Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance
Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due...
Saved in:
Published in | mBio Vol. 12; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
05.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Candida auris
is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently,
C. auris
has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential.
Candida auris
is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in
C. auris
obtained through serial
in vitro
exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in
FKS1
hot spot 1 and a substitution in
FKS1
“novel” hot spot 3. Mutations in
ERG3
and
CIS2
further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor
TAC1b
and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing
ERG11
, and a whole chromosome 5 duplication, which contains
TAC1b
. The latter was associated with increased expression of
ERG11
,
TAC1b
, and
CDR2
but not
CDR1
. The simultaneous emergence of nonsense mutations in
ERG3
and
ERG11
was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in
MEC3
, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in
C. auris
, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.
IMPORTANCE
Candida auris
is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently,
C. auris
has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in
C. auris
is monitored
in vitro
. Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a
C. auris
clade II isolate. Additionally, this study shows that
in vitro
experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations. |
---|---|
AbstractList | Candida aurisC. auris Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro. Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations. is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in obtained through serial exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in hot spot 1 and a substitution in "novel" hot spot 3. Mutations in and further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing , and a whole chromosome 5 duplication, which contains The latter was associated with increased expression of , , and but not The simultaneous emergence of nonsense mutations in and was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in is monitored Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a clade II isolate. Additionally, this study shows that experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations. Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11 , and a whole chromosome 5 duplication, which contains TAC1b . The latter was associated with increased expression of ERG11 , TAC1b , and CDR2 but not CDR1 . The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3 , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11 , and a whole chromosome 5 duplication, which contains TAC1b . The latter was associated with increased expression of ERG11 , TAC1b , and CDR2 but not CDR1 . The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3 , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro . Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations. |
Author | Van Dijck, Patrick Cuomo, Christina A. Pierson, Siebe Carolus, Hans Muñoz, José F. Subotić, Ana Cruz, Rita B. |
Author_xml | – sequence: 1 givenname: Hans orcidid: 0000-0003-1507-3475 surname: Carolus fullname: Carolus, Hans organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium – sequence: 2 givenname: Siebe orcidid: 0000-0002-4315-7943 surname: Pierson fullname: Pierson, Siebe organization: Department of Biology, KU Leuven, Leuven, Belgium – sequence: 3 givenname: José F. orcidid: 0000-0003-4987-7957 surname: Muñoz fullname: Muñoz, José F. organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA – sequence: 4 givenname: Ana orcidid: 0000-0002-0713-455X surname: Subotić fullname: Subotić, Ana organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium – sequence: 5 givenname: Rita B. surname: Cruz fullname: Cruz, Rita B. organization: Department of Biology, KU Leuven, Leuven, Belgium – sequence: 6 givenname: Christina A. orcidid: 0000-0002-5778-960X surname: Cuomo fullname: Cuomo, Christina A. organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA – sequence: 7 givenname: Patrick orcidid: 0000-0002-1542-897X surname: Van Dijck fullname: Van Dijck, Patrick organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33820824$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFDEUhgep2Nr20luZSxGm5mM-MjdCu6y10FaQipfhbHKyzZKZrMnM4P57s7uttGJzk5DznIeTvG-zg973mGXvKDmjlIlP3YX1Z4SnVTDyKjtitCJFU1F68OR8mJ3GuCJpcU4FJ2-yQ84FI4KVR9l0ib3vsPhpNebnPbhNtDH3Jp__XmOwHfYDOLfJ55N3E-p8Br22GnIYQ-K-44TgYn4zusGuHea3fkKX36C6h97GbmfaFXUYlwlP8gF6hSfZa5Ma8fRhP85-fJnfzb4W198ur2bn1wWUQgyFBkFKQwlgzU1TEVMpIRZUE1bXSmNbN01NDamZaRd12bAF47RWmACuylYZfpxd7b3aw0qu04MgbKQHK3cXPiwlhMEqh5K2WANQ4ChoiS0Fg8iAkBIqqlWjkuvz3rUeFx1qlb4mgHsmfV7p7b1c-kkK0jImRBJ8eBAE_2vEOMjORoXOQY9-jJJVCWxIUzYJ_bhHIXZMrvwYUjRRUiK3uctt7nKXu2Qkwe-fDvZ3oseUE8D3gAo-xoBGKjvAYP12Tute1Bb_dD2K_8__AdfAzIA |
CitedBy_id | crossref_primary_10_1038_s41586_023_05856_5 crossref_primary_10_3389_fphar_2022_1101553 crossref_primary_10_3390_biom15030322 crossref_primary_10_1038_s41467_023_43380_2 crossref_primary_10_1111_myc_70025 crossref_primary_10_3201_eid3103_241195 crossref_primary_10_3390_antibiotics12030608 crossref_primary_10_3390_antibiotics13090840 crossref_primary_10_1371_journal_ppat_1011190 crossref_primary_10_1128_aac_02276_21 crossref_primary_10_1371_journal_ppat_1012080 crossref_primary_10_5005_jacm_11020_0005 crossref_primary_10_1007_s11033_021_06917_6 crossref_primary_10_1038_s41467_024_53588_5 crossref_primary_10_1080_22221751_2024_2377584 crossref_primary_10_1021_acsinfecdis_1c00590 crossref_primary_10_1002_advs_202412514 crossref_primary_10_1128_mbio_01376_23 crossref_primary_10_1007_s42770_023_01239_0 crossref_primary_10_1128_mbio_00842_22 crossref_primary_10_3390_jof7090754 crossref_primary_10_3390_jof10030171 crossref_primary_10_1007_s00253_022_12189_2 crossref_primary_10_1007_s40588_024_00219_8 crossref_primary_10_1016_j_crmicr_2025_100354 crossref_primary_10_1007_s11046_024_00832_7 crossref_primary_10_1016_S1473_3099_23_00434_6 crossref_primary_10_3389_fmicb_2023_1287003 crossref_primary_10_1038_s41467_025_58214_6 crossref_primary_10_1016_j_ijantimicag_2023_106906 crossref_primary_10_3389_fpubh_2023_1198213 crossref_primary_10_1039_D3NA00220A crossref_primary_10_3390_stresses4040041 crossref_primary_10_1128_spectrum_00498_23 crossref_primary_10_2807_1560_7917_ES_2024_29_45_2400729 crossref_primary_10_1016_j_cmi_2024_10_010 crossref_primary_10_3390_jof10060392 crossref_primary_10_1002_advs_202406473 crossref_primary_10_1039_D2EW00087C