Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions
We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical p...
Saved in:
Published in | Journal of chemical theory and computation Vol. 19; no. 7; pp. 2075 - 2091 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. |
---|---|
AbstractList | We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state which exhibits a sub-100-fs nonadiabatic decay to a dark state . The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations.We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S1. The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive interactions with an incident electromagnetic field. It incorporates the effect of ultrafast nonadiabatic dynamics by means of explicit numerical propagation of the nuclear wave packet. The fundamental expressions for the evaluation of first- and higher-order response functions are recast in a general form that can be used with any quantum dynamics code capable of computing the overlap of nuclear wave packets evolving in different states. Here we present the evaluation of these expressions with the multiconfiguration time-dependent Hartree (MCTDH) method. Application is made to pyrene, excited to its lowest bright excited state S 2 which exhibits a sub-100-fs nonadiabatic decay to a dark state S 1 . The system is described by a linear vibronic coupling Hamiltonian, parametrized with multiconfiguration electronic structure methods. We show that the ultrafast nonadiabatic dynamics can have a remarkable effect on the spectral line shapes that goes beyond simple lifetime broadening. Furthermore, a widely employed approximate expression based on the time scale separation of dephasing and population relaxation is recast in the same theoretical framework. Application to pyrene shows the range of validity of such approximations. |
Author | Ruiz, Daniel Aranda Yaghoubi, Martha Segatta, Francesco Nenov, Artur Mukamel, Shaul Aleotti, Flavia Santoro, Fabrizio Garavelli, Marco |
AuthorAffiliation | Department of Chemistry and Department of Physics and Astronomy Dipartimento di Chimica Industriale “Toso Montanari” |
AuthorAffiliation_xml | – name: Dipartimento di Chimica Industriale “Toso Montanari” – name: Department of Chemistry and Department of Physics and Astronomy |
Author_xml | – sequence: 1 givenname: Francesco orcidid: 0000-0003-4150-6676 surname: Segatta fullname: Segatta, Francesco email: francesco.segatta@unibo.it organization: Dipartimento di Chimica Industriale “Toso Montanari” – sequence: 2 givenname: Daniel Aranda orcidid: 0000-0003-0747-6266 surname: Ruiz fullname: Ruiz, Daniel Aranda – sequence: 3 givenname: Flavia orcidid: 0000-0002-7176-5305 surname: Aleotti fullname: Aleotti, Flavia organization: Dipartimento di Chimica Industriale “Toso Montanari” – sequence: 4 givenname: Martha surname: Yaghoubi fullname: Yaghoubi, Martha – sequence: 5 givenname: Shaul orcidid: 0000-0002-6015-3135 surname: Mukamel fullname: Mukamel, Shaul organization: Department of Chemistry and Department of Physics and Astronomy – sequence: 6 givenname: Marco orcidid: 0000-0002-0796-289X surname: Garavelli fullname: Garavelli, Marco email: marco.garavelli@unibo.it organization: Dipartimento di Chimica Industriale “Toso Montanari” – sequence: 7 givenname: Fabrizio orcidid: 0000-0003-4402-2685 surname: Santoro fullname: Santoro, Fabrizio email: fabrizio.santoro@pi.iccom.cnr.it – sequence: 8 givenname: Artur orcidid: 0000-0003-3071-5341 surname: Nenov fullname: Nenov, Artur email: artur.nenov@unibo.it organization: Dipartimento di Chimica Industriale “Toso Montanari” |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36961952$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1963355$$D View this record in Osti.gov |
BookMark | eNp9Uk1vEzEQtVAR_YA7J2TBhUMT_LG7WXNBVZq2SC0IUc6WOztLHe3ai-2tmn-P0yQVVIKTR543z89v3iHZc94hIa85m3Im-AcDcbqEBFMBjLNSPSMHvCzURFWi2nuseb1PDmNcMiZlIeQLsi-rfKtKcUD6L9511qEJ9Mp3CGOXq0UuUvDOAv0-PJQR_LCid9bQq_n16QX9NhqXxp6erpzpLcSP9Cz4ni7uDSSaPD0ZhuDvbW8S5sshYIzWu_iSPG9NF_HV9jwiP84W1_OLyeXX88_zk8uJKWqVJhxVK1rGUTIjBWBTmJbPSmS8EBXyliHKppCmuVGtkggoAJSs6rqpipYVII_Ipw3vMN702AC6FEynh5AVhZX2xuq_O87e6p_-TvNsIyslzwxvNww-Jqsj2IRwC965bIfmqpKyLDPo_faZ4H-NGJPubQTsOuPQj1GLmeJyVvBSZei7J9ClH4PLJmhRM8WVZPWa8M2fuh8F7_aVAdUGAHknMWCrszKTsrf5G7bL-vU6GDoHQ6-DobfByIPsyeCO-z8jx5uRh85O7T_hvwF7fs2k |
CitedBy_id | crossref_primary_10_1021_acs_chemrev_3c00643 crossref_primary_10_1002_wcms_1731 crossref_primary_10_1063_5_0224316 crossref_primary_10_1021_acs_jctc_3c00953 crossref_primary_10_1021_acs_jctc_4c01204 crossref_primary_10_1007_s00214_023_03035_3 crossref_primary_10_1063_5_0182745 crossref_primary_10_1063_5_0172621 crossref_primary_10_1021_acs_jpclett_4c00677 crossref_primary_10_1063_5_0185578 |
Cites_doi | 10.1021/acs.jctc.7b01015 10.1039/C6FD00070C 10.1002/9781118008720.ch9 10.1021/ar900045d 10.1002/9780470141595.ch1 10.1103/PhysRevA.42.6920 10.1063/5.0004835 10.1073/pnas.2022037118 10.1021/acs.jpclett.9b01325 10.1021/ja00103a020 10.1039/c3fd20147c 10.1039/C9FD00072K 10.1021/acs.jpclett.8b02319 10.1002/9783527633791 10.1021/acs.jctc.9b00532 10.1021/jacs.1c07039 10.1038/nature03429 10.1021/acs.chemrev.7b00617 10.1021/acs.jpclett.8b00152 10.1002/9783527627400 10.1021/acs.jctc.1c00022 10.1007/s003400000342 10.1088/1367-2630/14/2/023018 10.1155/1999/37692 10.1063/1.5129672 10.1063/1.5094062 10.1146/annurev-physchem-090419-051350 10.1063/1.3069655 10.1002/jcc.26485 10.1063/5.0107925 10.1063/5.0044693 10.1063/1.3535541 10.1063/1.4729049 10.1063/1.2902982 10.1021/acs.jpca.7b07737 10.1103/PhysRevLett.115.193003 10.1063/5.0011599 10.1021/j100019a029 10.1063/1.4921016 10.1021/acs.chemrev.9b00135 10.1021/jp904892v 10.1016/j.cpc.2019.107040 10.1021/acs.jctc.7b01063 10.1088/1361-6455/ac3846 10.1021/acs.jctc.6b00997 10.1017/CBO9780511675935 10.1016/S0370-1573(99)00047-2 10.1063/1.4961388 10.1038/s41467-018-06615-1 10.1021/jacs.8b07057 10.1063/5.0013739 10.1039/C8CP00638E 10.1142/9789812565464_0004 10.1016/j.chemphys.2007.12.004 10.1063/1.5082651 10.1016/j.cpc.2023.108891 10.1039/C8CP05662E 10.1039/D0CP04514D 10.1021/acs.jpclett.0c03076 10.1063/1.469586 10.1063/1.5115154 10.1063/1.1580111 10.1039/C5CP01167A 10.1021/acs.jctc.1c00589 10.1016/j.chemphys.2018.08.002 10.1021/ct300045c 10.1021/acs.jctc.0c00455 10.1021/acs.jctc.2c00063 10.1063/1.5031778 10.1021/cr800268n 10.1111/php.12770 10.1021/jp027356c 10.3390/app8060989 10.1016/j.chemphys.2007.11.001 10.1021/acs.jctc.5b00443 10.1002/9780470142813.ch2 10.1073/pnas.2015988117 10.1021/acs.jctc.1c00570 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society Copyright American Chemical Society Apr 11, 2023 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Apr 11, 2023 – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
CorporateAuthor | Univ. of Bologna (Italy) |
CorporateAuthor_xml | – sequence: 0 name: Univ. of Bologna (Italy) |
DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
DOI | 10.1021/acs.jctc.2c01059 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-9626 |
EndPage | 2091 |
ExternalDocumentID | PMC10100531 1963355 36961952 10_1021_acs_jctc_2c01059 c276231887 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: DE-SC0022225 – fundername: ; grantid: NA – fundername: ; grantid: APOSTD/2021/025 |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a489t-1e9f2f01e30a32ced4af175e01426e1f0ee3d43adb9f93ece2cc93688d64f04c3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 1549-9626 |
IngestDate | Thu Aug 21 18:38:18 EDT 2025 Thu Dec 05 06:28:45 EST 2024 Fri Jul 11 01:19:33 EDT 2025 Mon Jun 30 03:52:35 EDT 2025 Thu Jan 02 22:52:29 EST 2025 Tue Jul 01 02:03:31 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Thu Apr 13 04:06:00 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a489t-1e9f2f01e30a32ced4af175e01426e1f0ee3d43adb9f93ece2cc93688d64f04c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE SC0022225 USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division |
ORCID | 0000-0003-3071-5341 0000-0002-7176-5305 0000-0003-0747-6266 0000-0002-6015-3135 0000-0002-0796-289X 0000-0003-4150-6676 0000-0003-4402-2685 0000000271765305 0000000260153135 0000000344022685 0000000307476266 0000000330715341 0000000341506676 000000020796289X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10100531 |
PMID | 36961952 |
PQID | 2809193085 |
PQPubID | 2048741 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10100531 osti_scitechconnect_1963355 proquest_miscellaneous_2791374159 proquest_journals_2809193085 pubmed_primary_36961952 crossref_citationtrail_10_1021_acs_jctc_2c01059 crossref_primary_10_1021_acs_jctc_2c01059 acs_journals_10_1021_acs_jctc_2c01059 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-04-11 |
PublicationDateYYYYMMDD | 2023-04-11 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – sequence: 0 name: American Chemical Society – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 May V. (ref81/cit81) 2011 ref88/cit88 ref17/cit17 ref82/cit82 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 Gatti F. (ref25/cit25) 2017; 98 ref49/cit49 ref13/cit13 Hamm P. (ref10/cit10) 2011 ref61/cit61 ref75/cit75 ref67/cit67 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref29/cit29 Köppel H. (ref27/cit27) 2004 ref72/cit72 Mukamel S. (ref8/cit8) 1995 ref76/cit76 ref86/cit86 Meyer H.-D. (ref24/cit24) 2009 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref43/cit43 doi: 10.1021/acs.jctc.7b01015 – ident: ref31/cit31 – ident: ref84/cit84 doi: 10.1039/C6FD00070C – ident: ref5/cit5 doi: 10.1002/9781118008720.ch9 – ident: ref6/cit6 doi: 10.1021/ar900045d – ident: ref2/cit2 doi: 10.1002/9780470141595.ch1 – ident: ref64/cit64 doi: 10.1103/PhysRevA.42.6920 – ident: ref73/cit73 doi: 10.1063/5.0004835 – ident: ref35/cit35 doi: 10.1073/pnas.2022037118 – ident: ref20/cit20 doi: 10.1021/acs.jpclett.9b01325 – ident: ref65/cit65 doi: 10.1021/ja00103a020 – ident: ref52/cit52 doi: 10.1039/c3fd20147c – ident: ref42/cit42 doi: 10.1039/C9FD00072K – ident: ref56/cit56 doi: 10.1021/acs.jpclett.8b02319 – volume-title: Charge and Energy Transfer Dynamics in Molecular Systems year: 2011 ident: ref81/cit81 doi: 10.1002/9783527633791 – ident: ref72/cit72 doi: 10.1021/acs.jctc.9b00532 – ident: ref50/cit50 doi: 10.1021/jacs.1c07039 – ident: ref9/cit9 doi: 10.1038/nature03429 – ident: ref55/cit55 doi: 10.1021/acs.chemrev.7b00617 – ident: ref19/cit19 doi: 10.1021/acs.jpclett.8b00152 – volume-title: Multidimensional Quantum Dynamics: MCTDH Theory and Applications year: 2009 ident: ref24/cit24 doi: 10.1002/9783527627400 – ident: ref62/cit62 – ident: ref48/cit48 doi: 10.1021/acs.jctc.1c00022 – ident: ref3/cit3 doi: 10.1007/s003400000342 – ident: ref12/cit12 doi: 10.1088/1367-2630/14/2/023018 – ident: ref67/cit67 doi: 10.1155/1999/37692 – ident: ref79/cit79 doi: 10.1063/1.5129672 – ident: ref41/cit41 doi: 10.1063/1.5094062 – ident: ref15/cit15 doi: 10.1146/annurev-physchem-090419-051350 – ident: ref46/cit46 doi: 10.1063/1.3069655 – ident: ref63/cit63 doi: 10.1002/jcc.26485 – ident: ref16/cit16 doi: 10.1063/5.0107925 – ident: ref33/cit33 doi: 10.1063/5.0044693 – ident: ref47/cit47 doi: 10.1063/1.3535541 – volume-title: Principles of Nonlinear Optical Spectroscopy year: 1995 ident: ref8/cit8 – ident: ref51/cit51 doi: 10.1063/1.4729049 – volume: 98 volume-title: Lecture Notes in Chemistry year: 2017 ident: ref25/cit25 – ident: ref45/cit45 doi: 10.1063/1.2902982 – ident: ref61/cit61 doi: 10.1021/acs.jpca.7b07737 – ident: ref88/cit88 doi: 10.1103/PhysRevLett.115.193003 – ident: ref36/cit36 doi: 10.1063/5.0011599 – ident: ref66/cit66 doi: 10.1021/j100019a029 – ident: ref76/cit76 doi: 10.1063/1.4921016 – ident: ref13/cit13 doi: 10.1021/acs.chemrev.9b00135 – ident: ref38/cit38 – ident: ref59/cit59 doi: 10.1021/jp904892v – ident: ref32/cit32 doi: 10.1016/j.cpc.2019.107040 – ident: ref14/cit14 doi: 10.1021/acs.jctc.7b01063 – ident: ref86/cit86 doi: 10.1088/1361-6455/ac3846 – ident: ref18/cit18 doi: 10.1021/acs.jctc.6b00997 – volume-title: Concepts and Methods of 2D Infrared Spectroscopy year: 2011 ident: ref10/cit10 doi: 10.1017/CBO9780511675935 – ident: ref23/cit23 doi: 10.1016/S0370-1573(99)00047-2 – ident: ref29/cit29 doi: 10.1063/1.4961388 – ident: ref37/cit37 – ident: ref58/cit58 doi: 10.1038/s41467-018-06615-1 – ident: ref22/cit22 doi: 10.1021/jacs.8b07057 – ident: ref17/cit17 doi: 10.1063/5.0013739 – ident: ref34/cit34 doi: 10.1039/C8CP00638E – start-page: 175 volume-title: Conical Intersections year: 2004 ident: ref27/cit27 doi: 10.1142/9789812565464_0004 – ident: ref4/cit4 doi: 10.1016/j.chemphys.2007.12.004 – ident: ref30/cit30 doi: 10.1063/1.5082651 – ident: ref40/cit40 doi: 10.1016/j.cpc.2023.108891 – ident: ref57/cit57 doi: 10.1039/C8CP05662E – ident: ref83/cit83 doi: 10.1039/D0CP04514D – ident: ref60/cit60 doi: 10.1063/1.4961388 – ident: ref49/cit49 doi: 10.1021/acs.jpclett.0c03076 – ident: ref1/cit1 doi: 10.1063/1.469586 – ident: ref85/cit85 doi: 10.1063/1.5115154 – ident: ref44/cit44 doi: 10.1063/1.1580111 – ident: ref70/cit70 doi: 10.1039/C5CP01167A – ident: ref74/cit74 – ident: ref80/cit80 doi: 10.1021/acs.jctc.1c00589 – ident: ref71/cit71 doi: 10.1016/j.chemphys.2018.08.002 – ident: ref11/cit11 doi: 10.1021/ct300045c – ident: ref54/cit54 doi: 10.1021/acs.jctc.0c00455 – ident: ref75/cit75 doi: 10.1021/acs.jctc.2c00063 – ident: ref39/cit39 – ident: ref82/cit82 doi: 10.1063/1.5031778 – ident: ref7/cit7 doi: 10.1021/cr800268n – ident: ref78/cit78 doi: 10.1111/php.12770 – ident: ref53/cit53 doi: 10.1021/acs.jctc.7b01015 – ident: ref68/cit68 doi: 10.1021/jp027356c – ident: ref69/cit69 doi: 10.3390/app8060989 – ident: ref28/cit28 doi: 10.1016/j.chemphys.2007.11.001 – ident: ref77/cit77 doi: 10.1021/acs.jctc.5b00443 – ident: ref26/cit26 doi: 10.1002/9780470142813.ch2 – ident: ref87/cit87 doi: 10.1073/pnas.2015988117 – ident: ref21/cit21 doi: 10.1021/acs.jctc.1c00570 |
SSID | ssj0033423 |
Score | 2.474737 |
Snippet | We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive... We present an accurate and efficient approach to computing the linear and nonlinear optical spectroscopy of a closed quantum system subject to impulsive... |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2075 |
SubjectTerms | Approximation Computation Electromagnetic fields Electronic structure Hamiltonian functions Hamiltonians INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Line spectra Nonlinear optics Potential energy Quantum mechanics Quantum theory Response functions Spectroscopy Spectroscopy and Excited States Spectrum analysis Time dependence Wave packets Wave propagation |
Title | Nonlinear Molecular Electronic Spectroscopy via MCTDH Quantum Dynamics: From Exact to Approximate Expressions |
URI | http://dx.doi.org/10.1021/acs.jctc.2c01059 https://www.ncbi.nlm.nih.gov/pubmed/36961952 https://www.proquest.com/docview/2809193085 https://www.proquest.com/docview/2791374159 https://www.osti.gov/biblio/1963355 https://pubmed.ncbi.nlm.nih.gov/PMC10100531 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BOJQLr_IICWiR6KEHp96HHS-3Kk0UIaUSopV6s9a7axEgdhXbqPDrmfGrpFRVr-u1vZ6Z3fmsGX0fIR-1TDTkTeM5YZUnnUo9SHrSC22gAsgpWtXN46vTcHkuP18EF9c0OTcr-JwdaVNMvhukGzSo5qgekkc8hD2MMGj2tTt1BTLZ1dyoEhknWdSWJG97AiYiU-wkokEOG-o2kHmzV_Kf5LN42qgYFTVnIfac_JhUZTIxf_5ndLzHdz0jT1oMSo-boHlOHrjsBdmbddJv-2Rz2hBo6C1ddfK5dN4L5lAUrS-RBjO__E1_rTVdzc5OlvRLBW6qNvSkUbkvPtHFNt_Q-ZU2JS1zeoz85VdrwMgOBtsO3Kx4Sc4X87PZ0mt1GTwtI1V6DDzKU5854WvBjbNSp4BCHPxt8dCx1HfgeCm0TVSqhDOOG6NEGEU2lKkvjXhFBlmeuTeEAl6Zwi8m1_AkyRNfWREIriwPrbT-lA_JAdgpbvdVEdclc87iehCMF7fGG5KjzpmxacnNUWPj5x13HPZ3XDbEHnfMHWF8xABKkFnXYAuSKWM8vACuDcm4C5vrhfIIgJgSAGiH5EN_GdyI9RidubyCOVPFBCI6eMHrJsr6paDMIlMBGCDaib9-AtKC717J1t9qenA4ZOuj9e09bTcijzkgNyyRMTYmg3JbuXeAtMrkfb3F_gIcgyR_ |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VcCgXKK8S2sIiwYGDW-_Djre3KE0UoIkEpFJv1nq9FgFiV7GNCr-eGb_aVFUF1_V6vZ6d3fmsGX8fIW-1jDTETeNYEStHWpU4EPSk48ee8iCmaFUVj8_m_vRMfjz3zrcIa_-FgUnkMFJeJfGv2AXYEbZ9N8g6aFDUUd0j9wGLcHTq4ehre_gKJLSrKFIlEk-yoMlM3jYCxiOTb8SjXgb76jasebNk8loMmjwiX7rZV6UnPw7LIjo0f24QO_7X6-2Qhw0ipcPahR6TLZs-IdujVgjuKVnNazoNvaazVkyXjjv5HIoS9gWSYmYXv-mvpaaz0eJkSj-XsGjlip7Umvf5MZ2ssxUdX2pT0CKjQ2Qzv1wCYrbQ2NTjpvkzcjYZL0ZTp1FpcLQMVOEwWF-euMwKVwtubCx1ApjEwrcX9y1LXAtuIIWOI5UoYY3lxijhB0Hsy8SVRjwnvTRL7QtCAb0M4IOTaxhJ8shVsfAEVzH3Yxm7A94n78BOYbPL8rBKoHMWVo1gvLAxXp8ctWsamobqHBU3ft5xx_vujoua5uOOvnvoJiFAFOTZNViQZIoQjzIAb32y33rP1UR5ALBMCYC3ffKmuwzLiNkZndqshD4DxQTiO3jAbu1s3VRQdJEpDwwQbLhh1wFJwjevpMtvFVk4HLnVQfvyH233mmxPF7PT8PTD_NMeecAB02HyjLF90ivWpT0ADFZEr6pd9xcAFyzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZGkWAv3AdlA4wEDzxkiy9JY96qXlQurUBsaG-RazuigyZVk6CNX885aRLoNE3w6lvs42Ofzzon3yHklZZzDXbTeE5Y5UmnEg-MnvRCG6gAbIpWVfD4dBZOTuT70-B0hwTNvzAwiRxGyisnPp7qlU1qhgF2hOVnBpkHDSZ2VDfITfTaoWL3B1-aC1ggqV1FkyqRfJJFtXfyqhHQJpl8yyZ1MjhbV-HNy2GTf9mh8V3ytV1BFX7y_bAs5ofm1yVyx_9e4j1yp0amtL9Rpftkx6UPyO1BkxDuIVnONrQaek2nTVJdOmrT6FBMZV8gOWa2uqA_F5pOB8fDCf1cwuaVSzq8SPVyYfK3dLzOlnR0rk1Bi4z2kdX8fAHI2UFhHZeb5o_IyXh0PJh4dbYGT8tIFR6DfeaJz5zwteDGWakTwCYO3mA8dCzxHaiDFNrOVaKEM44bo0QYRTaUiS-N2COdNEvdE0IBxfTg4ck1jCT53FdWBIIry0Mrrd_jXfIa5BTXpy2PK0c6Z3FVCMKLa-F1yVGzr7GpKc8x88aPa3q8aXusNnQf17TdR1WJAaog367BwCRTxHilAYjrkoNGg_5MlEcAz5QAmNslL9tq2Eb00ujUZSW06SkmEOfBBx5vFK6dCiZfZCoAAURbqtg2QLLw7Zp08a0iDYert7pwn_6j7F6QW5-G4_jju9mHfbLLAdqhD42xA9Ip1qV7BlCsmD-vDt5vktgvYw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+Molecular+Electronic+Spectroscopy+via+MCTDH+Quantum+Dynamics%3A+From+Exact+to+Approximate+Expressions&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Segatta%2C+Francesco&rft.au=Ruiz%2C+Daniel+Aranda&rft.au=Aleotti%2C+Flavia&rft.au=Yaghoubi%2C+Martha&rft.date=2023-04-11&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=7&rft.spage=2075&rft_id=info:doi/10.1021%2Facs.jctc.2c01059&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |