Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria
While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in...
Saved in:
Published in | mBio Vol. 13; no. 1; p. e0290421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy.
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in
Shewanella oneidensis
MR-1, recent investigations in
Vibrio
and
Aeromonas
species have revealed that the electron-donating proteins that support MtrCAB in
Shewanella
are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found
mtrCAB
in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that
mtrCAB
was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape.
IMPORTANCE
While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (
mtrCAB
) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. |
---|---|
AbstractList | Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in and species have revealed that the electron-donating proteins that support MtrCAB in are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system ( mtrCAB ) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. ABSTRACT Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth’s redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly “plug in” to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments. |
Author | Baker, Isabel R. Conley, Bridget E. Gralnick, Jeffrey A. Girguis, Peter R. |
Author_xml | – sequence: 1 givenname: Isabel R. orcidid: 0000-0003-3000-796X surname: Baker fullname: Baker, Isabel R. organization: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA – sequence: 2 givenname: Bridget E. surname: Conley fullname: Conley, Bridget E. organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA, Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA – sequence: 3 givenname: Jeffrey A. orcidid: 0000-0001-9250-7770 surname: Gralnick fullname: Gralnick, Jeffrey A. organization: BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA, Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA – sequence: 4 givenname: Peter R. orcidid: 0000-0002-3599-8160 surname: Girguis fullname: Girguis, Peter R. organization: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35100867$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU1v1DAQhiNUREvpkSvyESGl-CPOOhckWm1ppVZcCldrYk-2XiV2sZ0K-PX17raoReCLx_Y7j2fmfV3t-eCxqt4yeswYVx-n3oVjyjva1Jy9qA44k7ReSMb2nsT71VFKa1qWEEwJ-qraF5JRqtrFQZWXd86iN0iGEMl5iO538BlGAt6S7xizM-VwHcGnyaXkgidhIFc51ldoHWS0ZPkzRzA4jvMIkSxHNDkW2TZnwEhgCn5F8g2SEzAZo4M31csBxoRHD_th9e1seX16Xl9-_XJx-vmyhkapXA-WIwqLLXaLrrGip2gktEL1hpoBKZPYLHolVWdb01jbtZJKgyUAFL1BcVhd7Lg2wFrfRjdB_KUDOL29CHGlYdPhiBobqcpPlHJLm4JVtAGjoO2o6lnbdYX1ace6nfsJrUFfuh6fQZ-_eHejV-FOK0UlFbIA3j8AYvgxY8q6DHQzNvAY5qR5y5u2LQbxIv2wk0KauF6HOfoyJs2o3riuN67rreuasyJ-97SwPxU9elwEYicwMaQUcdDGZcjFylKnG_-Lrf_KegT_W38PBvbNAQ |
CitedBy_id | crossref_primary_10_1007_s10533_024_01186_4 crossref_primary_10_1016_j_scitotenv_2024_173423 crossref_primary_10_1021_jacs_4c01288 crossref_primary_10_1128_msystems_00038_23 crossref_primary_10_1016_j_electacta_2024_145020 crossref_primary_10_1016_j_biosystems_2022_104694 crossref_primary_10_3389_fmicb_2022_1070601 crossref_primary_10_3389_fmicb_2024_1448685 crossref_primary_10_1021_acs_est_4c04455 crossref_primary_10_1038_s44222_024_00233_x crossref_primary_10_1021_acs_biochem_2c00148 crossref_primary_10_3390_microorganisms12091796 crossref_primary_10_1016_j_tibtech_2022_12_008 crossref_primary_10_1021_acs_est_2c05142 crossref_primary_10_1038_s41467_023_43524_4 crossref_primary_10_1021_acs_est_2c07862 crossref_primary_10_1111_1751_7915_14170 crossref_primary_10_1002_ieam_4972 crossref_primary_10_1186_s12864_024_10872_4 crossref_primary_10_1128_mbio_00992_24 crossref_primary_10_1038_s41396_022_01316_6 crossref_primary_10_1093_molbev_msac139 crossref_primary_10_1016_j_jenvman_2025_124858 crossref_primary_10_1021_acsearthspacechem_4c00260 crossref_primary_10_1128_aem_00570_23 crossref_primary_10_1128_spectrum_04081_23 crossref_primary_10_1146_annurev_micro_032221_023725 crossref_primary_10_1128_msphere_00223_22 crossref_primary_10_1128_msystems_01259_24 crossref_primary_10_1016_j_scitotenv_2022_156501 crossref_primary_10_1128_aem_02465_24 crossref_primary_10_1016_j_jelechem_2025_118933 |
Cites_doi | 10.1111/mmi.14067 10.1016/S0966-842X(97)01110-4 10.1371/journal.pone.0011147 10.1111/j.1462-2920.2008.01608.x 10.1146/annurev-micro-030117-020420 10.1073/pnas.0902000106 10.1093/bioinformatics/btr039 10.1126/science.1153213 10.1042/BST20120106 10.3389/fmicb.2019.03041 10.1039/c000396d 10.1016/j.ygeno.2019.03.009 10.1038/s41467-021-21709-z 10.1371/journal.pone.0016649 10.1038/sdata.2017.203 10.1111/j.1574-6976.2011.00292.x 10.1128/AEM.71.8.4935-4937.2005 10.1098/rstb.2006.1906 10.1038/srep44725 10.1021/es702688c 10.3389/fmicb.2017.00323 10.1038/nbt749 10.1111/j.1472-4669.2012.00321.x 10.1038/ncomms4391 10.1128/AEM.03493-15 10.1099/ijs.0.02997-0 10.1128/AEM.02947-14 10.1093/oxfordjournals.molbev.a003851 10.1016/j.febslet.2014.04.013 10.1016/S0021-9258(19)77371-2 10.1038/nrmicro.2016.93 10.1073/pnas.0900086106 10.1042/BJ20120197 10.1021/es8029208 10.1099/mic.0.058404-0 10.1128/AEM.05005-11 10.1007/978-3-642-38922-1_227 10.1111/1758-2229.12216 10.1099/ijs.0.02298-0 10.1093/nar/gkz239 10.3389/fmicb.2020.00037 10.1002/pmic.201400585 10.1128/AEM.02134-18 10.1128/mBio.02203-17 10.1128/AEM.01615-16 10.1016/B978-0-12-387661-4.00004-5 10.3389/fmicb.2013.00254 10.1038/nbt867 10.1038/s41586-020-2468-5 10.3389/fenrg.2019.00060 10.1126/sciadv.aat5664 10.3389/fmicb.2018.02905 10.1099/ijs.0.002741-0 10.1038/s41598-017-05180-9 10.3389/fmicb.2017.01584 10.1146/annurev-micro-102215-095521 10.1128/genomeA.01103-15 10.1039/c1ee02229f 10.3389/fmicb.2018.03176 10.1042/BST20120098 10.1371/journal.pbio.1001935 10.3389/fmicb.2019.01861 10.1128/AEM.02330-20 10.1371/journal.pone.0075610 10.1186/s12864-015-2011-5 10.1128/JB.01518-06 10.1073/pnas.1609534113 10.1371/journal.pcbi.1001082 10.1111/j.1365-2958.2010.07266.x 10.1111/1574-6976.12067 10.1186/s12866-015-0406-8 10.1038/nature10571 10.1111/j.1574-6976.2002.tb00616.x 10.1099/ijsem.0.001006 10.1016/j.bbabio.2012.09.001 10.1016/S0065-2911(05)50004-3 10.1128/MRA.01444-19 10.1038/s41396-018-0109-x 10.1038/s41579-021-00534-7 10.1002/fuce.201700023 10.1186/1471-2164-11-40 10.1038/s41467-019-10872-z 10.1073/pnas.0401526101 10.1128/mSystems.00002-17 10.1111/2041-210X.12760 10.1073/pnas.0903132106 10.1128/genomeA.00803-17 10.1128/AEM.01941-20 10.1186/1471-2148-9-9 10.1038/nrmicro2174 10.1130/G21658.1 10.1128/MMBR.00035-13 10.1128/JB.182.1.67-75.2000 10.1007/s42398-018-0024-0 10.1128/mBio.00282-15 10.1007/s10295-020-02309-0 10.1128/AEM.69.10.5884-5891.2003 10.1186/1471-2180-13-267 10.3389/fmicb.2012.00037 10.1038/nrg.2016.39 10.1093/molbev/msw245 10.1093/nar/gkz268 10.1042/BJ20121467 10.3389/fmicb.2018.03029 10.1038/nature04111 10.1007/978-3-642-38922-1_226 10.1007/978-3-642-38922-1_229 10.3389/fmicb.2015.00332 10.1093/bioinformatics/btq249 10.1128/aem.63.12.4784-4792.1997 10.1042/BST20120132 10.1016/j.str.2012.04.016 10.1073/pnas.1017200108 10.1093/genetics/143.4.1843 10.1093/femsre/fux053 10.1073/pnas.0505959103 10.1128/JB.00890-12 10.1371/journal.pcbi.1004095 10.1128/AEM.00544-09 10.1038/ismej.2014.193 10.1128/JB.01388-06 10.1128/JB.00776-06 10.3389/fmicb.2019.00849 10.1007/s00775-008-0398-z 10.1038/ismej.2014.264 10.1128/MMBR.00048-16 10.1126/science.1147112 10.1128/JB.01480-09 10.1128/mBio.00379-13 10.1128/AEM.01253-20 10.1099/00207713-52-6-2211 10.1039/c3cs60249d 10.1042/bst0300590 10.1126/sciadv.aav2869 10.1128/mBio.02668-19 10.1111/j.1365-2958.2006.05132.x 10.1038/nrmicro1947 10.1111/1574-6941.12406 10.1016/j.abb.2008.02.015 10.1128/AEM.00146-07 10.1186/s13068-018-1201-1 10.1016/j.cell.2020.03.032 10.1111/j.1365-2958.2005.04650.x 10.1038/s41579-020-00502-7 10.1093/nar/gkz991 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Baker et al. Copyright © 2022 Baker et al. 2022 Baker et al. |
Copyright_xml | – notice: Copyright © 2022 Baker et al. – notice: Copyright © 2022 Baker et al. 2022 Baker et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.02904-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Harwood, Caroline S |
Editor_xml | – sequence: 1 givenname: Caroline S surname: Harwood fullname: Harwood, Caroline S |
ExternalDocumentID | oai_doaj_org_article_e458de6002d04e47804ac8a6908b1699 PMC8805035 02904-21 35100867 10_1128_mbio_02904_21 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: Shared Services Center NASA grantid: 80NSSC19K1427 – fundername: National Science Foundation (NSF) grantid: DEB-1542513 funderid: https://doi.org/10.13039/100000001 – fundername: National Aeronautics and Space Administration (NASA) grantid: 80NSSC18K1140; 80NSSC19K1427 funderid: https://doi.org/10.13039/100000104 – fundername: DOD | Office of Naval Research (ONR) grantid: N4398-NV-ONR funderid: https://doi.org/10.13039/100000006 – fundername: ; grantid: 80NSSC18K1140; 80NSSC19K1427 – fundername: ; grantid: DEB-1542513 – fundername: ; grantid: N4398-NV-ONR |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM - 0R ADACO BXI HZ M~E RHF 7X8 5PM |
ID | FETCH-LOGICAL-a488t-fd2ee3de6e9794d3b0ec5a638bc0cfe015e47b8589d6c4dd96505cedd9ae3bce3 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:29:39 EDT 2025 Thu Aug 21 14:11:34 EDT 2025 Fri Jul 11 10:02:13 EDT 2025 Tue Feb 22 21:30:05 EST 2022 Sat May 31 02:12:27 EDT 2025 Tue Jul 01 01:52:51 EDT 2025 Thu Apr 24 22:58:42 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | iron reduction phylogenetic analysis gene transfer lithoautotrophic metabolism electron transport evolution Shewanella iron oxidizers |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-fd2ee3de6e9794d3b0ec5a638bc0cfe015e47b8589d6c4dd96505cedd9ae3bce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0001-9250-7770 0000-0002-3599-8160 0000-0003-3000-796X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02904-21 |
PMID | 35100867 |
PQID | 2624661832 |
PQPubID | 23479 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e458de6002d04e47804ac8a6908b1699 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8805035 proquest_miscellaneous_2624661832 asm2_journals_10_1128_mbio_02904_21 pubmed_primary_35100867 crossref_citationtrail_10_1128_mbio_02904_21 crossref_primary_10_1128_mbio_02904_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_146_2 e_1_3_2_104_2 e_1_3_2_142_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 Smith JP (e_1_3_2_53_2) 2014 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_135_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_50_2 e_1_3_2_116_2 e_1_3_2_139_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_145_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_141_2 e_1_3_2_122_2 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_134_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_130_2 e_1_3_2_70_2 e_1_3_2_111_2 e_1_3_2_138_2 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_121_2 e_1_3_2_144_2 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_140_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_137_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_133_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_147_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_143_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_136_2 e_1_3_2_72_2 e_1_3_2_132_2 e_1_3_2_117_2 Urakawa, H, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B67) 2014 Jiao, Y, Newman, DK (B37) 2007; 189 Mendonça, AG, Alves, RJ, Pereira-Leal, JB (B95) 2011; 7 Shi, L, Rosso, KM, Zachara, JM, Fredrickson, JK (B32) 2012; 40 Schmidt, B, Sánchez, LA, Fretschner, T, Kreps, G, Ferrero, MA, Siñeriz, F, Szewzyk, U (B51) 2014; 90 Finneran, KT, Johnsen, CV, Lovley, DR (B48) 2003; 53 Brito, IL (B124) 2021; 19 Singh, VK, Singh, AL, Singh, R, Kumar, A (B13) 2018; 1 Leary, DH, Hervey, WJ, Malanoski, AP, Wang, Z, Eddie, BJ, Tender, GS, Vora, GJ, Tender, LM, Lin, B, Strycharz-Glaven, SM (B71) 2015; 15 Bouhenni, R, Gehrke, A, Saffarini, D (B84) 2005; 71 Jing, X, Wu, Y, Shi, L, Peacock, CL, Ashry, NM, Gao, C, Huang, Q, Cai, P (B127) 2020; 86 Edwards, MJ, White, GF, Butt, JN, Richardson, DJ, Clarke, TA (B28) 2020; 181 Schliep, K, Potts, AJ, Morrison, DA, Grimm, GW (B141) 2017; 8 Onderko, EL, Phillips, DA, Eddie, BJ, Yates, MD, Wang, Z, Tender, LM, Glaven, SM (B72) 2019; 7 Liu, C, Zachara, JM, Zhong, L, Heald, SM, Wang, Z, Jeon, B-H, Fredrickson, JK (B11) 2009; 43 Feissner, RE, Richard-Fogal, CL, Frawley, ER, Loughman, JA, Earley, KW, Kranz, RG (B87) 2006; 60 Clark, IC, Melnyk, RA, Youngblut, MD, Carlson, HK, Iavarone, AT, Coates, JD (B56) 2015; 6 Satomi, M, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B68) 2014 Bengtsson-Palme, J, Kristiansson, E, Larsson, DGJ (B122) 2018; 42 Marritt, SJ, Lowe, TG, Bye, J, McMillan, DGG, Shi, L, Fredrickson, J, Zachara, J, Richardson, DJ, Cheesman, MR, Jeuken, LJC, Butt, JN (B76) 2012; 444 Tully, BJ, Graham, ED, Heidelberg, JF (B146) 2018; 5 Cooper, RE, Wegner, C-E, McAllister, SM, Shevchenko, O, Chan, CS, Küsel, K (B39) 2020; 9 Ross, DE, Brantley, SL, Tien, M (B107) 2009; 75 Camacho, A, Walter, XA, Picazo, A, Zopfi, J (B136) 2017; 8 Liu, J, Wang, Z, Belchik, SM, Edwards, MJ, Liu, C, Kennedy, DW, Merkley, ED, Lipton, MS, Butt, JN, Richardson, DJ, Zachara, JM, Fredrickson, JK, Rosso, KM, Shi, L (B41) 2012; 3 Rowe, AR, Rajeev, P, Jain, A, Pirbadian, S, Okamoto, A, Gralnick, JA, El-Naggar, MY, Nealson, KH (B54) 2018; 9 Jin, M, Jiang, Y, Sun, L, Yin, J, Fu, H, Wu, G, Gao, H (B85) 2013; 8 McLean, JS, Pinchuk, GE, Geydebrekht, OV, Bilskis, CL, Zakrajsek, BA, Hill, EA, Saffarini, DA, Romine, MF, Gorby, YA, Fredrickson, JK, Beliaev, AS (B129) 2008; 10 He, S, Barco, RA, Emerson, D, Roden, EE (B43) 2017; 8 Caro-Quintero, A, Konstantinidis, KT (B116) 2015; 9 Lovley, DR (B21) 2017; 71 Sorek, R, Zhu, Y, Creevey, CJ, Francino, MP, Bork, P, Rubin, EM (B119) 2007; 318 Lower, BH, Shi, L, Yongsunthon, R, Droubay, TC, McCready, DE, Lower, SK (B126) 2007; 189 Darmon, E, Leach, DRF (B75) 2014; 78 Ivanova, EP, Flavier, S, Christen, R (B61) 2004; 54 Lawrence, JG (B111) 1997; 5 Larsen, S, Nielsen, LP, Schramm, A (B19) 2015; 7 Wang, Q, Jones, A-AD, Gralnick, JA, Lin, L, Buie, CR (B130) 2019; 5 Gupta, D, Guzman, MS, Bose, A (B17) 2020; 47 Lawrence, JG, Roth, JR (B110) 1996; 143 Darling, AE, Mau, B, Perna, NT (B144) 2010; 5 Letunic, I, Bork, P (B142) 2019; 47 Lindell, D, Jaffe, JD, Johnson, ZI, Church, GM, Chisholm, SW (B59) 2005; 438 Simon, J (B114) 2002; 26 Reyes, C, Qian, F, Zhang, A, Bondarev, S, Welch, A, Thelen, MP, Saltikov, CW (B46) 2012; 194 Falkowski, PG, Fenchel, T, Delong, EF (B1) 2008; 320 Smith, JP (B52) 2014 Edwards, MJ, Fredrickson, JK, Zachara, JM, Richardson, DJ, Clarke, TA (B101) 2012; 40 Smillie, CS, Smith, MB, Friedman, J, Cordero, OX, David, LA, Alm, EJ (B118) 2011; 480 Conley, BE, Weinstock, MT, Bond, DR, Gralnick, JA (B34) 2020; 86 Bose, A, Gardel, EJ, Vidoudez, C, Parra, EA, Girguis, PR (B35) 2014; 5 Lovley, DR, Ueki, T, Zhang, T, Malvankar, NS, Shrestha, PM, Flanagan, KA, Aklujkar, M, Butler, JE, Giloteaux, L, Rotaru, A-E, Holmes, DE, Franks, AE, Orellana, R, Risso, C, Nevin, KP (B20) 2011; 59 Garber, AI, Nealson, KH, Okamoto, A, McAllister, SM, Chan, CS, Barco, RA, Merino, N (B42) 2020; 11 Anderson, RT, Vrionis, HA, Ortiz-Bernad, I, Resch, CT, Long, PE, Dayvault, R, Karp, K, Marutzky, S, Metzler, DR, Peacock, A, White, DC, Lowe, M, Lovley, DR (B10) 2003; 69 Gralnick, JA, Vali, H, Lies, DP, Newman, DK (B131) 2006; 103 Neto, SE, de Melo, Diogo, D, Correia, IJ, Paquete, CM, Louro, RO (B106) 2017; 17 Grein, F, Ramos, AR, Venceslau, SS, Pereira, IAC (B112) 2013; 1827 Eddie, BJ, Wang, Z, Malanoski, AP, Hall, RJ, Oh, SD, Heiner, C, Lin, B, Strycharz-Glaven, SM (B15) 2016; 66 Ross, DE, Flynn, JM, Baron, DB, Gralnick, JA, Bond, DR (B53) 2011; 6 Wang, Z, Leary, DH, Malanoski, AP, Li, RW, Hervey, WJ, Eddie, BJ, Tender, GS, Yanosky, SG, Vora, GJ, Tender, LM, Lin, B, Strycharz-Glaven, SM (B73) 2015; 81 Mitchell, AC, Peterson, L, Reardon, CL, Reed, SB, Culley, DE, Romine, MR, Geesey, GG (B105) 2012; 10 Gao, B, Mohan, R, Gupta, RS (B64) 2009; 59 Sparacino-Watkins, C, Stolz, JF, Basu, P (B115) 2014; 43 Clark, IC, Melnyk, RA, Engelbrektson, A, Coates, JD (B55) 2013; 4 Heidelberg, JF, Paulsen, IT, Nelson, KE, Gaidos, EJ, Nelson, WC, Read, TD, Eisen, JA, Seshadri, R, Ward, N, Methe, B, Clayton, RA, Meyer, T, Tsapin, A, Scott, J, Beanan, M, Brinkac, L, Daugherty, S, DeBoy, RT, Dodson, RJ, Durkin, AS, Haft, DH, Kolonay, JF, Madupu, R, Peterson, JD, Umayam, LA, White, O, Wolf, AM, Vamathevan, J, Weidman, J, Impraim, M, Lee, K, Berry, K, Lee, C, Mueller, J, Khouri, H, Gill, J, Utterback, TR, McDonald, LA, Feldblyum, TV, Smith, HO, Venter, JC, Nealson, KH, Fraser, CM (B30) 2002; 20 Bird, LJ, Wang, Z, Malanoski, AP, Onderko, EL, Johnson, BJ, Moore, MH, Phillips, DA, Chu, BJ, Doyle, JF, Eddie, BJ, Glaven, SM (B70) 2018; 9 Clarke, TA, Edwards, MJ, Gates, AJ, Hall, A, White, GF, Bradley, J, Reardon, CL, Shi, L, Beliaev, AS, Marshall, MJ, Wang, Z, Watmough, NJ, Fredrickson, JK, Zachara, JM, Butt, JN, Richardson, DJ (B99) 2011; 108 Lovley, DR (B12) 2011; 4 Chaudhuri, SK, Lovley, DR (B47) 2003; 21 Albalat, R, Cañestro, C (B121) 2016; 17 Ettwig, KF, Zhu, B, Speth, D, Keltjens, JT, Jetten, MSM, Kartal, B (B4) 2016; 113 Zhong, C, Han, M, Yu, S, Yang, P, Li, H, Ning, K (B27) 2018; 11 Sandegren, L, Andersson, DI (B96) 2009; 7 Sturm, G, Richter, K, Doetsch, A, Heide, H, Louro, RO, Gescher, J (B81) 2015; 9 Barchinger, SE, Pirbadian, S, Sambles, C, Baker, CS, Leung, KM, Burroughs, NJ, El-Naggar, MY, Golbeck, JH (B128) 2016; 82 Jelen, BI, Giovannelli, D, Falkowski, PG (B6) 2016; 70 Melnyk, RA, Coates, JD (B57) 2015; 16 Fonseca, BM, Paquete, CM, Neto, SE, Pacheco, I, Soares, CM, Louro, RO (B80) 2013; 449 Braun, B, Künzel, S, Szewzyk, U (B50) 2017; 5 Brettar, I, Christen, R, Höfle, MG (B83) 2002; 52 Ross, DE, Ruebush, SS, Brantley, SL, Hartshorne, RS, Clarke, TA, Richardson, DJ, Tien, M (B109) 2007; 73 Yang, Y, Wang, Z, Gan, C, Klausen, LH, Bonné, R, Kong, G, Luo, D, Meert, M, Zhu, C, Sun, G, Guo, J, Ma, Y, Bjerg, JT, Manca, J, Xu, M, Nielsen, LP, Dong, M (B24) 2021; 12 Dailey, HA, Dailey, TA, Gerdes, S, Jahn, D, Jahn, M, O'Brian, MR, Warren, MJ (B91) 2017; 81 Gao, Y, Lee, J, Neufeld, JD, Park, J, Rittmann, BE, Lee, H-S (B5) 2017; 7 Cianciotto, NP, Cornelis, P, Baysse, C (B86) 2005; 56 Aigle, A, Bonin, P, Iobbi-Nivol, C, Méjean, V, Michotey, V (B97) 2017; 7 Marin, J, Battistuzzi, FU, Brown, AC, Hedges, SB (B69) 2017; 34 Kappler, A, Bryce, C, Mansor, M, Lueder, U, Byrne, JM, Swanner, ED (B134) 2021; 19 Eddie, BJ, Wang, Z, Hervey, WJ, Leary, DH, Malanoski, AP, Tender, LM, Lin, B, Strycharz-Glaven, SM (B16) 2017; 2 Coursolle, D, Gralnick, JA (B31) 2010; 77 Cai, C, Leu, AO, Xie, G-J, Guo, J, Feng, Y, Zhao, J-X, Tyson, GW, Yuan, Z, Hu, S (B3) 2018; 12 Hartshorne, RS, Reardon, CL, Ross, D, Nuester, J, Clarke, TA, Gates, AJ, Mills, PC, Fredrickson, JK, Zachara, JM, Shi, L, Beliaev, AS, Marshall, MJ, Tien, M, Brantley, S, Butt, JN, Richardson, DJ (B45) 2009; 106 Edwards, MJ, Hall, A, Shi, L, Fredrickson, JK, Zachara, JM, Butt, JN, Richardson, DJ, Clarke, TA (B102) 2012; 20 Ravenhall, M, Škunca, N, Lassalle, F, Dessimoz, C (B60) 2015; 11 Frawley, ER, Kranz, RG (B88) 2009; 106 Kasai, T, Kouzuma, A, Nojiri, H, Watanabe, K (B104) 2015; 15 Aromokeye, DA, Kulkarni, AC, Elvert, M, Wegener, G, Henkel, S, Coffinet, S, Eickhorst, T, Oni, OE, Richter-Heitmann, T, Schnakenberg, A, Taubner, H, Wunder, L, Yin, X, Zhu, Q, Hinrichs, K-U, Kasten, S, Friedrich, MW (B2) 2019; 10 Butler, JE, Young, ND, Lovley, DR (B14) 2010; 11 Whelan, S, Goldman, N (B140) 2001; 18 Canfield, DE, Rosing, MT, Bjerrum, C (B137) 2006; 361 McCrindle, SL, Kappler, U, McEwan, AG (B113) 2005; 50 Kikuchi, G, Kumar, A, Talmage, P, Shemin, D (B92) 1958; 233 Kanhere, A, Vingron, M (B117) 2009; 9 Firer-Sherwood, M, Pulcu, GS, Elliott, SJ (B103) 2008; 13 Gupta, D, Sutherland, MC, Rengasamy, K, Meacham, JM, Kranz, RG, Bose, A (B36) 2019; 10 Yu, NY, Wagner, JR, Laird, MR, Melli, G, Rey, S, Lo, R, Dao, P, Sahinalp, SC, Ester, M, Foster, LJ, Brinkman, FSL (B78) 2010; 26 Thorell, K, Meier-Kolthoff, JP, Sjöling, Å, Martín-Rodríguez, AJ (B66) 2019; 10 Richard-Fogal, CL, Frawley, ER, Feissner, RE, Kranz, RG (B89) 2007; 189 He, S, Tominski, C, Kappler, A, Behrens, S, Roden, EE (B132) 2016; 82 Tanaka, K, Yokoe, S, Igarashi, K, Takashino, M, Ishikawa, M, Hori, K, Nakanishi, S, Kato, S (B23) 2018; 9 DeBruyn, JM, Nixon, LT, Fawaz, MN, Johnson, AM, Radosevich, M (B63) 2011; 77 Dailey, HA (B93) 2002; 30 Ivanova, EP, Ng, HJ, Webb, HK, Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (B62) 2014 Zhong, Y, Shi, L (B44) 2018; 9 Ozaki, K, Thompson, KJ, Simister, RL, Crowe, SA, Reinhard, CT (B8) 2019; 10 Thompson, KJ, Kenward, PA, Bauer, KW, Warchola, T, Gauger, T, Martinez, R, Simister, RL, Michiels, CC, Llirós, M, Reinhard, CT, Kappler, A, Konhauser, KO, Crowe, SA (B9) 2019; 5 Conley, BE, Intile, PJ, Bond, DR, Gralnick, JA (B33) 2018; 84 Heinemann, IU, Jahn, M, Jahn, D (B90) 2008; 474 Konstantinidis, KT, Serres, MH, Romine, MF, Rodrigues, JLM, Auchtung, J, McCue, L-A, Lipton, MS, Obraztsova, A, Giometti, CS, Nealson, KH, Fredrickson, JK, Tiedje, JM (B26) 2009; 106 Banerjee, R, Shine, O, Rajachandran, V, Krishnadas, G, Minnick, MF, Paul, S, Chattopadhyay, S (B94) 2020; 112 Edwards, MJ, Baiden, NA, Johs, A, Tomanicek, SJ, Liang, L, Shi, L, Fredrickson, JK, Zachara, JM, Gates, AJ |
References_xml | – ident: e_1_3_2_30_2 doi: 10.1111/mmi.14067 – volume-title: A novel manganese oxidising bacterium: characterisation and genomic evaluation year: 2014 ident: e_1_3_2_53_2 – ident: e_1_3_2_112_2 doi: 10.1016/S0966-842X(97)01110-4 – ident: e_1_3_2_145_2 doi: 10.1371/journal.pone.0011147 – ident: e_1_3_2_130_2 doi: 10.1111/j.1462-2920.2008.01608.x – ident: e_1_3_2_22_2 doi: 10.1146/annurev-micro-030117-020420 – ident: e_1_3_2_27_2 doi: 10.1073/pnas.0902000106 – ident: e_1_3_2_146_2 doi: 10.1093/bioinformatics/btr039 – ident: e_1_3_2_2_2 doi: 10.1126/science.1153213 – ident: e_1_3_2_99_2 doi: 10.1042/BST20120106 – ident: e_1_3_2_3_2 doi: 10.3389/fmicb.2019.03041 – ident: e_1_3_2_83_2 doi: 10.1039/c000396d – ident: e_1_3_2_95_2 doi: 10.1016/j.ygeno.2019.03.009 – ident: e_1_3_2_25_2 doi: 10.1038/s41467-021-21709-z – ident: e_1_3_2_54_2 doi: 10.1371/journal.pone.0016649 – ident: e_1_3_2_147_2 doi: 10.1038/sdata.2017.203 – ident: e_1_3_2_121_2 doi: 10.1111/j.1574-6976.2011.00292.x – ident: e_1_3_2_85_2 doi: 10.1128/AEM.71.8.4935-4937.2005 – ident: e_1_3_2_138_2 doi: 10.1098/rstb.2006.1906 – ident: e_1_3_2_98_2 doi: 10.1038/srep44725 – ident: e_1_3_2_126_2 doi: 10.1021/es702688c – ident: e_1_3_2_137_2 doi: 10.3389/fmicb.2017.00323 – ident: e_1_3_2_31_2 doi: 10.1038/nbt749 – ident: e_1_3_2_106_2 doi: 10.1111/j.1472-4669.2012.00321.x – ident: e_1_3_2_36_2 doi: 10.1038/ncomms4391 – ident: e_1_3_2_133_2 doi: 10.1128/AEM.03493-15 – ident: e_1_3_2_62_2 doi: 10.1099/ijs.0.02997-0 – ident: e_1_3_2_74_2 doi: 10.1128/AEM.02947-14 – ident: e_1_3_2_141_2 doi: 10.1093/oxfordjournals.molbev.a003851 – ident: e_1_3_2_101_2 doi: 10.1016/j.febslet.2014.04.013 – ident: e_1_3_2_93_2 doi: 10.1016/S0021-9258(19)77371-2 – ident: e_1_3_2_23_2 doi: 10.1038/nrmicro.2016.93 – ident: e_1_3_2_46_2 doi: 10.1073/pnas.0900086106 – ident: e_1_3_2_77_2 doi: 10.1042/BJ20120197 – ident: e_1_3_2_12_2 doi: 10.1021/es8029208 – ident: e_1_3_2_134_2 doi: 10.1099/mic.0.058404-0 – ident: e_1_3_2_64_2 doi: 10.1128/AEM.05005-11 – ident: e_1_3_2_68_2 doi: 10.1007/978-3-642-38922-1_227 – ident: e_1_3_2_20_2 doi: 10.1111/1758-2229.12216 – ident: e_1_3_2_49_2 doi: 10.1099/ijs.0.02298-0 – ident: e_1_3_2_143_2 doi: 10.1093/nar/gkz239 – ident: e_1_3_2_43_2 doi: 10.3389/fmicb.2020.00037 – ident: e_1_3_2_72_2 doi: 10.1002/pmic.201400585 – ident: e_1_3_2_34_2 doi: 10.1128/AEM.02134-18 – ident: e_1_3_2_55_2 doi: 10.1128/mBio.02203-17 – ident: e_1_3_2_129_2 doi: 10.1128/AEM.01615-16 – ident: e_1_3_2_21_2 doi: 10.1016/B978-0-12-387661-4.00004-5 – ident: e_1_3_2_41_2 doi: 10.3389/fmicb.2013.00254 – ident: e_1_3_2_48_2 doi: 10.1038/nbt867 – ident: e_1_3_2_50_2 doi: 10.1038/s41586-020-2468-5 – ident: e_1_3_2_73_2 doi: 10.3389/fenrg.2019.00060 – ident: e_1_3_2_131_2 doi: 10.1126/sciadv.aat5664 – ident: e_1_3_2_24_2 doi: 10.3389/fmicb.2018.02905 – ident: e_1_3_2_65_2 doi: 10.1099/ijs.0.002741-0 – ident: e_1_3_2_6_2 doi: 10.1038/s41598-017-05180-9 – ident: e_1_3_2_44_2 doi: 10.3389/fmicb.2017.01584 – ident: e_1_3_2_7_2 doi: 10.1146/annurev-micro-102215-095521 – ident: e_1_3_2_75_2 doi: 10.1128/genomeA.01103-15 – ident: e_1_3_2_13_2 doi: 10.1039/c1ee02229f – ident: e_1_3_2_71_2 doi: 10.3389/fmicb.2018.03176 – ident: e_1_3_2_33_2 doi: 10.1042/BST20120098 – ident: e_1_3_2_124_2 doi: 10.1371/journal.pbio.1001935 – ident: e_1_3_2_67_2 doi: 10.3389/fmicb.2019.01861 – ident: e_1_3_2_19_2 doi: 10.1128/AEM.02330-20 – ident: e_1_3_2_86_2 doi: 10.1371/journal.pone.0075610 – ident: e_1_3_2_58_2 doi: 10.1186/s12864-015-2011-5 – ident: e_1_3_2_127_2 doi: 10.1128/JB.01518-06 – ident: e_1_3_2_5_2 doi: 10.1073/pnas.1609534113 – ident: e_1_3_2_96_2 doi: 10.1371/journal.pcbi.1001082 – ident: e_1_3_2_32_2 doi: 10.1111/j.1365-2958.2010.07266.x – ident: e_1_3_2_80_2 doi: 10.1111/1574-6976.12067 – ident: e_1_3_2_105_2 doi: 10.1186/s12866-015-0406-8 – ident: e_1_3_2_119_2 doi: 10.1038/nature10571 – ident: e_1_3_2_115_2 doi: 10.1111/j.1574-6976.2002.tb00616.x – ident: e_1_3_2_16_2 doi: 10.1099/ijsem.0.001006 – ident: e_1_3_2_113_2 doi: 10.1016/j.bbabio.2012.09.001 – ident: e_1_3_2_114_2 doi: 10.1016/S0065-2911(05)50004-3 – ident: e_1_3_2_40_2 doi: 10.1128/MRA.01444-19 – ident: e_1_3_2_4_2 doi: 10.1038/s41396-018-0109-x – ident: e_1_3_2_125_2 doi: 10.1038/s41579-021-00534-7 – ident: e_1_3_2_107_2 doi: 10.1002/fuce.201700023 – ident: e_1_3_2_15_2 doi: 10.1186/1471-2164-11-40 – ident: e_1_3_2_9_2 doi: 10.1038/s41467-019-10872-z – ident: e_1_3_2_59_2 doi: 10.1073/pnas.0401526101 – ident: e_1_3_2_17_2 doi: 10.1128/mSystems.00002-17 – ident: e_1_3_2_142_2 doi: 10.1111/2041-210X.12760 – ident: e_1_3_2_89_2 doi: 10.1073/pnas.0903132106 – ident: e_1_3_2_51_2 doi: 10.1128/genomeA.00803-17 – ident: e_1_3_2_128_2 doi: 10.1128/AEM.01941-20 – ident: e_1_3_2_118_2 doi: 10.1186/1471-2148-9-9 – ident: e_1_3_2_97_2 doi: 10.1038/nrmicro2174 – ident: e_1_3_2_8_2 doi: 10.1130/G21658.1 – ident: e_1_3_2_76_2 doi: 10.1128/MMBR.00035-13 – ident: e_1_3_2_78_2 doi: 10.1128/JB.182.1.67-75.2000 – ident: e_1_3_2_14_2 doi: 10.1007/s42398-018-0024-0 – ident: e_1_3_2_57_2 doi: 10.1128/mBio.00282-15 – ident: e_1_3_2_18_2 doi: 10.1007/s10295-020-02309-0 – ident: e_1_3_2_11_2 doi: 10.1128/AEM.69.10.5884-5891.2003 – ident: e_1_3_2_109_2 doi: 10.1186/1471-2180-13-267 – ident: e_1_3_2_42_2 doi: 10.3389/fmicb.2012.00037 – ident: e_1_3_2_122_2 doi: 10.1038/nrg.2016.39 – ident: e_1_3_2_70_2 doi: 10.1093/molbev/msw245 – ident: e_1_3_2_140_2 doi: 10.1093/nar/gkz268 – ident: e_1_3_2_81_2 doi: 10.1042/BJ20121467 – ident: e_1_3_2_45_2 doi: 10.3389/fmicb.2018.03029 – ident: e_1_3_2_60_2 doi: 10.1038/nature04111 – ident: e_1_3_2_69_2 doi: 10.1007/978-3-642-38922-1_226 – ident: e_1_3_2_63_2 doi: 10.1007/978-3-642-38922-1_229 – ident: e_1_3_2_39_2 doi: 10.3389/fmicb.2015.00332 – ident: e_1_3_2_79_2 doi: 10.1093/bioinformatics/btq249 – ident: e_1_3_2_144_2 doi: 10.1128/aem.63.12.4784-4792.1997 – ident: e_1_3_2_102_2 doi: 10.1042/BST20120132 – ident: e_1_3_2_103_2 doi: 10.1016/j.str.2012.04.016 – ident: e_1_3_2_100_2 doi: 10.1073/pnas.1017200108 – ident: e_1_3_2_111_2 doi: 10.1093/genetics/143.4.1843 – ident: e_1_3_2_123_2 doi: 10.1093/femsre/fux053 – ident: e_1_3_2_132_2 doi: 10.1073/pnas.0505959103 – ident: e_1_3_2_47_2 doi: 10.1128/JB.00890-12 – ident: e_1_3_2_61_2 doi: 10.1371/journal.pcbi.1004095 – ident: e_1_3_2_108_2 doi: 10.1128/AEM.00544-09 – ident: e_1_3_2_117_2 doi: 10.1038/ismej.2014.193 – ident: e_1_3_2_90_2 doi: 10.1128/JB.01388-06 – ident: e_1_3_2_38_2 doi: 10.1128/JB.00776-06 – ident: e_1_3_2_136_2 doi: 10.3389/fmicb.2019.00849 – ident: e_1_3_2_104_2 doi: 10.1007/s00775-008-0398-z – ident: e_1_3_2_82_2 doi: 10.1038/ismej.2014.264 – ident: e_1_3_2_92_2 doi: 10.1128/MMBR.00048-16 – ident: e_1_3_2_120_2 doi: 10.1126/science.1147112 – ident: e_1_3_2_66_2 doi: 10.1128/JB.01480-09 – ident: e_1_3_2_56_2 doi: 10.1128/mBio.00379-13 – ident: e_1_3_2_35_2 doi: 10.1128/AEM.01253-20 – ident: e_1_3_2_84_2 doi: 10.1099/00207713-52-6-2211 – ident: e_1_3_2_116_2 doi: 10.1039/c3cs60249d – ident: e_1_3_2_94_2 doi: 10.1042/bst0300590 – ident: e_1_3_2_10_2 doi: 10.1126/sciadv.aav2869 – ident: e_1_3_2_37_2 doi: 10.1128/mBio.02668-19 – ident: e_1_3_2_88_2 doi: 10.1111/j.1365-2958.2006.05132.x – ident: e_1_3_2_26_2 doi: 10.1038/nrmicro1947 – ident: e_1_3_2_52_2 doi: 10.1111/1574-6941.12406 – ident: e_1_3_2_91_2 doi: 10.1016/j.abb.2008.02.015 – ident: e_1_3_2_110_2 doi: 10.1128/AEM.00146-07 – ident: e_1_3_2_28_2 doi: 10.1186/s13068-018-1201-1 – ident: e_1_3_2_29_2 doi: 10.1016/j.cell.2020.03.032 – ident: e_1_3_2_87_2 doi: 10.1111/j.1365-2958.2005.04650.x – ident: e_1_3_2_135_2 doi: 10.1038/s41579-020-00502-7 – ident: e_1_3_2_139_2 doi: 10.1093/nar/gkz991 – volume: 10 start-page: 1861 year: 2019 ident: B66 article-title: Whole-genome sequencing redefines Shewanella taxonomy publication-title: Front Microbiol doi: 10.3389/fmicb.2019.01861 – volume: 21 start-page: 1229 year: 2003 end-page: 1232 ident: B47 article-title: Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells publication-title: Nat Biotechnol doi: 10.1038/nbt867 – volume: 8 year: 2013 ident: B85 article-title: Unique organizational and functional features of the cytochrome c maturation system in Shewanella oneidensis publication-title: PLoS One doi: 10.1371/journal.pone.0075610 – volume: 474 start-page: 238 year: 2008 end-page: 251 ident: B90 article-title: The biochemistry of heme biosynthesis publication-title: Arch Biochem Biophys doi: 10.1016/j.abb.2008.02.015 – volume: 19 start-page: 442 year: 2021 end-page: 453 ident: B124 article-title: Examining horizontal gene transfer in microbial communities publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00534-7 – volume: 34 start-page: 437 year: 2017 end-page: 446 ident: B69 article-title: The timetree of prokaryotes: new insights into their evolution and speciation publication-title: Mol Biol Evol doi: 10.1093/molbev/msw245 – volume: 11 start-page: 193 year: 2018 ident: B27 article-title: Pan-genome analyses of 24 Shewanella strains re-emphasize the diversification of their functions yet evolutionary dynamics of metal-reducing pathway publication-title: Biotechnol Biofuels doi: 10.1186/s13068-018-1201-1 – start-page: 597 year: 2014 end-page: 625 ident: B68 article-title: The Family Shewanellaceae publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany doi: 10.1007/978-3-642-38922-1_226 – volume: 8 start-page: 1212 year: 2017 end-page: 1220 ident: B141 article-title: Intertwining phylogenetic trees and networks publication-title: Methods Ecol Evol doi: 10.1111/2041-210X.12760 – volume: 480 start-page: 241 year: 2011 end-page: 244 ident: B118 article-title: Ecology drives a global network of gene exchange connecting the human microbiome publication-title: Nature doi: 10.1038/nature10571 – volume: 108 start-page: 9384 year: 2011 end-page: 9389 ident: B99 article-title: Structure of a bacterial cell surface decaheme electron conduit publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1017200108 – volume: 438 start-page: 86 year: 2005 end-page: 89 ident: B59 article-title: Photosynthesis genes in marine viruses yield proteins during host infection publication-title: Nature doi: 10.1038/nature04111 – volume: 13 start-page: 849 year: 2008 end-page: 854 ident: B103 article-title: Electrochemical interrogations of the Mtr cytochromes from Shewanella: opening a potential window publication-title: J Biol Inorg Chem doi: 10.1007/s00775-008-0398-z – volume: 53 start-page: 669 year: 2003 end-page: 673 ident: B48 article-title: Rhodoferax ferrireducens sp. nov., a psychrotolerant, facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe(III) publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02298-0 – volume: 4 start-page: 254 year: 2013 ident: B40 article-title: Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics publication-title: Front Microbiol doi: 10.3389/fmicb.2013.00254 – volume: 59 start-page: 234 year: 2009 end-page: 247 ident: B64 article-title: Phylogenomics and protein signatures elucidating the evolutionary relationships among the Gammaproteobacteria publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.002741-0 – volume: 8 start-page: 323 year: 2017 ident: B136 article-title: Photoferrotrophy: remains of an ancient photosynthesis in modern environments publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00323 – volume: 47 start-page: W256 year: 2019 end-page: W259 ident: B142 article-title: Interactive Tree Of Life (iTOL) v4: recent updates and new developments publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz239 – volume: 30 start-page: 590 year: 2002 end-page: 595 ident: B93 article-title: Terminal steps of haem biosynthesis publication-title: Biochem Soc Trans doi: 10.1042/bst0300590 – volume: 7 start-page: 175 year: 2015 end-page: 179 ident: B19 article-title: Cable bacteria associated with long-distance electron transport in New England salt marsh sediment publication-title: Environ Microbiol Rep doi: 10.1111/1758-2229.12216 – volume: 192 start-page: 2305 year: 2010 end-page: 2314 ident: B65 article-title: Phylogeny of Gammaproteobacteria publication-title: J Bacteriol doi: 10.1128/JB.01480-09 – volume: 103 start-page: 4669 year: 2006 end-page: 4674 ident: B131 article-title: Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0505959103 – volume: 43 start-page: 4928 year: 2009 end-page: 4933 ident: B11 article-title: Microbial reduction of intragrain U(VI) in contaminated sediment publication-title: Environ Sci Technol doi: 10.1021/es8029208 – volume: 6 year: 2015 ident: B56 article-title: Synthetic and evolutionary construction of a chlorate-reducing Shewanella oneidensis MR-1 publication-title: mBio doi: 10.1128/mBio.00282-15 – volume: 15 start-page: 3486 year: 2015 end-page: 3496 ident: B71 article-title: Metaproteomic evidence of changes in protein expression following a change in electrode potential in a robust biocathode microbiome publication-title: Proteomics doi: 10.1002/pmic.201400585 – volume: 13 start-page: 267 year: 2013 ident: B108 article-title: Roles of UndA and MtrC of Shewanella putrefaciens W3-18–1 in iron reduction publication-title: BMC Microbiol doi: 10.1186/1471-2180-13-267 – volume: 17 start-page: 379 year: 2016 end-page: 391 ident: B121 article-title: Evolution by gene loss publication-title: Nat Rev Genet doi: 10.1038/nrg.2016.39 – volume: 43 start-page: 676 year: 2014 end-page: 706 ident: B115 article-title: Nitrate and periplasmic nitrate reductases publication-title: Chem Soc Rev doi: 10.1039/c3cs60249d – volume: 26 start-page: 285 year: 2002 end-page: 309 ident: B114 article-title: Enzymology and bioenergetics of respiratory nitrite ammonification publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2002.tb00616.x – volume: 84 year: 2018 ident: B33 article-title: Divergent Nrf family proteins and MtrCAB homologs facilitate extracellular electron transfer in Aeromonas hydrophila publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02134-18 – volume: 12 year: 2014 ident: B123 article-title: The genomic landscape of compensatory evolution publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001935 – volume: 106 start-page: 15909 year: 2009 end-page: 15914 ident: B26 article-title: Comparative systems biology across an evolutionary gradient within the Shewanella genus publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0902000106 – volume: 60 start-page: 563 year: 2006 end-page: 577 ident: B87 article-title: Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05132.x – volume: 109 start-page: 571 year: 2018 end-page: 583 ident: B29 article-title: Extracellular reduction of solid electron acceptors by Shewanella oneidensis publication-title: Mol Microbiol doi: 10.1111/mmi.14067 – volume: 106 start-page: 22169 year: 2009 end-page: 22174 ident: B45 article-title: Characterization of an electron conduit between bacteria and the extracellular environment publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0900086106 – volume: 143 start-page: 1843 year: 1996 end-page: 1860 ident: B110 article-title: Selfish operons: horizontal transfer may drive the evolution of gene clusters publication-title: Genetics doi: 10.1093/genetics/143.4.1843 – volume: 86 year: 2020 ident: B127 article-title: Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01941-20 – volume: 4 year: 2013 ident: B55 article-title: Structure and evolution of chlorate reduction composite transposons publication-title: mBio doi: 10.1128/mBio.00379-13 – volume: 189 start-page: 455 year: 2007 end-page: 463 ident: B89 article-title: Heme concentration dependence and metalloporphyrin inhibition of the system I and II cytochrome c assembly pathways publication-title: J Bacteriol doi: 10.1128/JB.01388-06 – volume: 10 year: 2019 ident: B36 article-title: Photoferrotrophs produce a PioAB electron conduit for extracellular electron uptake publication-title: mBio doi: 10.1128/mBio.02668-19 – volume: 40 start-page: 1181 year: 2012 end-page: 1185 ident: B101 article-title: Analysis of structural MtrC models based on homology with the crystal structure of MtrF publication-title: Biochem Soc Trans doi: 10.1042/BST20120132 – volume: 82 start-page: 5428 year: 2016 end-page: 5443 ident: B128 article-title: Regulation of gene expression in Shewanella oneidensis MR-1 during electron acceptor limitation and bacterial nanowire formation publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01615-16 – volume: 12 start-page: 1709 year: 2021 ident: B24 article-title: Long-distance electron transfer in a filamentous Gram-positive bacterium publication-title: Nat Commun doi: 10.1038/s41467-021-21709-z – volume: 77 start-page: 995 year: 2010 end-page: 1008 ident: B31 article-title: Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2010.07266.x – volume: 26 start-page: 1608 year: 2010 end-page: 1615 ident: B78 article-title: PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq249 – volume: 42 start-page: 3821 year: 2008 end-page: 3827 ident: B125 article-title: In vitro evolution of a peptide with a hematite binding motif that may constitute a natural metal-oxide binding archetype publication-title: Environ Sci Technol doi: 10.1021/es702688c – volume: 54 start-page: 1773 year: 2004 end-page: 1788 ident: B61 article-title: Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.02997-0 – volume: 14 start-page: 651 year: 2016 end-page: 662 ident: B22 article-title: Extracellular electron transfer mechanisms between microorganisms and minerals publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro.2016.93 – volume: 11 year: 2015 ident: B60 article-title: Inferring horizontal gene transfer publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004095 – volume: 10 start-page: 849 year: 2019 ident: B135 article-title: The biogeochemical sulfur cycle of marine sediments publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00849 – volume: 52 start-page: 2211 year: 2002 end-page: 2217 ident: B83 article-title: Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea publication-title: Int J Syst Evol Microbiol doi: 10.1099/00207713-52-6-2211 – volume: 182 start-page: 67 year: 2000 end-page: 75 ident: B77 article-title: Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone publication-title: J Bacteriol doi: 10.1128/JB.182.1.67-75.2000 – volume: 70 start-page: 45 year: 2016 end-page: 62 ident: B6 article-title: The role of microbial electron transfer in the coevolution of the biosphere and geosphere publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-102215-095521 – volume: 66 start-page: 2178 year: 2016 end-page: 2185 ident: B15 article-title: ‘Candidatus Tenderia electrophaga,’ an uncultivated electroautotroph from a biocathode enrichment publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.001006 – volume: 189 start-page: 4944 year: 2007 end-page: 4952 ident: B126 article-title: Specific Bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1 publication-title: J Bacteriol doi: 10.1128/JB.01518-06 – year: 2014 ident: B52 publication-title: A novel manganese oxidising bacterium: characterisation and genomic evaluation ;University of Auckland ;Auckland, New Zealand – volume: 5 year: 2010 ident: B144 article-title: progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement publication-title: PLoS One doi: 10.1371/journal.pone.0011147 – volume: 19 start-page: 360 year: 2021 end-page: 374 ident: B134 article-title: An evolving view on biogeochemical cycling of iron publication-title: Nat Rev Microbiol doi: 10.1038/s41579-020-00502-7 – volume: 82 start-page: 2656 year: 2016 end-page: 2668 ident: B132 article-title: Metagenomic analyses of the autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture KS publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03493-15 – volume: 320 start-page: 1034 year: 2008 end-page: 1039 ident: B1 article-title: The microbial engines that drive Earth’s biogeochemical cycles publication-title: Science doi: 10.1126/science.1153213 – volume: 78 start-page: 1 year: 2014 end-page: 39 ident: B75 article-title: Bacterial genome instability publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00035-13 – volume: 7 start-page: 5099 year: 2017 ident: B5 article-title: Anaerobic oxidation of methane coupled with extracellular electron transfer to electrodes publication-title: Sci Rep doi: 10.1038/s41598-017-05180-9 – volume: 5 year: 2017 ident: B50 article-title: Draft genome sequence of Ideonella sp. strain A 288, isolated from an iron-precipitating biofilm publication-title: Genome Announc doi: 10.1128/genomeA.00803-17 – volume: 11 start-page: 40 year: 2010 ident: B14 article-title: Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes publication-title: BMC Genomics doi: 10.1186/1471-2164-11-40 – volume: 86 year: 2020 ident: B34 article-title: A hybrid extracellular electron transfer pathway enhances survival of Vibrio natriegens publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01253-20 – volume: 9 year: 2018 ident: B54 article-title: Tracking electron uptake from a cathode into Shewanella cells: implications for energy acquisition from solid-substrate electron donors publication-title: mBio doi: 10.1128/mBio.02203-17 – volume: 101 start-page: 11013 year: 2004 end-page: 11018 ident: B58 article-title: Transfer of photosynthesis genes to and from Prochlorococcus viruses publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0401526101 – volume: 7 start-page: 44725 year: 2017 ident: B97 article-title: Physiological and transcriptional approaches reveal connection between nitrogen and manganese cycles in Shewanella algae C6G3 publication-title: Sci Rep doi: 10.1038/srep44725 – volume: 5 start-page: 170203 year: 2018 ident: B146 article-title: The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans publication-title: Sci Data doi: 10.1038/sdata.2017.203 – volume: 6 start-page: 332 year: 2015 ident: B38 article-title: Characterization of MtoD from Sideroxydans lithotrophicus: a cytochrome c electron shuttle used in lithoautotrophic growth publication-title: Front Microbiol doi: 10.3389/fmicb.2015.00332 – volume: 1827 start-page: 145 year: 2013 end-page: 160 ident: B112 article-title: Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism publication-title: Biochim Biophys Acta doi: 10.1016/j.bbabio.2012.09.001 – volume: 318 start-page: 1449 year: 2007 end-page: 1452 ident: B119 article-title: Genome-wide experimental determination of barriers to horizontal gene transfer publication-title: Science doi: 10.1126/science.1147112 – volume: 17 start-page: 601 year: 2017 end-page: 611 ident: B106 article-title: Characterization of OmcA mutants from Shewanella oneidensis MR-1 to investigate the molecular mechanisms underpinning electron transfer across the microbe-electrode interface publication-title: Fuel Cells doi: 10.1002/fuce.201700023 – volume: 47 start-page: W636 year: 2019 end-page: W641 ident: B139 article-title: The EMBL-EBI search and sequence analysis tools APIs in 2019 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz268 – volume: 113 start-page: 12792 year: 2016 end-page: 12796 ident: B4 article-title: Archaea catalyze iron-dependent anaerobic oxidation of methane publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1609534113 – volume: 42 start-page: fux053 year: 2018 ident: B122 article-title: Environmental factors influencing the development and spread of antibiotic resistance publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fux053 – volume: 1 start-page: 221 year: 2018 end-page: 231 ident: B13 article-title: Iron oxidizing bacteria: insights on diversity, mechanism of iron oxidation and role in management of metal pollution publication-title: Environmental Sustainability doi: 10.1007/s42398-018-0024-0 – volume: 9 start-page: 3029 year: 2018 ident: B44 article-title: Genomic analyses of the quinol oxidases and/or quinone reductases involved in bacterial extracellular electron transfer publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03029 – volume: 6 start-page: 1216 year: 2010 end-page: 1226 ident: B82 article-title: Complete genome sequence and comparative analysis of Shewanella violacea, a psychrophilic and piezophilic bacterium from deep sea floor sediments publication-title: Mol Biosyst doi: 10.1039/c000396d – volume: 7 start-page: 578 year: 2009 end-page: 588 ident: B96 article-title: Bacterial gene amplification: implications for the evolution of antibiotic resistance publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2174 – volume: 194 start-page: 5840 year: 2012 end-page: 5847 ident: B46 article-title: Characterization of axial and proximal histidine mutations of the decaheme cytochrome MtrA from Shewanella sp. strain ANA-3 and implications for the electron transport system publication-title: J Bacteriol doi: 10.1128/JB.00890-12 – volume: 7 start-page: 60 year: 2019 ident: B72 article-title: Electrochemical characterization of Marinobacter atlanticus strain CP1 suggests a role for trace minerals in electrogenic activity publication-title: Front Energy Res doi: 10.3389/fenrg.2019.00060 – volume: 233 start-page: 1214 year: 1958 end-page: 1219 ident: B92 article-title: The enzymatic synthesis of delta-aminolevulinic acid publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)77371-2 – volume: 18 start-page: 691 year: 2001 end-page: 699 ident: B140 article-title: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach publication-title: Mol Biol Evol doi: 10.1093/oxfordjournals.molbev.a003851 – volume: 33 start-page: 865 year: 2005 end-page: 868 ident: B7 article-title: Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria publication-title: Geology doi: 10.1130/G21658.1 – volume: 3 start-page: 37 year: 2012 ident: B41 article-title: Identification and characterization of MtoA: a decaheme c-type cytochrome of the neutrophilic Fe(II)-oxidizing bacterium Sideroxydans lithotrophicus ES-1 publication-title: Front Microbiol doi: 10.3389/fmicb.2012.00037 – volume: 71 start-page: 643 year: 2017 end-page: 664 ident: B21 article-title: Syntrophy goes electric: direct interspecies electron transfer publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-030117-020420 – volume: 8 start-page: 1584 year: 2017 ident: B43 article-title: Comparative genomic analysis of neutrophilic iron(II) oxidizer genomes for candidate genes in extracellular electron transfer publication-title: Front Microbiol doi: 10.3389/fmicb.2017.01584 – volume: 9 start-page: 9 year: 2009 ident: B117 article-title: Horizontal gene transfers in prokaryotes show differential preferences for metabolic and translational genes publication-title: BMC Evol Biol doi: 10.1186/1471-2148-9-9 – volume: 63 start-page: 4784 year: 1997 end-page: 4792 ident: B143 article-title: Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.12.4784-4792.1997 – volume: 90 start-page: 454 year: 2014 end-page: 466 ident: B51 article-title: Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands publication-title: FEMS Microbiol Ecol doi: 10.1111/1574-6941.12406 – volume: 15 start-page: 68 year: 2015 ident: B104 article-title: Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1 publication-title: BMC Microbiol doi: 10.1186/s12866-015-0406-8 – volume: 158 start-page: 2144 year: 2012 end-page: 2157 ident: B133 article-title: Outer-membrane cytochrome-independent reduction of extracellular electron acceptors in Shewanella oneidensis publication-title: Microbiology (Reading) doi: 10.1099/mic.0.058404-0 – volume: 4 start-page: 4896 year: 2011 end-page: 4906 ident: B12 article-title: Live wires: direct extracellular electron exchange for bioenergy and the bioremediation of energy-related contamination publication-title: Energy Environ Sci doi: 10.1039/c1ee02229f – volume: 5 start-page: 3391 year: 2014 ident: B35 article-title: Electron uptake by iron-oxidizing phototrophic bacteria publication-title: Nat Commun doi: 10.1038/ncomms4391 – volume: 361 start-page: 1819 year: 2006 end-page: 1836 ident: B137 article-title: Early anaerobic metabolisms publication-title: Philos Trans R Soc Lond B Biol Sci doi: 10.1098/rstb.2006.1906 – volume: 40 start-page: 1261 year: 2012 end-page: 1267 ident: B32 article-title: Mtr extracellular electron-transfer pathways in Fe(III)-reducing or Fe(II)-oxidizing bacteria: a genomic perspective publication-title: Biochem Soc Trans doi: 10.1042/BST20120098 – volume: 20 start-page: 1118 year: 2002 end-page: 1123 ident: B30 article-title: Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis publication-title: Nat Biotechnol doi: 10.1038/nbt749 – start-page: 477 year: 2014 end-page: 489 ident: B67 article-title: The family Moritellaceae publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany doi: 10.1007/978-3-642-38922-1_227 – volume: 56 start-page: 1408 year: 2005 end-page: 1415 ident: B86 article-title: Impact of the bacterial type I cytochrome c maturation system on different biological processes publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04650.x – volume: 181 start-page: 665 year: 2020 end-page: 669 ident: B28 article-title: The crystal structure of a biological insulated transmembrane molecular wire publication-title: Cell doi: 10.1016/j.cell.2020.03.032 – volume: 10 start-page: 3041 year: 2019 ident: B2 article-title: Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments publication-title: Front Microbiol doi: 10.3389/fmicb.2019.03041 – volume: 81 year: 2017 ident: B91 article-title: Prokaryotic heme biosynthesis: multiple pathways to a common essential product publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00048-16 – volume: 20 start-page: 1275 year: 2012 end-page: 1284 ident: B102 article-title: The crystal structure of the extracellular 11-heme cytochrome UndA reveals a conserved 10-heme motif and defined binding site for soluble iron chelates publication-title: Structure doi: 10.1016/j.str.2012.04.016 – volume: 2 year: 2017 ident: B16 article-title: Metatranscriptomics supports the mechanism for biocathode electroautotrophy by “Candidatus Tenderia electrophaga publication-title: mSystems doi: 10.1128/mSystems.00002-17 – volume: 9 start-page: 1802 year: 2015 end-page: 1811 ident: B81 article-title: A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime publication-title: ISME J doi: 10.1038/ismej.2014.264 – volume: 59 start-page: 1 year: 2011 end-page: 100 ident: B20 article-title: Geobacter: the microbe electric’s physiology, ecology, and practical applications publication-title: Adv Microb Physiol doi: 10.1016/B978-0-12-387661-4.00004-5 – volume: 27 start-page: 1009 year: 2011 end-page: 1010 ident: B145 article-title: Easyfig: a genome comparison visualizer publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr039 – volume: 583 start-page: 453 year: 2020 end-page: 458 ident: B49 article-title: Bacterial chemolithoautotrophy via manganese oxidation publication-title: Nature doi: 10.1038/s41586-020-2468-5 – volume: 6 year: 2011 ident: B53 article-title: Towards electrosynthesis in Shewanella: energetics of reversing the Mtr pathway for reductive metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0016649 – volume: 71 start-page: 4935 year: 2005 end-page: 4937 ident: B84 article-title: Identification of genes involved in cytochrome c biogenesis in Shewanella oneidensis, using a modified mariner transposon publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.8.4935-4937.2005 – volume: 444 start-page: 465 year: 2012 end-page: 474 ident: B76 article-title: A functional description of CymA, an electron-transfer hub supporting anaerobic respiratory flexibility in Shewanella publication-title: Biochem J doi: 10.1042/BJ20120197 – volume: 7 year: 2011 ident: B95 article-title: Loss of genetic redundancy in reductive genome evolution publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1001082 – volume: 189 start-page: 1765 year: 2007 end-page: 1773 ident: B37 article-title: The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1 publication-title: J Bacteriol doi: 10.1128/JB.00776-06 – volume: 38 start-page: 865 year: 2014 end-page: 891 ident: B79 article-title: Bacterial insertion sequences: their genomic impact and diversity publication-title: FEMS Microbiol Rev doi: 10.1111/1574-6976.12067 – volume: 48 start-page: D265 year: 2020 end-page: D268 ident: B138 article-title: CDD/SPARCLE: the conserved domain database in 2020 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz991 – start-page: 575 year: 2014 end-page: 582 ident: B62 article-title: The family Pseudoalteromonadaceae publication-title: The prokaryotes: Gammaproteobacteria ;4th ed ;Springer ;Berlin, Germany doi: 10.1007/978-3-642-38922-1_229 – volume: 10 start-page: 355 year: 2012 end-page: 370 ident: B105 article-title: Role of outer membrane c-type cytochromes MtrC and OmcA in Shewanella oneidensis MR-1 cell production, accumulation, and detachment during respiration on hematite publication-title: Geobiology doi: 10.1111/j.1472-4669.2012.00321.x – volume: 5 year: 2019 ident: B130 article-title: Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity publication-title: Sci Adv doi: 10.1126/sciadv.aat5664 – volume: 35 start-page: 957 year: 2011 end-page: 976 ident: B120 article-title: Origins of bacterial diversity through horizontal genetic transfer and adaptation to new ecological niches publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2011.00292.x – volume: 40 start-page: 1268 year: 2012 end-page: 1273 ident: B98 article-title: Mind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family publication-title: Biochem Soc Trans doi: 10.1042/BST20120106 – volume: 73 start-page: 5797 year: 2007 end-page: 5808 ident: B109 article-title: Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00146-07 – volume: 6 start-page: 592 year: 2008 end-page: 603 ident: B25 article-title: Towards environmental systems biology of Shewanella publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1947 – volume: 10 start-page: 1861 year: 2008 end-page: 1876 ident: B129 article-title: Oxygen-dependent autoaggregation in Shewanella oneidensis MR-1 publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01608.x – volume: 69 start-page: 5884 year: 2003 end-page: 5891 ident: B10 article-title: Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer publication-title: Appl Environ Microbiol doi: 10.1128/AEM.69.10.5884-5891.2003 – volume: 9 year: 2020 ident: B39 article-title: Draft genome sequence of Sideroxydans sp. strain CL21, an Fe(II)-oxidizing bacterium publication-title: Microbiol Resour Announc doi: 10.1128/MRA.01444-19 – volume: 106 start-page: 10201 year: 2009 end-page: 10206 ident: B88 article-title: CcsBA is a cytochrome c synthetase that also functions in heme transport publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0903132106 – volume: 77 start-page: 6295 year: 2011 end-page: 6300 ident: B63 article-title: Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.05005-11 – volume: 9 start-page: 3176 year: 2018 ident: B70 article-title: Development of a genetic system for Marinobacter atlanticus CP1 (sp. nov.), a wax ester producing strain isolated from an autotrophic biocathode publication-title: Front Microbiol doi: 10.3389/fmicb.2018.03176 – volume: 81 start-page: 699 year: 2015 end-page: 712 ident: B73 article-title: A previously uncharacterized, non-photosynthetic member of the Chromatiaceae is the primary CO2 fixing constituent in a self-regenerating biocathode publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02947-14 – volume: 5 year: 2019 ident: B9 article-title: Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans publication-title: Sci Adv doi: 10.1126/sciadv.aav2869 – volume: 75 start-page: 5218 year: 2009 end-page: 5226 ident: B107 article-title: Kinetic characterization of OmcA and MtrC, terminal reductases involved in respiratory electron transfer for dissimilatory iron reduction in Shewanella oneidensis MR-1 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00544-09 – volume: 16 start-page: 862 year: 2015 ident: B57 article-title: The perchlorate reduction genomic island: mechanisms and pathways of evolution by horizontal gene transfer publication-title: BMC Genomics doi: 10.1186/s12864-015-2011-5 – volume: 3 year: 2015 ident: B74 article-title: Complete genome sequence of Marinobacter sp. CP1, isolated from a self-regenerating biocathode biofilm publication-title: Genome Announc doi: 10.1128/genomeA.01103-15 – volume: 9 start-page: 958 year: 2015 end-page: 967 ident: B116 article-title: Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria publication-title: ISME J doi: 10.1038/ismej.2014.193 – volume: 12 start-page: 1929 year: 2018 end-page: 1939 ident: B3 article-title: A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction publication-title: ISME J doi: 10.1038/s41396-018-0109-x – volume: 112 start-page: 467 year: 2020 end-page: 471 ident: B94 article-title: Gene duplication and deletion, not horizontal transfer, drove intra-species mosaicism of Bartonella henselae publication-title: Genomics doi: 10.1016/j.ygeno.2019.03.009 – volume: 50 start-page: 147 year: 2005 end-page: 198 ident: B113 article-title: Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration publication-title: Adv Microb Physiol doi: 10.1016/S0065-2911(05)50004-3 – volume: 9 start-page: 2905 year: 2018 ident: B23 article-title: Extracellular electron transfer via outer membrane cytochromes in a methanotrophic bacterium Methylococcus capsulatus (Bath) publication-title: Front Microbiol doi: 10.3389/fmicb.2018.02905 – volume: 588 start-page: 1886 year: 2014 end-page: 1890 ident: B100 article-title: The X-ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe–mineral interface publication-title: FEBS Lett doi: 10.1016/j.febslet.2014.04.013 – volume: 10 start-page: 3026 year: 2019 ident: B8 article-title: Anoxygenic photosynthesis and the delayed oxygenation of Earth’s atmosphere publication-title: Nat Commun doi: 10.1038/s41467-019-10872-z – volume: 87 year: 2021 ident: B18 article-title: Microbe-mineral interaction and novel proteins for iron oxide mineral reduction in the hyperthermophilic crenarchaeon Pyrodictium delaneyi publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02330-20 – volume: 11 start-page: 37 year: 2020 ident: B42 article-title: FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies publication-title: Front Microbiol doi: 10.3389/fmicb.2020.00037 – volume: 449 start-page: 101 year: 2013 end-page: 108 ident: B80 article-title: Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1 publication-title: Biochem J doi: 10.1042/BJ20121467 – volume: 5 start-page: 355 year: 1997 end-page: 359 ident: B111 article-title: Selfish operons and speciation by gene transfer publication-title: Trends Microbiol doi: 10.1016/S0966-842X(97)01110-4 – volume: 47 start-page: 863 year: 2020 end-page: 876 ident: B17 article-title: Extracellular electron uptake by autotrophic microbes: physiological, ecological, and evolutionary implications publication-title: J Ind Microbiol Biotechnol doi: 10.1007/s10295-020-02309-0 |
SSID | ssj0000331830 |
Score | 2.4572878 |
Snippet | While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot... Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as... ABSTRACT Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0290421 |
SubjectTerms | Archaea - metabolism Bacteria - metabolism Electron Transport Electrons evolution Ferric Compounds - metabolism gene transfer iron oxidizers iron reduction Microbial Genetics Oxidation-Reduction Phylogeny Research Article Shewanella Shewanella - genetics |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELaqVki8oHIvl4xAPJHi9bXO4xZttQItvLCob5aPiVipTdBuKhV-PWPnEFtRibccdpzMN-OZcTwzhLz1HJRh2hTOz9BBqdBhNXEKRYXKyQEExcsUnLz6opdr-elcnR8QPsTC9BTcnbjdZf6RP0o2Nx8u_aY5Ybxkskix40f4IInCeDSfr79-HldWmEh8yoaEmjf74dyLz-Z7eiin6_-XjXlzq-RfuufsmNzrjUY671C-Tw6gfkDudGUkfz0k7VAalKIFSpfNdvO7SUGO1NWRfs8bp_EkayVENS2P0aaiq3ZbrHKhDoh0cY3jpkX8tCuVLvraOF2fCrY01ySiaCzS0y69s3tE1meLbx-XRV9NoXAopG1RRQ4gImgoUQaj8AyRcCh-PrBQAZoFIGfeKFNGHWSMJdpuKgAeOBA-gHhMDuumhqeEYg83raIQPoI06GGa4IxiwejovWOzCXmTSGwHMG32NLixCQibgbB8OiHvBwRs6BOSp7oYF7c1fzc2_9ll4rit4WmCc2yUEmjnC8hOtpdHC1IZpAXqg8gkfrhh0gXjdMmMn-qynJDXAzNYhCYB4GpornaWay7RqMGZcEKedMwxDiVUypWkkQCzPbbZe5f9O_XmR07qjfOoYkI9-y_SPSd3eQrDyLvHX5DDdnsFL9E4av2rXhr-ABT3Dy0 priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBbFEOiltGnTuHmg0pBTtpGl1Vp7TIqDKbinJuQm9Jglhma32BtI--s7o10bOzT00ts-JFbMQzOjnfmGsRMvQRtRmMz5MQYoFQasJo4gq9A4OYCgZUnFybNvxfQ6_3qrbzdafVFOWAcP3BHuHHJtItDfoyhyyAkvxwXjMKgzflSUqXQPbd5GMJX2YEWyKlagmtKc3_t581nIUuQZ4YIO3PJebtmiBNn_Nz_zabrkhv25es1e9Y4jv-gW_Ia9gHqX7XStJH-9Ze2qPShHL5RPm8X8d0OFjtzVkd-k5Gm8SZYJOUtHZLyp-KxdZLPUrAMinzzid-kgnzJT-aTvj9PNqWDBU18ijg4jv-wgnt07dn01-f5lmvUdFTKHitpmVZQACskJJephVF4gNxyqoA8iVICuAVLYG23KWIQ8xhL9Nx0ALxwoH0DtsUHd1LDPOM5woyoq5SPkBqNME5zRIpgieu_EeMg-EYltrxJLm6INaSwxwiZGWDkasrMVB2zoQcmpN8aP54afrof_7NA4nht4SexcDyIQ7fQARcv2omX_JVpD9nElDBZZQwxwNTQPSysLmaNjg7vhkL3vhGP9KaUJL6lAAoy3xGZrLdtv6vldAvbGvVQLpT_8j8UfsJeSKjVSgvkhG7SLBzhC_6n1x0lV_gCouRpY priority: 102 providerName: Directory of Open Access Journals |
Title | Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35100867 https://journals.asm.org/doi/10.1128/mbio.02904-21 https://www.proquest.com/docview/2624661832 https://pubmed.ncbi.nlm.nih.gov/PMC8805035 https://doaj.org/article/e458de6002d04e47804ac8a6908b1699 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiReEIyv8lEZgXgiw3HixHlAUzd1VKDCC0V9s_xxGZW2BNJM2vjrOTtJWadN4iVKGqdOfHe-31m-3xHy1nAQkmUy0ibHAKXEgFW6GKISnZMGsIIXPjl5_jWbLdLPS7H8RynUD-D6xtDO15NaNKf7F78vD9DgP3YJMPLDmVnV-4wXLI18SvkuOqXcFzOY90g_TMqJV16_4oI-jkU54oyBcfP6P-DkrNdnfMtRBT7_m0Do9b2UV5zT8QNyv0eVdNKpwUNyB6o9crerM3n5iLRD7VCKEJXO6mb1p_ZZkFRXjv4IO6vxIrgtFLtfP6N1SedtE81DJQ9wdHqB_fpVfr9tlU774jndMyU0NBQtoogm6WHH_6wfk8Xx9PvRLOrLLUQarbiNSscBEgcZFGikLjEMRaXRPo1ltgTEDZDmRgpZuMymzhUI7oQFPNGQGAvJE7JT1RU8IxSf0HHpksQ4SCWGoNJqKZiVmTNGs3xE3vghVoO4VQhFuFReECoIQvF4RN4PElC2Zyz3hTNOb2v-btP8V0fVcVvDQy_OTSPPsB1-qJsT1RusglRIHAt0GI6l-OGSpdpKnRVMmjgrihF5PSiDQtF4AegK6vO14hlPEfXgVDkiTzvl2HSVCE-mlOEA5Ftqs_Uu23eq1c_A-o0TrWCJeP4f_b4g97jP0giby1-SnbY5h1eInVozJruTyeLbl3FYe8Djp2U8DpbyF9_xHOQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKKwQXxJvlacTjRIrjxFnnwGELW23Zbrl0UW_Gj4lY1CZokwrKD-J3MnaSFVtRiUtveTiJMw_PjD2ej5CXhoOQLJORNkMMUAoMWKWLISrQOGkAK3juNyfPDrLJPP14JI42yO9-L8w3j8t7XG_r-iSs43vF9hPRHR6hfHtiFtU24zlLIx53yZRTOPuBoVr9bu8D8vUV57vjw_eTqEMTiDQKaRMVjgMkDjLIUQZdYhj2RKP4GctsAWgWIR0aKWTuMps6l6PvIizggYbEWEjwvVfIll-nxCBvazSaf5quZnNY4nWD9UU8z_cTx3v8Ib5m-wJEwL_82vPpmX_Zu92b5EbnqNJRK1m3yAaUt8nVFrry7A5pejhSil4vnVTLxa_Kb6ykunT0c0jWxpNgCVGS_JQcrQo6a5bRLICDgKPjn_hdv3DgM2HpuMPjaZ8pYEkDDhJFB5XutCWl9V0yvxSa3yObZVXCA0LxCR0XLkmMg1RiVCutloJZmTljNBsOyAtPYtWpYK1CdMOl8oxQgRGKxwPypueAsl0RdI_FcXxR89er5t_b6h8XNdzx7Fw18kW7wwWUYdWNAQpSIZEWaIMcS_HHJUu1lTrLmTRxlucD8rwXBoWs8QzQJVSnteIZT9GRwtF3QO63wrH6VCJ8faYMCTBcE5u1vqzfKRdfQyFxHLsFS8TD_yLdM3JtcjjbV_t7B9NH5Dr320BC9vpjstksT-EJOmeNedppBiVfLlsZ_wA4KFCc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWrkBcEG_K04jHiSyOE6fOgUOXbdWldOFA0d68fkxEJTZZtVnB8oP4nYydpKIrVuKyt6ZxEmfms2cmHs9HyEvDQUiWyUibAQYoBQas0sUQFWicNIAVPPebk2cH2WSefjgUh1vkd7cXppXgakevjsNCvh_ZJ65o-Qjl22OzqHYYz1ka8bhNppzC2Q8M1Vbv9vdQr684H4--vJ9ELZtApBGkdVQ4DpA4yCBHDLrEMOyJRvgZy2wBaBYhHRgpZO4ymzqXo-8iLOAPDYmxkOB9r5DtsDDWI9vD4fzTdP01hyV-bLCuiOf5fuJ8j-_DN2xfoAj4l197Pj3zL3s3vklutI4qHTbIukW2oLxNrjbUlWd3SN3RkVL0eumkWi5-VX5jJdWlo19DsjYeBEuISPKf5GhV0Fm9jGaBHAQcHf3E5_qFA58JS0ctH09zTQFLGniQKDqodLcpKa3vkvmlyPwe6ZVVCQ8IxSt0XLgkMQ5SiVGttFoKZmXmjNFs0CcvvIhVByAVohsulVeECopQPO6TN50GlG2LoHsuju8XNX-9bn7SVP-4qOGuV-e6kS_aHf5ACKt2DlCQComyQBvkWIovLlmqrdRZzqSJszzvk-cdGBSqxitAl1CdrhTPeIqOFM6-fXK_Acf6UYnw9ZkyFMBgAzYbfdk8Uy6-hULiOHcLloiH_yW6Z-Ta572x-rh_MH1ErnO_CyQkrz8mvXp5Ck_QN6vN03ZgUHJ02WPxD70EUDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+Horizontal+and+Vertical+Transmission+of+Mtr-Mediated+Extracellular+Electron+Transfer+among+the+Bacteria&rft.jtitle=mBio&rft.au=Baker%2C+Isabel+R&rft.au=Conley%2C+Bridget+E&rft.au=Gralnick%2C+Jeffrey+A&rft.au=Girguis%2C+Peter+R&rft.date=2022-02-01&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=13&rft.issue=1&rft.spage=e0290421&rft_id=info:doi/10.1128%2Fmbio.02904-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |