Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions

We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical p...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 19; no. 7; pp. 2075 - 2091
Main Authors Segatta, Francesco, Ruiz, Daniel Aranda, Aleotti, Flavia, Yaghoubi, Martha, Mukamel, Shaul, Garavelli, Marco, Santoro, Fabrizio, Nenov, Artur
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
AbstractList We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state which exhibits a sub-100-fs nonadiabatic decay to a dark state . The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1 . The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.
Author Ruiz, Daniel Aranda
Yaghoubi, Martha
Segatta, Francesco
Nenov, Artur
Mukamel, Shaul
Aleotti, Flavia
Santoro, Fabrizio
Garavelli, Marco
AuthorAffiliation Department of Chemistry and Department of Physics and Astronomy
Dipartimento di Chimica Industriale “Toso Montanari”
AuthorAffiliation_xml – name: Dipartimento di Chimica Industriale “Toso Montanari”
– name: Department of Chemistry and Department of Physics and Astronomy
Author_xml – sequence: 1
  givenname: Francesco
  orcidid: 0000-0003-4150-6676
  surname: Segatta
  fullname: Segatta, Francesco
  email: francesco.segatta@unibo.it
  organization: Dipartimento di Chimica Industriale “Toso Montanari”
– sequence: 2
  givenname: Daniel Aranda
  orcidid: 0000-0003-0747-6266
  surname: Ruiz
  fullname: Ruiz, Daniel Aranda
– sequence: 3
  givenname: Flavia
  orcidid: 0000-0002-7176-5305
  surname: Aleotti
  fullname: Aleotti, Flavia
  organization: Dipartimento di Chimica Industriale “Toso Montanari”
– sequence: 4
  givenname: Martha
  surname: Yaghoubi
  fullname: Yaghoubi, Martha
– sequence: 5
  givenname: Shaul
  orcidid: 0000-0002-6015-3135
  surname: Mukamel
  fullname: Mukamel, Shaul
  organization: Department of Chemistry and Department of Physics and Astronomy
– sequence: 6
  givenname: Marco
  orcidid: 0000-0002-0796-289X
  surname: Garavelli
  fullname: Garavelli, Marco
  email: marco.garavelli@unibo.it
  organization: Dipartimento di Chimica Industriale “Toso Montanari”
– sequence: 7
  givenname: Fabrizio
  orcidid: 0000-0003-4402-2685
  surname: Santoro
  fullname: Santoro, Fabrizio
  email: fabrizio.santoro@pi.iccom.cnr.it
– sequence: 8
  givenname: Artur
  orcidid: 0000-0003-3071-5341
  surname: Nenov
  fullname: Nenov, Artur
  email: artur.nenov@unibo.it
  organization: Dipartimento di Chimica Industriale “Toso Montanari”
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36961952$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1963355$$D View this record in Osti.gov
BookMark eNp9Uk1vEzEQtVAR_YA7J2TBhUMT_LG7WXNBVZq2SC0IUc6WOztLHe3ai-2tmn-P0yQVVIKTR543z89v3iHZc94hIa85m3Im-AcDcbqEBFMBjLNSPSMHvCzURFWi2nuseb1PDmNcMiZlIeQLsi-rfKtKcUD6L9511qEJ9Mp3CGOXq0UuUvDOAv0-PJQR_LCid9bQq_n16QX9NhqXxp6erpzpLcSP9Cz4ni7uDSSaPD0ZhuDvbW8S5sshYIzWu_iSPG9NF_HV9jwiP84W1_OLyeXX88_zk8uJKWqVJhxVK1rGUTIjBWBTmJbPSmS8EBXyliHKppCmuVGtkggoAJSs6rqpipYVII_Ipw3vMN702AC6FEynh5AVhZX2xuq_O87e6p_-TvNsIyslzwxvNww-Jqsj2IRwC965bIfmqpKyLDPo_faZ4H-NGJPubQTsOuPQj1GLmeJyVvBSZei7J9ClH4PLJmhRM8WVZPWa8M2fuh8F7_aVAdUGAHknMWCrszKTsrf5G7bL-vU6GDoHQ6-DobfByIPsyeCO-z8jx5uRh85O7T_hvwF7fs2k
CitedBy_id crossref_primary_10_1021_acs_chemrev_3c00643
crossref_primary_10_1002_wcms_1731
crossref_primary_10_1063_5_0224316
crossref_primary_10_1021_acs_jctc_3c00953
crossref_primary_10_1021_acs_jctc_4c01204
crossref_primary_10_1007_s00214_023_03035_3
crossref_primary_10_1063_5_0182745
crossref_primary_10_1063_5_0172621
crossref_primary_10_1021_acs_jpclett_4c00677
crossref_primary_10_1063_5_0185578
Cites_doi 10.1021/acs.jctc.7b01015
10.1039/C6FD00070C
10.1002/9781118008720.ch9
10.1021/ar900045d
10.1002/9780470141595.ch1
10.1103/PhysRevA.42.6920
10.1063/5.0004835
10.1073/pnas.2022037118
10.1021/acs.jpclett.9b01325
10.1021/ja00103a020
10.1039/c3fd20147c
10.1039/C9FD00072K
10.1021/acs.jpclett.8b02319
10.1002/9783527633791
10.1021/acs.jctc.9b00532
10.1021/jacs.1c07039
10.1038/nature03429
10.1021/acs.chemrev.7b00617
10.1021/acs.jpclett.8b00152
10.1002/9783527627400
10.1021/acs.jctc.1c00022
10.1007/s003400000342
10.1088/1367-2630/14/2/023018
10.1155/1999/37692
10.1063/1.5129672
10.1063/1.5094062
10.1146/annurev-physchem-090419-051350
10.1063/1.3069655
10.1002/jcc.26485
10.1063/5.0107925
10.1063/5.0044693
10.1063/1.3535541
10.1063/1.4729049
10.1063/1.2902982
10.1021/acs.jpca.7b07737
10.1103/PhysRevLett.115.193003
10.1063/5.0011599
10.1021/j100019a029
10.1063/1.4921016
10.1021/acs.chemrev.9b00135
10.1021/jp904892v
10.1016/j.cpc.2019.107040
10.1021/acs.jctc.7b01063
10.1088/1361-6455/ac3846
10.1021/acs.jctc.6b00997
10.1017/CBO9780511675935
10.1016/S0370-1573(99)00047-2
10.1063/1.4961388
10.1038/s41467-018-06615-1
10.1021/jacs.8b07057
10.1063/5.0013739
10.1039/C8CP00638E
10.1142/9789812565464_0004
10.1016/j.chemphys.2007.12.004
10.1063/1.5082651
10.1016/j.cpc.2023.108891
10.1039/C8CP05662E
10.1039/D0CP04514D
10.1021/acs.jpclett.0c03076
10.1063/1.469586
10.1063/1.5115154
10.1063/1.1580111
10.1039/C5CP01167A
10.1021/acs.jctc.1c00589
10.1016/j.chemphys.2018.08.002
10.1021/ct300045c
10.1021/acs.jctc.0c00455
10.1021/acs.jctc.2c00063
10.1063/1.5031778
10.1021/cr800268n
10.1111/php.12770
10.1021/jp027356c
10.3390/app8060989
10.1016/j.chemphys.2007.11.001
10.1021/acs.jctc.5b00443
10.1002/9780470142813.ch2
10.1073/pnas.2015988117
10.1021/acs.jctc.1c00570
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
Copyright American Chemical Society Apr 11, 2023
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Apr 11, 2023
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
CorporateAuthor Univ. of Bologna (Italy)
CorporateAuthor_xml – sequence: 0
  name: Univ. of Bologna (Italy)
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OTOTI
5PM
DOI 10.1021/acs.jctc.2c01059
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
EndPage 2091
ExternalDocumentID PMC10100531
1963355
36961952
10_1021_acs_jctc_2c01059
c276231887
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: DE-SC0022225
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: APOSTD/2021/025
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OTOTI
5PM
ID FETCH-LOGICAL-a489t-1e9f2f01e30a32ced4af175e01426e1f0ee3d43adb9f93ece2cc93688d64f04c3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Thu Aug 21 18:38:18 EDT 2025
Thu Dec 05 06:28:45 EST 2024
Fri Jul 11 01:19:33 EDT 2025
Mon Jun 30 03:52:35 EDT 2025
Thu Jan 02 22:52:29 EST 2025
Tue Jul 01 02:03:31 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Thu Apr 13 04:06:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a489t-1e9f2f01e30a32ced4af175e01426e1f0ee3d43adb9f93ece2cc93688d64f04c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
SC0022225
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
ORCID 0000-0003-3071-5341
0000-0002-7176-5305
0000-0003-0747-6266
0000-0002-6015-3135
0000-0002-0796-289X
0000-0003-4150-6676
0000-0003-4402-2685
0000000271765305
0000000260153135
0000000344022685
0000000307476266
0000000330715341
0000000341506676
000000020796289X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10100531
PMID 36961952
PQID 2809193085
PQPubID 2048741
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100531
osti_scitechconnect_1963355
proquest_miscellaneous_2791374159
proquest_journals_2809193085
pubmed_primary_36961952
crossref_citationtrail_10_1021_acs_jctc_2c01059
crossref_primary_10_1021_acs_jctc_2c01059
acs_journals_10_1021_acs_jctc_2c01059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-11
PublicationDateYYYYMMDD 2023-04-11
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-11
  day: 11
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – sequence: 0
  name: American Chemical Society
– name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
May V. (ref81/cit81) 2011
ref88/cit88
ref17/cit17
ref82/cit82
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
Gatti F. (ref25/cit25) 2017; 98
ref49/cit49
ref13/cit13
Hamm P. (ref10/cit10) 2011
ref61/cit61
ref75/cit75
ref67/cit67
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref29/cit29
Köppel H. (ref27/cit27) 2004
ref72/cit72
Mukamel S. (ref8/cit8) 1995
ref76/cit76
ref86/cit86
Meyer H.-D. (ref24/cit24) 2009
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref43/cit43
  doi: 10.1021/acs.jctc.7b01015
– ident: ref31/cit31
– ident: ref84/cit84
  doi: 10.1039/C6FD00070C
– ident: ref5/cit5
  doi: 10.1002/9781118008720.ch9
– ident: ref6/cit6
  doi: 10.1021/ar900045d
– ident: ref2/cit2
  doi: 10.1002/9780470141595.ch1
– ident: ref64/cit64
  doi: 10.1103/PhysRevA.42.6920
– ident: ref73/cit73
  doi: 10.1063/5.0004835
– ident: ref35/cit35
  doi: 10.1073/pnas.2022037118
– ident: ref20/cit20
  doi: 10.1021/acs.jpclett.9b01325
– ident: ref65/cit65
  doi: 10.1021/ja00103a020
– ident: ref52/cit52
  doi: 10.1039/c3fd20147c
– ident: ref42/cit42
  doi: 10.1039/C9FD00072K
– ident: ref56/cit56
  doi: 10.1021/acs.jpclett.8b02319
– volume-title: Charge and Energy Transfer Dynamics in Molecular Systems
  year: 2011
  ident: ref81/cit81
  doi: 10.1002/9783527633791
– ident: ref72/cit72
  doi: 10.1021/acs.jctc.9b00532
– ident: ref50/cit50
  doi: 10.1021/jacs.1c07039
– ident: ref9/cit9
  doi: 10.1038/nature03429
– ident: ref55/cit55
  doi: 10.1021/acs.chemrev.7b00617
– ident: ref19/cit19
  doi: 10.1021/acs.jpclett.8b00152
– volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications
  year: 2009
  ident: ref24/cit24
  doi: 10.1002/9783527627400
– ident: ref62/cit62
– ident: ref48/cit48
  doi: 10.1021/acs.jctc.1c00022
– ident: ref3/cit3
  doi: 10.1007/s003400000342
– ident: ref12/cit12
  doi: 10.1088/1367-2630/14/2/023018
– ident: ref67/cit67
  doi: 10.1155/1999/37692
– ident: ref79/cit79
  doi: 10.1063/1.5129672
– ident: ref41/cit41
  doi: 10.1063/1.5094062
– ident: ref15/cit15
  doi: 10.1146/annurev-physchem-090419-051350
– ident: ref46/cit46
  doi: 10.1063/1.3069655
– ident: ref63/cit63
  doi: 10.1002/jcc.26485
– ident: ref16/cit16
  doi: 10.1063/5.0107925
– ident: ref33/cit33
  doi: 10.1063/5.0044693
– ident: ref47/cit47
  doi: 10.1063/1.3535541
– volume-title: Principles of Nonlinear Optical Spectroscopy
  year: 1995
  ident: ref8/cit8
– ident: ref51/cit51
  doi: 10.1063/1.4729049
– volume: 98
  volume-title: Lecture Notes in Chemistry
  year: 2017
  ident: ref25/cit25
– ident: ref45/cit45
  doi: 10.1063/1.2902982
– ident: ref61/cit61
  doi: 10.1021/acs.jpca.7b07737
– ident: ref88/cit88
  doi: 10.1103/PhysRevLett.115.193003
– ident: ref36/cit36
  doi: 10.1063/5.0011599
– ident: ref66/cit66
  doi: 10.1021/j100019a029
– ident: ref76/cit76
  doi: 10.1063/1.4921016
– ident: ref13/cit13
  doi: 10.1021/acs.chemrev.9b00135
– ident: ref38/cit38
– ident: ref59/cit59
  doi: 10.1021/jp904892v
– ident: ref32/cit32
  doi: 10.1016/j.cpc.2019.107040
– ident: ref14/cit14
  doi: 10.1021/acs.jctc.7b01063
– ident: ref86/cit86
  doi: 10.1088/1361-6455/ac3846
– ident: ref18/cit18
  doi: 10.1021/acs.jctc.6b00997
– volume-title: Concepts and Methods of 2D Infrared Spectroscopy
  year: 2011
  ident: ref10/cit10
  doi: 10.1017/CBO9780511675935
– ident: ref23/cit23
  doi: 10.1016/S0370-1573(99)00047-2
– ident: ref29/cit29
  doi: 10.1063/1.4961388
– ident: ref37/cit37
– ident: ref58/cit58
  doi: 10.1038/s41467-018-06615-1
– ident: ref22/cit22
  doi: 10.1021/jacs.8b07057
– ident: ref17/cit17
  doi: 10.1063/5.0013739
– ident: ref34/cit34
  doi: 10.1039/C8CP00638E
– start-page: 175
  volume-title: Conical Intersections
  year: 2004
  ident: ref27/cit27
  doi: 10.1142/9789812565464_0004
– ident: ref4/cit4
  doi: 10.1016/j.chemphys.2007.12.004
– ident: ref30/cit30
  doi: 10.1063/1.5082651
– ident: ref40/cit40
  doi: 10.1016/j.cpc.2023.108891
– ident: ref57/cit57
  doi: 10.1039/C8CP05662E
– ident: ref83/cit83
  doi: 10.1039/D0CP04514D
– ident: ref60/cit60
  doi: 10.1063/1.4961388
– ident: ref49/cit49
  doi: 10.1021/acs.jpclett.0c03076
– ident: ref1/cit1
  doi: 10.1063/1.469586
– ident: ref85/cit85
  doi: 10.1063/1.5115154
– ident: ref44/cit44
  doi: 10.1063/1.1580111
– ident: ref70/cit70
  doi: 10.1039/C5CP01167A
– ident: ref74/cit74
– ident: ref80/cit80
  doi: 10.1021/acs.jctc.1c00589
– ident: ref71/cit71
  doi: 10.1016/j.chemphys.2018.08.002
– ident: ref11/cit11
  doi: 10.1021/ct300045c
– ident: ref54/cit54
  doi: 10.1021/acs.jctc.0c00455
– ident: ref75/cit75
  doi: 10.1021/acs.jctc.2c00063
– ident: ref39/cit39
– ident: ref82/cit82
  doi: 10.1063/1.5031778
– ident: ref7/cit7
  doi: 10.1021/cr800268n
– ident: ref78/cit78
  doi: 10.1111/php.12770
– ident: ref53/cit53
  doi: 10.1021/acs.jctc.7b01015
– ident: ref68/cit68
  doi: 10.1021/jp027356c
– ident: ref69/cit69
  doi: 10.3390/app8060989
– ident: ref28/cit28
  doi: 10.1016/j.chemphys.2007.11.001
– ident: ref77/cit77
  doi: 10.1021/acs.jctc.5b00443
– ident: ref26/cit26
  doi: 10.1002/9780470142813.ch2
– ident: ref87/cit87
  doi: 10.1073/pnas.2015988117
– ident: ref21/cit21
  doi: 10.1021/acs.jctc.1c00570
SSID ssj0033423
Score 2.474737
Snippet We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive...
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2075
SubjectTerms Approximation
Computation
Electromagnetic fields
Electronic structure
Hamiltonian functions
Hamiltonians
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Line spectra
Nonlinear optics
Potential energy
Quantum mechanics
Quantum theory
Response functions
Spectroscopy
Spectroscopy and Excited States
Spectrum analysis
Time dependence
Wave packets
Wave propagation
Title Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions
URI http://dx.doi.org/10.1021/acs.jctc.2c01059
https://www.ncbi.nlm.nih.gov/pubmed/36961952
https://www.proquest.com/docview/2809193085
https://www.proquest.com/docview/2791374159
https://www.osti.gov/biblio/1963355
https://pubmed.ncbi.nlm.nih.gov/PMC10100531
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOJQLr_IICWiR6KEHp96HHS-3Kk0UIaUSopV6s9a7axEgdhXbqPDrmfGrpFRVr-u1vZ6Z3fmsGX0fIR-1TDTkTeM5YZUnnUo9SHrSC22gAsgpWtXN46vTcHkuP18EF9c0OTcr-JwdaVNMvhukGzSo5qgekkc8hD2MMGj2tTt1BTLZ1dyoEhknWdSWJG97AiYiU-wkokEOG-o2kHmzV_Kf5LN42qgYFTVnIfac_JhUZTIxf_5ndLzHdz0jT1oMSo-boHlOHrjsBdmbddJv-2Rz2hBo6C1ddfK5dN4L5lAUrS-RBjO__E1_rTVdzc5OlvRLBW6qNvSkUbkvPtHFNt_Q-ZU2JS1zeoz85VdrwMgOBtsO3Kx4Sc4X87PZ0mt1GTwtI1V6DDzKU5854WvBjbNSp4BCHPxt8dCx1HfgeCm0TVSqhDOOG6NEGEU2lKkvjXhFBlmeuTeEAl6Zwi8m1_AkyRNfWREIriwPrbT-lA_JAdgpbvdVEdclc87iehCMF7fGG5KjzpmxacnNUWPj5x13HPZ3XDbEHnfMHWF8xABKkFnXYAuSKWM8vACuDcm4C5vrhfIIgJgSAGiH5EN_GdyI9RidubyCOVPFBCI6eMHrJsr6paDMIlMBGCDaib9-AtKC717J1t9qenA4ZOuj9e09bTcijzkgNyyRMTYmg3JbuXeAtMrkfb3F_gIcgyR_
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VcCgXKK8S2sIiwYGDW-_Djre3KE0UoIkEpFJv1nq9FgFiV7GNCr-eGb_aVFUF1_V6vZ6d3fmsGX8fIW-1jDTETeNYEStHWpU4EPSk48ee8iCmaFUVj8_m_vRMfjz3zrcIa_-FgUnkMFJeJfGv2AXYEbZ9N8g6aFDUUd0j9wGLcHTq4ehre_gKJLSrKFIlEk-yoMlM3jYCxiOTb8SjXgb76jasebNk8loMmjwiX7rZV6UnPw7LIjo0f24QO_7X6-2Qhw0ipcPahR6TLZs-IdujVgjuKVnNazoNvaazVkyXjjv5HIoS9gWSYmYXv-mvpaaz0eJkSj-XsGjlip7Umvf5MZ2ssxUdX2pT0CKjQ2Qzv1wCYrbQ2NTjpvkzcjYZL0ZTp1FpcLQMVOEwWF-euMwKVwtubCx1ApjEwrcX9y1LXAtuIIWOI5UoYY3lxijhB0Hsy8SVRjwnvTRL7QtCAb0M4IOTaxhJ8shVsfAEVzH3Yxm7A94n78BOYbPL8rBKoHMWVo1gvLAxXp8ctWsamobqHBU3ft5xx_vujoua5uOOvnvoJiFAFOTZNViQZIoQjzIAb32y33rP1UR5ALBMCYC3ffKmuwzLiNkZndqshD4DxQTiO3jAbu1s3VRQdJEpDwwQbLhh1wFJwjevpMtvFVk4HLnVQfvyH233mmxPF7PT8PTD_NMeecAB02HyjLF90ivWpT0ADFZEr6pd9xcAFyzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGkWAv3AdlA4wEDzxkiy9JY96qXlQurUBsaG-RazuigyZVk6CNX885aRLoNE3w6lvs42Ofzzon3yHklZZzDXbTeE5Y5UmnEg-MnvRCG6gAbIpWVfD4dBZOTuT70-B0hwTNvzAwiRxGyisnPp7qlU1qhgF2hOVnBpkHDSZ2VDfITfTaoWL3B1-aC1ggqV1FkyqRfJJFtXfyqhHQJpl8yyZ1MjhbV-HNy2GTf9mh8V3ytV1BFX7y_bAs5ofm1yVyx_9e4j1yp0amtL9Rpftkx6UPyO1BkxDuIVnONrQaek2nTVJdOmrT6FBMZV8gOWa2uqA_F5pOB8fDCf1cwuaVSzq8SPVyYfK3dLzOlnR0rk1Bi4z2kdX8fAHI2UFhHZeb5o_IyXh0PJh4dbYGT8tIFR6DfeaJz5zwteDGWakTwCYO3mA8dCzxHaiDFNrOVaKEM44bo0QYRTaUiS-N2COdNEvdE0IBxfTg4ck1jCT53FdWBIIry0Mrrd_jXfIa5BTXpy2PK0c6Z3FVCMKLa-F1yVGzr7GpKc8x88aPa3q8aXusNnQf17TdR1WJAaog367BwCRTxHilAYjrkoNGg_5MlEcAz5QAmNslL9tq2Eb00ujUZSW06SkmEOfBBx5vFK6dCiZfZCoAAURbqtg2QLLw7Zp08a0iDYert7pwn_6j7F6QW5-G4_jju9mHfbLLAdqhD42xA9Ip1qV7BlCsmD-vDt5vktgvYw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Molecular+Electronic+Spectroscopy+via+MCTDH+Quantum+Dynamics%3A+From+Exact+to+Approximate+Expressions&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Segatta%2C+Francesco&rft.au=Ruiz%2C+Daniel+Aranda&rft.au=Aleotti%2C+Flavia&rft.au=Yaghoubi%2C+Martha&rft.date=2023-04-11&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=7&rft.spage=2075&rft_id=info:doi/10.1021%2Facs.jctc.2c01059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon