Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV‑2 Targets

We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twe...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemical theory and computation Vol. 19; no. 11; pp. 3359 - 3378
Main Authors Bhati, Agastya P., Hoti, Art, Potterton, Andrew, Bieniek, Mateusz K., Coveney, Peter V.
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.06.2023
Subjects
Online AccessGet full text
ISSN1549-9618
1549-9626
1549-9626
DOI10.1021/acs.jctc.3c00020

Cover

Loading…
Abstract We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein–ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.
AbstractList We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.
We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.
We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 μs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein–ligand contact frequencies for these ten/twelve 10 μs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.
Author Potterton, Andrew
Bieniek, Mateusz K.
Coveney, Peter V.
Bhati, Agastya P.
Hoti, Art
AuthorAffiliation University College London
University of Amsterdam
Advanced Research Computing Centre
Centre for Computational Science, Department of Chemistry
Computational Science Laboratory, Institute for Informatics, Faculty of Science
AuthorAffiliation_xml – name: University of Amsterdam
– name: Advanced Research Computing Centre
– name: Centre for Computational Science, Department of Chemistry
– name: Computational Science Laboratory, Institute for Informatics, Faculty of Science
– name: University College London
Author_xml – sequence: 1
  givenname: Agastya P.
  surname: Bhati
  fullname: Bhati, Agastya P.
  organization: Centre for Computational Science, Department of Chemistry
– sequence: 2
  givenname: Art
  surname: Hoti
  fullname: Hoti, Art
  organization: Centre for Computational Science, Department of Chemistry
– sequence: 3
  givenname: Andrew
  orcidid: 0000-0003-1001-8952
  surname: Potterton
  fullname: Potterton, Andrew
  organization: Centre for Computational Science, Department of Chemistry
– sequence: 4
  givenname: Mateusz K.
  orcidid: 0000-0002-3065-5417
  surname: Bieniek
  fullname: Bieniek, Mateusz K.
  organization: Centre for Computational Science, Department of Chemistry
– sequence: 5
  givenname: Peter V.
  orcidid: 0000-0002-8787-7256
  surname: Coveney
  fullname: Coveney, Peter V.
  email: p.v.coveney@ucl.ac.uk
  organization: University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37246943$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1975558$$D View this record in Osti.gov
BookMark eNp9ksuO0zAUhiM0iLnAnhWKYMOCFF9yZYOqMsBIHYFoYWu5zknryrEH20Gq2MwrIN5wnoRT2o5gJFhEsXK-8-f_fc5pcmSdhSR5TMmIEkZfShVGaxXViCtCCCP3khNa5E3WlKw8uj3T-jg5DWFNCOc54w-SY16xvGxyfpJ8nzq7TOe6h3SmpIH03AboF3i4hLhybUi1TS-dATUY6dM3Gyt7rcKrdKqX0rY31z8_ehcBoQsbwUsVtbMhxVI6NsYF_LbZSszGn2bZxH25uf7B0rn0S4jhYXK_kybAo_37LPn89nw-eZ9NP7y7mIynmczrJmaUgawXGJdxKaWipOJtJbuCdRVr8all1zLWkbKlRdG2HMN3VamQKSHPCfCz5PVO92pY9NAqsNFLI6687qXfCCe1-Lti9Uos3TeBd5xTzgpUeLpTwEBaBKUjqJVy1oKKgjZVURQ1Qs_3v_Hu6wAhil4HBcZIC24IgtUMB1DxmiD67A66doO3eAlbqs5ZVfASqSd_-r41fJgeAuUOUN6F4KET6ExuJ4AxtEH_2whU4JqI7ZqI_ZpgI7nTeND-T8uLXcvvysHtP_FfNn3SkQ
CitedBy_id crossref_primary_10_1016_j_ijbiomac_2025_141408
crossref_primary_10_3390_biochem4030014
crossref_primary_10_1080_1062936X_2024_2446353
crossref_primary_10_1021_acs_jctc_4c01389
crossref_primary_10_1002_cphc_202400783
crossref_primary_10_1021_acs_jctc_3c00874
crossref_primary_10_1038_s41524_024_01272_z
crossref_primary_10_1021_acs_jcim_3c01654
crossref_primary_10_1021_acs_jctc_3c00842
crossref_primary_10_1021_acs_jctc_3c01249
crossref_primary_10_3390_ijms25179725
crossref_primary_10_1021_acs_jcim_4c01024
Cites_doi 10.1038/nature01160
10.1021/acs.jctc.6b00794
10.1063/1.3216567
10.1073/pnas.1103547108
10.1021/jacs.1c07591
10.1021/jp204407d
10.1016/j.sbi.2008.01.008
10.1021/acs.jctc.6b00979
10.1371/journal.pcbi.1005659
10.1021/jp037421y
10.1038/s41592-019-0686-2
10.1039/D1ME00124H
10.1371/journal.pcbi.1002054
10.1017/CBO9780511760396
10.1021/acs.jctc.8b01118
10.1038/s41401-020-0483-6
10.4155/fmc-2019-0307
10.1126/science.abf7945
10.1080/07362990601139628
10.1038/s41467-020-20718-8
10.1021/acs.jctc.7b01143
10.1103/PhysRevB.57.R13985
10.1016/j.str.2011.03.019
10.1021/acs.jctc.1c01288
10.1021/ct5010615
10.1016/j.bpj.2018.09.021
10.1145/256562.256635
10.1016/j.ymeth.2009.04.013
10.1098/rsfs.2021.0018
10.1101/840694
10.1101/2021.03.31.437917
10.1063/5.0014475
10.1021/ar000033j
10.1073/pnas.1104614108
10.1063/1.4773892
10.1063/1.2186317
10.1016/S0006-3495(96)79552-8
10.1137/070683660
10.1371/journal.pcbi.1003767
10.1063/1.2714538
10.1063/1.1472510
10.1002/jcc.20084
10.1016/j.ymeth.2010.06.002
10.1038/s41467-017-01163-6
10.1021/acs.jctc.0c01179
10.1038/nchem.1821
10.5114/reum.2018.77971
10.1103/PhysRevLett.86.4983
10.1063/1.4748278
10.1287/opre.47.4.585
10.1098/rsta.2020.0082
10.1128/JVI.02680-07
10.1146/annurev-biophys-070816-033834
10.1006/jcph.1999.6201
10.1107/S2052252520009653
10.1016/j.jmb.2007.09.069
10.1021/jacs.8b10840
10.1137/06065146X
10.1021/acs.jctc.1c00526
10.1109/SC.2014.9
10.1038/ncomms8653
10.1021/ja202726y
10.1126/science.abb3405
10.1039/C6CP02349E
10.1021/acs.jctc.8b00913
10.1021/acs.jctc.7b00172
10.1006/jmbi.2001.5033
10.1038/nature12595
10.1021/acs.jctc.2c00114
10.1021/ct401065r
10.1021/ct400919u
10.1063/1.5082247
10.1021/ci500321g
10.1021/jp411479c
10.1371/journal.pcbi.1009817
10.1063/1.2116947
10.1021/acs.jctc.6b00277
10.2147/DDDT.S370574
10.1063/1.3456985
10.1098/rsfs.2020.0007
10.1136/annrheumdis-2016-210457
10.1002/jcc.21776
ContentType Journal Article
Copyright 2023 The Authors. Published by American Chemical Society
Copyright American Chemical Society Jun 13, 2023
2023 The Authors. Published by American Chemical Society 2023 The Authors
Copyright_xml – notice: 2023 The Authors. Published by American Chemical Society
– notice: Copyright American Chemical Society Jun 13, 2023
– notice: 2023 The Authors. Published by American Chemical Society 2023 The Authors
CorporateAuthor Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
CorporateAuthor_xml – name: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
DBID AAYXX
CITATION
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OTOTI
5PM
DOI 10.1021/acs.jctc.3c00020
DatabaseName CrossRef
PubMed
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1549-9626
EndPage 3378
ExternalDocumentID PMC10241325
1975558
37246943
10_1021_acs_jctc_3c00020
a945451324
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: COMPBIO
– fundername: ;
  grantid: EP/R029598/1
– fundername: ;
  grantid: 823712
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: ScafellPike
– fundername: ;
  grantid: EP/W007762/1
– fundername: ;
  grantid: COMPBIO2
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABFRP
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
D0L
DU5
EBS
ED~
F5P
GGK
GNL
IH9
J9A
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
AAYXX
ABBLG
ABJNI
ABLBI
BAANH
CITATION
CUPRZ
NPM
7SC
7SR
7U5
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
7X8
OTOTI
5PM
ID FETCH-LOGICAL-a489t-12ea8b02123aaac1073d7af52f72df728afd22f06d155dd3962f76cd7a6e440e3
IEDL.DBID ACS
ISSN 1549-9618
1549-9626
IngestDate Thu Aug 21 18:38:24 EDT 2025
Mon Feb 03 04:56:55 EST 2025
Fri Jul 11 01:22:17 EDT 2025
Mon Jun 30 04:02:46 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Thu Apr 24 23:11:24 EDT 2025
Tue Jul 01 02:03:32 EDT 2025
Thu Jul 06 08:30:37 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
This article is made available via the PMC Open Access Subset for unrestricted RESEARCH re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a489t-12ea8b02123aaac1073d7af52f72df728afd22f06d155dd3962f76cd7a6e440e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
UK EPSRC
AC05-00OR22725; EP/R029598/1; EP/W007762/1; 823712; COMPBIO; COMPBIO2
Software Environment for Actionable & VVUQ-evaluated Exascale Applications (SEAVEA)
European Union’s Horizon 2020 Research and Innovation Programme
ORCID 0000-0002-3065-5417
0000-0003-1001-8952
0000-0002-8787-7256
0000000230655417
0000000310018952
0000000287877256
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10241325
PMID 37246943
PQID 2828427536
PQPubID 2048741
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10241325
osti_scitechconnect_1975558
proquest_miscellaneous_2820337380
proquest_journals_2828427536
pubmed_primary_37246943
crossref_citationtrail_10_1021_acs_jctc_3c00020
crossref_primary_10_1021_acs_jctc_3c00020
acs_journals_10_1021_acs_jctc_3c00020
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-13
PublicationDateYYYYMMDD 2023-06-13
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J. Chem. Theory Comput
PublicationYear 2023
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
Saadi A. A. (ref3/cit3) 2021
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
Shaw D. E. (ref13/cit13) 2021
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
Oberkampf W. L. (ref79/cit79) 2010
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
Shaw D. E. (ref12/cit12) 2014
ref7/cit7
References_xml – ident: ref32/cit32
  doi: 10.1038/nature01160
– ident: ref66/cit66
  doi: 10.1021/acs.jctc.6b00794
– start-page: 1
  volume-title: SC’21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
  year: 2021
  ident: ref13/cit13
– start-page: 1
  volume-title: Proceedings of the 50th International Conference on Parallel Processing
  year: 2021
  ident: ref3/cit3
– ident: ref77/cit77
– ident: ref27/cit27
  doi: 10.1063/1.3216567
– ident: ref4/cit4
  doi: 10.1073/pnas.1103547108
– ident: ref71/cit71
  doi: 10.1021/jacs.1c07591
– ident: ref55/cit55
  doi: 10.1021/jp204407d
– ident: ref28/cit28
  doi: 10.1016/j.sbi.2008.01.008
– ident: ref16/cit16
  doi: 10.1021/acs.jctc.6b00979
– ident: ref73/cit73
  doi: 10.1371/journal.pcbi.1005659
– ident: ref33/cit33
  doi: 10.1021/jp037421y
– ident: ref78/cit78
  doi: 10.1038/s41592-019-0686-2
– ident: ref62/cit62
  doi: 10.1039/D1ME00124H
– ident: ref8/cit8
  doi: 10.1371/journal.pcbi.1002054
– volume-title: Verification and Validation in Scientific Computing
  year: 2010
  ident: ref79/cit79
  doi: 10.1017/CBO9780511760396
– ident: ref56/cit56
  doi: 10.1021/acs.jctc.8b01118
– ident: ref59/cit59
  doi: 10.1038/s41401-020-0483-6
– ident: ref1/cit1
  doi: 10.4155/fmc-2019-0307
– ident: ref63/cit63
  doi: 10.1126/science.abf7945
– ident: ref51/cit51
  doi: 10.1080/07362990601139628
– ident: ref58/cit58
  doi: 10.1038/s41467-020-20718-8
– ident: ref17/cit17
  doi: 10.1021/acs.jctc.7b01143
– ident: ref29/cit29
  doi: 10.1103/PhysRevB.57.R13985
– ident: ref67/cit67
  doi: 10.1016/j.str.2011.03.019
– ident: ref80/cit80
  doi: 10.1021/acs.jctc.1c01288
– ident: ref46/cit46
  doi: 10.1021/ct5010615
– ident: ref41/cit41
  doi: 10.1016/j.bpj.2018.09.021
– ident: ref49/cit49
  doi: 10.1145/256562.256635
– ident: ref20/cit20
  doi: 10.1016/j.ymeth.2009.04.013
– ident: ref2/cit2
  doi: 10.1098/rsfs.2021.0018
– ident: ref74/cit74
  doi: 10.1101/840694
– ident: ref6/cit6
  doi: 10.1101/2021.03.31.437917
– ident: ref72/cit72
  doi: 10.1063/5.0014475
– ident: ref76/cit76
  doi: 10.1021/ar000033j
– ident: ref5/cit5
  doi: 10.1073/pnas.1104614108
– ident: ref44/cit44
  doi: 10.1063/1.4773892
– ident: ref35/cit35
  doi: 10.1063/1.2186317
– ident: ref39/cit39
  doi: 10.1016/S0006-3495(96)79552-8
– ident: ref87/cit87
  doi: 10.1137/070683660
– ident: ref9/cit9
  doi: 10.1371/journal.pcbi.1003767
– ident: ref38/cit38
  doi: 10.1063/1.2714538
– ident: ref86/cit86
– ident: ref54/cit54
  doi: 10.1063/1.1472510
– ident: ref68/cit68
  doi: 10.1002/jcc.20084
– ident: ref19/cit19
  doi: 10.1016/j.ymeth.2010.06.002
– ident: ref23/cit23
  doi: 10.1038/s41467-017-01163-6
– ident: ref14/cit14
  doi: 10.1021/acs.jctc.0c01179
– ident: ref26/cit26
  doi: 10.1038/nchem.1821
– ident: ref65/cit65
  doi: 10.5114/reum.2018.77971
– ident: ref30/cit30
  doi: 10.1103/PhysRevLett.86.4983
– ident: ref43/cit43
  doi: 10.1063/1.4748278
– ident: ref50/cit50
  doi: 10.1287/opre.47.4.585
– ident: ref60/cit60
  doi: 10.1098/rsta.2020.0082
– ident: ref84/cit84
  doi: 10.1128/JVI.02680-07
– ident: ref40/cit40
  doi: 10.1146/annurev-biophys-070816-033834
– ident: ref69/cit69
  doi: 10.1006/jcph.1999.6201
– ident: ref57/cit57
  doi: 10.1107/S2052252520009653
– ident: ref34/cit34
  doi: 10.1016/j.jmb.2007.09.069
– ident: ref10/cit10
  doi: 10.1021/jacs.8b10840
– ident: ref36/cit36
  doi: 10.1137/06065146X
– ident: ref18/cit18
  doi: 10.1021/acs.jctc.1c00526
– start-page: 41
  volume-title: SC’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
  year: 2014
  ident: ref12/cit12
  doi: 10.1109/SC.2014.9
– ident: ref22/cit22
  doi: 10.1038/ncomms8653
– ident: ref7/cit7
  doi: 10.1021/ja202726y
– ident: ref83/cit83
  doi: 10.1126/science.abb3405
– ident: ref15/cit15
  doi: 10.1039/C6CP02349E
– ident: ref11/cit11
  doi: 10.1021/acs.jctc.8b00913
– ident: ref21/cit21
  doi: 10.1021/acs.jctc.7b00172
– ident: ref31/cit31
  doi: 10.1006/jmbi.2001.5033
– ident: ref24/cit24
  doi: 10.1038/nature12595
– ident: ref81/cit81
  doi: 10.1021/acs.jctc.2c00114
– ident: ref45/cit45
  doi: 10.1021/ct401065r
– ident: ref25/cit25
  doi: 10.1021/ct400919u
– ident: ref53/cit53
  doi: 10.1063/1.5082247
– ident: ref48/cit48
  doi: 10.1021/ci500321g
– ident: ref85/cit85
– ident: ref47/cit47
  doi: 10.1021/jp411479c
– ident: ref70/cit70
  doi: 10.1371/journal.pcbi.1009817
– ident: ref37/cit37
  doi: 10.1063/1.2116947
– ident: ref52/cit52
  doi: 10.1021/acs.jctc.6b00277
– ident: ref82/cit82
  doi: 10.2147/DDDT.S370574
– ident: ref42/cit42
  doi: 10.1063/1.3456985
– ident: ref61/cit61
  doi: 10.1098/rsfs.2020.0007
– ident: ref64/cit64
  doi: 10.1136/annrheumdis-2016-210457
– ident: ref75/cit75
  doi: 10.1002/jcc.21776
SSID ssj0033423
Score 2.4793105
Snippet We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and...
We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and...
We subject a series of five protein–ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3359
SubjectTerms Adaptive sampling
Adenosine
Binding sites
Biomolecular Systems
Chemistry
Chymotrypsin
Computational chemistry
Crystallography
Energy methods
Free energy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ligands
Molecular dynamics
Papain
Peptides and proteins
Physics
Protease
Proteins
Ribose
Screening assays
Severe acute respiratory syndrome coronavirus 2
Simulation
Substrates
Time
Title Long Time Scale Ensemble Methods in Molecular Dynamics: Ligand–Protein Interactions and Allostery in SARS-CoV‑2 Targets
URI http://dx.doi.org/10.1021/acs.jctc.3c00020
https://www.ncbi.nlm.nih.gov/pubmed/37246943
https://www.proquest.com/docview/2828427536
https://www.proquest.com/docview/2820337380
https://www.osti.gov/biblio/1975558
https://pubmed.ncbi.nlm.nih.gov/PMC10241325
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgOcCF9yO0ICPBgUO2je04CbfV0qpCLUJsi3qLHD_KtkuCmuyh5dK_gPiH_SXMOMmWLVXVQ6QkHjt-jD3jzPgbQt4axSxscuJQCuVCYTMTglCIwjjRHB6slsqjfX6WW3vi0368fwGTc9mCz6I1pevhoW70kGtvN7tN7jAJWjaqQeNJv-pyRLLz2KgCESejtDNJXlUCCiJdLwmiQQUT6iol87Kv5D_CZ_NBG8Wo9piF6HNyNJw3xVCf_o_oeIN2PST3Ox2UjlqmeURu2fIxuTvuQ789Ib-2q_KA4ukQOoExtHSjrO2PAm52fMDpmk5LutMH1qUf26j29Qe6PT1QpTk_-_MF4R-AyP9wbM9O1BSS6Gg2w2MlxydYxGT0dRKOq2_nZ78Z3fU-6fVTsre5sTveCrsoDaESadaEEbMqLRApniulNGwnuUmUi5lLmIErVc4w5talAdXFGJ5JSJEaaKQVYt3yZ2RQVqV9QahVnMcJrBjOOpE6XXCXqCxxmYalwyoVkHfQa3k3y-rcG9BZlPuX0JV515UBWeuHNtcd1DlG3Jhdk-P9IsfPFubjGtoV5JYcVBTE2dXokKSbPMoSxE4LyGrPRBcVxX2tYLAzlAF5s0iGQUXrjCptNfc0wMUJT-EDz1ueW1SFJ0zITPCApEvcuCBAkPDllHL63YOFQxMETsaXN-y7FXKPgR6H3nARXyWD5nhuX4He1RSv_YT7CwJVK34
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKciiX8qahBYwEBw7ZNrbz4rZaWi2wW6HuFvUWOY5dFpYENdkDcOlfQPzD_hJmnEfZqqrgECmxJ44fY884M_6GkBeZZBo2Ob4bCGlcoePMBaHguX6oODxoFUiL9nkQjI7Eu2P_eI147VkYqEQJJZXWiH-BLuDtYNpnVak-V9Z8doPcBF2EoRffYDhtF1-OgHYWIlUg8KQXNZbJq0pAeaTKFXnUK2BeXaVrXnaZ_EsG7d8mh13trevJl_6ySvvqxyVgx_9q3h2y0WikdFCz0F2ypvN7ZH3YBoK7T36Oi_yE4lkROoUR1XQvL_XXFG4mNvx0Sec5nbRhdumbOsZ9-ZqO5ycyz87Pfn9AMAggsr8f65MUJYUsOlgs8JDJ6XcsYjo4nLrD4uP52S9GZ9ZDvXxAjvb3ZsOR28RscKWI4sr1mJZRirjxXEqpYHPJs1Aan5mQZXBF0mSMmd0gA0Umy3gcQE6ggCbQQuxq_pD08iLXm4RqybkfwvphtBGRUSk3oYxDEytYSLSUDnkJvZY0c65MrDmdeYlNhK5Mmq50yE47wolqgM8x_sbimjdedW98q0E_rqHdQqZJQGFB1F2F7kmqSrw4RCQ1h2y3vHRRUdzlCgb7xMAhz7tsGFS01chcF0tLA8wc8gg-8Khmva4qPGQiiAV3SLTClB0BQoav5uTzTxY6HJogcGo-_se-e0bWR7PJOBm_PXi_RW4x0PDQT87j26RXnS71E9DIqvSpnYN_AI1SM98
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKIgEX3o-lBYwEBw7ZNrbz4rbadlVgW1VsW_UWOX6UhSWpmuwBuPQvIP5hfwkzzgO2qio4RErsiePHjD3OjL8h5JWWzMAmJ_BCIa0nTKI9WBR8L4gUhwejQunQPnfD7QPx_ig4WiFBexYGKlFCSaUz4qNUn2jbIAz465j-WVVqwJUzoV0j19Fqh558w9G0nYA5gto5mFSB4JN-3FgnLysB1yRVLq1JvQJk6zJ986Lb5F_r0PgOOexa4NxPvgwWVTZQ3y-AO_53E--S241mSoc1K90jKya_T26O2oBwD8iPSZEfUzwzQqcwsoZu5aX5msHNjgtDXdJZTnfacLt0s451X76lk9mxzPX52a89BIUAIvcbsj5RUVLIosP5HA-bnH7DIqbDj1NvVByen_1kdN95qpcPycF4a3-07TWxGzwp4qTyfGZknCF-PJdSKthkch1JGzAbMQ1XLK1mzG6EGhQarXkSQk6ogCY0QmwY_oj08iI3Twg1kvMggnnEGitiqzJuI5lENlEwoRgp--Q19FrayF6ZOrM681OXCF2ZNl3ZJ-vtKKeqAUDHOBzzK954071xUoN_XEG7ioyTguKC6LsK3ZRUlfpJhIhqfbLW8tOfiuJuVzDYL4Z98rLLhkFFm43MTbFwNMDQEY_hA49r9uuqwiMmwkTwPomXGLMjQOjw5Zx89slBiEMTBIro03_suxfkxt7mOJ282_2wSm4xUPTQXc7na6RXnS7MM1DMquy5E8PfRW02Yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long+Time+Scale+Ensemble+Methods+in+Molecular+Dynamics%3A+Ligand%E2%80%93Protein+Interactions+and+Allostery+in+SARS-CoV%E2%80%912+Targets&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Bhati%2C+Agastya+P.&rft.au=Hoti%2C+Art&rft.au=Potterton%2C+Andrew&rft.au=Bieniek%2C+Mateusz+K.&rft.date=2023-06-13&rft.pub=American+Chemical+Society&rft.issn=1549-9618&rft.eissn=1549-9626&rft.volume=19&rft.issue=11&rft.spage=3359&rft.epage=3378&rft_id=info:doi/10.1021%2Facs.jctc.3c00020&rft.externalDocID=a945451324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9618&client=summon