crossref_primary_10_1128_mbio_02688_23 crossref_primary_10_1093_clinchem_hvae185 crossref_primary_10_1016_j_cub_2021_09_071 crossref_primary_10_1080_22221751_2024_2398596 crossref_primary_10_1128_AAC_01652_21 crossref_primary_10_1128_aac_00933_23 crossref_primary_10_1186_s12866_024_03213_8 crossref_primary_10_1128_mbio_02502_24 crossref_primary_10_1128_aac_01508_24 crossref_primary_10_1038_s41564_024_01811_w crossref_primary_10_1155_2022_2599136 crossref_primary_10_3390_jof9121148 crossref_primary_10_1128_aac_01619_23 crossref_primary_10_3389_fcimb_2023_1136217 crossref_primary_10_3389_fmicb_2024_1409085 crossref_primary_10_1016_j_marpolbul_2023_115841 crossref_primary_10_1371_journal_ppat_1011698 crossref_primary_10_1016_j_cub_2021_09_084 crossref_primary_10_1128_spectrum_01790_23 crossref_primary_10_3389_ffunb_2022_984377 crossref_primary_10_3390_jof9020129 crossref_primary_10_3390_jof8100990 crossref_primary_10_1128_mbio_03164_24 crossref_primary_10_1093_mmy_myaf019 crossref_primary_10_1007_s42770_022_00739_9 crossref_primary_10_1021_acs_jmedchem_3c02188 crossref_primary_10_1007_s11046_023_00787_1 crossref_primary_10_1371_journal_pgen_1011156 crossref_primary_10_1016_j_addr_2023_114960 crossref_primary_10_1021_acsinfecdis_3c00199 crossref_primary_10_1093_g3journal_jkac246 crossref_primary_10_1089_mdr_2023_0150 crossref_primary_10_1093_femsyr_foac019 crossref_primary_10_1007_s11046_021_00593_7 crossref_primary_10_1038_s44259_023_00007_2 crossref_primary_10_3389_ffunb_2024_1451455 crossref_primary_10_1093_jac_dkac161 crossref_primary_10_1038_s44259_024_00064_1 crossref_primary_10_1016_j_gde_2022_101965 crossref_primary_10_1128_mbio_03052_22 crossref_primary_10_1016_j_cmi_2023_04_025 crossref_primary_10_1038_s41564_023_01547_z crossref_primary_10_1128_aac_00570_24 crossref_primary_10_1111_apm_13336 crossref_primary_10_3389_fcimb_2021_759408 crossref_primary_10_1021_acsinfecdis_4c00399 crossref_primary_10_3390_jof10070447 crossref_primary_10_1128_aac_00423_23 crossref_primary_10_3390_microorganisms11112757 crossref_primary_10_56294_piii2023162 crossref_primary_10_1128_msphere_00124_22 crossref_primary_10_1038_s41564_024_01854_z crossref_primary_10_1080_14787210_2024_2448844 crossref_primary_10_1080_17460913_2024_2342150 crossref_primary_10_1016_j_mib_2022_102208 crossref_primary_10_1128_aac_01265_24 crossref_primary_10_3389_ffunb_2022_957577 |
Cites_doi | 10.1016/j.cellbi.2006.04.006 10.1093/infdis/154.1.76 10.1128/AAC.00651-17 10.1128/AAC.06253-11 10.3390/genes9090461 10.1128/AAC.01277-17 10.1128/AAC.00535-10 10.1128/AAC.01811-10 10.1128/AAC.01145-12 10.3390/jof7020081 10.3390/jof6010030 10.1371/journal.pbio.1001692 10.3390/jof6040321 10.1093/cid/ciw691 10.3389/fmicb.2019.02788 10.1128/JCM.01624-18 10.1128/EC.00299-07 10.3389/fmed.2016.00011 10.1126/sciadv.1500248 10.1111/j.1348-0421.2008.00083.x 10.1002/pro.3727 10.1091/mbc.e05-06-0502 10.1128/mBio.00595-17 10.1128/AAC.01162-08 10.1038/srep35766 10.1111/j.1365-2958.2006.05235.x 10.1101/2020.07.09.196600 10.1038/mtna.2015.37 10.1016/j.mrfmmm.2003.08.019 10.1128/AAC.01510-06 10.1128/AAC.49.6.2226-2236.2005 10.1128/AAC.00836-10 10.1186/1471-2180-9-167 10.1016/j.copbio.2017.02.013 10.1016/j.cmi.2018.05.012 10.1016/S0378-1097(03)00059-4 10.15698/mic2016.07.512 10.1111/mmi.13244 10.1128/aac.32.5.702 10.1128/AAC.01711-09 10.1111/j.1567-1364.2009.00578.x 10.1128/AAC.49.8.3264-3273.2005 10.1016/j.fgb.2019.103243 10.1093/genetics/147.2.435 10.1101/gr.114876.110 10.1128/JCM.00367-15 10.1016/j.fgb.2016.06.007 10.1128/AAC.04922-14 10.1128/AAC.01229-16 10.1146/annurev-micro-030117-020345 10.1128/AAC.00443-09 10.3201/eid2007.131765 10.1093/ofid/ofz262 10.1007/s12275-013-2577-z 10.1128/AAC.00057-19 10.1006/bbrc.1995.1272 10.1128/AAC.00123-14 10.1093/cid/ciy411 10.1038/s41598-019-41513-6 10.1099/00221287-145-10-2701 10.1128/AAC.01427-18 10.1111/nyas.12831 10.1128/JCM.00007-19 10.1016/j.resmic.2019.08.005 10.1128/mBio.02529-18 10.1038/ng.806 10.1016/S2666-5247(20)30090-2 10.1371/journal.pone.0098387 10.1093/jac/dkx480 10.3201/eid2509.190686 10.1093/mmy/myy054 10.1016/j.micinf.2011.01.015 10.15698/mic2019.03.670 10.1128/mBio.00365-20 10.1101/gr.107524.110 10.3390/jof6040307 10.1128/AAC.00555-13 10.1128/AAC.01466-20 10.1128/mSphere.00279-20 10.1128/aac.47.8.2404-2412.2003 10.1073/pnas.0437148100 10.1186/1746-4811-8-34 10.1128/EC.00151-07 10.1038/s41467-018-07779-6 10.1021/pr4002178 10.3389/fmicb.2016.01995 10.1371/journal.ppat.1007478 10.1111/j.1365-2958.2008.06176.x 10.1128/AAC.00238-18 10.1371/journal.pgen.1004570 10.1128/EC.3.6.1639-1652.2004 10.1128/mBio.03364-19 10.1093/genetics/iyab029 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Carolus et al. Copyright © 2021 Carolus et al. 2021 Carolus et al. |
Copyright_xml | – notice: Copyright © 2021 Carolus et al. – notice: Copyright © 2021 Carolus et al. 2021 Carolus et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.03333-20 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Chowdhary, Anuradha |
Editor_xml | – sequence: 1 givenname: Anuradha surname: Chowdhary fullname: Chowdhary, Anuradha |
ExternalDocumentID | oai_doaj_org_article_19e6aa1a3e814e91afee2a004a51dc7c PMC8092288 mBio03333-20 33820824 10_1128_mBio_03333_20 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI110818 – fundername: Fonds Wetenschappelijk Onderzoek (FWO) grantid: 11D7620N funderid: https://doi.org/10.13039/501100003130 – fundername: HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (DMID) grantid: U19AI110818 funderid: https://doi.org/10.13039/100015691 – fundername: Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases grantid: U19AI110818 – fundername: ; grantid: 11D7620N – fundername: ; grantid: U19AI110818 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM - 0R ADACO BXI HZ M~E RHF 7X8 5PM |
ID | FETCH-LOGICAL-a488t-da804f10ae63f750f5c88b1d0266cde967761f062f9b6472b2316ce1d03c49cf3 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:23:19 EDT 2025 Thu Aug 21 17:18:38 EDT 2025 Fri Jul 11 15:04:23 EDT 2025 Tue Dec 28 13:57:59 EST 2021 Thu Apr 03 07:05:47 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 Tue Jul 01 01:52:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Candida auris multidrug resistance fluconazole antifungal agents experimental evolution genome analysis whole-genome sequencing microevolution amphotericin B caspofungin drug resistance evolution |
Language | English |
License | Copyright © 2021 Carolus et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-da804f10ae63f750f5c88b1d0266cde967761f062f9b6472b2316ce1d03c49cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0713-455X 0000-0002-5778-960X 0000-0003-1507-3475 0000-0003-4987-7957 0000-0002-1542-897X 0000-0002-4315-7943 |
OpenAccessLink | https://doaj.org/article/19e6aa1a3e814e91afee2a004a51dc7c |
PMID | 33820824 |
PQID | 2509270747 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_19e6aa1a3e814e91afee2a004a51dc7c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8092288 proquest_miscellaneous_2509270747 asm2_journals_10_1128_mBio_03333_20 pubmed_primary_33820824 crossref_citationtrail_10_1128_mBio_03333_20 crossref_primary_10_1128_mBio_03333_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210405 |
PublicationDateYYYYMMDD | 2021-04-05 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210405 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_81_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 Maclean RC (e_1_3_2_79_2) 2010; 10 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 (e_1_3_2_86_2) 2008 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 B21 Kumar, C, Sharma, R, Bachhawat, AK (B70) 2003; 219 Hull, CM, Parker, JE, Bader, O, Weig, M, Gross, U, Warrilow, AG, Kelly, DE, Kelly, SL (B44) 2012; 56 Vermitsky, JP, Earhart, KD, Smith, WL, Homayouni, R, Edlind, TD, Rogers, PD (B38) 2006; 61 Boyce, KJ, Wang, Y, Verma, S, Shakya, VP, Xue, C, Idnurm, A (B69) 2017; 8 Prigent, G, Aït-Ammar, N, Levesque, E, Fekkar, A, Costa, J-M, El Anbassi, S, Foulet, F, Duvoux, C, Merle, J-C, Dannaoui, E, Botterel, F (B99) 2017; 61 Chow, NA, de Groot, T, Badali, H, Abastabar, M, Chiller, TM, Meis, JF (B30) 2019; 25 Garcia-Effron, G, Park, S, Perlin, DS (B93) 2009; 53 Robbins, N, Caplan, T, Cowen, LE (B75) 2017; 71 Biagi, MJ, Wiederhold, NP, Gibas, C, Wickes, BL, Lozano, V, Bleasdale, SC, Danziger, L (B51) 2019; 6 Vyas, VK, Barrasa, MI, Fink, GR (B81) 2015; 1 Ubiyvovk, VM, Blazhenko, OV, Gigot, D, Penninckx, M, Sibirny, AA (B71) 2006; 30 Sokol-Anderson, M, Sligh, JE, Elberg, S, Brajtburg, J, Kobayashi, GS, Medoff, G (B64) 1988; 32 Coste, A, Karababa, M, Ischer, F, Bille, J, Sanglard, D (B37) 2004; 3 Magobo, RE, Corcoran, C, Seetharam, S, Govender, NP (B5) 2014; 20 Sanglard, D (B46) 2016; 3 Pais, P, Galocha, M, Viana, R, Cavalheiro, M, Pereira, D, Teixeira, MC (B77) 2019; 6 Majka, J, Burgers, PM (B59) 2003; 100 Liu, TT, Lee, RE, Barker, KS, Lee, RE, Wei, L, Homayouni, R, Rogers, PD (B62) 2005; 49 Bing, J, Hu, T, Zheng, Q, Muñoz, JF, Cuomo, CA, Huang, G (B19) 2020; 65 Martí-Carrizosa, M, Sánchez-Reus, F, March, F, Cantón, E, Coll, P (B101) 2015; 59 Chaabane, F, Graf, A, Jequier, L, Coste, AT (B20) 2019; 10 Johnson, ME, Katiyar, SK, Edlind, TD (B32) 2011; 55 Sanglard, D, Coste, A, Ferrari, S (B39) 2009; 9 Muñoz, JF, Gade, L, Chow, NA, Loparev, VN, Juieng, P, Berkow, EL, Farrer, RA, Litvintseva, AP, Cuomo, CA (B15) 2018; 9 Cao, F, Lane, S, Raniga, PP, Lu, Y, Zhou, Z, Ramon, K, Chen, J, Liu, H (B54) 2006; 17 Legrand, M, Chan, CL, Jauert, PA, Kirkpatrick, DT (B67) 2007; 6 B4 Cao, Y, Zhu, Z, Chen, X, Yao, X, Zhao, L, Wang, H, Yan, L, Wu, H, Chai, Y, Jiang, Y (B61) 2013; 12 Castanheira, M, Woosley, LN, Diekema, DJ, Messer, SA, Jones, RN, Pfaller, MA (B94) 2010; 54 B6 Bhattacharya, S, Holowka, T, Orner, EP, Fries, BC (B41) 2019; 9 Sanglard, D (B76) 2019; 15 Eddouzi, J, Parker, JE, Vale-Silva, LA, Coste, A, Ischer, F, Kelly, S, Manai, M, Sanglard, D (B47) 2013; 57 Sanglard, D, Ischer, F, Parkinson, T, Falconer, D, Bille, J (B45) 2003; 47 Kritikos, A, Neofytos, D, Khanna, N, Schreiber, PW, Boggian, K, Bille, J, Schrenzel, J, Mühlethaler, K, Zbinden, R, Bruderer, T, Goldenberger, D, Pfyffer, G, Conen, A, Van Delden, C, Zimmerli, S, Sanglard, D, Bachmann, D, Marchetti, O, Lamoth, F, Bregenzer, T, Conen, A, Flückiger, U, Khanna, N, Orasch, C, Heininger, U, Franciolli, M, Damonti, L, Zimmerli, S, Rothen, M, Zellweger, C, Tarr, P, Fleisch, F, Chuard, C, Erard, V, Emonet, S, Garbino, J, van Delden, C, Genne, D, Bochud, P, Calandra, T, Lamoth, F, Marchetti, O, Chave, J, Graber, P, Monotti, R, Regionale, O, Bernasconi, E, Civico, O, Rossi, M, Krause, M (B96) 2018; 24 Abyzov, A, Urban, AE, Snyder, M, Gerstein, M (B91) 2011; 21 Perlin, DS (B50) 2015; 1354 Selmecki, A, Gerami-Nejad, M, Paulson, C, Forche, A, Berman, J (B40) 2008; 68 Wang, H, Kong, F, Sorrell, TC, Wang, B, McNicholas, P, Pantarat, N, Ellis, D, Xiao, M, Widmer, F, Chen, SCA (B34) 2009; 9 Kathuria, S, Singh, PK, Sharma, C, Prakash, A, Masih, A, Kumar, A, Meis, JF, Chowdhary, A (B11) 2015; 53 Mayr, EM, Ramirez-Zavala, B, Kruger, I, Morschhauser, J (B26) 2020; 5 Park, S, Kelly, R, Kahn, JN, Robles, J, Hsu, M-J, Register, E, Li, W, Vyas, V, Fan, H, Abruzzo, G, Flattery, A, Gill, C, Chrebet, G, Parent, SA, Kurtz, M, Teppler, H, Douglas, CM, Perlin, DS (B100) 2005; 49 Alfouzan, W, Ahmad, S, Dhar, R, Asadzadeh, M, Almerdasi, N, Abdo, NM, Joseph, L, de Groot, T, Alali, WQ, Khan, Z, Meis, JF, Al-Rashidi, MR (B22) 2020; 6 Welsh, RM, Sexton, DJ, Forsberg, K, Vallabhaneni, S, Litvintseva, A (B28) 2019; 57 Zhang, X-H, Tee, LY, Wang, X-G, Huang, Q-S, Yang, S-H (B83) 2015; 4 Chowdhary, A, Prakash, A, Sharma, C, Kordalewska, M, Kumar, A, Sarma, S, Tarai, B, Singh, A, Upadhyaya, G, Upadhyay, S, Yadav, P, Singh, PK, Khillan, V, Sachdeva, N, Perlin, DS, Meis, JF (B8) 2018; 73 Rybak, JM, Dickens, CM, Parker, JE, Caudle, KE, Manigaba, K, Whaley, SG, Nishimoto, AT, Luna-Tapia, A, Roy, S, Zhang, Q, Barker, KS, Palmer, GE, Sutter, TR, Homayouni, R, Wiederhold, NP, Kelly, SL, Rogers, PD (B17) 2017; 61 Lockhart, SR (B12) 2019; 131 Carolus, H, Pierson, S, Lagrou, K, Van Dijck, P (B23) 2020; 6 Liu, J, Huang, S, Sun, M, Liu, S, Liu, Y, Wang, W, Zhang, X, Wang, H, Hua, W (B31) 2012; 8 Lukacisinova, M, Bollenbach, T (B79) 2017; 46 (B85) 2008 Song, Q, Johnson, C, Wilson, TE, Kumar, A (B74) 2014; 10 Lackner, M, Tscherner, M, Schaller, M, Kuchler, K, Mair, C, Sartori, B, Istel, F, Arendrup, MC, Lass-Flörl, C (B95) 2014; 58 Healey, KR, Jimenez Ortigosa, C, Shor, E, Perlin, DS (B68) 2016; 7 Ksiezopolska, E, Gabaldon, T (B13) 2018; 9 Sokol-Anderson, ML, Brajtburg, J, Medoff, G (B65) 1986; 154 Sangalli-Leite, F, Scorzoni, L, Mesa-Arango, AC, Casas, C, Herrero, E, Gianinni, MJSM, Rodríguez-Tudela, JL, Cuenca-Estrella, M, Zaragoza, O (B63) 2011; 13 Enkler, L, Richer, D, Marchand, AL, Ferrandon, D, Jossinet, F (B84) 2016; 6 Vandeputte, P, Tronchin, G, Berges, T, Hennequin, C, Chabasse, D, Bouchara, JP (B43) 2007; 51 Tsai, HF, Sammons, LR, Zhang, X, Suffis, SD, Su, Q, Myers, TG, Marr, KA, Bennett, JE (B60) 2010; 54 Escandon, P, Chow, NA, Caceres, DH, Gade, L, Berkow, EL, Armstrong, P, Rivera, S, Misas, E, Duarte, C, Moulton-Meissner, H, Welsh, RM, Parra, C, Pescador, LA, Villalobos, N, Salcedo, S, Berrio, I, Varon, C, Espinosa-Bode, A, Lockhart, SR, Jackson, BR, Litvintseva, AP, Beltran, M, Chiller, TM (B25) 2019; 68 Rybak, JM, Doorley, LA, Nishimoto, AT, Barker, KS, Palmer, GE, Rogers, PD (B27) 2019; 63 Healey, KR, Kordalewska, M, Jimenez Ortigosa, C, Singh, A, Berrio, I, Chowdhary, A, Perlin, DS (B14) 2018; 62 DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, del Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (B88) 2011; 43 Coste, A, Selmecki, A, Forche, A, Diogo, D, Bougnoux, ME, d'Enfert, C, Berman, J, Sanglard, D (B36) 2007; 6 Satoh, K, Makimura, K, Hasumi, Y, Nishiyama, Y, Uchida, K, Yamaguchi, H (B1) 2009; 53 Muñoz, JF, Welsh, RM, Shea, T, Batra, D, Gade, L, Howard, D, Rowe, LA, Meis, JF, Litvintseva, AP, Cuomo, CA (B29) 2021 Laprade, DJ, Brown, MS, McCarthy, ML, Ritch, JJ, Austriaco, N (B55) 2016; 3 Vincent, BM, Lancaster, AK, Scherz-Shouval, R, Whitesell, L, Lindquist, S (B48) 2013; 11 Chow, NA, Muñoz, JF, Gade, L, Berkow, E, Li, X, Welsh, RM, Forsberg, K, Lockhart, SR, Adam, R, Alanio, A, Alastruey-Izquierdo, A, Althawadi, S, Belén Araúz, A, Ben-Ami, R, Bharat, A, Calvo, B, Desnos-Ollivier, M, Escandón, P, Gardam, D, Gunturu, R, Heath, CH, Kurzai, O, Martin, R, Litvintseva, AP, Cuomo, CA (B9) 2020; 11 Lussier, M, White, AM, Sheraton, J, di Paolo, T, Treadwell, J, Southard, SB, Horenstein, CI, Chen-Weiner, J, Ram, AF, Kapteyn, JC, Roemer, TW, Vo, DH, Bondoc, DC, Hall, J, Zhong, WW, Sdicu, AM, Davies, J, Klis, FM, Robbins, PW, Bussey, H (B72) 1997; 147 Hull, CM, Bader, O, Parker, JE, Weig, M, Gross, U, Warrilow, AG, Kelly, DE, Kelly, SL (B42) 2012; 56 Maclean, RC, Hall, AR, Perron, GG, Buckling, A (B78) 2010; 10 Kelly, SL, Lamb, DC, Corran, AJ, Baldwin, BC, Kelly, DE (B49) 1995; 207 Lockhart, SR, Etienne, KA, Vallabhaneni, S, Farooqi, J, Chowdhary, A, Govender, NP, Colombo, AL, Calvo, B, Cuomo, CA, Desjardins, CA, Berkow, EL, Castanheira, M, Magobo, RE, Jabeen, K, Asghar, RJ, Meis, JF, Jackson, B, Chiller, T, Litvintseva, AP (B7) 2017; 64 O’Brien, B, Liang, J, Chaturvedi, S, Jacobs, JL, Chaturvedi, V (B53) 2020; 1 Garcia-Effron, G, Lee, S, Park, S, Cleary, JD, Perlin, DS (B97) 2009; 53 Forsberg, K, Woodworth, K, Walters, M, Berkow, EL, Jackson, B, Chiller, T, Vallabhaneni, S (B3) 2019; 57 B86 B87 Marichal, P, Koymans, L, Willemsens, S, Bellens, D, Verhasselt, P, Luyten, W, Borgers, M, Ramaekers, F, Odds, FC, Bossche Vande, H (B33) 1999; 145 Fisher, KJ, Lang, GI (B80) 2016; 94 Kwon, YJ, Shin, JH, Byun, SA, Choi, MJ, Won, EJ, Lee, D, Lee, SY, Chun, S, Lee, JH, Choi, HJ, Kee, SJ, Kim, SH, Shin, MG (B35) 2019; 57 Zimbeck, AJ, Iqbal, N, Ahlquist, AM, Farley, MM, Harrison, LH, Chiller, T, Lockhart, SR (B98) 2010; 54 Kean, R, Brown, J, Gulmez, D, Ware, A, Ramage, G (B2) 2020; 6 B90 Woods, K, Hofken, T (B56) 2016; 99 Burhans, WC, Weinberger, M, Marchetti, MA, Ramachandran, L, D’Urso, G, Huberman, JA (B66) 2003; 532 Ko, H-C, Hsiao, T-Y, Chen, C-T, Yang, Y-L (B82) 2013; 51 B92 Kim, SH, Iyer, KR, Pardeshi, L, Munoz, JF, Robbins, N, Cuomo, CA, Wong, KH, Cowen, LE (B18) 2019; 10 Misas, E, Escandon, P, McEwen, JG, Clay, OK (B57) 2019; 28 Li, WJ, Liu, JY, Shi, C, Zhao, Y, Meng, LN, Wu, F, Xiang, MJ (B58) 2019; 170 B10 Kordalewska, M, Lee, A, Park, S, Berrio, I, Chowdhary, A, Zhao, Y, Perlin, DS (B52) 2018; 62 Jiménez-Ortigosa, C, Moore, C, Denning, DW, Perlin, DS (B102) 2017; 61 McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, Garimella, K, Altshuler, D, Gabriel, S, Daly, M, DePristo, MA (B89) 2010; 20 Maras, B, Angiolella, L, Mignogna, G, Vavala, E, Macone, A, Colone, M, Pitari, G, Stringaro, A, Dupre, S, Palamara, AT (B73) 2014; 9 Rybak, JM, Muñoz, JF, Barker, KS, Parker, JE, Esquivel, BD, Berkow, EL, Lockhart, SR, Gade, L, Palmer, GE, White, TC, Kelly, SL, Cuomo, CA, Rogers, PD (B16) 2020; 11 Yadav, A, Singh, A, Wang, Y, van Haren, MH, Singh, A, de Groot, T, Meis, JF, Xu, J, Chowdhary, A (B24) 2021; 7 |
References_xml | – ident: e_1_3_2_72_2 doi: 10.1016/j.cellbi.2006.04.006 – ident: e_1_3_2_66_2 doi: 10.1093/infdis/154.1.76 – ident: e_1_3_2_18_2 doi: 10.1128/AAC.00651-17 – ident: e_1_3_2_45_2 doi: 10.1128/AAC.06253-11 – ident: e_1_3_2_14_2 doi: 10.3390/genes9090461 – ident: e_1_3_2_103_2 doi: 10.1128/AAC.01277-17 – ident: e_1_3_2_61_2 doi: 10.1128/AAC.00535-10 – ident: e_1_3_2_33_2 doi: 10.1128/AAC.01811-10 – ident: e_1_3_2_43_2 doi: 10.1128/AAC.01145-12 – ident: e_1_3_2_25_2 doi: 10.3390/jof7020081 – ident: e_1_3_2_3_2 doi: 10.3390/jof6010030 – ident: e_1_3_2_49_2 doi: 10.1371/journal.pbio.1001692 – ident: e_1_3_2_24_2 doi: 10.3390/jof6040321 – ident: e_1_3_2_8_2 doi: 10.1093/cid/ciw691 – ident: e_1_3_2_21_2 doi: 10.3389/fmicb.2019.02788 – ident: e_1_3_2_36_2 doi: 10.1128/JCM.01624-18 – ident: e_1_3_2_68_2 doi: 10.1128/EC.00299-07 – ident: e_1_3_2_47_2 doi: 10.3389/fmed.2016.00011 – ident: e_1_3_2_82_2 doi: 10.1126/sciadv.1500248 – ident: e_1_3_2_2_2 doi: 10.1111/j.1348-0421.2008.00083.x – ident: e_1_3_2_58_2 doi: 10.1002/pro.3727 – ident: e_1_3_2_55_2 doi: 10.1091/mbc.e05-06-0502 – ident: e_1_3_2_70_2 doi: 10.1128/mBio.00595-17 – ident: e_1_3_2_94_2 doi: 10.1128/AAC.01162-08 – ident: e_1_3_2_85_2 doi: 10.1038/srep35766 – ident: e_1_3_2_39_2 doi: 10.1111/j.1365-2958.2006.05235.x – ident: e_1_3_2_22_2 doi: 10.1101/2020.07.09.196600 – ident: e_1_3_2_84_2 doi: 10.1038/mtna.2015.37 – ident: e_1_3_2_67_2 doi: 10.1016/j.mrfmmm.2003.08.019 – ident: e_1_3_2_44_2 doi: 10.1128/AAC.01510-06 – ident: e_1_3_2_63_2 doi: 10.1128/AAC.49.6.2226-2236.2005 – ident: e_1_3_2_99_2 doi: 10.1128/AAC.00836-10 – ident: e_1_3_2_35_2 doi: 10.1186/1471-2180-9-167 – ident: e_1_3_2_80_2 doi: 10.1016/j.copbio.2017.02.013 – ident: e_1_3_2_97_2 doi: 10.1016/j.cmi.2018.05.012 – ident: e_1_3_2_71_2 doi: 10.1016/S0378-1097(03)00059-4 – ident: e_1_3_2_56_2 doi: 10.15698/mic2016.07.512 – ident: e_1_3_2_57_2 doi: 10.1111/mmi.13244 – ident: e_1_3_2_65_2 doi: 10.1128/aac.32.5.702 – ident: e_1_3_2_95_2 doi: 10.1128/AAC.01711-09 – ident: e_1_3_2_40_2 doi: 10.1111/j.1567-1364.2009.00578.x – ident: e_1_3_2_101_2 doi: 10.1128/AAC.49.8.3264-3273.2005 – ident: e_1_3_2_13_2 doi: 10.1016/j.fgb.2019.103243 – ident: e_1_3_2_73_2 doi: 10.1093/genetics/147.2.435 – ident: e_1_3_2_92_2 doi: 10.1101/gr.114876.110 – ident: e_1_3_2_12_2 doi: 10.1128/JCM.00367-15 – ident: e_1_3_2_81_2 doi: 10.1016/j.fgb.2016.06.007 – ident: e_1_3_2_102_2 doi: 10.1128/AAC.04922-14 – ident: e_1_3_2_100_2 doi: 10.1128/AAC.01229-16 – ident: e_1_3_2_76_2 doi: 10.1146/annurev-micro-030117-020345 – volume: 10 start-page: 112 year: 2010 ident: e_1_3_2_79_2 article-title: The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context publication-title: Discov Med – ident: e_1_3_2_88_2 – ident: e_1_3_2_98_2 doi: 10.1128/AAC.00443-09 – ident: e_1_3_2_6_2 doi: 10.3201/eid2007.131765 – ident: e_1_3_2_52_2 doi: 10.1093/ofid/ofz262 – ident: e_1_3_2_87_2 – ident: e_1_3_2_91_2 – ident: e_1_3_2_83_2 doi: 10.1007/s12275-013-2577-z – ident: e_1_3_2_28_2 doi: 10.1128/AAC.00057-19 – ident: e_1_3_2_50_2 doi: 10.1006/bbrc.1995.1272 – volume-title: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard year: 2008 ident: e_1_3_2_86_2 – ident: e_1_3_2_96_2 doi: 10.1128/AAC.00123-14 – ident: e_1_3_2_11_2 – ident: e_1_3_2_7_2 – ident: e_1_3_2_26_2 doi: 10.1093/cid/ciy411 – ident: e_1_3_2_42_2 doi: 10.1038/s41598-019-41513-6 – ident: e_1_3_2_34_2 doi: 10.1099/00221287-145-10-2701 – ident: e_1_3_2_5_2 – ident: e_1_3_2_15_2 doi: 10.1128/AAC.01427-18 – ident: e_1_3_2_51_2 doi: 10.1111/nyas.12831 – ident: e_1_3_2_29_2 doi: 10.1128/JCM.00007-19 – ident: e_1_3_2_59_2 doi: 10.1016/j.resmic.2019.08.005 – ident: e_1_3_2_19_2 doi: 10.1128/mBio.02529-18 – ident: e_1_3_2_89_2 doi: 10.1038/ng.806 – ident: e_1_3_2_54_2 doi: 10.1016/S2666-5247(20)30090-2 – ident: e_1_3_2_74_2 doi: 10.1371/journal.pone.0098387 – ident: e_1_3_2_9_2 doi: 10.1093/jac/dkx480 – ident: e_1_3_2_31_2 doi: 10.3201/eid2509.190686 – ident: e_1_3_2_4_2 doi: 10.1093/mmy/myy054 – ident: e_1_3_2_93_2 – ident: e_1_3_2_64_2 doi: 10.1016/j.micinf.2011.01.015 – ident: e_1_3_2_78_2 doi: 10.15698/mic2019.03.670 – ident: e_1_3_2_17_2 doi: 10.1128/mBio.00365-20 – ident: e_1_3_2_90_2 doi: 10.1101/gr.107524.110 – ident: e_1_3_2_23_2 doi: 10.3390/jof6040307 – ident: e_1_3_2_48_2 doi: 10.1128/AAC.00555-13 – ident: e_1_3_2_20_2 doi: 10.1128/AAC.01466-20 – ident: e_1_3_2_27_2 doi: 10.1128/mSphere.00279-20 – ident: e_1_3_2_46_2 doi: 10.1128/aac.47.8.2404-2412.2003 – ident: e_1_3_2_60_2 doi: 10.1073/pnas.0437148100 – ident: e_1_3_2_32_2 doi: 10.1186/1746-4811-8-34 – ident: e_1_3_2_37_2 doi: 10.1128/EC.00151-07 – ident: e_1_3_2_16_2 doi: 10.1038/s41467-018-07779-6 – ident: e_1_3_2_62_2 doi: 10.1021/pr4002178 – ident: e_1_3_2_69_2 doi: 10.3389/fmicb.2016.01995 – ident: e_1_3_2_77_2 doi: 10.1371/journal.ppat.1007478 – ident: e_1_3_2_41_2 doi: 10.1111/j.1365-2958.2008.06176.x – ident: e_1_3_2_53_2 doi: 10.1128/AAC.00238-18 – ident: e_1_3_2_75_2 doi: 10.1371/journal.pgen.1004570 – ident: e_1_3_2_38_2 doi: 10.1128/EC.3.6.1639-1652.2004 – ident: e_1_3_2_10_2 doi: 10.1128/mBio.03364-19 – ident: e_1_3_2_30_2 doi: 10.1093/genetics/iyab029 – volume: 62 year: 2018 ident: B14 article-title: Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01427-18 – volume: 65 year: 2020 ident: B19 article-title: Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01466-20 – volume: 28 start-page: 2024 year: 2019 end-page: 2029 ident: B57 article-title: The LUFS domain, its transcriptional regulator proteins, and drug resistance in the fungal pathogen Candida auris publication-title: Protein Sci doi: 10.1002/pro.3727 – volume: 54 start-page: 3308 year: 2010 end-page: 3317 ident: B60 article-title: Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00535-10 – volume: 6 start-page: 30 year: 2020 ident: B2 article-title: Candida auris: a decade of understanding of an enigmatic pathogenic yeast publication-title: J Fungi (Basel) doi: 10.3390/jof6010030 – volume: 62 year: 2018 ident: B52 article-title: Understanding echinocandin resistance in the emerging pathogen Candida auris publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00238-18 – volume: 46 start-page: 90 year: 2017 end-page: 97 ident: B79 article-title: Toward a quantitative understanding of antibiotic resistance evolution publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2017.02.013 – volume: 51 start-page: 345 year: 2013 end-page: 351 ident: B82 article-title: Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence publication-title: J Microbiol doi: 10.1007/s12275-013-2577-z – volume: 131 start-page: 103243 year: 2019 ident: B12 article-title: Candida auris and multidrug resistance: defining the new normal publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2019.103243 – volume: 63 year: 2019 ident: B27 article-title: Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00057-19 – year: 2021 ident: B29 article-title: Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris publication-title: Genetics iyab029 doi: 10.1093/genetics/iyab029 – volume: 5 year: 2020 ident: B26 article-title: A zinc cluster transcription factor contributes to the intrinsic fluconazole resistance of Candida auris publication-title: mSphere doi: 10.1128/mSphere.00279-20 – volume: 3 start-page: 1639 year: 2004 end-page: 1652 ident: B37 article-title: TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2 publication-title: Eukaryot Cell doi: 10.1128/EC.3.6.1639-1652.2004 – volume: 3 start-page: 11 year: 2016 ident: B46 article-title: Emerging threats in antifungal-resistant fungal pathogens publication-title: Front Med (Lausanne) doi: 10.3389/fmed.2016.00011 – volume: 9 start-page: 1029 year: 2009 end-page: 1050 ident: B39 article-title: Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation publication-title: FEMS Yeast Res doi: 10.1111/j.1567-1364.2009.00578.x – volume: 54 start-page: 2655 year: 2010 end-page: 2659 ident: B94 article-title: Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains publication-title: AAC doi: 10.1128/AAC.01711-09 – volume: 68 start-page: 624 year: 2008 end-page: 641 ident: B40 article-title: An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1 publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2008.06176.x – volume: 6 start-page: 1889 year: 2007 end-page: 1904 ident: B36 article-title: Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates publication-title: Eukaryot Cell doi: 10.1128/EC.00151-07 – volume: 9 start-page: 461 year: 2018 ident: B13 article-title: Evolutionary emergence of drug resistance in Candida opportunistic pathogens publication-title: Genes (Basel) doi: 10.3390/genes9090461 – volume: 61 year: 2017 ident: B17 article-title: Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00651-17 – volume: 51 start-page: 982 year: 2007 end-page: 990 ident: B43 article-title: Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01510-06 – volume: 6 start-page: 35766 year: 2016 ident: B84 article-title: Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system publication-title: Sci Rep doi: 10.1038/srep35766 – volume: 57 start-page: 3182 year: 2013 end-page: 3193 ident: B47 article-title: Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00555-13 – volume: 6 start-page: 2194 year: 2007 end-page: 2205 ident: B67 article-title: Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans publication-title: Eukaryot Cell doi: 10.1128/EC.00299-07 – volume: 9 start-page: 1 year: 2019 end-page: 13 ident: B41 article-title: Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age publication-title: Sci Rep doi: 10.1038/s41598-019-41513-6 – volume: 58 start-page: 3626 year: 2014 end-page: 3635 ident: B95 article-title: Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00123-14 – volume: 532 start-page: 227 year: 2003 end-page: 243 ident: B66 article-title: Apoptosis-like yeast cell death in response to DNA damage and replication defects publication-title: Mutat Res doi: 10.1016/j.mrfmmm.2003.08.019 – volume: 73 start-page: 891 year: 2018 end-page: 899 ident: B8 article-title: A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkx480 – volume: 54 start-page: 5042 year: 2010 end-page: 5047 ident: B98 article-title: FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00836-10 – volume: 11 year: 2020 ident: B16 article-title: Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris publication-title: mBio doi: 10.1128/mBio.00365-20 – volume: 21 start-page: 974 year: 2011 end-page: 984 ident: B91 article-title: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing publication-title: Genome Res doi: 10.1101/gr.114876.110 – volume: 9 year: 2014 ident: B73 article-title: Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin publication-title: PLoS One doi: 10.1371/journal.pone.0098387 – ident: B4 article-title: CDC . 2019 . Antibiotic Resistance Threats in the United States, 2019 . www.cdc.gov/DrugResistance/Biggest-Threats.html . Accessed 26 March 2020 . – volume: 17 start-page: 295 year: 2006 end-page: 307 ident: B54 article-title: The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans publication-title: Mol Biol Cell doi: 10.1091/mbc.e05-06-0502 – ident: B92 article-title: Team RDC . 2008 . The R project for statistical computing . http://www.R-project.org . – volume: 7 start-page: 1995 year: 2016 end-page: 1995 ident: B68 article-title: Genetic drivers of multidrug resistance in Candida glabrata publication-title: Front Microbiol doi: 10.3389/fmicb.2016.01995 – volume: 49 start-page: 3264 year: 2005 end-page: 3273 ident: B100 article-title: Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.8.3264-3273.2005 – volume: 57 start-page: 1 year: 2019 end-page: 12 ident: B3 article-title: Candida auris: the recent emergence of a multidrug-resistant fungal pathogen publication-title: Med Mycol doi: 10.1093/mmy/myy054 – volume: 56 start-page: 4223 year: 2012 end-page: 4232 ident: B44 article-title: Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.06253-11 – volume: 207 start-page: 910 year: 1995 end-page: 915 ident: B49 article-title: Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1995.1272 – volume: 59 start-page: 3570 year: 2015 end-page: 3573 ident: B101 article-title: Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.04922-14 – volume: 24 start-page: 1214.e1 year: 2018 end-page: 1214.e4 ident: B96 article-title: Accuracy of Sensititre YeastOne echinocandins epidemiological cut-off values for identification of FKS mutant Candida albicans and Candida glabrata: a ten year national survey of the Fungal Infection Network of Switzerland (FUNGINOS) publication-title: Clin Microbiol Infect doi: 10.1016/j.cmi.2018.05.012 – volume: 1 issue: 5 year: 2020 ident: B53 article-title: Pan-resistant Candida auris: New York subcluster susceptible to antifungal combinations publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30090-2 – volume: 100 start-page: 2249 year: 2003 end-page: 2254 ident: B59 article-title: Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0437148100 – volume: 145 start-page: 2701 year: 1999 end-page: 2713 ident: B33 article-title: Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans publication-title: Microbiology doi: 10.1099/00221287-145-10-2701 – volume: 219 start-page: 187 year: 2003 end-page: 194 ident: B70 article-title: Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway publication-title: FEMS Microbiol Lett doi: 10.1016/S0378-1097(03)00059-4 – volume: 12 start-page: 2921 year: 2013 end-page: 2932 ident: B61 article-title: Effect of amphotericin B on the metabolic profiles of Candida albicans publication-title: J Proteome Res doi: 10.1021/pr4002178 – volume: 147 start-page: 435 year: 1997 end-page: 450 ident: B72 article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/147.2.435 – ident: B90 article-title: Cingolani P . 2017 . SnpEff v4.3T: Genomic variant annotations and functional effect prediction toolbox . http://snpeff.sourceforge.net/ . – volume: 10 year: 2019 ident: B18 article-title: Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance publication-title: mBio doi: 10.1128/mBio.02529-18 – volume: 10 year: 2014 ident: B74 article-title: Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004570 – volume: 10 start-page: 2788 year: 2019 ident: B20 article-title: Review on antifungal resistance mechanisms in the emerging pathogen Candida auris publication-title: Front Microbiol doi: 10.3389/fmicb.2019.02788 – volume: 53 start-page: 1823 year: 2015 end-page: 1830 ident: B11 article-title: Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method publication-title: J Clin Microbiol doi: 10.1128/JCM.00367-15 – year: 2008 ident: B85 publication-title: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard ;, 3rd ed ;CLSI document M27-A3. 28 ;CLSI ;Wayne, PA – ident: B21 article-title: Sharma D , Paul RA , Chakrabarti A , Bhattacharya S , Soman R , Shankarnarayan SA , Chavan D , Das P , Kaur H , Ghosh A . 2020 . Caspofungin resistance in Candia auris due to mutations in Fks1 with adjunctive role of chitin and key cell wall stress response pathway genes . BioRxiv doi: 10.1101/2020.07.09.196600 . – volume: 71 start-page: 753 year: 2017 end-page: 775 ident: B75 article-title: Molecular evolution of antifungal drug resistance publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-030117-020345 – volume: 56 start-page: 6417 year: 2012 end-page: 6421 ident: B42 article-title: Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2 publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01145-12 – volume: 49 start-page: 2226 year: 2005 end-page: 2236 ident: B62 article-title: Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.6.2226-2236.2005 – volume: 32 start-page: 702 year: 1988 end-page: 705 ident: B64 article-title: Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B publication-title: Antimicrob Agents Chemother doi: 10.1128/aac.32.5.702 – volume: 99 start-page: 512 year: 2016 end-page: 527 ident: B56 article-title: The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways publication-title: Mol Microbiol doi: 10.1111/mmi.13244 – volume: 53 start-page: 41 year: 2009 end-page: 44 ident: B1 article-title: Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital publication-title: Microbiol Immunol doi: 10.1111/j.1348-0421.2008.00083.x – volume: 6 start-page: ofz262 year: 2019 ident: B51 article-title: Development of high-level echinocandin resistance in a patient with recurrent Candida auris candidemia secondary to chronic candiduria publication-title: Open Forum Infect Dis doi: 10.1093/ofid/ofz262 – volume: 3 start-page: 285 year: 2016 end-page: 292 ident: B55 article-title: Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1 publication-title: Microb Cell doi: 10.15698/mic2016.07.512 – volume: 20 start-page: 1250 year: 2014 end-page: 1251 ident: B5 article-title: Candida auris-associated candidemia, South Africa publication-title: Emerg Infect Dis doi: 10.3201/eid2007.131765 – volume: 13 start-page: 457 year: 2011 end-page: 467 ident: B63 article-title: Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst publication-title: Microbes Infect doi: 10.1016/j.micinf.2011.01.015 – ident: B10 article-title: Bishop L , Cummins M , Guy R , Hoffman P , Jeffery K , Jeffery-Smith A , Brown C . 2017 . Guidance for the laboratory investigation, management and infection prevention and control for cases of Candida auris . Public Health England. Updated 11 August 2017 . – volume: 53 start-page: 3690 year: 2009 end-page: 3699 ident: B97 article-title: Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-d-glucan synthase: implication for the existing susceptibility breakpoint publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00443-09 – volume: 6 start-page: 321 year: 2020 ident: B23 article-title: Amphotericin B and other polyenes: discovery, clinical use, mode of action and drug resistance publication-title: J Fungi (Basel) doi: 10.3390/jof6040321 – volume: 6 start-page: 142 year: 2019 end-page: 159 ident: B77 article-title: Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection publication-title: Microb Cell doi: 10.15698/mic2019.03.670 – ident: B86 article-title: Andrews S . 2010 . FastQC, Babraham Bioinformatics . http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . – ident: B87 article-title: Li H . 2013 . Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM . arXiv 1303.3997 . https://arxiv.org/abs/1303.3997 . – ident: B6 article-title: CDC . 2020 . Candida auris : antifungal susceptibility testing and interpretation . https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html . Accessed 26 March 2020 . – volume: 11 year: 2013 ident: B48 article-title: Fitness trade-offs restrict the evolution of resistance to amphotericin B publication-title: PLoS Biol doi: 10.1371/journal.pbio.1001692 – volume: 11 year: 2020 ident: B9 article-title: Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses publication-title: mBio doi: 10.1128/mBio.03364-19 – volume: 1354 start-page: 1 year: 2015 end-page: 11 ident: B50 article-title: Mechanisms of echinocandin antifungal drug resistance publication-title: Ann N Y Acad Sci doi: 10.1111/nyas.12831 – volume: 1 year: 2015 ident: B81 article-title: A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families publication-title: Sci Adv doi: 10.1126/sciadv.1500248 – volume: 8 year: 2017 ident: B69 article-title: Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans publication-title: mBio doi: 10.1128/mBio.00595-17 – volume: 94 start-page: 88 year: 2016 end-page: 94 ident: B80 article-title: Experimental evolution in fungi: an untapped resource publication-title: Fungal Genet Biol doi: 10.1016/j.fgb.2016.06.007 – volume: 7 start-page: 81 year: 2021 ident: B24 article-title: Colonisation and transmission dynamics of Candida auris among chronic respiratory diseases patients hospitalised in a chest hospital, Delhi, India: a comparative analysis of whole genome sequencing and microsatellite typing publication-title: J Fungi (Basel) doi: 10.3390/jof7020081 – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: B89 article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Res doi: 10.1101/gr.107524.110 – volume: 9 start-page: 5346 year: 2018 ident: B15 article-title: Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species publication-title: Nat Commun doi: 10.1038/s41467-018-07779-6 – volume: 57 year: 2019 ident: B35 article-title: Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping publication-title: J Clin Microbiol doi: 10.1128/JCM.01624-18 – volume: 61 year: 2017 ident: B102 article-title: Emergence of echinocandin resistance due to a point mutation in the FKS1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01277-17 – volume: 154 start-page: 76 year: 1986 end-page: 83 ident: B65 article-title: Amphotericin B-induced oxidative damage and killing of Candida albicans publication-title: J Infect Dis doi: 10.1093/infdis/154.1.76 – volume: 4 year: 2015 ident: B83 article-title: Off-target effects in CRISPR/Cas9-mediated genome engineering publication-title: Mol Ther Nucleic Acids doi: 10.1038/mtna.2015.37 – volume: 8 start-page: 34 year: 2012 ident: B31 article-title: An improved allele-specific PCR primer design method for SNP marker analysis and its application publication-title: Plant Methods doi: 10.1186/1746-4811-8-34 – volume: 68 start-page: 15 year: 2019 end-page: 21 ident: B25 article-title: Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance publication-title: Clin Infect Dis doi: 10.1093/cid/ciy411 – volume: 47 start-page: 2404 year: 2003 end-page: 2412 ident: B45 article-title: Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents publication-title: Antimicrob Agents Chemother doi: 10.1128/aac.47.8.2404-2412.2003 – volume: 43 start-page: 491 year: 2011 end-page: 498 ident: B88 article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data publication-title: Nat Genet doi: 10.1038/ng.806 – volume: 61 year: 2017 ident: B99 article-title: Echinocandin resistance in Candida species isolates from liver transplant recipients publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01229-16 – volume: 10 start-page: 112 year: 2010 end-page: 118 ident: B78 article-title: The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context publication-title: Discov Med – volume: 53 start-page: 112 year: 2009 end-page: 122 ident: B93 article-title: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints publication-title: AAC doi: 10.1128/AAC.01162-08 – volume: 6 start-page: 307 year: 2020 ident: B22 article-title: Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait publication-title: J Fungi (Basel) doi: 10.3390/jof6040307 – volume: 55 start-page: 3774 year: 2011 end-page: 3781 ident: B32 article-title: New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01811-10 – volume: 25 start-page: 1780 year: 2019 end-page: 1781 ident: B30 article-title: Potential fifth clade of Candida auris, Iran, 2018 publication-title: Emerg Infect Dis doi: 10.3201/eid2509.190686 – volume: 9 start-page: 167 year: 2009 ident: B34 article-title: Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing publication-title: BMC Microbiol doi: 10.1186/1471-2180-9-167 – volume: 30 start-page: 665 year: 2006 end-page: 671 ident: B71 article-title: Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae publication-title: Cell Biol Int doi: 10.1016/j.cellbi.2006.04.006 – volume: 61 start-page: 704 year: 2006 end-page: 722 ident: B38 article-title: Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2006.05235.x – volume: 57 year: 2019 ident: B28 article-title: Insights into the unique nature of the East Asian clade of the emerging pathogenic yeast Candida auris publication-title: J Clin Microbiol doi: 10.1128/JCM.00007-19 – volume: 64 start-page: 134 year: 2017 end-page: 140 ident: B7 article-title: Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses publication-title: Clin Infect Dis doi: 10.1093/cid/ciw691 – volume: 170 start-page: 272 year: 2019 end-page: 279 ident: B58 article-title: FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans publication-title: Res Microbiol doi: 10.1016/j.resmic.2019.08.005 – volume: 15 year: 2019 ident: B76 article-title: Finding the needle in a haystack: mapping antifungal drug resistance in fungal pathogen by genomic approaches publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007478 |
SSID | ssj0000331830 |
Score | 2.578033 |
Snippet | Candida auris
is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of... is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR... Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular... Candida aurisC. auris |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Antifungal Agents - pharmacology Candida - drug effects Candida - genetics Candida - pathogenicity Candidiasis - microbiology Directed Molecular Evolution - methods Drug Resistance, Multiple, Fungal - genetics Fungal Proteins - genetics Genome, Fungal Humans Microbial Sensitivity Tests Mutation Research Article |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBclZbCXse9lX2hs7GnubFmWpce0pCsb6WAsrG9CH6cukNijTgL973dybNOUFfZqnWWju9P9zj79jpAPpSiCSEOWWCFswi26lBVSJcpJjwEFg1JLYDo7F2dz_vWiuDggrD8L061gc2SaVfsjf_BsJj-vjhf1UZrnsf0YpumHBVM8HZHDyWT-_dvwZQUF0E7TnlDz9n249-LcbC8OtXT9_8KYt0slb8Se04fkQQca6WSn5UfkAKrH5N6ujeT1E7L9AlW9guTXwgPtWUZoHej0Bn3_8ppOcSvagqcn8SiLNzQyCjX0B2wRLDZ01pUW0vN6C0s6g3gmeNGs2pnaQX-1uUTxJkJOtJWnZH46_XlylnT9FBKDbrpOvJEpD1lqQOQBkUIonJQ285iGCedBibIUWUgFC8pGVnmL2E84QIHcceVC_oyMqrqCF4QKzwyKQYkjXHGrFCtMhG6cOVSAHZP3cZF1r07d5hpM6qgK3apCs3RMPvU60K6jJI-dMZZ3iX8cxP_suDjuEjyOCh2EIoV2ewENSnceqTMFwpjM5CAzDiozAYAZ3DNMkXlXujF515uDRpeL_1FMBfWm0YgaFStj54Exeb4zj-FRmPEzRFV8TMo9w9l7l_2RavG7pfWWOCuT8uV_Ld0rcp_F6ppYQ1S8JqP11QbeIDxa27edP_wFBjcMcQ priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2nTVFp6alubNmWpWMTNg2FzaE0NDejx6hd2LVLvLuQf58Z2bvsloZeepUGWWhen_DoG8be17IKMgt5aqW0aWnRpaxUOtVOeUwomJQigen0Qp5fll-vqqudVl9UEzbQAw8Hd5xrkMbkpgCVl6BzEwCEQdWaKveudhR9MeftXKZiDC7IVrMNqaZQx4uTWfcJh6l1GcVf0y_EXi6KlP1_w5l_lkvu5J-zR-zhCBz552HDj9k9aJ-w-0MryZunbP0F2m4B6Y-ZB75hGuFd4JMdCv_5DZ9gOFqD56f0nMUbTqxCPf8GawSMPZ-O5YX8olvDnE-B3gXP-kVcKU7669VPFO8JdqK9PGOXZ5Pvp-fp2FMhNeiqy9QblZUhzwzIIiBaCJVTyuYer2LSedCyrmUeMimCtsQsbxH_SQcoULhSu1A8Zwdt18JLxqUXBsWgxplSl1ZrURmCb6VwqACbsHd0yM3oFH0T7xtCNaSKJqqiEVnCPm500LiRlpy6Y8zvEv-wFf898HHcJXhCCt0KEY12HEDjakbjav5lXAl7uzGHBt2O_qWYFrpV3yBy1KKm7gMJezGYx_ZTeOsXiKzKhNV7hrO3l_2ZdvYrUnsrXFUodfg_Nv-KPRBUgENlRtVrdrC8XsERIqilfROd5RZH_hnr priority: 102 providerName: Directory of Open Access Journals |
Title | Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33820824 https://journals.asm.org/doi/10.1128/mBio.03333-20 https://www.proquest.com/docview/2509270747 https://pubmed.ncbi.nlm.nih.gov/PMC8092288 https://doaj.org/article/19e6aa1a3e814e91afee2a004a51dc7c |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBejZbCXse95H0FjY09zZ8m2LD2MkZa0ZSMdjIXlTUiW1AYSu42TsPz3O8lO1pQW9uIH65Bt3Z3ud7L0O4Q-FCx3LHEk1ozpONPgUppxEYuSGwgoEJQCgenwjJ2Osm_jfPyPUqgbwObW1M7XkxrNpwd_rtZfweG_tAdg-OfZ4aQ-SNLUVyWD7H0fglLhfXTYIf0wKafeeP2KC8S4JC4AZ2wYN2_2AJOzamZ0J1AFPv_bQOjNvZTXgtPxI_SwQ5W435rBY3TPVk_Q_bbO5PopWp3Yqp7Z-PfEWLyhIcG1w4Nr_P7TNR7AXLWyBh_5sy5GYU851OCfdgVossHDbu8hPqtXdoqH1h8anjSz0FNoNPPlOYg3HpOCMT1Do-PBr6PTuCu4ECvw40VsFE8yRxJlWeoASri85FwTA3kaK40VrCgYcQmjTmhPO68BHLLSgkBaZqJ06XO0V9WVfYkwM1SBmC2gJROZFoLmymO7jJagDB2h936Q5UbhMiQjlEuvChlUIWkSoU8bHciy4yz3pTOmd4l_3IpftmQddwkeeoVuhTzHdrhRz89l57KSCMuUIiq1nGRWEOWspQomFZUTUxZlhN5tzEGCT_ofLaqy9bKRACsFLXxpggi9aM1j-6g0BczFaRahYsdwdt5lt6WaXATebw69Us5f_e9XvkYPqN-B4_cZ5W_Q3mK-tG8BQi10D-33-6Mf33thCQKuJ2PSCw7zFyWBG0s |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTQheEN90fBmBeCJb4iSO_dhNHYWtRUKr2JvljzN0ahO0tJX233NOk2qdmMRrfHEi353vZ_v8O0I-Fjz3PPZJZDg3UWbQpQwXMpJWOAwoGJQaAtPRmA8n2beL_GKH8O4uzGWoyzurD3Q9b87xg2OHjei2HqE4nB9Nq4M4TUMJMlyq74VzQ7TsvX5_8v10s7uCAmircUeqefs9nH_xA2wrFjWU_f_CmbfTJW_En5NH5GELHGl_renHZAfKJ-TeupTk9VOy-gJlNYfo59QB7ZhGaOXp4AaF_-yaDnA6WoGjx-E6i9M0sArV9AesEDDWdNSmF9JxtYIZHUG4Fzyt501PTaO7Wv5C8TrATrSXZ2RyMjg_HkZtTYVIo6suIqdFnPkk1sBTj2jB51YIkzhcinHrQPKi4ImPOfPSBGZ5g_iPW0CB1GbS-vQ52S2rEl4Syh3TKAYFtmQyM1KyXAf4ljGLCjA98iEMsmqdolbNeoMJFVShGlUoFvfI504Hyra05KE6xuwu8U8b8T9rPo67BI-CQjdCgUa7eYBWpVqvVIkErnWiUxBJBjLRHoBpnDd0njhb2B5535mDQrcLZym6hGpZK0SOkhWh-kCPvFibx-ZTuOpniKyyHim2DGfrX7ZbyunvhtpbYK9MiP3_Grp35P7wfHSmzr6OT1-RByxk24Scovw12V1cLeENwqWFedv6xl_i-BDU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTSBeEN9048MIxBPZEidx7MdutAxGC0JU7M3yxxkqtcm0tJX233NOk2qdmMRrfXEq353vd_H5d4S8K3jueeyTyHBuosygSxkuZCStcBhQMCg1BKajMT-dZF_O8_Mdwru7MO0K1oe6njcH-cGzL5xv-xGKo_nxtDqM0zS0IMNUfS8cVKF97_X7k29nm68rKIC2Gnekmjefw_0X52dbsaih7P8XzrxZLnkt_gwfkPstcKT9taYfkh0oH5E761aSV4_J6hOU1RyiX1MHtGMaoZWng2sU_rMrOsDtaAWOnoTrLE7TwCpU0x-wQsBY01FbXkjH1QpmdAThXvC0njczNYPucvkbxesAO9FenpDJcPDz5DRqeypEGl11ETkt4swnsQaeekQLPrdCmMRhKsatA8mLgic-5sxLE5jlDeI_bgEFUptJ69OnZLesSnhOKHdMoxgUOJLJzEjJch3gW8YsKsD0yNuwyKpTqWryDSZUUIVqVKFY3CMfOh0o29KSh-4Ys9vE32_EL9Z8HLcJHgeFboQCjXbzAxqVar1SJRK41olOQSQZyER7AKZx39B54mxhe-RNZw4K3S6cpegSqmWtEDlKVoTuAz3ybG0em1dh1s8QWWU9UmwZztZ_2R4pp38aam-BszIh9v9r6V6Tu98_DtXXz-OzA3KPhWKbUFKUvyC7i8slvES0tDCvWtf4C7SjEHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Wide+Analysis+of+Experimentally+Evolved+Candida+auris+Reveals+Multiple+Novel+Mechanisms+of+Multidrug+Resistance&rft.jtitle=mBio&rft.au=Carolus%2C+Hans&rft.au=Pierson%2C+Siebe&rft.au=Mu%C3%B1oz%2C+Jos%C3%A9+F.&rft.au=Suboti%C4%87%2C+Ana&rft.date=2021-04-05&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.03333-20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_03333_20 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |