Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria

While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 13; no. 1; p. e0290421
Main Authors Baker, Isabel R., Conley, Bridget E., Gralnick, Jeffrey A., Girguis, Peter R.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( mtrCAB ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
AbstractList Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in and species have revealed that the electron-donating proteins that support MtrCAB in are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape.
While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( mtrCAB ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
ABSTRACT Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Author Baker, Isabel R.
Conley, Bridget E.
Gralnick, Jeffrey A.
Girguis, Peter R.
Author_xml – sequence: 1
  givenname: Isabel R.
  orcidid: 0000-0003-3000-796X
  surname: Baker
  fullname: Baker, Isabel R.
  organization: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
– sequence: 2
  givenname: Bridget E.
  surname: Conley
  fullname: Conley, Bridget E.
  organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA, Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
– sequence: 3
  givenname: Jeffrey A.
  orcidid: 0000-0001-9250-7770
  surname: Gralnick
  fullname: Gralnick, Jeffrey A.
  organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA, Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
– sequence: 4
  givenname: Peter R.
  orcidid: 0000-0002-3599-8160
  surname: Girguis
  fullname: Girguis, Peter R.
  organization: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35100867$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhiNUREvpkSvyESGl-CPOOhckWm1ppVZcCldrYk-2XiV2sZ0K-PX17raoReCLx_Y7j2fmfV3t-eCxqt4yeswYVx-n3oVjyjva1Jy9qA44k7ReSMb2nsT71VFKa1qWEEwJ-qraF5JRqtrFQZWXd86iN0iGEMl5iO538BlGAt6S7xizM-VwHcGnyaXkgidhIFc51ldoHWS0ZPkzRzA4jvMIkSxHNDkW2TZnwEhgCn5F8g2SEzAZo4M31csBxoRHD_th9e1seX16Xl9-_XJx-vmyhkapXA-WIwqLLXaLrrGip2gktEL1hpoBKZPYLHolVWdb01jbtZJKgyUAFL1BcVhd7Lg2wFrfRjdB_KUDOL29CHGlYdPhiBobqcpPlHJLm4JVtAGjoO2o6lnbdYX1ace6nfsJrUFfuh6fQZ-_eHejV-FOK0UlFbIA3j8AYvgxY8q6DHQzNvAY5qR5y5u2LQbxIv2wk0KauF6HOfoyJs2o3riuN67rreuasyJ-97SwPxU9elwEYicwMaQUcdDGZcjFylKnG_-Lrf_KegT_W38PBvbNAQ
CitedBy_id crossref_primary_10_1007_s10533_024_01186_4
crossref_primary_10_1016_j_scitotenv_2024_173423
crossref_primary_10_1021_jacs_4c01288
crossref_primary_10_1128_msystems_00038_23
crossref_primary_10_1016_j_electacta_2024_145020
crossref_primary_10_1016_j_biosystems_2022_104694
crossref_primary_10_3389_fmicb_2022_1070601
crossref_primary_10_3389_fmicb_2024_1448685
crossref_primary_10_1021_acs_est_4c04455
crossref_primary_10_1038_s44222_024_00233_x
crossref_primary_10_1021_acs_biochem_2c00148
crossref_primary_10_3390_microorganisms12091796
crossref_primary_10_1016_j_tibtech_2022_12_008
crossref_primary_10_1021_acs_est_2c05142
crossref_primary_10_1038_s41467_023_43524_4
crossref_primary_10_1021_acs_est_2c07862
crossref_primary_10_1111_1751_7915_14170
crossref_primary_10_1002_ieam_4972
crossref_primary_10_1186_s12864_024_10872_4
crossref_primary_10_1128_mbio_00992_24
crossref_primary_10_1038_s41396_022_01316_6
crossref_primary_10_1093_molbev_msac139
crossref_primary_10_1016_j_jenvman_2025_124858
crossref_primary_10_1021_acsearthspacechem_4c00260
crossref_primary_10_1128_aem_00570_23
crossref_primary_10_1128_spectrum_04081_23
crossref_primary_10_1146_annurev_micro_032221_023725
crossref_primary_10_1128_msphere_00223_22
crossref_primary_10_1128_msystems_01259_24
crossref_primary_10_1016_j_scitotenv_2022_156501
crossref_primary_10_1128_aem_02465_24
crossref_primary_10_1016_j_jelechem_2025_118933
Cites_doi 10.1111/mmi.14067
10.1016/S0966-842X(97)01110-4
10.1371/journal.pone.0011147
10.1111/j.1462-2920.2008.01608.x
10.1146/annurev-micro-030117-020420
10.1073/pnas.0902000106
10.1093/bioinformatics/btr039
10.1126/science.1153213
10.1042/BST20120106
10.3389/fmicb.2019.03041
10.1039/c000396d
10.1016/j.ygeno.2019.03.009
10.1038/s41467-021-21709-z
10.1371/journal.pone.0016649
10.1038/sdata.2017.203
10.1111/j.1574-6976.2011.00292.x
10.1128/AEM.71.8.4935-4937.2005
10.1098/rstb.2006.1906
10.1038/srep44725
10.1021/es702688c
10.3389/fmicb.2017.00323
10.1038/nbt749
10.1111/j.1472-4669.2012.00321.x
10.1038/ncomms4391
10.1128/AEM.03493-15
10.1099/ijs.0.02997-0
10.1128/AEM.02947-14
10.1093/oxfordjournals.molbev.a003851
10.1016/j.febslet.2014.04.013
10.1016/S0021-9258(19)77371-2
10.1038/nrmicro.2016.93
10.1073/pnas.0900086106
10.1042/BJ20120197
10.1021/es8029208
10.1099/mic.0.058404-0
10.1128/AEM.05005-11
10.1007/978-3-642-38922-1_227
10.1111/1758-2229.12216
10.1099/ijs.0.02298-0
10.1093/nar/gkz239
10.3389/fmicb.2020.00037
10.1002/pmic.201400585
10.1128/AEM.02134-18
10.1128/mBio.02203-17
10.1128/AEM.01615-16
10.1016/B978-0-12-387661-4.00004-5
10.3389/fmicb.2013.00254
10.1038/nbt867
10.1038/s41586-020-2468-5
10.3389/fenrg.2019.00060
10.1126/sciadv.aat5664
10.3389/fmicb.2018.02905
10.1099/ijs.0.002741-0
10.1038/s41598-017-05180-9
10.3389/fmicb.2017.01584
10.1146/annurev-micro-102215-095521
10.1128/genomeA.01103-15
10.1039/c1ee02229f
10.3389/fmicb.2018.03176
10.1042/BST20120098
10.1371/journal.pbio.1001935
10.3389/fmicb.2019.01861
10.1128/AEM.02330-20
10.1371/journal.pone.0075610
10.1186/s12864-015-2011-5
10.1128/JB.01518-06
10.1073/pnas.1609534113
10.1371/journal.pcbi.1001082
10.1111/j.1365-2958.2010.07266.x
10.1111/1574-6976.12067
10.1186/s12866-015-0406-8
10.1038/nature10571
10.1111/j.1574-6976.2002.tb00616.x
10.1099/ijsem.0.001006
10.1016/j.bbabio.2012.09.001
10.1016/S0065-2911(05)50004-3
10.1128/MRA.01444-19
10.1038/s41396-018-0109-x
10.1038/s41579-021-00534-7
10.1002/fuce.201700023
10.1186/1471-2164-11-40
10.1038/s41467-019-10872-z
10.1073/pnas.0401526101
10.1128/mSystems.00002-17
10.1111/2041-210X.12760
10.1073/pnas.0903132106
10.1128/genomeA.00803-17
10.1128/AEM.01941-20
10.1186/1471-2148-9-9
10.1038/nrmicro2174
10.1130/G21658.1
10.1128/MMBR.00035-13
10.1128/JB.182.1.67-75.2000
10.1007/s42398-018-0024-0
10.1128/mBio.00282-15
10.1007/s10295-020-02309-0
10.1128/AEM.69.10.5884-5891.2003
10.1186/1471-2180-13-267
10.3389/fmicb.2012.00037
10.1038/nrg.2016.39
10.1093/molbev/msw245
10.1093/nar/gkz268
10.1042/BJ20121467
10.3389/fmicb.2018.03029
10.1038/nature04111
10.1007/978-3-642-38922-1_226
10.1007/978-3-642-38922-1_229
10.3389/fmicb.2015.00332
10.1093/bioinformatics/btq249
10.1128/aem.63.12.4784-4792.1997
10.1042/BST20120132
10.1016/j.str.2012.04.016
10.1073/pnas.1017200108
10.1093/genetics/143.4.1843
10.1093/femsre/fux053
10.1073/pnas.0505959103
10.1128/JB.00890-12
10.1371/journal.pcbi.1004095
10.1128/AEM.00544-09
10.1038/ismej.2014.193
10.1128/JB.01388-06
10.1128/JB.00776-06
10.3389/fmicb.2019.00849
10.1007/s00775-008-0398-z
10.1038/ismej.2014.264
10.1128/MMBR.00048-16
10.1126/science.1147112
10.1128/JB.01480-09
10.1128/mBio.00379-13
10.1128/AEM.01253-20
10.1099/00207713-52-6-2211
10.1039/c3cs60249d
10.1042/bst0300590
10.1126/sciadv.aav2869
10.1128/mBio.02668-19
10.1111/j.1365-2958.2006.05132.x
10.1038/nrmicro1947
10.1111/1574-6941.12406
10.1016/j.abb.2008.02.015
10.1128/AEM.00146-07
10.1186/s13068-018-1201-1
10.1016/j.cell.2020.03.032
10.1111/j.1365-2958.2005.04650.x
10.1038/s41579-020-00502-7
10.1093/nar/gkz991
ContentType Journal Article
Copyright Copyright © 2022 Baker et al.
Copyright © 2022 Baker et al. 2022 Baker et al.
Copyright_xml – notice: Copyright © 2022 Baker et al.
– notice: Copyright © 2022 Baker et al. 2022 Baker et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.02904-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Harwood, Caroline S
Editor_xml – sequence: 1
  givenname: Caroline S
  surname: Harwood
  fullname: Harwood, Caroline S
ExternalDocumentID oai_doaj_org_article_e458de6002d04e47804ac8a6908b1699
PMC8805035
02904-21
35100867
10_1128_mbio_02904_21
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: Shared Services Center NASA
  grantid: 80NSSC19K1427
– fundername: National Science Foundation (NSF)
  grantid: DEB-1542513
  funderid: https://doi.org/10.13039/100000001
– fundername: National Aeronautics and Space Administration (NASA)
  grantid: 80NSSC18K1140; 80NSSC19K1427
  funderid: https://doi.org/10.13039/100000104
– fundername: DOD | Office of Naval Research (ONR)
  grantid: N4398-NV-ONR
  funderid: https://doi.org/10.13039/100000006
– fundername: ;
  grantid: 80NSSC18K1140; 80NSSC19K1427
– fundername: ;
  grantid: DEB-1542513
– fundername: ;
  grantid: N4398-NV-ONR
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
7X8
5PM
ID FETCH-LOGICAL-a488t-fd2ee3de6e9794d3b0ec5a638bc0cfe015e47b8589d6c4dd96505cedd9ae3bce3
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:29:39 EDT 2025
Thu Aug 21 14:11:34 EDT 2025
Fri Jul 11 10:02:13 EDT 2025
Tue Feb 22 21:30:05 EST 2022
Sat May 31 02:12:27 EDT 2025
Tue Jul 01 01:52:51 EDT 2025
Thu Apr 24 22:58:42 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords iron reduction
phylogenetic analysis
gene transfer
lithoautotrophic metabolism
electron transport
evolution
Shewanella
iron oxidizers
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-fd2ee3de6e9794d3b0ec5a638bc0cfe015e47b8589d6c4dd96505cedd9ae3bce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0001-9250-7770
0000-0002-3599-8160
0000-0003-3000-796X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02904-21
PMID 35100867
PQID 2624661832
PQPubID 23479
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_e458de6002d04e47804ac8a6908b1699
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8805035
proquest_miscellaneous_2624661832
asm2_journals_10_1128_mbio_02904_21
pubmed_primary_35100867
crossref_citationtrail_10_1128_mbio_02904_21
crossref_primary_10_1128_mbio_02904_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_123_2
e_1_3_2_146_2
e_1_3_2_104_2
e_1_3_2_142_2
e_1_3_2_81_2
e_1_3_2_127_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
Smith JP (e_1_3_2_53_2) 2014
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_112_2
e_1_3_2_135_2
e_1_3_2_92_2
e_1_3_2_131_2
e_1_3_2_50_2
e_1_3_2_116_2
e_1_3_2_139_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_145_2
e_1_3_2_126_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_141_2
e_1_3_2_122_2
e_1_3_2_107_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_134_2
e_1_3_2_93_2
e_1_3_2_115_2
e_1_3_2_130_2
e_1_3_2_70_2
e_1_3_2_111_2
e_1_3_2_138_2
e_1_3_2_119_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_125_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_121_2
e_1_3_2_144_2
e_1_3_2_106_2
e_1_3_2_129_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_140_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_114_2
e_1_3_2_137_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_133_2
e_1_3_2_90_2
e_1_3_2_118_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_124_2
e_1_3_2_147_2
e_1_3_2_61_2
e_1_3_2_120_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_143_2
e_1_3_2_109_2
e_1_3_2_105_2
e_1_3_2_128_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_113_2
e_1_3_2_136_2
e_1_3_2_72_2
e_1_3_2_132_2
e_1_3_2_117_2
Urakawa, H, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B67) 2014
Jiao, Y, Newman, DK (B37) 2007; 189
Mendonça, AG, Alves, RJ, Pereira-Leal, JB (B95) 2011; 7
Shi, L, Rosso, KM, Zachara, JM, Fredrickson, JK (B32) 2012; 40
Schmidt, B, Sánchez, LA, Fretschner, T, Kreps, G, Ferrero, MA, Siñeriz, F, Szewzyk, U (B51) 2014; 90
Finneran, KT, Johnsen, CV, Lovley, DR (B48) 2003; 53
Brito, IL (B124) 2021; 19
Singh, VK, Singh, AL, Singh, R, Kumar, A (B13) 2018; 1
Leary, DH, Hervey, WJ, Malanoski, AP, Wang, Z, Eddie, BJ, Tender, GS, Vora, GJ, Tender, LM, Lin, B, Strycharz-Glaven, SM (B71) 2015; 15
Bouhenni, R, Gehrke, A, Saffarini, D (B84) 2005; 71
Jing, X, Wu, Y, Shi, L, Peacock, CL, Ashry, NM, Gao, C, Huang, Q, Cai, P (B127) 2020; 86
Edwards, MJ, White, GF, Butt, JN, Richardson, DJ, Clarke, TA (B28) 2020; 181
Schliep, K, Potts, AJ, Morrison, DA, Grimm, GW (B141) 2017; 8
Onderko, EL, Phillips, DA, Eddie, BJ, Yates, MD, Wang, Z, Tender, LM, Glaven, SM (B72) 2019; 7
Liu, C, Zachara, JM, Zhong, L, Heald, SM, Wang, Z, Jeon, B-H, Fredrickson, JK (B11) 2009; 43
Feissner, RE, Richard-Fogal, CL, Frawley, ER, Loughman, JA, Earley, KW, Kranz, RG (B87) 2006; 60
Clark, IC, Melnyk, RA, Youngblut, MD, Carlson, HK, Iavarone, AT, Coates, JD (B56) 2015; 6
Satomi, M, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B68) 2014
Bengtsson-Palme, J, Kristiansson, E, Larsson, DGJ (B122) 2018; 42
Marritt, SJ, Lowe, TG, Bye, J, McMillan, DGG, Shi, L, Fredrickson, J, Zachara, J, Richardson, DJ, Cheesman, MR, Jeuken, LJC, Butt, JN (B76) 2012; 444
Tully, BJ, Graham, ED, Heidelberg, JF (B146) 2018; 5
Cooper, RE, Wegner, C-E, McAllister, SM, Shevchenko, O, Chan, CS, Küsel, K (B39) 2020; 9
Ross, DE, Brantley, SL, Tien, M (B107) 2009; 75
Camacho, A, Walter, XA, Picazo, A, Zopfi, J (B136) 2017; 8
Liu, J, Wang, Z, Belchik, SM, Edwards, MJ, Liu, C, Kennedy, DW, Merkley, ED, Lipton, MS, Butt, JN, Richardson, DJ, Zachara, JM, Fredrickson, JK, Rosso, KM, Shi, L (B41) 2012; 3
Rowe, AR, Rajeev, P, Jain, A, Pirbadian, S, Okamoto, A, Gralnick, JA, El-Naggar, MY, Nealson, KH (B54) 2018; 9
Jin, M, Jiang, Y, Sun, L, Yin, J, Fu, H, Wu, G, Gao, H (B85) 2013; 8
McLean, JS, Pinchuk, GE, Geydebrekht, OV, Bilskis, CL, Zakrajsek, BA, Hill, EA, Saffarini, DA, Romine, MF, Gorby, YA, Fredrickson, JK, Beliaev, AS (B129) 2008; 10
He, S, Barco, RA, Emerson, D, Roden, EE (B43) 2017; 8
Caro-Quintero, A, Konstantinidis, KT (B116) 2015; 9
Lovley, DR (B21) 2017; 71
Sorek, R, Zhu, Y, Creevey, CJ, Francino, MP, Bork, P, Rubin, EM (B119) 2007; 318
Lower, BH, Shi, L, Yongsunthon, R, Droubay, TC, McCready, DE, Lower, SK (B126) 2007; 189
Darmon, E, Leach, DRF (B75) 2014; 78
Ivanova, EP, Flavier, S, Christen, R (B61) 2004; 54
Lawrence, JG (B111) 1997; 5
Larsen, S, Nielsen, LP, Schramm, A (B19) 2015; 7
Wang, Q, Jones, A-AD, Gralnick, JA, Lin, L, Buie, CR (B130) 2019; 5
Gupta, D, Guzman, MS, Bose, A (B17) 2020; 47
Lawrence, JG, Roth, JR (B110) 1996; 143
Darling, AE, Mau, B, Perna, NT (B144) 2010; 5
Letunic, I, Bork, P (B142) 2019; 47
Lindell, D, Jaffe, JD, Johnson, ZI, Church, GM, Chisholm, SW (B59) 2005; 438
Simon, J (B114) 2002; 26
Reyes, C, Qian, F, Zhang, A, Bondarev, S, Welch, A, Thelen, MP, Saltikov, CW (B46) 2012; 194
Falkowski, PG, Fenchel, T, Delong, EF (B1) 2008; 320
Smith, JP (B52) 2014
Edwards, MJ, Fredrickson, JK, Zachara, JM, Richardson, DJ, Clarke, TA (B101) 2012; 40
Smillie, CS, Smith, MB, Friedman, J, Cordero, OX, David, LA, Alm, EJ (B118) 2011; 480
Conley, BE, Weinstock, MT, Bond, DR, Gralnick, JA (B34) 2020; 86
Bose, A, Gardel, EJ, Vidoudez, C, Parra, EA, Girguis, PR (B35) 2014; 5
Lovley, DR, Ueki, T, Zhang, T, Malvankar, NS, Shrestha, PM, Flanagan, KA, Aklujkar, M, Butler, JE, Giloteaux, L, Rotaru, A-E, Holmes, DE, Franks, AE, Orellana, R, Risso, C, Nevin, KP (B20) 2011; 59
Garber, AI, Nealson, KH, Okamoto, A, McAllister, SM, Chan, CS, Barco, RA, Merino, N (B42) 2020; 11
Anderson, RT, Vrionis, HA, Ortiz-Bernad, I, Resch, CT, Long, PE, Dayvault, R, Karp, K, Marutzky, S, Metzler, DR, Peacock, A, White, DC, Lowe, M, Lovley, DR (B10) 2003; 69
Gralnick, JA, Vali, H, Lies, DP, Newman, DK (B131) 2006; 103
Neto, SE, de Melo, Diogo, D, Correia, IJ, Paquete, CM, Louro, RO (B106) 2017; 17
Grein, F, Ramos, AR, Venceslau, SS, Pereira, IAC (B112) 2013; 1827
Eddie, BJ, Wang, Z, Malanoski, AP, Hall, RJ, Oh, SD, Heiner, C, Lin, B, Strycharz-Glaven, SM (B15) 2016; 66
Ross, DE, Flynn, JM, Baron, DB, Gralnick, JA, Bond, DR (B53) 2011; 6
Wang, Z, Leary, DH, Malanoski, AP, Li, RW, Hervey, WJ, Eddie, BJ, Tender, GS, Yanosky, SG, Vora, GJ, Tender, LM, Lin, B, Strycharz-Glaven, SM (B73) 2015; 81
Mitchell, AC, Peterson, L, Reardon, CL, Reed, SB, Culley, DE, Romine, MR, Geesey, GG (B105) 2012; 10
Gao, B, Mohan, R, Gupta, RS (B64) 2009; 59
Sparacino-Watkins, C, Stolz, JF, Basu, P (B115) 2014; 43
Clark, IC, Melnyk, RA, Engelbrektson, A, Coates, JD (B55) 2013; 4
Heidelberg, JF, Paulsen, IT, Nelson, KE, Gaidos, EJ, Nelson, WC, Read, TD, Eisen, JA, Seshadri, R, Ward, N, Methe, B, Clayton, RA, Meyer, T, Tsapin, A, Scott, J, Beanan, M, Brinkac, L, Daugherty, S, DeBoy, RT, Dodson, RJ, Durkin, AS, Haft, DH, Kolonay, JF, Madupu, R, Peterson, JD, Umayam, LA, White, O, Wolf, AM, Vamathevan, J, Weidman, J, Impraim, M, Lee, K, Berry, K, Lee, C, Mueller, J, Khouri, H, Gill, J, Utterback, TR, McDonald, LA, Feldblyum, TV, Smith, HO, Venter, JC, Nealson, KH, Fraser, CM (B30) 2002; 20
Bird, LJ, Wang, Z, Malanoski, AP, Onderko, EL, Johnson, BJ, Moore, MH, Phillips, DA, Chu, BJ, Doyle, JF, Eddie, BJ, Glaven, SM (B70) 2018; 9
Clarke, TA, Edwards, MJ, Gates, AJ, Hall, A, White, GF, Bradley, J, Reardon, CL, Shi, L, Beliaev, AS, Marshall, MJ, Wang, Z, Watmough, NJ, Fredrickson, JK, Zachara, JM, Butt, JN, Richardson, DJ (B99) 2011; 108
Lovley, DR (B12) 2011; 4
Chaudhuri, SK, Lovley, DR (B47) 2003; 21
Albalat, R, Cañestro, C (B121) 2016; 17
Ettwig, KF, Zhu, B, Speth, D, Keltjens, JT, Jetten, MSM, Kartal, B (B4) 2016; 113
Zhong, C, Han, M, Yu, S, Yang, P, Li, H, Ning, K (B27) 2018; 11
Sandegren, L, Andersson, DI (B96) 2009; 7
Sturm, G, Richter, K, Doetsch, A, Heide, H, Louro, RO, Gescher, J (B81) 2015; 9
Barchinger, SE, Pirbadian, S, Sambles, C, Baker, CS, Leung, KM, Burroughs, NJ, El-Naggar, MY, Golbeck, JH (B128) 2016; 82
Jelen, BI, Giovannelli, D, Falkowski, PG (B6) 2016; 70
Melnyk, RA, Coates, JD (B57) 2015; 16
Fonseca, BM, Paquete, CM, Neto, SE, Pacheco, I, Soares, CM, Louro, RO (B80) 2013; 449
Braun, B, Künzel, S, Szewzyk, U (B50) 2017; 5
Brettar, I, Christen, R, Höfle, MG (B83) 2002; 52
Ross, DE, Ruebush, SS, Brantley, SL, Hartshorne, RS, Clarke, TA, Richardson, DJ, Tien, M (B109) 2007; 73
Yang, Y, Wang, Z, Gan, C, Klausen, LH, Bonné, R, Kong, G, Luo, D, Meert, M, Zhu, C, Sun, G, Guo, J, Ma, Y, Bjerg, JT, Manca, J, Xu, M, Nielsen, LP, Dong, M (B24) 2021; 12
Dailey, HA, Dailey, TA, Gerdes, S, Jahn, D, Jahn, M, O'Brian, MR, Warren, MJ (B91) 2017; 81
Gao, Y, Lee, J, Neufeld, JD, Park, J, Rittmann, BE, Lee, H-S (B5) 2017; 7
Cianciotto, NP, Cornelis, P, Baysse, C (B86) 2005; 56
Aigle, A, Bonin, P, Iobbi-Nivol, C, Méjean, V, Michotey, V (B97) 2017; 7
Marin, J, Battistuzzi, FU, Brown, AC, Hedges, SB (B69) 2017; 34
Kappler, A, Bryce, C, Mansor, M, Lueder, U, Byrne, JM, Swanner, ED (B134) 2021; 19
Eddie, BJ, Wang, Z, Hervey, WJ, Leary, DH, Malanoski, AP, Tender, LM, Lin, B, Strycharz-Glaven, SM (B16) 2017; 2
Coursolle, D, Gralnick, JA (B31) 2010; 77
Cai, C, Leu, AO, Xie, G-J, Guo, J, Feng, Y, Zhao, J-X, Tyson, GW, Yuan, Z, Hu, S (B3) 2018; 12
Hartshorne, RS, Reardon, CL, Ross, D, Nuester, J, Clarke, TA, Gates, AJ, Mills, PC, Fredrickson, JK, Zachara, JM, Shi, L, Beliaev, AS, Marshall, MJ, Tien, M, Brantley, S, Butt, JN, Richardson, DJ (B45) 2009; 106
Edwards, MJ, Hall, A, Shi, L, Fredrickson, JK, Zachara, JM, Butt, JN, Richardson, DJ, Clarke, TA (B102) 2012; 20
Ravenhall, M, Škunca, N, Lassalle, F, Dessimoz, C (B60) 2015; 11
Frawley, ER, Kranz, RG (B88) 2009; 106
Kasai, T, Kouzuma, A, Nojiri, H, Watanabe, K (B104) 2015; 15
Aromokeye, DA, Kulkarni, AC, Elvert, M, Wegener, G, Henkel, S, Coffinet, S, Eickhorst, T, Oni, OE, Richter-Heitmann, T, Schnakenberg, A, Taubner, H, Wunder, L, Yin, X, Zhu, Q, Hinrichs, K-U, Kasten, S, Friedrich, MW (B2) 2019; 10
Butler, JE, Young, ND, Lovley, DR (B14) 2010; 11
Whelan, S, Goldman, N (B140) 2001; 18
Canfield, DE, Rosing, MT, Bjerrum, C (B137) 2006; 361
McCrindle, SL, Kappler, U, McEwan, AG (B113) 2005; 50
Kikuchi, G, Kumar, A, Talmage, P, Shemin, D (B92) 1958; 233
Kanhere, A, Vingron, M (B117) 2009; 9
Firer-Sherwood, M, Pulcu, GS, Elliott, SJ (B103) 2008; 13
Gupta, D, Sutherland, MC, Rengasamy, K, Meacham, JM, Kranz, RG, Bose, A (B36) 2019; 10
Yu, NY, Wagner, JR, Laird, MR, Melli, G, Rey, S, Lo, R, Dao, P, Sahinalp, SC, Ester, M, Foster, LJ, Brinkman, FSL (B78) 2010; 26
Thorell, K, Meier-Kolthoff, JP, Sjöling, Å, Martín-Rodríguez, AJ (B66) 2019; 10
Richard-Fogal, CL, Frawley, ER, Feissner, RE, Kranz, RG (B89) 2007; 189
He, S, Tominski, C, Kappler, A, Behrens, S, Roden, EE (B132) 2016; 82
Tanaka, K, Yokoe, S, Igarashi, K, Takashino, M, Ishikawa, M, Hori, K, Nakanishi, S, Kato, S (B23) 2018; 9
DeBruyn, JM, Nixon, LT, Fawaz, MN, Johnson, AM, Radosevich, M (B63) 2011; 77
Dailey, HA (B93) 2002; 30
Ivanova, EP, Ng, HJ, Webb, HK, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B62) 2014
Zhong, Y, Shi, L (B44) 2018; 9
Ozaki, K, Thompson, KJ, Simister, RL, Crowe, SA, Reinhard, CT (B8) 2019; 10
Thompson, KJ, Kenward, PA, Bauer, KW, Warchola, T, Gauger, T, Martinez, R, Simister, RL, Michiels, CC, Llirós, M, Reinhard, CT, Kappler, A, Konhauser, KO, Crowe, SA (B9) 2019; 5
Conley, BE, Intile, PJ, Bond, DR, Gralnick, JA (B33) 2018; 84
Heinemann, IU, Jahn, M, Jahn, D (B90) 2008; 474
Konstantinidis, KT, Serres, MH, Romine, MF, Rodrigues, JLM, Auchtung, J, McCue, L-A, Lipton, MS, Obraztsova, A, Giometti, CS, Nealson, KH, Fredrickson, JK, Tiedje, JM (B26) 2009; 106
Banerjee, R, Shine, O, Rajachandran, V, Krishnadas, G, Minnick, MF, Paul, S, Chattopadhyay, S (B94) 2020; 112
Edwards, MJ, Baiden, NA, Johs, A, Tomanicek, SJ, Liang, L, Shi, L, Fredrickson, JK, Zachara, JM, Gates, AJ
References_xml – ident: e_1_3_2_30_2
  doi: 10.1111/mmi.14067
– volume-title: A novel manganese oxidising bacterium: characterisation and genomic evaluation
  year: 2014
  ident: e_1_3_2_53_2
– ident: e_1_3_2_112_2
  doi: 10.1016/S0966-842X(97)01110-4
– ident: e_1_3_2_145_2
  doi: 10.1371/journal.pone.0011147
– ident: e_1_3_2_130_2
  doi: 10.1111/j.1462-2920.2008.01608.x
– ident: e_1_3_2_22_2
  doi: 10.1146/annurev-micro-030117-020420
– ident: e_1_3_2_27_2
  doi: 10.1073/pnas.0902000106
– ident: e_1_3_2_146_2
  doi: 10.1093/bioinformatics/btr039
– ident: e_1_3_2_2_2
  doi: 10.1126/science.1153213
– ident: e_1_3_2_99_2
  doi: 10.1042/BST20120106
– ident: e_1_3_2_3_2
  doi: 10.3389/fmicb.2019.03041
– ident: e_1_3_2_83_2
  doi: 10.1039/c000396d
– ident: e_1_3_2_95_2
  doi: 10.1016/j.ygeno.2019.03.009
– ident: e_1_3_2_25_2
  doi: 10.1038/s41467-021-21709-z
– ident: e_1_3_2_54_2
  doi: 10.1371/journal.pone.0016649
– ident: e_1_3_2_147_2
  doi: 10.1038/sdata.2017.203
– ident: e_1_3_2_121_2
  doi: 10.1111/j.1574-6976.2011.00292.x
– ident: e_1_3_2_85_2
  doi: 10.1128/AEM.71.8.4935-4937.2005
– ident: e_1_3_2_138_2
  doi: 10.1098/rstb.2006.1906
– ident: e_1_3_2_98_2
  doi: 10.1038/srep44725
– ident: e_1_3_2_126_2
  doi: 10.1021/es702688c
– ident: e_1_3_2_137_2
  doi: 10.3389/fmicb.2017.00323
– ident: e_1_3_2_31_2
  doi: 10.1038/nbt749
– ident: e_1_3_2_106_2
  doi: 10.1111/j.1472-4669.2012.00321.x
– ident: e_1_3_2_36_2
  doi: 10.1038/ncomms4391
– ident: e_1_3_2_133_2
  doi: 10.1128/AEM.03493-15
– ident: e_1_3_2_62_2
  doi: 10.1099/ijs.0.02997-0
– ident: e_1_3_2_74_2
  doi: 10.1128/AEM.02947-14
– ident: e_1_3_2_141_2
  doi: 10.1093/oxfordjournals.molbev.a003851
– ident: e_1_3_2_101_2
  doi: 10.1016/j.febslet.2014.04.013
– ident: e_1_3_2_93_2
  doi: 10.1016/S0021-9258(19)77371-2
– ident: e_1_3_2_23_2
  doi: 10.1038/nrmicro.2016.93
– ident: e_1_3_2_46_2
  doi: 10.1073/pnas.0900086106
– ident: e_1_3_2_77_2
  doi: 10.1042/BJ20120197
– ident: e_1_3_2_12_2
  doi: 10.1021/es8029208
– ident: e_1_3_2_134_2
  doi: 10.1099/mic.0.058404-0
– ident: e_1_3_2_64_2
  doi: 10.1128/AEM.05005-11
– ident: e_1_3_2_68_2
  doi: 10.1007/978-3-642-38922-1_227
– ident: e_1_3_2_20_2
  doi: 10.1111/1758-2229.12216
– ident: e_1_3_2_49_2
  doi: 10.1099/ijs.0.02298-0
– ident: e_1_3_2_143_2
  doi: 10.1093/nar/gkz239
– ident: e_1_3_2_43_2
  doi: 10.3389/fmicb.2020.00037
– ident: e_1_3_2_72_2
  doi: 10.1002/pmic.201400585
– ident: e_1_3_2_34_2
  doi: 10.1128/AEM.02134-18
– ident: e_1_3_2_55_2
  doi: 10.1128/mBio.02203-17
– ident: e_1_3_2_129_2
  doi: 10.1128/AEM.01615-16
– ident: e_1_3_2_21_2
  doi: 10.1016/B978-0-12-387661-4.00004-5
– ident: e_1_3_2_41_2
  doi: 10.3389/fmicb.2013.00254
– ident: e_1_3_2_48_2
  doi: 10.1038/nbt867
– ident: e_1_3_2_50_2
  doi: 10.1038/s41586-020-2468-5
– ident: e_1_3_2_73_2
  doi: 10.3389/fenrg.2019.00060
– ident: e_1_3_2_131_2
  doi: 10.1126/sciadv.aat5664
– ident: e_1_3_2_24_2
  doi: 10.3389/fmicb.2018.02905
– ident: e_1_3_2_65_2
  doi: 10.1099/ijs.0.002741-0
– ident: e_1_3_2_6_2
  doi: 10.1038/s41598-017-05180-9
– ident: e_1_3_2_44_2
  doi: 10.3389/fmicb.2017.01584
– ident: e_1_3_2_7_2
  doi: 10.1146/annurev-micro-102215-095521
– ident: e_1_3_2_75_2
  doi: 10.1128/genomeA.01103-15
– ident: e_1_3_2_13_2
  doi: 10.1039/c1ee02229f
– ident: e_1_3_2_71_2
  doi: 10.3389/fmicb.2018.03176
– ident: e_1_3_2_33_2
  doi: 10.1042/BST20120098
– ident: e_1_3_2_124_2
  doi: 10.1371/journal.pbio.1001935
– ident: e_1_3_2_67_2
  doi: 10.3389/fmicb.2019.01861
– ident: e_1_3_2_19_2
  doi: 10.1128/AEM.02330-20
– ident: e_1_3_2_86_2
  doi: 10.1371/journal.pone.0075610
– ident: e_1_3_2_58_2
  doi: 10.1186/s12864-015-2011-5
– ident: e_1_3_2_127_2
  doi: 10.1128/JB.01518-06
– ident: e_1_3_2_5_2
  doi: 10.1073/pnas.1609534113
– ident: e_1_3_2_96_2
  doi: 10.1371/journal.pcbi.1001082
– ident: e_1_3_2_32_2
  doi: 10.1111/j.1365-2958.2010.07266.x
– ident: e_1_3_2_80_2
  doi: 10.1111/1574-6976.12067
– ident: e_1_3_2_105_2
  doi: 10.1186/s12866-015-0406-8
– ident: e_1_3_2_119_2
  doi: 10.1038/nature10571
– ident: e_1_3_2_115_2
  doi: 10.1111/j.1574-6976.2002.tb00616.x
– ident: e_1_3_2_16_2
  doi: 10.1099/ijsem.0.001006
– ident: e_1_3_2_113_2
  doi: 10.1016/j.bbabio.2012.09.001
– ident: e_1_3_2_114_2
  doi: 10.1016/S0065-2911(05)50004-3
– ident: e_1_3_2_40_2
  doi: 10.1128/MRA.01444-19
– ident: e_1_3_2_4_2
  doi: 10.1038/s41396-018-0109-x
– ident: e_1_3_2_125_2
  doi: 10.1038/s41579-021-00534-7
– ident: e_1_3_2_107_2
  doi: 10.1002/fuce.201700023
– ident: e_1_3_2_15_2
  doi: 10.1186/1471-2164-11-40
– ident: e_1_3_2_9_2
  doi: 10.1038/s41467-019-10872-z
– ident: e_1_3_2_59_2
  doi: 10.1073/pnas.0401526101
– ident: e_1_3_2_17_2
  doi: 10.1128/mSystems.00002-17
– ident: e_1_3_2_142_2
  doi: 10.1111/2041-210X.12760
– ident: e_1_3_2_89_2
  doi: 10.1073/pnas.0903132106
– ident: e_1_3_2_51_2
  doi: 10.1128/genomeA.00803-17
– ident: e_1_3_2_128_2
  doi: 10.1128/AEM.01941-20
– ident: e_1_3_2_118_2
  doi: 10.1186/1471-2148-9-9
– ident: e_1_3_2_97_2
  doi: 10.1038/nrmicro2174
– ident: e_1_3_2_8_2
  doi: 10.1130/G21658.1
– ident: e_1_3_2_76_2
  doi: 10.1128/MMBR.00035-13
– ident: e_1_3_2_78_2
  doi: 10.1128/JB.182.1.67-75.2000
– ident: e_1_3_2_14_2
  doi: 10.1007/s42398-018-0024-0
– ident: e_1_3_2_57_2
  doi: 10.1128/mBio.00282-15
– ident: e_1_3_2_18_2
  doi: 10.1007/s10295-020-02309-0
– ident: e_1_3_2_11_2
  doi: 10.1128/AEM.69.10.5884-5891.2003
– ident: e_1_3_2_109_2
  doi: 10.1186/1471-2180-13-267
– ident: e_1_3_2_42_2
  doi: 10.3389/fmicb.2012.00037
– ident: e_1_3_2_122_2
  doi: 10.1038/nrg.2016.39
– ident: e_1_3_2_70_2
  doi: 10.1093/molbev/msw245
– ident: e_1_3_2_140_2
  doi: 10.1093/nar/gkz268
– ident: e_1_3_2_81_2
  doi: 10.1042/BJ20121467
– ident: e_1_3_2_45_2
  doi: 10.3389/fmicb.2018.03029
– ident: e_1_3_2_60_2
  doi: 10.1038/nature04111
– ident: e_1_3_2_69_2
  doi: 10.1007/978-3-642-38922-1_226
– ident: e_1_3_2_63_2
  doi: 10.1007/978-3-642-38922-1_229
– ident: e_1_3_2_39_2
  doi: 10.3389/fmicb.2015.00332
– ident: e_1_3_2_79_2
  doi: 10.1093/bioinformatics/btq249
– ident: e_1_3_2_144_2
  doi: 10.1128/aem.63.12.4784-4792.1997
– ident: e_1_3_2_102_2
  doi: 10.1042/BST20120132
– ident: e_1_3_2_103_2
  doi: 10.1016/j.str.2012.04.016
– ident: e_1_3_2_100_2
  doi: 10.1073/pnas.1017200108
– ident: e_1_3_2_111_2
  doi: 10.1093/genetics/143.4.1843
– ident: e_1_3_2_123_2
  doi: 10.1093/femsre/fux053
– ident: e_1_3_2_132_2
  doi: 10.1073/pnas.0505959103
– ident: e_1_3_2_47_2
  doi: 10.1128/JB.00890-12
– ident: e_1_3_2_61_2
  doi: 10.1371/journal.pcbi.1004095
– ident: e_1_3_2_108_2
  doi: 10.1128/AEM.00544-09
– ident: e_1_3_2_117_2
  doi: 10.1038/ismej.2014.193
– ident: e_1_3_2_90_2
  doi: 10.1128/JB.01388-06
– ident: e_1_3_2_38_2
  doi: 10.1128/JB.00776-06
– ident: e_1_3_2_136_2
  doi: 10.3389/fmicb.2019.00849
– ident: e_1_3_2_104_2
  doi: 10.1007/s00775-008-0398-z
– ident: e_1_3_2_82_2
  doi: 10.1038/ismej.2014.264
– ident: e_1_3_2_92_2
  doi: 10.1128/MMBR.00048-16
– ident: e_1_3_2_120_2
  doi: 10.1126/science.1147112
– ident: e_1_3_2_66_2
  doi: 10.1128/JB.01480-09
– ident: e_1_3_2_56_2
  doi: 10.1128/mBio.00379-13
– ident: e_1_3_2_35_2
  doi: 10.1128/AEM.01253-20
– ident: e_1_3_2_84_2
  doi: 10.1099/00207713-52-6-2211
– ident: e_1_3_2_116_2
  doi: 10.1039/c3cs60249d
– ident: e_1_3_2_94_2
  doi: 10.1042/bst0300590
– ident: e_1_3_2_10_2
  doi: 10.1126/sciadv.aav2869
– ident: e_1_3_2_37_2
  doi: 10.1128/mBio.02668-19
– ident: e_1_3_2_88_2
  doi: 10.1111/j.1365-2958.2006.05132.x
– ident: e_1_3_2_26_2
  doi: 10.1038/nrmicro1947
– ident: e_1_3_2_52_2
  doi: 10.1111/1574-6941.12406
– ident: e_1_3_2_91_2
  doi: 10.1016/j.abb.2008.02.015
– ident: e_1_3_2_110_2
  doi: 10.1128/AEM.00146-07
– ident: e_1_3_2_28_2
  doi: 10.1186/s13068-018-1201-1
– ident: e_1_3_2_29_2
  doi: 10.1016/j.cell.2020.03.032
– ident: e_1_3_2_87_2
  doi: 10.1111/j.1365-2958.2005.04650.x
– ident: e_1_3_2_135_2
  doi: 10.1038/s41579-020-00502-7
– ident: e_1_3_2_139_2
  doi: 10.1093/nar/gkz991
– volume: 10
  start-page: 1861
  year: 2019
  ident: B66
  article-title: Whole-genome sequencing redefines Shewanella taxonomy
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.01861
– volume: 21
  start-page: 1229
  year: 2003
  end-page: 1232
  ident: B47
  article-title: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt867
– volume: 8
  year: 2013
  ident: B85
  article-title: Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0075610
– volume: 474
  start-page: 238
  year: 2008
  end-page: 251
  ident: B90
  article-title: The biochemistry of heme biosynthesis
  publication-title: Arch Biochem Biophys
  doi: 10.1016/j.abb.2008.02.015
– volume: 19
  start-page: 442
  year: 2021
  end-page: 453
  ident: B124
  article-title: Examining horizontal gene transfer in microbial communities
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-021-00534-7
– volume: 34
  start-page: 437
  year: 2017
  end-page: 446
  ident: B69
  article-title: The timetree of prokaryotes: new insights into their evolution and speciation
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msw245
– volume: 11
  start-page: 193
  year: 2018
  ident: B27
  article-title: Pan-genome analyses of 24 Shewanella strains re-emphasize the diversification of their functions yet evolutionary dynamics of metal-reducing pathway
  publication-title: Biotechnol Biofuels
  doi: 10.1186/s13068-018-1201-1
– start-page: 597
  year: 2014
  end-page: 625
  ident: B68
  article-title: The Family Shewanellaceae
  publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany
  doi: 10.1007/978-3-642-38922-1_226
– volume: 8
  start-page: 1212
  year: 2017
  end-page: 1220
  ident: B141
  article-title: Intertwining phylogenetic trees and networks
  publication-title: Methods Ecol Evol
  doi: 10.1111/2041-210X.12760
– volume: 480
  start-page: 241
  year: 2011
  end-page: 244
  ident: B118
  article-title: Ecology drives a global network of gene exchange connecting the human microbiome
  publication-title: Nature
  doi: 10.1038/nature10571
– volume: 108
  start-page: 9384
  year: 2011
  end-page: 9389
  ident: B99
  article-title: Structure of a bacterial cell surface decaheme electron conduit
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1017200108
– volume: 438
  start-page: 86
  year: 2005
  end-page: 89
  ident: B59
  article-title: Photosynthesis genes in marine viruses yield proteins during host infection
  publication-title: Nature
  doi: 10.1038/nature04111
– volume: 13
  start-page: 849
  year: 2008
  end-page: 854
  ident: B103
  article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-008-0398-z
– volume: 53
  start-page: 669
  year: 2003
  end-page: 673
  ident: B48
  article-title: Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III)
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02298-0
– volume: 4
  start-page: 254
  year: 2013
  ident: B40
  article-title: Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2013.00254
– volume: 59
  start-page: 234
  year: 2009
  end-page: 247
  ident: B64
  article-title: Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.002741-0
– volume: 8
  start-page: 323
  year: 2017
  ident: B136
  article-title: Photoferrotrophy: remains of an ancient photosynthesis in modern environments
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00323
– volume: 47
  start-page: W256
  year: 2019
  end-page: W259
  ident: B142
  article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz239
– volume: 30
  start-page: 590
  year: 2002
  end-page: 595
  ident: B93
  article-title: Terminal steps of haem biosynthesis
  publication-title: Biochem Soc Trans
  doi: 10.1042/bst0300590
– volume: 7
  start-page: 175
  year: 2015
  end-page: 179
  ident: B19
  article-title: Cable bacteria associated with long-distance electron transport in New England salt marsh sediment
  publication-title: Environ Microbiol Rep
  doi: 10.1111/1758-2229.12216
– volume: 192
  start-page: 2305
  year: 2010
  end-page: 2314
  ident: B65
  article-title: Phylogeny of Gammaproteobacteria
  publication-title: J Bacteriol
  doi: 10.1128/JB.01480-09
– volume: 103
  start-page: 4669
  year: 2006
  end-page: 4674
  ident: B131
  article-title: Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0505959103
– volume: 43
  start-page: 4928
  year: 2009
  end-page: 4933
  ident: B11
  article-title: Microbial reduction of intragrain U(VI) in contaminated sediment
  publication-title: Environ Sci Technol
  doi: 10.1021/es8029208
– volume: 6
  year: 2015
  ident: B56
  article-title: Synthetic and evolutionary construction of a chlorate-reducing Shewanella oneidensis MR-1
  publication-title: mBio
  doi: 10.1128/mBio.00282-15
– volume: 15
  start-page: 3486
  year: 2015
  end-page: 3496
  ident: B71
  article-title: Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome
  publication-title: Proteomics
  doi: 10.1002/pmic.201400585
– volume: 13
  start-page: 267
  year: 2013
  ident: B108
  article-title: Roles of UndA and MtrC of Shewanella putrefaciens W3-18–1 in iron reduction
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-13-267
– volume: 17
  start-page: 379
  year: 2016
  end-page: 391
  ident: B121
  article-title: Evolution by gene loss
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2016.39
– volume: 43
  start-page: 676
  year: 2014
  end-page: 706
  ident: B115
  article-title: Nitrate and periplasmic nitrate reductases
  publication-title: Chem Soc Rev
  doi: 10.1039/c3cs60249d
– volume: 26
  start-page: 285
  year: 2002
  end-page: 309
  ident: B114
  article-title: Enzymology and bioenergetics of respiratory nitrite ammonification
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2002.tb00616.x
– volume: 84
  year: 2018
  ident: B33
  article-title: Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02134-18
– volume: 12
  year: 2014
  ident: B123
  article-title: The genomic landscape of compensatory evolution
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001935
– volume: 106
  start-page: 15909
  year: 2009
  end-page: 15914
  ident: B26
  article-title: Comparative systems biology across an evolutionary gradient within the Shewanella genus
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0902000106
– volume: 60
  start-page: 563
  year: 2006
  end-page: 577
  ident: B87
  article-title: Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05132.x
– volume: 109
  start-page: 571
  year: 2018
  end-page: 583
  ident: B29
  article-title: Extracellular reduction of solid electron acceptors by Shewanella oneidensis
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14067
– volume: 106
  start-page: 22169
  year: 2009
  end-page: 22174
  ident: B45
  article-title: Characterization of an electron conduit between bacteria and the extracellular environment
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0900086106
– volume: 143
  start-page: 1843
  year: 1996
  end-page: 1860
  ident: B110
  article-title: Selfish operons: horizontal transfer may drive the evolution of gene clusters
  publication-title: Genetics
  doi: 10.1093/genetics/143.4.1843
– volume: 86
  year: 2020
  ident: B127
  article-title: Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01941-20
– volume: 4
  year: 2013
  ident: B55
  article-title: Structure and evolution of chlorate reduction composite transposons
  publication-title: mBio
  doi: 10.1128/mBio.00379-13
– volume: 189
  start-page: 455
  year: 2007
  end-page: 463
  ident: B89
  article-title: Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways
  publication-title: J Bacteriol
  doi: 10.1128/JB.01388-06
– volume: 10
  year: 2019
  ident: B36
  article-title: Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake
  publication-title: mBio
  doi: 10.1128/mBio.02668-19
– volume: 40
  start-page: 1181
  year: 2012
  end-page: 1185
  ident: B101
  article-title: Analysis of structural MtrC models based on homology with the crystal structure of MtrF
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20120132
– volume: 82
  start-page: 5428
  year: 2016
  end-page: 5443
  ident: B128
  article-title: Regulation of gene expression in Shewanella oneidensis MR-1 during electron acceptor limitation and bacterial nanowire formation
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01615-16
– volume: 12
  start-page: 1709
  year: 2021
  ident: B24
  article-title: Long-distance electron transfer in a filamentous Gram-positive bacterium
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21709-z
– volume: 77
  start-page: 995
  year: 2010
  end-page: 1008
  ident: B31
  article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2010.07266.x
– volume: 26
  start-page: 1608
  year: 2010
  end-page: 1615
  ident: B78
  article-title: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq249
– volume: 42
  start-page: 3821
  year: 2008
  end-page: 3827
  ident: B125
  article-title: In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype
  publication-title: Environ Sci Technol
  doi: 10.1021/es702688c
– volume: 54
  start-page: 1773
  year: 2004
  end-page: 1788
  ident: B61
  article-title: Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.02997-0
– volume: 14
  start-page: 651
  year: 2016
  end-page: 662
  ident: B22
  article-title: Extracellular electron transfer mechanisms between microorganisms and minerals
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2016.93
– volume: 11
  year: 2015
  ident: B60
  article-title: Inferring horizontal gene transfer
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1004095
– volume: 10
  start-page: 849
  year: 2019
  ident: B135
  article-title: The biogeochemical sulfur cycle of marine sediments
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.00849
– volume: 52
  start-page: 2211
  year: 2002
  end-page: 2217
  ident: B83
  article-title: Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/00207713-52-6-2211
– volume: 182
  start-page: 67
  year: 2000
  end-page: 75
  ident: B77
  article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone
  publication-title: J Bacteriol
  doi: 10.1128/JB.182.1.67-75.2000
– volume: 70
  start-page: 45
  year: 2016
  end-page: 62
  ident: B6
  article-title: The role of microbial electron transfer in the coevolution of the biosphere and geosphere
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-102215-095521
– volume: 66
  start-page: 2178
  year: 2016
  end-page: 2185
  ident: B15
  article-title: ‘Candidatus Tenderia electrophaga,’ an uncultivated electroautotroph from a biocathode enrichment
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijsem.0.001006
– volume: 189
  start-page: 4944
  year: 2007
  end-page: 4952
  ident: B126
  article-title: Specific Bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1
  publication-title: J Bacteriol
  doi: 10.1128/JB.01518-06
– year: 2014
  ident: B52
  publication-title: A novel manganese oxidising bacterium: characterisation and genomic evaluation ;University of Auckland ;Auckland, New Zealand
– volume: 5
  year: 2010
  ident: B144
  article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0011147
– volume: 19
  start-page: 360
  year: 2021
  end-page: 374
  ident: B134
  article-title: An evolving view on biogeochemical cycling of iron
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-020-00502-7
– volume: 82
  start-page: 2656
  year: 2016
  end-page: 2668
  ident: B132
  article-title: Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03493-15
– volume: 320
  start-page: 1034
  year: 2008
  end-page: 1039
  ident: B1
  article-title: The microbial engines that drive Earth’s biogeochemical cycles
  publication-title: Science
  doi: 10.1126/science.1153213
– volume: 78
  start-page: 1
  year: 2014
  end-page: 39
  ident: B75
  article-title: Bacterial genome instability
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00035-13
– volume: 7
  start-page: 5099
  year: 2017
  ident: B5
  article-title: Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05180-9
– volume: 5
  year: 2017
  ident: B50
  article-title: Draft genome sequence of Ideonella sp. strain A 288, isolated from an iron-precipitating biofilm
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00803-17
– volume: 11
  start-page: 40
  year: 2010
  ident: B14
  article-title: Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-40
– volume: 86
  year: 2020
  ident: B34
  article-title: A hybrid extracellular electron transfer pathway enhances survival of Vibrio natriegens
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01253-20
– volume: 9
  year: 2018
  ident: B54
  article-title: Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors
  publication-title: mBio
  doi: 10.1128/mBio.02203-17
– volume: 101
  start-page: 11013
  year: 2004
  end-page: 11018
  ident: B58
  article-title: Transfer of photosynthesis genes to and from Prochlorococcus viruses
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0401526101
– volume: 7
  start-page: 44725
  year: 2017
  ident: B97
  article-title: Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3
  publication-title: Sci Rep
  doi: 10.1038/srep44725
– volume: 5
  start-page: 170203
  year: 2018
  ident: B146
  article-title: The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans
  publication-title: Sci Data
  doi: 10.1038/sdata.2017.203
– volume: 6
  start-page: 332
  year: 2015
  ident: B38
  article-title: Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2015.00332
– volume: 1827
  start-page: 145
  year: 2013
  end-page: 160
  ident: B112
  article-title: Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbabio.2012.09.001
– volume: 318
  start-page: 1449
  year: 2007
  end-page: 1452
  ident: B119
  article-title: Genome-wide experimental determination of barriers to horizontal gene transfer
  publication-title: Science
  doi: 10.1126/science.1147112
– volume: 17
  start-page: 601
  year: 2017
  end-page: 611
  ident: B106
  article-title: Characterization of OmcA mutants from Shewanella oneidensis MR-1 to investigate the molecular mechanisms underpinning electron transfer across the microbe-electrode interface
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201700023
– volume: 47
  start-page: W636
  year: 2019
  end-page: W641
  ident: B139
  article-title: The EMBL-EBI search and sequence analysis tools APIs in 2019
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz268
– volume: 113
  start-page: 12792
  year: 2016
  end-page: 12796
  ident: B4
  article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1609534113
– volume: 42
  start-page: fux053
  year: 2018
  ident: B122
  article-title: Environmental factors influencing the development and spread of antibiotic resistance
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fux053
– volume: 1
  start-page: 221
  year: 2018
  end-page: 231
  ident: B13
  article-title: Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution
  publication-title: Environmental Sustainability
  doi: 10.1007/s42398-018-0024-0
– volume: 9
  start-page: 3029
  year: 2018
  ident: B44
  article-title: Genomic analyses of the quinol oxidases and/or quinone reductases involved in bacterial extracellular electron transfer
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03029
– volume: 6
  start-page: 1216
  year: 2010
  end-page: 1226
  ident: B82
  article-title: Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments
  publication-title: Mol Biosyst
  doi: 10.1039/c000396d
– volume: 7
  start-page: 578
  year: 2009
  end-page: 588
  ident: B96
  article-title: Bacterial gene amplification: implications for the evolution of antibiotic resistance
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2174
– volume: 194
  start-page: 5840
  year: 2012
  end-page: 5847
  ident: B46
  article-title: Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. strain ANA-3 and implications for the electron transport system
  publication-title: J Bacteriol
  doi: 10.1128/JB.00890-12
– volume: 7
  start-page: 60
  year: 2019
  ident: B72
  article-title: Electrochemical characterization of Marinobacter atlanticus strain CP1 suggests a role for trace minerals in electrogenic activity
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2019.00060
– volume: 233
  start-page: 1214
  year: 1958
  end-page: 1219
  ident: B92
  article-title: The enzymatic synthesis of delta-aminolevulinic acid
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)77371-2
– volume: 18
  start-page: 691
  year: 2001
  end-page: 699
  ident: B140
  article-title: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a003851
– volume: 33
  start-page: 865
  year: 2005
  end-page: 868
  ident: B7
  article-title: Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria
  publication-title: Geology
  doi: 10.1130/G21658.1
– volume: 3
  start-page: 37
  year: 2012
  ident: B41
  article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2012.00037
– volume: 71
  start-page: 643
  year: 2017
  end-page: 664
  ident: B21
  article-title: Syntrophy goes electric: direct interspecies electron transfer
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-030117-020420
– volume: 8
  start-page: 1584
  year: 2017
  ident: B43
  article-title: Comparative genomic analysis of neutrophilic iron(II) oxidizer genomes for candidate genes in extracellular electron transfer
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.01584
– volume: 9
  start-page: 9
  year: 2009
  ident: B117
  article-title: Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes
  publication-title: BMC Evol Biol
  doi: 10.1186/1471-2148-9-9
– volume: 63
  start-page: 4784
  year: 1997
  end-page: 4792
  ident: B143
  article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.12.4784-4792.1997
– volume: 90
  start-page: 454
  year: 2014
  end-page: 466
  ident: B51
  article-title: Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/1574-6941.12406
– volume: 15
  start-page: 68
  year: 2015
  ident: B104
  article-title: Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-015-0406-8
– volume: 158
  start-page: 2144
  year: 2012
  end-page: 2157
  ident: B133
  article-title: Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.058404-0
– volume: 4
  start-page: 4896
  year: 2011
  end-page: 4906
  ident: B12
  article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination
  publication-title: Energy Environ Sci
  doi: 10.1039/c1ee02229f
– volume: 5
  start-page: 3391
  year: 2014
  ident: B35
  article-title: Electron uptake by iron-oxidizing phototrophic bacteria
  publication-title: Nat Commun
  doi: 10.1038/ncomms4391
– volume: 361
  start-page: 1819
  year: 2006
  end-page: 1836
  ident: B137
  article-title: Early anaerobic metabolisms
  publication-title: Philos Trans R Soc Lond B Biol Sci
  doi: 10.1098/rstb.2006.1906
– volume: 40
  start-page: 1261
  year: 2012
  end-page: 1267
  ident: B32
  article-title: Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20120098
– volume: 20
  start-page: 1118
  year: 2002
  end-page: 1123
  ident: B30
  article-title: Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt749
– start-page: 477
  year: 2014
  end-page: 489
  ident: B67
  article-title: The family Moritellaceae
  publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany
  doi: 10.1007/978-3-642-38922-1_227
– volume: 56
  start-page: 1408
  year: 2005
  end-page: 1415
  ident: B86
  article-title: Impact of the bacterial type I cytochrome c maturation system on different biological processes
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04650.x
– volume: 181
  start-page: 665
  year: 2020
  end-page: 669
  ident: B28
  article-title: The crystal structure of a biological insulated transmembrane molecular wire
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.032
– volume: 10
  start-page: 3041
  year: 2019
  ident: B2
  article-title: Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.03041
– volume: 81
  year: 2017
  ident: B91
  article-title: Prokaryotic heme biosynthesis: multiple pathways to a common essential product
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00048-16
– volume: 20
  start-page: 1275
  year: 2012
  end-page: 1284
  ident: B102
  article-title: The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates
  publication-title: Structure
  doi: 10.1016/j.str.2012.04.016
– volume: 2
  year: 2017
  ident: B16
  article-title: Metatranscriptomics supports the mechanism for biocathode electroautotrophy by “Candidatus Tenderia electrophaga
  publication-title: mSystems
  doi: 10.1128/mSystems.00002-17
– volume: 9
  start-page: 1802
  year: 2015
  end-page: 1811
  ident: B81
  article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime
  publication-title: ISME J
  doi: 10.1038/ismej.2014.264
– volume: 59
  start-page: 1
  year: 2011
  end-page: 100
  ident: B20
  article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications
  publication-title: Adv Microb Physiol
  doi: 10.1016/B978-0-12-387661-4.00004-5
– volume: 27
  start-page: 1009
  year: 2011
  end-page: 1010
  ident: B145
  article-title: Easyfig: a genome comparison visualizer
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr039
– volume: 583
  start-page: 453
  year: 2020
  end-page: 458
  ident: B49
  article-title: Bacterial chemolithoautotrophy via manganese oxidation
  publication-title: Nature
  doi: 10.1038/s41586-020-2468-5
– volume: 6
  year: 2011
  ident: B53
  article-title: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016649
– volume: 71
  start-page: 4935
  year: 2005
  end-page: 4937
  ident: B84
  article-title: Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.8.4935-4937.2005
– volume: 444
  start-page: 465
  year: 2012
  end-page: 474
  ident: B76
  article-title: A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella
  publication-title: Biochem J
  doi: 10.1042/BJ20120197
– volume: 7
  year: 2011
  ident: B95
  article-title: Loss of genetic redundancy in reductive genome evolution
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1001082
– volume: 189
  start-page: 1765
  year: 2007
  end-page: 1773
  ident: B37
  article-title: The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1
  publication-title: J Bacteriol
  doi: 10.1128/JB.00776-06
– volume: 38
  start-page: 865
  year: 2014
  end-page: 891
  ident: B79
  article-title: Bacterial insertion sequences: their genomic impact and diversity
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/1574-6976.12067
– volume: 48
  start-page: D265
  year: 2020
  end-page: D268
  ident: B138
  article-title: CDD/SPARCLE: the conserved domain database in 2020
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz991
– start-page: 575
  year: 2014
  end-page: 582
  ident: B62
  article-title: The family Pseudoalteromonadaceae
  publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany
  doi: 10.1007/978-3-642-38922-1_229
– volume: 10
  start-page: 355
  year: 2012
  end-page: 370
  ident: B105
  article-title: Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite
  publication-title: Geobiology
  doi: 10.1111/j.1472-4669.2012.00321.x
– volume: 5
  year: 2019
  ident: B130
  article-title: Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aat5664
– volume: 35
  start-page: 957
  year: 2011
  end-page: 976
  ident: B120
  article-title: Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2011.00292.x
– volume: 40
  start-page: 1268
  year: 2012
  end-page: 1273
  ident: B98
  article-title: Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20120106
– volume: 73
  start-page: 5797
  year: 2007
  end-page: 5808
  ident: B109
  article-title: Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00146-07
– volume: 6
  start-page: 592
  year: 2008
  end-page: 603
  ident: B25
  article-title: Towards environmental systems biology of Shewanella
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1947
– volume: 10
  start-page: 1861
  year: 2008
  end-page: 1876
  ident: B129
  article-title: Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01608.x
– volume: 69
  start-page: 5884
  year: 2003
  end-page: 5891
  ident: B10
  article-title: Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.69.10.5884-5891.2003
– volume: 9
  year: 2020
  ident: B39
  article-title: Draft genome sequence of Sideroxydans sp. strain CL21, an Fe(II)-oxidizing bacterium
  publication-title: Microbiol Resour Announc
  doi: 10.1128/MRA.01444-19
– volume: 106
  start-page: 10201
  year: 2009
  end-page: 10206
  ident: B88
  article-title: CcsBA is a cytochrome c synthetase that also functions in heme transport
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0903132106
– volume: 77
  start-page: 6295
  year: 2011
  end-page: 6300
  ident: B63
  article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.05005-11
– volume: 9
  start-page: 3176
  year: 2018
  ident: B70
  article-title: Development of a genetic system for Marinobacter atlanticus CP1 (sp. nov.), a wax ester producing strain isolated from an autotrophic biocathode
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.03176
– volume: 81
  start-page: 699
  year: 2015
  end-page: 712
  ident: B73
  article-title: A previously uncharacterized, non-photosynthetic member of the Chromatiaceae is the primary CO2 fixing constituent in a self-regenerating biocathode
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02947-14
– volume: 5
  year: 2019
  ident: B9
  article-title: Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aav2869
– volume: 75
  start-page: 5218
  year: 2009
  end-page: 5226
  ident: B107
  article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00544-09
– volume: 16
  start-page: 862
  year: 2015
  ident: B57
  article-title: The perchlorate reduction genomic island: mechanisms and pathways of evolution by horizontal gene transfer
  publication-title: BMC Genomics
  doi: 10.1186/s12864-015-2011-5
– volume: 3
  year: 2015
  ident: B74
  article-title: Complete genome sequence of Marinobacter sp. CP1, isolated from a self-regenerating biocathode biofilm
  publication-title: Genome Announc
  doi: 10.1128/genomeA.01103-15
– volume: 9
  start-page: 958
  year: 2015
  end-page: 967
  ident: B116
  article-title: Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria
  publication-title: ISME J
  doi: 10.1038/ismej.2014.193
– volume: 12
  start-page: 1929
  year: 2018
  end-page: 1939
  ident: B3
  article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction
  publication-title: ISME J
  doi: 10.1038/s41396-018-0109-x
– volume: 112
  start-page: 467
  year: 2020
  end-page: 471
  ident: B94
  article-title: Gene duplication and deletion, not horizontal transfer, drove intra-species mosaicism of Bartonella henselae
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.03.009
– volume: 50
  start-page: 147
  year: 2005
  end-page: 198
  ident: B113
  article-title: Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration
  publication-title: Adv Microb Physiol
  doi: 10.1016/S0065-2911(05)50004-3
– volume: 9
  start-page: 2905
  year: 2018
  ident: B23
  article-title: Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath)
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.02905
– volume: 588
  start-page: 1886
  year: 2014
  end-page: 1890
  ident: B100
  article-title: The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe–mineral interface
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2014.04.013
– volume: 10
  start-page: 3026
  year: 2019
  ident: B8
  article-title: Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-10872-z
– volume: 87
  year: 2021
  ident: B18
  article-title: Microbe-mineral interaction and novel proteins for iron oxide mineral reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02330-20
– volume: 11
  start-page: 37
  year: 2020
  ident: B42
  article-title: FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2020.00037
– volume: 449
  start-page: 101
  year: 2013
  end-page: 108
  ident: B80
  article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1
  publication-title: Biochem J
  doi: 10.1042/BJ20121467
– volume: 5
  start-page: 355
  year: 1997
  end-page: 359
  ident: B111
  article-title: Selfish operons and speciation by gene transfer
  publication-title: Trends Microbiol
  doi: 10.1016/S0966-842X(97)01110-4
– volume: 47
  start-page: 863
  year: 2020
  end-page: 876
  ident: B17
  article-title: Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications
  publication-title: J Ind Microbiol Biotechnol
  doi: 10.1007/s10295-020-02309-0
SSID ssj0000331830
Score 2.4572878
Snippet While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot...
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as...
ABSTRACT Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0290421
SubjectTerms Archaea - metabolism
Bacteria - metabolism
Electron Transport
Electrons
evolution
Ferric Compounds - metabolism
gene transfer
iron oxidizers
iron reduction
Microbial Genetics
Oxidation-Reduction
Phylogeny
Research Article
Shewanella
Shewanella - genetics
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELaqVki8oHIvl4xAPJHi9bXO4xZttQItvLCob5aPiVipTdBuKhV-PWPnEFtRibccdpzMN-OZcTwzhLz1HJRh2hTOz9BBqdBhNXEKRYXKyQEExcsUnLz6opdr-elcnR8QPsTC9BTcnbjdZf6RP0o2Nx8u_aY5Ybxkskix40f4IInCeDSfr79-HldWmEh8yoaEmjf74dyLz-Z7eiin6_-XjXlzq-RfuufsmNzrjUY671C-Tw6gfkDudGUkfz0k7VAalKIFSpfNdvO7SUGO1NWRfs8bp_EkayVENS2P0aaiq3ZbrHKhDoh0cY3jpkX8tCuVLvraOF2fCrY01ySiaCzS0y69s3tE1meLbx-XRV9NoXAopG1RRQ4gImgoUQaj8AyRcCh-PrBQAZoFIGfeKFNGHWSMJdpuKgAeOBA-gHhMDuumhqeEYg83raIQPoI06GGa4IxiwejovWOzCXmTSGwHMG32NLixCQibgbB8OiHvBwRs6BOSp7oYF7c1fzc2_9ll4rit4WmCc2yUEmjnC8hOtpdHC1IZpAXqg8gkfrhh0gXjdMmMn-qynJDXAzNYhCYB4GpornaWay7RqMGZcEKedMwxDiVUypWkkQCzPbbZe5f9O_XmR07qjfOoYkI9-y_SPSd3eQrDyLvHX5DDdnsFL9E4av2rXhr-ABT3Dy0
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBbFEOiltGnTuHmg0pBTtpGl1Vp7TIqDKbinJuQm9Jglhma32BtI--s7o10bOzT00ts-JFbMQzOjnfmGsRMvQRtRmMz5MQYoFQasJo4gq9A4OYCgZUnFybNvxfQ6_3qrbzdafVFOWAcP3BHuHHJtItDfoyhyyAkvxwXjMKgzflSUqXQPbd5GMJX2YEWyKlagmtKc3_t581nIUuQZ4YIO3PJebtmiBNn_Nz_zabrkhv25es1e9Y4jv-gW_Ia9gHqX7XStJH-9Ze2qPShHL5RPm8X8d0OFjtzVkd-k5Gm8SZYJOUtHZLyp-KxdZLPUrAMinzzid-kgnzJT-aTvj9PNqWDBU18ijg4jv-wgnt07dn01-f5lmvUdFTKHitpmVZQACskJJephVF4gNxyqoA8iVICuAVLYG23KWIQ8xhL9Nx0ALxwoH0DtsUHd1LDPOM5woyoq5SPkBqNME5zRIpgieu_EeMg-EYltrxJLm6INaSwxwiZGWDkasrMVB2zoQcmpN8aP54afrof_7NA4nht4SexcDyIQ7fQARcv2omX_JVpD9nElDBZZQwxwNTQPSysLmaNjg7vhkL3vhGP9KaUJL6lAAoy3xGZrLdtv6vldAvbGvVQLpT_8j8UfsJeSKjVSgvkhG7SLBzhC_6n1x0lV_gCouRpY
  priority: 102
  providerName: Directory of Open Access Journals
Title Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/35100867
https://journals.asm.org/doi/10.1128/mbio.02904-21
https://www.proquest.com/docview/2624661832
https://pubmed.ncbi.nlm.nih.gov/PMC8805035
https://doaj.org/article/e458de6002d04e47804ac8a6908b1699
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiReEIyv8lEZgXgiw3HixHlAUzd1VKDCC0V9s_xxGZW2BNJM2vjrOTtJWadN4iVKGqdOfHe-31m-3xHy1nAQkmUy0ibHAKXEgFW6GKISnZMGsIIXPjl5_jWbLdLPS7H8RynUD-D6xtDO15NaNKf7F78vD9DgP3YJMPLDmVnV-4wXLI18SvkuOqXcFzOY90g_TMqJV16_4oI-jkU54oyBcfP6P-DkrNdnfMtRBT7_m0Do9b2UV5zT8QNyv0eVdNKpwUNyB6o9crerM3n5iLRD7VCKEJXO6mb1p_ZZkFRXjv4IO6vxIrgtFLtfP6N1SedtE81DJQ9wdHqB_fpVfr9tlU774jndMyU0NBQtoogm6WHH_6wfk8Xx9PvRLOrLLUQarbiNSscBEgcZFGikLjEMRaXRPo1ltgTEDZDmRgpZuMymzhUI7oQFPNGQGAvJE7JT1RU8IxSf0HHpksQ4SCWGoNJqKZiVmTNGs3xE3vghVoO4VQhFuFReECoIQvF4RN4PElC2Zyz3hTNOb2v-btP8V0fVcVvDQy_OTSPPsB1-qJsT1RusglRIHAt0GI6l-OGSpdpKnRVMmjgrihF5PSiDQtF4AegK6vO14hlPEfXgVDkiTzvl2HSVCE-mlOEA5Ftqs_Uu23eq1c_A-o0TrWCJeP4f_b4g97jP0giby1-SnbY5h1eInVozJruTyeLbl3FYe8Djp2U8DpbyF9_xHOQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxJvlacTjRIrjxFnnwGELW23Zbrl0UW_Gj4lY1CZokwrKD-J3MnaSFVtRiUtveTiJMw_PjD2ej5CXhoOQLJORNkMMUAoMWKWLISrQOGkAK3juNyfPDrLJPP14JI42yO9-L8w3j8t7XG_r-iSs43vF9hPRHR6hfHtiFtU24zlLIx53yZRTOPuBoVr9bu8D8vUV57vjw_eTqEMTiDQKaRMVjgMkDjLIUQZdYhj2RKP4GctsAWgWIR0aKWTuMps6l6PvIizggYbEWEjwvVfIll-nxCBvazSaf5quZnNY4nWD9UU8z_cTx3v8Ib5m-wJEwL_82vPpmX_Zu92b5EbnqNJRK1m3yAaUt8nVFrry7A5pejhSil4vnVTLxa_Kb6ykunT0c0jWxpNgCVGS_JQcrQo6a5bRLICDgKPjn_hdv3DgM2HpuMPjaZ8pYEkDDhJFB5XutCWl9V0yvxSa3yObZVXCA0LxCR0XLkmMg1RiVCutloJZmTljNBsOyAtPYtWpYK1CdMOl8oxQgRGKxwPypueAsl0RdI_FcXxR89er5t_b6h8XNdzx7Fw18kW7wwWUYdWNAQpSIZEWaIMcS_HHJUu1lTrLmTRxlucD8rwXBoWs8QzQJVSnteIZT9GRwtF3QO63wrH6VCJ8faYMCTBcE5u1vqzfKRdfQyFxHLsFS8TD_yLdM3JtcjjbV_t7B9NH5Dr320BC9vpjstksT-EJOmeNedppBiVfLlsZ_wA4KFCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrkBcEG_K04jHiSyOE6fOgUOXbdWldOFA0d68fkxEJTZZtVnB8oP4nYydpKIrVuKyt6ZxEmfms2cmHs9HyEvDQUiWyUibAQYoBQas0sUQFWicNIAVPPebk2cH2WSefjgUh1vkd7cXppXgakevjsNCvh_ZJ65o-Qjl22OzqHYYz1ka8bhNppzC2Q8M1Vbv9vdQr684H4--vJ9ELZtApBGkdVQ4DpA4yCBHDLrEMOyJRvgZy2wBaBYhHRgpZO4ymzqXo-8iLOAPDYmxkOB9r5DtsDDWI9vD4fzTdP01hyV-bLCuiOf5fuJ8j-_DN2xfoAj4l197Pj3zL3s3vklutI4qHTbIukW2oLxNrjbUlWd3SN3RkVL0eumkWi5-VX5jJdWlo19DsjYeBEuISPKf5GhV0Fm9jGaBHAQcHf3E5_qFA58JS0ctH09zTQFLGniQKDqodLcpKa3vkvmlyPwe6ZVVCQ8IxSt0XLgkMQ5SiVGttFoKZmXmjNFs0CcvvIhVByAVohsulVeECopQPO6TN50GlG2LoHsuju8XNX-9bn7SVP-4qOGuV-e6kS_aHf5ACKt2DlCQComyQBvkWIovLlmqrdRZzqSJszzvk-cdGBSqxitAl1CdrhTPeIqOFM6-fXK_Acf6UYnw9ZkyFMBgAzYbfdk8Uy6-hULiOHcLloiH_yW6Z-Ta572x-rh_MH1ErnO_CyQkrz8mvXp5Ck_QN6vN03ZgUHJ02WPxD70EUDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+Horizontal+and+Vertical+Transmission+of+Mtr-Mediated+Extracellular+Electron+Transfer+among+the+Bacteria&rft.jtitle=mBio&rft.au=Baker%2C+Isabel+R&rft.au=Conley%2C+Bridget+E&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Girguis%2C+Peter+R&rft.date=2022-02-01&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=13&rft.issue=1&rft.spage=e0290421&rft_id=info:doi/10.1128%2Fmbio.02904-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon