wAYxAZx priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9RAEF7koOCLaP2VasuK4pPxkmw22X1sxXIIig8e9G3Zn95hLylNSrn-9c5scsedWHzxJYRkkizfzGZmkuX7CHlnsjLgD5yUBS_T0uYhFYzBxhlTcy2cjDKdX79Vs3n55YJf7Eh94ZqwgR54AG6KhOQwYV3NDRTXDvnGjYbAdI6LUOlItg05b6eZiu9ghrGabUg1CzFdmWX7EfnMeYrSRBPdrYq9XBQp-_9WZ_65XHIn_5w_Jo_GwpGeDgN-Qh745pAcDFKS66dEfV-03dVC95CVaN_SX8sG97rbJbiFtoFqakdVA-qbu_XK07hKHeWufIdX9Kjv9RNN8WM-3Sin9IPvnpH5-ecfn2bpKJ6Q6lLIPtW1FICLF9CzOOhpgqtEVlrHSh1KJrytnHOS17XJnM8BSe4rKP0KV8Ddc6vZczJp2sa_JNSXLDBvstxUUD05bmRAVhhrc1sLGXRC3iKaaoz-TsXGohAKMVcRc1WwhHzYgK3syD-OMhiX95m_35pfDcQb9xmeoee2RsiXHQ9AFKkxitS_oighbzZ-VzC_EGfd-PamU9iQMlRmyxPyYoiD7aOYyDhgJhMi9iJkbyz7Z5rlInJ4Q9cts0oWR_9j9K_IwwJqLfwylFevyaS_vvHHUCv15iROi9-ZVhGl priority: 102 providerName: Directory of Open Access Journals |
Title | Phosphatase to kinase switch of a critical enzyme contributes to timing of cell differentiation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38055339 https://journals.asm.org/doi/10.1128/mbio.02125-23 https://www.proquest.com/docview/2899372381 https://pubmed.ncbi.nlm.nih.gov/PMC10790692 https://doaj.org/article/8229762d75b548d1820ba307dd58f6a6 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwELZgExIvaPwOg8oIxBMZSZwf9sM0FcSYQAMeqNQ3y47ttWJNtibTKH89d05S6LRJvERRc03SO5_vOzf5PkJe6yh1-AdOyJwVYVrGLuSMwcZoXWSKG-FlOo-_5keT9PM0m_6lFOod2Fzb2qGe1GR5uvfrfHUACb_fvQDD3y30vN5DqvIsTNhtsg1FqcAcPe6Rvp-UGQ5eXHGBGheFBeCMgXHz6hlgclbNItkoVJ7P_zoQevVZyn-K0-EOudejSjruhsF9cstWD8idTmdy9ZDI77O6OZupFkoWbWv6c17hXnM5h5jR2lFFy17ygNrq92phqX-EHbWwbIPfaFH86wRNcaWfDrIqbRfYR2Ry-PHHh6OwV1YIVcpFG6pCcAAKlkNDY6DhcSbnUVoaliqXMm7L3BgjsqLQkbGxy1Vmc8CFiUng7HGp2GOyVdWVfUqoTZljVkexzgFamUwLh5QxZRmXBRdOBeQVelMOkZW-60i4RJ9L73OZsIC8HZwty56cHDUyTm8yf7M2P-tYOW4yfI-RWxshmbb_oF6eyD43JXLeQ00wRaahfzNIaa8VzH3GZBx-ex6Ql0PcJSQf-llVtr5oJHarDGXb4oA86cbB-lKMRxn4TASEb4yQjXvZPFLNZ57gG1pyEeUiefYfF94ldxPAWbgqFOfPyVa7vLAvACe1ekS2x-PJty8jv84A20_TeOSz4g-DbxQ3 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VVgguiDfhaQTiREoSJ459XBDVQh9w6Eq9WXZsswvdpCKpUPn1zCTZFVtRiUsUJeM4mRnbM7bzfQCvbZIHWsCJefAqzqs0xJJzPDhry8JIp3qazsMjMZ3ln0-Kky0Qq39hvhMv72m7a9plv45PDZsmokc-QvluaRfNLuGSF3HGr8EOrRuiZ-9MJrMv--vZlYSTryYrUM3L5bD_xQqyjbGoh-z_V5x5ebvkX-PP3m24NQaObDJY-g5s-fouXB-oJC_ugf46b9qzuelwVGJdw34sajprfy3QLKwJzLBqZDVgvv59sfSs36VOdFe-pRId8Xt9I1GazGcr5pRusN19mO19PP4wjUfyhNjkUnWxKZXEWMBLzFkcqig4IZO8cjw3IefSV8I5p4qytInzaRCm8AJDv8xl-PS0MvwBbNdN7R8B8zkP3NsktQKjJ1dYFQgVpqrSqpQqmAhekTb16P2t7hOLTGrSue51rjMewduVsnU14o8TDcbpVeJv1uJnA_DGVYLvyXJrIcLL7i-g--ix-WmCtcdu35WFxRTNEWq9Ndi9OVdI_HYRwcuV3TW2L9KzqX1z3mpKSDkxs6URPBz8YF0Vl0mBOlMRyA0P2XiXzTv1Yt5jeGPWrRKhssf_pbsXcGN6fHigDz4d7T-BmxkGVjQNlIqnsN39PPfPMDDq7POxFfwBj9MK1A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VViAuiDfhaQTiRNokThz7uDxWhULpgZV6s-zYZlewyYqkQuXXM5NNVmxFJS5RlIydZGZsz9jO9wG8tEkeaAEn5sGrOK_SEEvO8eCsLQsjneppOj8fi8NZ_vG0ON0BMf4LM2iw3Tftsl_Ip5a9cmHgI5QHS7to9gmXvIgzfgX2aKEK_XtvMpl9OdrMriScfDUZQTUvlsP-F-vPtsaiHrL_X3Hmxe2Sf40_05twYwgc2WRt6Vuw4-vbcHVNJXl-B_TJvGlXc9PhqMS6hn1f1HTW_lqgWVgTmGHVwGrAfP37fOlZv0ud6K58SyU64vf6RqI0mc9G5pRubbu7MJu-__r2MB7IE2KTS9XFplQSYwEvMWdxmNMEJ2SSV47nJuRc-ko451RRljZxPg3CFF5g6Je5DGtPK8PvwW7d1P4BMJ_zwL1NUiswenKFVYFQYaoqrUqpgongBWlTj7bTfWKRSU06173OdcYjeD0qW1cD_jjRYPy4TPzVRny1Bt64TPANWW4jRHjZ_QX0Hj00P02w9tjtu7KwmKI5Qq23Brs35wqJ3y4ieD7aXWP7Ij2b2jdnraaElBMzWxrB_bUfbB7FZVKgzlQEcstDtt5l-069mPcY3ph1q0So7OF_6e4ZXDt5N9WfPhwfPYLrGcZVNAuUisew2_08808wLurs06ER_AFoMApw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phosphatase+to+kinase+switch+of+a+critical+enzyme+contributes+to+timing+of+cell+differentiation&rft.jtitle=mBio&rft.au=Chong%2C+Trisha+N&rft.au=Panjalingam%2C+Mayura&rft.au=Saurabh%2C+Saumya&rft.au=Shapiro%2C+Lucy&rft.date=2024-01-16&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=15&rft.issue=1&rft.spage=e0212523&rft_id=info:doi/10.1128%2Fmbio.02125-23&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |