Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV‑2 Targets
We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twe...
Saved in:
Published in | Journal of chemical theory and computation Vol. 19; no. 11; pp. 3359 - 3378 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.06.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9618 1549-9626 1549-9626 |
DOI | 10.1021/acs.jctc.3c00020 |
Cover
Loading…
Abstract | We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein–ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study. |
---|---|
AbstractList | We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study. We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study. We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein–ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study. |
Author | Potterton, Andrew Bieniek, Mateusz K. Coveney, Peter V. Bhati, Agastya P. Hoti, Art |
AuthorAffiliation | University College London University of Amsterdam Advanced Research Computing Centre Centre for Computational Science, Department of Chemistry Computational Science Laboratory, Institute for Informatics, Faculty of Science |
AuthorAffiliation_xml | – name: University of Amsterdam – name: Advanced Research Computing Centre – name: Centre for Computational Science, Department of Chemistry – name: Computational Science Laboratory, Institute for Informatics, Faculty of Science – name: University College London |
Author_xml | – sequence: 1 givenname: Agastya P. surname: Bhati fullname: Bhati, Agastya P. organization: Centre for Computational Science, Department of Chemistry – sequence: 2 givenname: Art surname: Hoti fullname: Hoti, Art organization: Centre for Computational Science, Department of Chemistry – sequence: 3 givenname: Andrew orcidid: 0000-0003-1001-8952 surname: Potterton fullname: Potterton, Andrew organization: Centre for Computational Science, Department of Chemistry – sequence: 4 givenname: Mateusz K. orcidid: 0000-0002-3065-5417 surname: Bieniek fullname: Bieniek, Mateusz K. organization: Centre for Computational Science, Department of Chemistry – sequence: 5 givenname: Peter V. orcidid: 0000-0002-8787-7256 surname: Coveney fullname: Coveney, Peter V. email: p.v.coveney@ucl.ac.uk organization: University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37246943$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1975558$$D View this record in Osti.gov |
BookMark | eNp9ksuO0zAUhiM0iLnAnhWKYMOCFF9yZYOqMsBIHYFoYWu5zknryrEH20Gq2MwrIN5wnoRT2o5gJFhEsXK-8-f_fc5pcmSdhSR5TMmIEkZfShVGaxXViCtCCCP3khNa5E3WlKw8uj3T-jg5DWFNCOc54w-SY16xvGxyfpJ8nzq7TOe6h3SmpIH03AboF3i4hLhybUi1TS-dATUY6dM3Gyt7rcKrdKqX0rY31z8_ehcBoQsbwUsVtbMhxVI6NsYF_LbZSszGn2bZxH25uf7B0rn0S4jhYXK_kybAo_37LPn89nw-eZ9NP7y7mIynmczrJmaUgawXGJdxKaWipOJtJbuCdRVr8all1zLWkbKlRdG2HMN3VamQKSHPCfCz5PVO92pY9NAqsNFLI6687qXfCCe1-Lti9Uos3TeBd5xTzgpUeLpTwEBaBKUjqJVy1oKKgjZVURQ1Qs_3v_Hu6wAhil4HBcZIC24IgtUMB1DxmiD67A66doO3eAlbqs5ZVfASqSd_-r41fJgeAuUOUN6F4KET6ExuJ4AxtEH_2whU4JqI7ZqI_ZpgI7nTeND-T8uLXcvvysHtP_FfNn3SkQ |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2025_141408 crossref_primary_10_3390_biochem4030014 crossref_primary_10_1080_1062936X_2024_2446353 crossref_primary_10_1021_acs_jctc_4c01389 crossref_primary_10_1002_cphc_202400783 crossref_primary_10_1021_acs_jctc_3c00874 crossref_primary_10_1038_s41524_024_01272_z crossref_primary_10_1021_acs_jcim_3c01654 crossref_primary_10_1021_acs_jctc_3c00842 crossref_primary_10_1021_acs_jctc_3c01249 crossref_primary_10_3390_ijms25179725 crossref_primary_10_1021_acs_jcim_4c01024 |
Cites_doi | 10.1038/nature01160 10.1021/acs.jctc.6b00794 10.1063/1.3216567 10.1073/pnas.1103547108 10.1021/jacs.1c07591 10.1021/jp204407d 10.1016/j.sbi.2008.01.008 10.1021/acs.jctc.6b00979 10.1371/journal.pcbi.1005659 10.1021/jp037421y 10.1038/s41592-019-0686-2 10.1039/D1ME00124H 10.1371/journal.pcbi.1002054 10.1017/CBO9780511760396 10.1021/acs.jctc.8b01118 10.1038/s41401-020-0483-6 10.4155/fmc-2019-0307 10.1126/science.abf7945 10.1080/07362990601139628 10.1038/s41467-020-20718-8 10.1021/acs.jctc.7b01143 10.1103/PhysRevB.57.R13985 10.1016/j.str.2011.03.019 10.1021/acs.jctc.1c01288 10.1021/ct5010615 10.1016/j.bpj.2018.09.021 10.1145/256562.256635 10.1016/j.ymeth.2009.04.013 10.1098/rsfs.2021.0018 10.1101/840694 10.1101/2021.03.31.437917 10.1063/5.0014475 10.1021/ar000033j 10.1073/pnas.1104614108 10.1063/1.4773892 10.1063/1.2186317 10.1016/S0006-3495(96)79552-8 10.1137/070683660 10.1371/journal.pcbi.1003767 10.1063/1.2714538 10.1063/1.1472510 10.1002/jcc.20084 10.1016/j.ymeth.2010.06.002 10.1038/s41467-017-01163-6 10.1021/acs.jctc.0c01179 10.1038/nchem.1821 10.5114/reum.2018.77971 10.1103/PhysRevLett.86.4983 10.1063/1.4748278 10.1287/opre.47.4.585 10.1098/rsta.2020.0082 10.1128/JVI.02680-07 10.1146/annurev-biophys-070816-033834 10.1006/jcph.1999.6201 10.1107/S2052252520009653 10.1016/j.jmb.2007.09.069 10.1021/jacs.8b10840 10.1137/06065146X 10.1021/acs.jctc.1c00526 10.1109/SC.2014.9 10.1038/ncomms8653 10.1021/ja202726y 10.1126/science.abb3405 10.1039/C6CP02349E 10.1021/acs.jctc.8b00913 10.1021/acs.jctc.7b00172 10.1006/jmbi.2001.5033 10.1038/nature12595 10.1021/acs.jctc.2c00114 10.1021/ct401065r 10.1021/ct400919u 10.1063/1.5082247 10.1021/ci500321g 10.1021/jp411479c 10.1371/journal.pcbi.1009817 10.1063/1.2116947 10.1021/acs.jctc.6b00277 10.2147/DDDT.S370574 10.1063/1.3456985 10.1098/rsfs.2020.0007 10.1136/annrheumdis-2016-210457 10.1002/jcc.21776 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Published by American Chemical Society Copyright American Chemical Society Jun 13, 2023 2023 The Authors. Published by American Chemical Society 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors. Published by American Chemical Society – notice: Copyright American Chemical Society Jun 13, 2023 – notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors |
CorporateAuthor | Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) |
CorporateAuthor_xml | – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF) |
DBID | AAYXX CITATION NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
DOI | 10.1021/acs.jctc.3c00020 |
DatabaseName | CrossRef PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1549-9626 |
EndPage | 3378 |
ExternalDocumentID | PMC10241325 1975558 37246943 10_1021_acs_jctc_3c00020 a945451324 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: COMPBIO – fundername: ; grantid: EP/R029598/1 – fundername: ; grantid: 823712 – fundername: ; grantid: NA – fundername: ; grantid: ScafellPike – fundername: ; grantid: EP/W007762/1 – fundername: ; grantid: COMPBIO2 |
GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABFRP ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L DU5 EBS ED~ F5P GGK GNL IH9 J9A JG~ P2P RNS ROL UI2 VF5 VG9 W1F AAYXX ABBLG ABJNI ABLBI BAANH CITATION CUPRZ NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a489t-12ea8b02123aaac1073d7af52f72df728afd22f06d155dd3962f76cd7a6e440e3 |
IEDL.DBID | ACS |
ISSN | 1549-9618 1549-9626 |
IngestDate | Thu Aug 21 18:38:24 EDT 2025 Mon Feb 03 04:56:55 EST 2025 Fri Jul 11 01:22:17 EDT 2025 Mon Jun 30 04:02:46 EDT 2025 Thu Apr 03 07:07:20 EDT 2025 Thu Apr 24 23:11:24 EDT 2025 Tue Jul 01 02:03:32 EDT 2025 Thu Jul 06 08:30:37 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a489t-12ea8b02123aaac1073d7af52f72df728afd22f06d155dd3962f76cd7a6e440e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE UK EPSRC AC05-00OR22725; EP/R029598/1; EP/W007762/1; 823712; COMPBIO; COMPBIO2 Software Environment for Actionable & VVUQ-evaluated Exascale Applications (SEAVEA) European Union’s Horizon 2020 Research and Innovation Programme |
ORCID | 0000-0002-3065-5417 0000-0003-1001-8952 0000-0002-8787-7256 0000000230655417 0000000310018952 0000000287877256 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10241325 |
PMID | 37246943 |
PQID | 2828427536 |
PQPubID | 2048741 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241325 osti_scitechconnect_1975558 proquest_miscellaneous_2820337380 proquest_journals_2828427536 pubmed_primary_37246943 crossref_citationtrail_10_1021_acs_jctc_3c00020 crossref_primary_10_1021_acs_jctc_3c00020 acs_journals_10_1021_acs_jctc_3c00020 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-13 |
PublicationDateYYYYMMDD | 2023-06-13 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical theory and computation |
PublicationTitleAlternate | J. Chem. Theory Comput |
PublicationYear | 2023 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 Saadi A. A. (ref3/cit3) 2021 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 Shaw D. E. (ref13/cit13) 2021 ref61/cit61 ref75/cit75 ref67/cit67 ref24/cit24 ref38/cit38 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 Oberkampf W. L. (ref79/cit79) 2010 ref47/cit47 ref84/cit84 ref1/cit1 ref44/cit44 ref70/cit70 Shaw D. E. (ref12/cit12) 2014 ref7/cit7 |
References_xml | – ident: ref32/cit32 doi: 10.1038/nature01160 – ident: ref66/cit66 doi: 10.1021/acs.jctc.6b00794 – start-page: 1 volume-title: SC’21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis year: 2021 ident: ref13/cit13 – start-page: 1 volume-title: Proceedings of the 50th International Conference on Parallel Processing year: 2021 ident: ref3/cit3 – ident: ref77/cit77 – ident: ref27/cit27 doi: 10.1063/1.3216567 – ident: ref4/cit4 doi: 10.1073/pnas.1103547108 – ident: ref71/cit71 doi: 10.1021/jacs.1c07591 – ident: ref55/cit55 doi: 10.1021/jp204407d – ident: ref28/cit28 doi: 10.1016/j.sbi.2008.01.008 – ident: ref16/cit16 doi: 10.1021/acs.jctc.6b00979 – ident: ref73/cit73 doi: 10.1371/journal.pcbi.1005659 – ident: ref33/cit33 doi: 10.1021/jp037421y – ident: ref78/cit78 doi: 10.1038/s41592-019-0686-2 – ident: ref62/cit62 doi: 10.1039/D1ME00124H – ident: ref8/cit8 doi: 10.1371/journal.pcbi.1002054 – volume-title: Verification and Validation in Scientific Computing year: 2010 ident: ref79/cit79 doi: 10.1017/CBO9780511760396 – ident: ref56/cit56 doi: 10.1021/acs.jctc.8b01118 – ident: ref59/cit59 doi: 10.1038/s41401-020-0483-6 – ident: ref1/cit1 doi: 10.4155/fmc-2019-0307 – ident: ref63/cit63 doi: 10.1126/science.abf7945 – ident: ref51/cit51 doi: 10.1080/07362990601139628 – ident: ref58/cit58 doi: 10.1038/s41467-020-20718-8 – ident: ref17/cit17 doi: 10.1021/acs.jctc.7b01143 – ident: ref29/cit29 doi: 10.1103/PhysRevB.57.R13985 – ident: ref67/cit67 doi: 10.1016/j.str.2011.03.019 – ident: ref80/cit80 doi: 10.1021/acs.jctc.1c01288 – ident: ref46/cit46 doi: 10.1021/ct5010615 – ident: ref41/cit41 doi: 10.1016/j.bpj.2018.09.021 – ident: ref49/cit49 doi: 10.1145/256562.256635 – ident: ref20/cit20 doi: 10.1016/j.ymeth.2009.04.013 – ident: ref2/cit2 doi: 10.1098/rsfs.2021.0018 – ident: ref74/cit74 doi: 10.1101/840694 – ident: ref6/cit6 doi: 10.1101/2021.03.31.437917 – ident: ref72/cit72 doi: 10.1063/5.0014475 – ident: ref76/cit76 doi: 10.1021/ar000033j – ident: ref5/cit5 doi: 10.1073/pnas.1104614108 – ident: ref44/cit44 doi: 10.1063/1.4773892 – ident: ref35/cit35 doi: 10.1063/1.2186317 – ident: ref39/cit39 doi: 10.1016/S0006-3495(96)79552-8 – ident: ref87/cit87 doi: 10.1137/070683660 – ident: ref9/cit9 doi: 10.1371/journal.pcbi.1003767 – ident: ref38/cit38 doi: 10.1063/1.2714538 – ident: ref86/cit86 – ident: ref54/cit54 doi: 10.1063/1.1472510 – ident: ref68/cit68 doi: 10.1002/jcc.20084 – ident: ref19/cit19 doi: 10.1016/j.ymeth.2010.06.002 – ident: ref23/cit23 doi: 10.1038/s41467-017-01163-6 – ident: ref14/cit14 doi: 10.1021/acs.jctc.0c01179 – ident: ref26/cit26 doi: 10.1038/nchem.1821 – ident: ref65/cit65 doi: 10.5114/reum.2018.77971 – ident: ref30/cit30 doi: 10.1103/PhysRevLett.86.4983 – ident: ref43/cit43 doi: 10.1063/1.4748278 – ident: ref50/cit50 doi: 10.1287/opre.47.4.585 – ident: ref60/cit60 doi: 10.1098/rsta.2020.0082 – ident: ref84/cit84 doi: 10.1128/JVI.02680-07 – ident: ref40/cit40 doi: 10.1146/annurev-biophys-070816-033834 – ident: ref69/cit69 doi: 10.1006/jcph.1999.6201 – ident: ref57/cit57 doi: 10.1107/S2052252520009653 – ident: ref34/cit34 doi: 10.1016/j.jmb.2007.09.069 – ident: ref10/cit10 doi: 10.1021/jacs.8b10840 – ident: ref36/cit36 doi: 10.1137/06065146X – ident: ref18/cit18 doi: 10.1021/acs.jctc.1c00526 – start-page: 41 volume-title: SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis year: 2014 ident: ref12/cit12 doi: 10.1109/SC.2014.9 – ident: ref22/cit22 doi: 10.1038/ncomms8653 – ident: ref7/cit7 doi: 10.1021/ja202726y – ident: ref83/cit83 doi: 10.1126/science.abb3405 – ident: ref15/cit15 doi: 10.1039/C6CP02349E – ident: ref11/cit11 doi: 10.1021/acs.jctc.8b00913 – ident: ref21/cit21 doi: 10.1021/acs.jctc.7b00172 – ident: ref31/cit31 doi: 10.1006/jmbi.2001.5033 – ident: ref24/cit24 doi: 10.1038/nature12595 – ident: ref81/cit81 doi: 10.1021/acs.jctc.2c00114 – ident: ref45/cit45 doi: 10.1021/ct401065r – ident: ref25/cit25 doi: 10.1021/ct400919u – ident: ref53/cit53 doi: 10.1063/1.5082247 – ident: ref48/cit48 doi: 10.1021/ci500321g – ident: ref85/cit85 – ident: ref47/cit47 doi: 10.1021/jp411479c – ident: ref70/cit70 doi: 10.1371/journal.pcbi.1009817 – ident: ref37/cit37 doi: 10.1063/1.2116947 – ident: ref52/cit52 doi: 10.1021/acs.jctc.6b00277 – ident: ref82/cit82 doi: 10.2147/DDDT.S370574 – ident: ref42/cit42 doi: 10.1063/1.3456985 – ident: ref61/cit61 doi: 10.1098/rsfs.2020.0007 – ident: ref64/cit64 doi: 10.1136/annrheumdis-2016-210457 – ident: ref75/cit75 doi: 10.1002/jcc.21776 |
SSID | ssj0033423 |
Score | 2.4793105 |
Snippet | We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and... We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and... We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and... |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3359 |
SubjectTerms | Adaptive sampling Adenosine Binding sites Biomolecular Systems Chemistry Chymotrypsin Computational chemistry Crystallography Energy methods Free energy INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Ligands Molecular dynamics Papain Peptides and proteins Physics Protease Proteins Ribose Screening assays Severe acute respiratory syndrome coronavirus 2 Simulation Substrates Time |
Title | Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV‑2 Targets |
URI | http://dx.doi.org/10.1021/acs.jctc.3c00020 https://www.ncbi.nlm.nih.gov/pubmed/37246943 https://www.proquest.com/docview/2828427536 https://www.proquest.com/docview/2820337380 https://www.osti.gov/biblio/1975558 https://pubmed.ncbi.nlm.nih.gov/PMC10241325 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcCF9yO0ICPBgUO2je04CbfV0qpCLUJsi3qLHD_KtkuCmuyh5dK_gPiH_SXMOMmWLVXVQ6QkHjt-jD3jzPgbQt4axSxscuJQCuVCYTMTglCIwjjRHB6slsqjfX6WW3vi0368fwGTc9mCz6I1pevhoW70kGtvN7tN7jAJWjaqQeNJv-pyRLLz2KgCESejtDNJXlUCCiJdLwmiQQUT6iol87Kv5D_CZ_NBG8Wo9piF6HNyNJw3xVCf_o_oeIN2PST3Ox2UjlqmeURu2fIxuTvuQ789Ib-2q_KA4ukQOoExtHSjrO2PAm52fMDpmk5LutMH1qUf26j29Qe6PT1QpTk_-_MF4R-AyP9wbM9O1BSS6Gg2w2MlxydYxGT0dRKOq2_nZ78Z3fU-6fVTsre5sTveCrsoDaESadaEEbMqLRApniulNGwnuUmUi5lLmIErVc4w5talAdXFGJ5JSJEaaKQVYt3yZ2RQVqV9QahVnMcJrBjOOpE6XXCXqCxxmYalwyoVkHfQa3k3y-rcG9BZlPuX0JV515UBWeuHNtcd1DlG3Jhdk-P9IsfPFubjGtoV5JYcVBTE2dXokKSbPMoSxE4LyGrPRBcVxX2tYLAzlAF5s0iGQUXrjCptNfc0wMUJT-EDz1ueW1SFJ0zITPCApEvcuCBAkPDllHL63YOFQxMETsaXN-y7FXKPgR6H3nARXyWD5nhuX4He1RSv_YT7CwJVK34 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKciiX8qahBYwEBw7ZNrbz4rZaWi2wW6HuFvUWOY5dFpYENdkDcOlfQPzD_hJmnEfZqqrgECmxJ44fY884M_6GkBeZZBo2Ob4bCGlcoePMBaHguX6oODxoFUiL9nkQjI7Eu2P_eI147VkYqEQJJZXWiH-BLuDtYNpnVak-V9Z8doPcBF2EoRffYDhtF1-OgHYWIlUg8KQXNZbJq0pAeaTKFXnUK2BeXaVrXnaZ_EsG7d8mh13trevJl_6ySvvqxyVgx_9q3h2y0WikdFCz0F2ypvN7ZH3YBoK7T36Oi_yE4lkROoUR1XQvL_XXFG4mNvx0Sec5nbRhdumbOsZ9-ZqO5ycyz87Pfn9AMAggsr8f65MUJYUsOlgs8JDJ6XcsYjo4nLrD4uP52S9GZ9ZDvXxAjvb3ZsOR28RscKWI4sr1mJZRirjxXEqpYHPJs1Aan5mQZXBF0mSMmd0gA0Umy3gcQE6ggCbQQuxq_pD08iLXm4RqybkfwvphtBGRUSk3oYxDEytYSLSUDnkJvZY0c65MrDmdeYlNhK5Mmq50yE47wolqgM8x_sbimjdedW98q0E_rqHdQqZJQGFB1F2F7kmqSrw4RCQ1h2y3vHRRUdzlCgb7xMAhz7tsGFS01chcF0tLA8wc8gg-8Khmva4qPGQiiAV3SLTClB0BQoav5uTzTxY6HJogcGo-_se-e0bWR7PJOBm_PXi_RW4x0PDQT87j26RXnS71E9DIqvSpnYN_AI1SM98 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKIgEX3o-lBYwEBw7ZNrbz4rbadlVgW1VsW_UWOX6UhSWpmuwBuPQvIP5hfwkzzgO2qio4RErsiePHjD3OjL8h5JWWzMAmJ_BCIa0nTKI9WBR8L4gUhwejQunQPnfD7QPx_ig4WiFBexYGKlFCSaUz4qNUn2jbIAz465j-WVVqwJUzoV0j19Fqh558w9G0nYA5gto5mFSB4JN-3FgnLysB1yRVLq1JvQJk6zJ986Lb5F_r0PgOOexa4NxPvgwWVTZQ3y-AO_53E--S241mSoc1K90jKya_T26O2oBwD8iPSZEfUzwzQqcwsoZu5aX5msHNjgtDXdJZTnfacLt0s451X76lk9mxzPX52a89BIUAIvcbsj5RUVLIosP5HA-bnH7DIqbDj1NvVByen_1kdN95qpcPycF4a3-07TWxGzwp4qTyfGZknCF-PJdSKthkch1JGzAbMQ1XLK1mzG6EGhQarXkSQk6ogCY0QmwY_oj08iI3Twg1kvMggnnEGitiqzJuI5lENlEwoRgp--Q19FrayF6ZOrM681OXCF2ZNl3ZJ-vtKKeqAUDHOBzzK954071xUoN_XEG7ioyTguKC6LsK3ZRUlfpJhIhqfbLW8tOfiuJuVzDYL4Z98rLLhkFFm43MTbFwNMDQEY_hA49r9uuqwiMmwkTwPomXGLMjQOjw5Zx89slBiEMTBIro03_suxfkxt7mOJ282_2wSm4xUPTQXc7na6RXnS7MM1DMquy5E8PfRW02Yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+Time+Scale+Ensemble+Methods+in+Molecular+Dynamics%3A+Ligand%E2%80%93Protein+Interactions+and+Allostery+in+SARS-CoV%E2%80%912+Targets&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Bhati%2C+Agastya+P.&rft.au=Hoti%2C+Art&rft.au=Potterton%2C+Andrew&rft.au=Bieniek%2C+Mateusz+K.&rft.date=2023-06-13&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=11&rft.spage=3359&rft.epage=3378&rft_id=info:doi/10.1021%2Facs.jctc.3c00020&rft.externalDocID=a945451324 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon |