Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance

Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 12; no. 2
Main Authors Carolus, Hans, Pierson, Siebe, Muñoz, José F., Subotić, Ana, Cruz, Rita B., Cuomo, Christina A., Van Dijck, Patrick
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 05.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11 , and a whole chromosome 5 duplication, which contains TAC1b . The latter was associated with increased expression of ERG11 , TAC1b , and CDR2 but not CDR1 . The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3 , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro . Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
AbstractList Candida aurisC. auris
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b. The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1. The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro. Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in obtained through serial exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in hot spot 1 and a substitution in "novel" hot spot 3. Mutations in and further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing , and a whole chromosome 5 duplication, which contains The latter was associated with increased expression of , , and but not The simultaneous emergence of nonsense mutations in and was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in is monitored Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a clade II isolate. Additionally, this study shows that experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11 , and a whole chromosome 5 duplication, which contains TAC1b . The latter was associated with increased expression of ERG11 , TAC1b , and CDR2 but not CDR1 . The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3 , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.
Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 “novel” hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11 , and a whole chromosome 5 duplication, which contains TAC1b . The latter was associated with increased expression of ERG11 , TAC1b , and CDR2 but not CDR1 . The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3 , a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris , even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research. IMPORTANCE Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro . Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR are largely unexplored. This is the first account of genome-wide evolution of MDR in C. auris obtained through serial in vitro exposure to azoles, polyenes, and echinocandins. We show the stepwise accumulation of copy number variations and novel mutations in genes both known and unknown in antifungal drug resistance. Echinocandin resistance was accompanied by a codon deletion in FKS1 hot spot 1 and a substitution in FKS1 "novel" hot spot 3. Mutations in ERG3 and CIS2 further increased the echinocandin MIC. Decreased azole susceptibility was linked to a mutation in transcription factor TAC1b and overexpression of the drug efflux pump Cdr1, a segmental duplication of chromosome 1 containing ERG11, and a whole chromosome 5 duplication, which contains TAC1b The latter was associated with increased expression of ERG11, TAC1b, and CDR2 but not CDR1 The simultaneous emergence of nonsense mutations in ERG3 and ERG11 was shown to decrease amphotericin B susceptibility, accompanied with fluconazole cross-resistance. A mutation in MEC3, a gene mainly known for its role in DNA damage homeostasis, further increased the polyene MIC. Overall, this study shows the alarming potential for and diversity of MDR development in C. auris, even in a clade until now not associated with MDR (clade II), stressing its clinical importance and the urge for future research.IMPORTANCECandida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of antifungals most commonly used in the clinic. Currently, C. auris has been globally recognized as a nosocomial pathogen of high concern due to this evolutionary potential. So far, this is the first study in which the stepwise progression of multidrug resistance (MDR) in C. auris is monitored in vitro Multiple novel mutations in known resistance genes and genes previously not or vaguely associated with drug resistance reveal rapid MDR evolution in a C. auris clade II isolate. Additionally, this study shows that in vitro experimental evolution can be a powerful tool to discover new drug resistance mechanisms, although it has its limitations.
Author Van Dijck, Patrick
Cuomo, Christina A.
Pierson, Siebe
Carolus, Hans
Muñoz, José F.
Subotić, Ana
Cruz, Rita B.
Author_xml – sequence: 1
  givenname: Hans
  orcidid: 0000-0003-1507-3475
  surname: Carolus
  fullname: Carolus, Hans
  organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Siebe
  orcidid: 0000-0002-4315-7943
  surname: Pierson
  fullname: Pierson, Siebe
  organization: Department of Biology, KU Leuven, Leuven, Belgium
– sequence: 3
  givenname: José F.
  orcidid: 0000-0003-4987-7957
  surname: Muñoz
  fullname: Muñoz, José F.
  organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
– sequence: 4
  givenname: Ana
  orcidid: 0000-0002-0713-455X
  surname: Subotić
  fullname: Subotić, Ana
  organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium
– sequence: 5
  givenname: Rita B.
  surname: Cruz
  fullname: Cruz, Rita B.
  organization: Department of Biology, KU Leuven, Leuven, Belgium
– sequence: 6
  givenname: Christina A.
  orcidid: 0000-0002-5778-960X
  surname: Cuomo
  fullname: Cuomo, Christina A.
  organization: Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
– sequence: 7
  givenname: Patrick
  orcidid: 0000-0002-1542-897X
  surname: Van Dijck
  fullname: Van Dijck, Patrick
  organization: VIB Center for Microbiology, Leuven, Belgium, Department of Biology, KU Leuven, Leuven, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33820824$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFDEUhgep2Nr20luZSxGm5mM-MjdCu6y10FaQipfhbHKyzZKZrMnM4P57s7uttGJzk5DznIeTvG-zg973mGXvKDmjlIlP3YX1Z4SnVTDyKjtitCJFU1F68OR8mJ3GuCJpcU4FJ2-yQ84FI4KVR9l0ib3vsPhpNebnPbhNtDH3Jp__XmOwHfYDOLfJ55N3E-p8Br22GnIYQ-K-44TgYn4zusGuHea3fkKX36C6h97GbmfaFXUYlwlP8gF6hSfZa5Ma8fRhP85-fJnfzb4W198ur2bn1wWUQgyFBkFKQwlgzU1TEVMpIRZUE1bXSmNbN01NDamZaRd12bAF47RWmACuylYZfpxd7b3aw0qu04MgbKQHK3cXPiwlhMEqh5K2WANQ4ChoiS0Fg8iAkBIqqlWjkuvz3rUeFx1qlb4mgHsmfV7p7b1c-kkK0jImRBJ8eBAE_2vEOMjORoXOQY9-jJJVCWxIUzYJ_bhHIXZMrvwYUjRRUiK3uctt7nKXu2Qkwe-fDvZ3oseUE8D3gAo-xoBGKjvAYP12Tute1Bb_dD2K_8__AdfAzIA
CitedBy_id crossref_primary_10_1038_s41586_023_05856_5
crossref_primary_10_3389_fphar_2022_1101553
crossref_primary_10_3390_biom15030322
crossref_primary_10_1038_s41467_023_43380_2
crossref_primary_10_1111_myc_70025
crossref_primary_10_3201_eid3103_241195
crossref_primary_10_3390_antibiotics12030608
crossref_primary_10_3390_antibiotics13090840
crossref_primary_10_1371_journal_ppat_1011190
crossref_primary_10_1128_aac_02276_21
crossref_primary_10_1371_journal_ppat_1012080
crossref_primary_10_5005_jacm_11020_0005
crossref_primary_10_1007_s11033_021_06917_6
crossref_primary_10_1038_s41467_024_53588_5
crossref_primary_10_1080_22221751_2024_2377584
crossref_primary_10_1021_acsinfecdis_1c00590
crossref_primary_10_1002_advs_202412514
crossref_primary_10_1128_mbio_01376_23
crossref_primary_10_1007_s42770_023_01239_0
crossref_primary_10_1128_mbio_00842_22
crossref_primary_10_3390_jof7090754
crossref_primary_10_3390_jof10030171
crossref_primary_10_1007_s00253_022_12189_2
crossref_primary_10_1007_s40588_024_00219_8
crossref_primary_10_1016_j_crmicr_2025_100354
crossref_primary_10_1007_s11046_024_00832_7
crossref_primary_10_1016_S1473_3099_23_00434_6
crossref_primary_10_3389_fmicb_2023_1287003
crossref_primary_10_1038_s41467_025_58214_6
crossref_primary_10_1016_j_ijantimicag_2023_106906
crossref_primary_10_3389_fpubh_2023_1198213
crossref_primary_10_1039_D3NA00220A
crossref_primary_10_3390_stresses4040041
crossref_primary_10_1128_spectrum_00498_23
crossref_primary_10_2807_1560_7917_ES_2024_29_45_2400729
crossref_primary_10_1016_j_cmi_2024_10_010
crossref_primary_10_3390_jof10060392
crossref_primary_10_1002_advs_202406473
crossref_primary_10_1039_D2EW00087C
crossref_primary_10_1128_mbio_02688_23
crossref_primary_10_1093_clinchem_hvae185
crossref_primary_10_1016_j_cub_2021_09_071
crossref_primary_10_1080_22221751_2024_2398596
crossref_primary_10_1128_AAC_01652_21
crossref_primary_10_1128_aac_00933_23
crossref_primary_10_1186_s12866_024_03213_8
crossref_primary_10_1128_mbio_02502_24
crossref_primary_10_1128_aac_01508_24
crossref_primary_10_1038_s41564_024_01811_w
crossref_primary_10_1155_2022_2599136
crossref_primary_10_3390_jof9121148
crossref_primary_10_1128_aac_01619_23
crossref_primary_10_3389_fcimb_2023_1136217
crossref_primary_10_3389_fmicb_2024_1409085
crossref_primary_10_1016_j_marpolbul_2023_115841
crossref_primary_10_1371_journal_ppat_1011698
crossref_primary_10_1016_j_cub_2021_09_084
crossref_primary_10_1128_spectrum_01790_23
crossref_primary_10_3389_ffunb_2022_984377
crossref_primary_10_3390_jof9020129
crossref_primary_10_3390_jof8100990
crossref_primary_10_1128_mbio_03164_24
crossref_primary_10_1093_mmy_myaf019
crossref_primary_10_1007_s42770_022_00739_9
crossref_primary_10_1021_acs_jmedchem_3c02188
crossref_primary_10_1007_s11046_023_00787_1
crossref_primary_10_1371_journal_pgen_1011156
crossref_primary_10_1016_j_addr_2023_114960
crossref_primary_10_1021_acsinfecdis_3c00199
crossref_primary_10_1093_g3journal_jkac246
crossref_primary_10_1089_mdr_2023_0150
crossref_primary_10_1093_femsyr_foac019
crossref_primary_10_1007_s11046_021_00593_7
crossref_primary_10_1038_s44259_023_00007_2
crossref_primary_10_3389_ffunb_2024_1451455
crossref_primary_10_1093_jac_dkac161
crossref_primary_10_1038_s44259_024_00064_1
crossref_primary_10_1016_j_gde_2022_101965
crossref_primary_10_1128_mbio_03052_22
crossref_primary_10_1016_j_cmi_2023_04_025
crossref_primary_10_1038_s41564_023_01547_z
crossref_primary_10_1128_aac_00570_24
crossref_primary_10_1111_apm_13336
crossref_primary_10_3389_fcimb_2021_759408
crossref_primary_10_1021_acsinfecdis_4c00399
crossref_primary_10_3390_jof10070447
crossref_primary_10_1128_aac_00423_23
crossref_primary_10_3390_microorganisms11112757
crossref_primary_10_56294_piii2023162
crossref_primary_10_1128_msphere_00124_22
crossref_primary_10_1038_s41564_024_01854_z
crossref_primary_10_1080_14787210_2024_2448844
crossref_primary_10_1080_17460913_2024_2342150
crossref_primary_10_1016_j_mib_2022_102208
crossref_primary_10_1128_aac_01265_24
crossref_primary_10_3389_ffunb_2022_957577
Cites_doi 10.1016/j.cellbi.2006.04.006
10.1093/infdis/154.1.76
10.1128/AAC.00651-17
10.1128/AAC.06253-11
10.3390/genes9090461
10.1128/AAC.01277-17
10.1128/AAC.00535-10
10.1128/AAC.01811-10
10.1128/AAC.01145-12
10.3390/jof7020081
10.3390/jof6010030
10.1371/journal.pbio.1001692
10.3390/jof6040321
10.1093/cid/ciw691
10.3389/fmicb.2019.02788
10.1128/JCM.01624-18
10.1128/EC.00299-07
10.3389/fmed.2016.00011
10.1126/sciadv.1500248
10.1111/j.1348-0421.2008.00083.x
10.1002/pro.3727
10.1091/mbc.e05-06-0502
10.1128/mBio.00595-17
10.1128/AAC.01162-08
10.1038/srep35766
10.1111/j.1365-2958.2006.05235.x
10.1101/2020.07.09.196600
10.1038/mtna.2015.37
10.1016/j.mrfmmm.2003.08.019
10.1128/AAC.01510-06
10.1128/AAC.49.6.2226-2236.2005
10.1128/AAC.00836-10
10.1186/1471-2180-9-167
10.1016/j.copbio.2017.02.013
10.1016/j.cmi.2018.05.012
10.1016/S0378-1097(03)00059-4
10.15698/mic2016.07.512
10.1111/mmi.13244
10.1128/aac.32.5.702
10.1128/AAC.01711-09
10.1111/j.1567-1364.2009.00578.x
10.1128/AAC.49.8.3264-3273.2005
10.1016/j.fgb.2019.103243
10.1093/genetics/147.2.435
10.1101/gr.114876.110
10.1128/JCM.00367-15
10.1016/j.fgb.2016.06.007
10.1128/AAC.04922-14
10.1128/AAC.01229-16
10.1146/annurev-micro-030117-020345
10.1128/AAC.00443-09
10.3201/eid2007.131765
10.1093/ofid/ofz262
10.1007/s12275-013-2577-z
10.1128/AAC.00057-19
10.1006/bbrc.1995.1272
10.1128/AAC.00123-14
10.1093/cid/ciy411
10.1038/s41598-019-41513-6
10.1099/00221287-145-10-2701
10.1128/AAC.01427-18
10.1111/nyas.12831
10.1128/JCM.00007-19
10.1016/j.resmic.2019.08.005
10.1128/mBio.02529-18
10.1038/ng.806
10.1016/S2666-5247(20)30090-2
10.1371/journal.pone.0098387
10.1093/jac/dkx480
10.3201/eid2509.190686
10.1093/mmy/myy054
10.1016/j.micinf.2011.01.015
10.15698/mic2019.03.670
10.1128/mBio.00365-20
10.1101/gr.107524.110
10.3390/jof6040307
10.1128/AAC.00555-13
10.1128/AAC.01466-20
10.1128/mSphere.00279-20
10.1128/aac.47.8.2404-2412.2003
10.1073/pnas.0437148100
10.1186/1746-4811-8-34
10.1128/EC.00151-07
10.1038/s41467-018-07779-6
10.1021/pr4002178
10.3389/fmicb.2016.01995
10.1371/journal.ppat.1007478
10.1111/j.1365-2958.2008.06176.x
10.1128/AAC.00238-18
10.1371/journal.pgen.1004570
10.1128/EC.3.6.1639-1652.2004
10.1128/mBio.03364-19
10.1093/genetics/iyab029
ContentType Journal Article
Copyright Copyright © 2021 Carolus et al.
Copyright © 2021 Carolus et al. 2021 Carolus et al.
Copyright_xml – notice: Copyright © 2021 Carolus et al.
– notice: Copyright © 2021 Carolus et al. 2021 Carolus et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.03333-20
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Chowdhary, Anuradha
Editor_xml – sequence: 1
  givenname: Anuradha
  surname: Chowdhary
  fullname: Chowdhary, Anuradha
ExternalDocumentID oai_doaj_org_article_19e6aa1a3e814e91afee2a004a51dc7c
PMC8092288
mBio03333-20
33820824
10_1128_mBio_03333_20
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI110818
– fundername: Fonds Wetenschappelijk Onderzoek (FWO)
  grantid: 11D7620N
  funderid: https://doi.org/10.13039/501100003130
– fundername: HHS | NIH | NIAID | Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases (DMID)
  grantid: U19AI110818
  funderid: https://doi.org/10.13039/100015691
– fundername: Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases
  grantid: U19AI110818
– fundername: ;
  grantid: 11D7620N
– fundername: ;
  grantid: U19AI110818
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
7X8
5PM
ID FETCH-LOGICAL-a488t-da804f10ae63f750f5c88b1d0266cde967761f062f9b6472b2316ce1d03c49cf3
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:23:19 EDT 2025
Thu Aug 21 17:18:38 EDT 2025
Fri Jul 11 15:04:23 EDT 2025
Tue Dec 28 13:57:59 EST 2021
Thu Apr 03 07:05:47 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
Tue Jul 01 01:52:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Candida auris
multidrug resistance
fluconazole
antifungal agents
experimental evolution
genome analysis
whole-genome sequencing
microevolution
amphotericin B
caspofungin
drug resistance evolution
Language English
License Copyright © 2021 Carolus et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-da804f10ae63f750f5c88b1d0266cde967761f062f9b6472b2316ce1d03c49cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0713-455X
0000-0002-5778-960X
0000-0003-1507-3475
0000-0003-4987-7957
0000-0002-1542-897X
0000-0002-4315-7943
OpenAccessLink https://doaj.org/article/19e6aa1a3e814e91afee2a004a51dc7c
PMID 33820824
PQID 2509270747
PQPubID 23479
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_19e6aa1a3e814e91afee2a004a51dc7c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8092288
proquest_miscellaneous_2509270747
asm2_journals_10_1128_mBio_03333_20
pubmed_primary_33820824
crossref_citationtrail_10_1128_mBio_03333_20
crossref_primary_10_1128_mBio_03333_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210405
PublicationDateYYYYMMDD 2021-04-05
PublicationDate_xml – month: 4
  year: 2021
  text: 20210405
  day: 5
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_81_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_82_2
e_1_3_2_103_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
Maclean RC (e_1_3_2_79_2) 2010; 10
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
(e_1_3_2_86_2) 2008
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
B21
Kumar, C, Sharma, R, Bachhawat, AK (B70) 2003; 219
Hull, CM, Parker, JE, Bader, O, Weig, M, Gross, U, Warrilow, AG, Kelly, DE, Kelly, SL (B44) 2012; 56
Vermitsky, JP, Earhart, KD, Smith, WL, Homayouni, R, Edlind, TD, Rogers, PD (B38) 2006; 61
Boyce, KJ, Wang, Y, Verma, S, Shakya, VP, Xue, C, Idnurm, A (B69) 2017; 8
Prigent, G, Aït-Ammar, N, Levesque, E, Fekkar, A, Costa, J-M, El Anbassi, S, Foulet, F, Duvoux, C, Merle, J-C, Dannaoui, E, Botterel, F (B99) 2017; 61
Chow, NA, de Groot, T, Badali, H, Abastabar, M, Chiller, TM, Meis, JF (B30) 2019; 25
Garcia-Effron, G, Park, S, Perlin, DS (B93) 2009; 53
Robbins, N, Caplan, T, Cowen, LE (B75) 2017; 71
Biagi, MJ, Wiederhold, NP, Gibas, C, Wickes, BL, Lozano, V, Bleasdale, SC, Danziger, L (B51) 2019; 6
Vyas, VK, Barrasa, MI, Fink, GR (B81) 2015; 1
Ubiyvovk, VM, Blazhenko, OV, Gigot, D, Penninckx, M, Sibirny, AA (B71) 2006; 30
Sokol-Anderson, M, Sligh, JE, Elberg, S, Brajtburg, J, Kobayashi, GS, Medoff, G (B64) 1988; 32
Coste, A, Karababa, M, Ischer, F, Bille, J, Sanglard, D (B37) 2004; 3
Magobo, RE, Corcoran, C, Seetharam, S, Govender, NP (B5) 2014; 20
Sanglard, D (B46) 2016; 3
Pais, P, Galocha, M, Viana, R, Cavalheiro, M, Pereira, D, Teixeira, MC (B77) 2019; 6
Majka, J, Burgers, PM (B59) 2003; 100
Liu, TT, Lee, RE, Barker, KS, Lee, RE, Wei, L, Homayouni, R, Rogers, PD (B62) 2005; 49
Bing, J, Hu, T, Zheng, Q, Muñoz, JF, Cuomo, CA, Huang, G (B19) 2020; 65
Martí-Carrizosa, M, Sánchez-Reus, F, March, F, Cantón, E, Coll, P (B101) 2015; 59
Chaabane, F, Graf, A, Jequier, L, Coste, AT (B20) 2019; 10
Johnson, ME, Katiyar, SK, Edlind, TD (B32) 2011; 55
Sanglard, D, Coste, A, Ferrari, S (B39) 2009; 9
Muñoz, JF, Gade, L, Chow, NA, Loparev, VN, Juieng, P, Berkow, EL, Farrer, RA, Litvintseva, AP, Cuomo, CA (B15) 2018; 9
Cao, F, Lane, S, Raniga, PP, Lu, Y, Zhou, Z, Ramon, K, Chen, J, Liu, H (B54) 2006; 17
Legrand, M, Chan, CL, Jauert, PA, Kirkpatrick, DT (B67) 2007; 6
B4
Cao, Y, Zhu, Z, Chen, X, Yao, X, Zhao, L, Wang, H, Yan, L, Wu, H, Chai, Y, Jiang, Y (B61) 2013; 12
Castanheira, M, Woosley, LN, Diekema, DJ, Messer, SA, Jones, RN, Pfaller, MA (B94) 2010; 54
B6
Bhattacharya, S, Holowka, T, Orner, EP, Fries, BC (B41) 2019; 9
Sanglard, D (B76) 2019; 15
Eddouzi, J, Parker, JE, Vale-Silva, LA, Coste, A, Ischer, F, Kelly, S, Manai, M, Sanglard, D (B47) 2013; 57
Sanglard, D, Ischer, F, Parkinson, T, Falconer, D, Bille, J (B45) 2003; 47
Kritikos, A, Neofytos, D, Khanna, N, Schreiber, PW, Boggian, K, Bille, J, Schrenzel, J, Mühlethaler, K, Zbinden, R, Bruderer, T, Goldenberger, D, Pfyffer, G, Conen, A, Van Delden, C, Zimmerli, S, Sanglard, D, Bachmann, D, Marchetti, O, Lamoth, F, Bregenzer, T, Conen, A, Flückiger, U, Khanna, N, Orasch, C, Heininger, U, Franciolli, M, Damonti, L, Zimmerli, S, Rothen, M, Zellweger, C, Tarr, P, Fleisch, F, Chuard, C, Erard, V, Emonet, S, Garbino, J, van Delden, C, Genne, D, Bochud, P, Calandra, T, Lamoth, F, Marchetti, O, Chave, J, Graber, P, Monotti, R, Regionale, O, Bernasconi, E, Civico, O, Rossi, M, Krause, M (B96) 2018; 24
Abyzov, A, Urban, AE, Snyder, M, Gerstein, M (B91) 2011; 21
Perlin, DS (B50) 2015; 1354
Selmecki, A, Gerami-Nejad, M, Paulson, C, Forche, A, Berman, J (B40) 2008; 68
Wang, H, Kong, F, Sorrell, TC, Wang, B, McNicholas, P, Pantarat, N, Ellis, D, Xiao, M, Widmer, F, Chen, SCA (B34) 2009; 9
Kathuria, S, Singh, PK, Sharma, C, Prakash, A, Masih, A, Kumar, A, Meis, JF, Chowdhary, A (B11) 2015; 53
Mayr, EM, Ramirez-Zavala, B, Kruger, I, Morschhauser, J (B26) 2020; 5
Park, S, Kelly, R, Kahn, JN, Robles, J, Hsu, M-J, Register, E, Li, W, Vyas, V, Fan, H, Abruzzo, G, Flattery, A, Gill, C, Chrebet, G, Parent, SA, Kurtz, M, Teppler, H, Douglas, CM, Perlin, DS (B100) 2005; 49
Alfouzan, W, Ahmad, S, Dhar, R, Asadzadeh, M, Almerdasi, N, Abdo, NM, Joseph, L, de Groot, T, Alali, WQ, Khan, Z, Meis, JF, Al-Rashidi, MR (B22) 2020; 6
Welsh, RM, Sexton, DJ, Forsberg, K, Vallabhaneni, S, Litvintseva, A (B28) 2019; 57
Zhang, X-H, Tee, LY, Wang, X-G, Huang, Q-S, Yang, S-H (B83) 2015; 4
Chowdhary, A, Prakash, A, Sharma, C, Kordalewska, M, Kumar, A, Sarma, S, Tarai, B, Singh, A, Upadhyaya, G, Upadhyay, S, Yadav, P, Singh, PK, Khillan, V, Sachdeva, N, Perlin, DS, Meis, JF (B8) 2018; 73
Rybak, JM, Dickens, CM, Parker, JE, Caudle, KE, Manigaba, K, Whaley, SG, Nishimoto, AT, Luna-Tapia, A, Roy, S, Zhang, Q, Barker, KS, Palmer, GE, Sutter, TR, Homayouni, R, Wiederhold, NP, Kelly, SL, Rogers, PD (B17) 2017; 61
Lockhart, SR (B12) 2019; 131
Carolus, H, Pierson, S, Lagrou, K, Van Dijck, P (B23) 2020; 6
Liu, J, Huang, S, Sun, M, Liu, S, Liu, Y, Wang, W, Zhang, X, Wang, H, Hua, W (B31) 2012; 8
Lukacisinova, M, Bollenbach, T (B79) 2017; 46
(B85) 2008
Song, Q, Johnson, C, Wilson, TE, Kumar, A (B74) 2014; 10
Lackner, M, Tscherner, M, Schaller, M, Kuchler, K, Mair, C, Sartori, B, Istel, F, Arendrup, MC, Lass-Flörl, C (B95) 2014; 58
Healey, KR, Jimenez Ortigosa, C, Shor, E, Perlin, DS (B68) 2016; 7
Ksiezopolska, E, Gabaldon, T (B13) 2018; 9
Sokol-Anderson, ML, Brajtburg, J, Medoff, G (B65) 1986; 154
Sangalli-Leite, F, Scorzoni, L, Mesa-Arango, AC, Casas, C, Herrero, E, Gianinni, MJSM, Rodríguez-Tudela, JL, Cuenca-Estrella, M, Zaragoza, O (B63) 2011; 13
Enkler, L, Richer, D, Marchand, AL, Ferrandon, D, Jossinet, F (B84) 2016; 6
Vandeputte, P, Tronchin, G, Berges, T, Hennequin, C, Chabasse, D, Bouchara, JP (B43) 2007; 51
Tsai, HF, Sammons, LR, Zhang, X, Suffis, SD, Su, Q, Myers, TG, Marr, KA, Bennett, JE (B60) 2010; 54
Escandon, P, Chow, NA, Caceres, DH, Gade, L, Berkow, EL, Armstrong, P, Rivera, S, Misas, E, Duarte, C, Moulton-Meissner, H, Welsh, RM, Parra, C, Pescador, LA, Villalobos, N, Salcedo, S, Berrio, I, Varon, C, Espinosa-Bode, A, Lockhart, SR, Jackson, BR, Litvintseva, AP, Beltran, M, Chiller, TM (B25) 2019; 68
Rybak, JM, Doorley, LA, Nishimoto, AT, Barker, KS, Palmer, GE, Rogers, PD (B27) 2019; 63
Healey, KR, Kordalewska, M, Jimenez Ortigosa, C, Singh, A, Berrio, I, Chowdhary, A, Perlin, DS (B14) 2018; 62
DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, del Angel, G, Rivas, MA, Hanna, M, McKenna, A, Fennell, TJ, Kernytsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (B88) 2011; 43
Coste, A, Selmecki, A, Forche, A, Diogo, D, Bougnoux, ME, d'Enfert, C, Berman, J, Sanglard, D (B36) 2007; 6
Satoh, K, Makimura, K, Hasumi, Y, Nishiyama, Y, Uchida, K, Yamaguchi, H (B1) 2009; 53
Muñoz, JF, Welsh, RM, Shea, T, Batra, D, Gade, L, Howard, D, Rowe, LA, Meis, JF, Litvintseva, AP, Cuomo, CA (B29) 2021
Laprade, DJ, Brown, MS, McCarthy, ML, Ritch, JJ, Austriaco, N (B55) 2016; 3
Vincent, BM, Lancaster, AK, Scherz-Shouval, R, Whitesell, L, Lindquist, S (B48) 2013; 11
Chow, NA, Muñoz, JF, Gade, L, Berkow, E, Li, X, Welsh, RM, Forsberg, K, Lockhart, SR, Adam, R, Alanio, A, Alastruey-Izquierdo, A, Althawadi, S, Belén Araúz, A, Ben-Ami, R, Bharat, A, Calvo, B, Desnos-Ollivier, M, Escandón, P, Gardam, D, Gunturu, R, Heath, CH, Kurzai, O, Martin, R, Litvintseva, AP, Cuomo, CA (B9) 2020; 11
Lussier, M, White, AM, Sheraton, J, di Paolo, T, Treadwell, J, Southard, SB, Horenstein, CI, Chen-Weiner, J, Ram, AF, Kapteyn, JC, Roemer, TW, Vo, DH, Bondoc, DC, Hall, J, Zhong, WW, Sdicu, AM, Davies, J, Klis, FM, Robbins, PW, Bussey, H (B72) 1997; 147
Hull, CM, Bader, O, Parker, JE, Weig, M, Gross, U, Warrilow, AG, Kelly, DE, Kelly, SL (B42) 2012; 56
Maclean, RC, Hall, AR, Perron, GG, Buckling, A (B78) 2010; 10
Kelly, SL, Lamb, DC, Corran, AJ, Baldwin, BC, Kelly, DE (B49) 1995; 207
Lockhart, SR, Etienne, KA, Vallabhaneni, S, Farooqi, J, Chowdhary, A, Govender, NP, Colombo, AL, Calvo, B, Cuomo, CA, Desjardins, CA, Berkow, EL, Castanheira, M, Magobo, RE, Jabeen, K, Asghar, RJ, Meis, JF, Jackson, B, Chiller, T, Litvintseva, AP (B7) 2017; 64
O’Brien, B, Liang, J, Chaturvedi, S, Jacobs, JL, Chaturvedi, V (B53) 2020; 1
Garcia-Effron, G, Lee, S, Park, S, Cleary, JD, Perlin, DS (B97) 2009; 53
Forsberg, K, Woodworth, K, Walters, M, Berkow, EL, Jackson, B, Chiller, T, Vallabhaneni, S (B3) 2019; 57
B86
B87
Marichal, P, Koymans, L, Willemsens, S, Bellens, D, Verhasselt, P, Luyten, W, Borgers, M, Ramaekers, F, Odds, FC, Bossche Vande, H (B33) 1999; 145
Fisher, KJ, Lang, GI (B80) 2016; 94
Kwon, YJ, Shin, JH, Byun, SA, Choi, MJ, Won, EJ, Lee, D, Lee, SY, Chun, S, Lee, JH, Choi, HJ, Kee, SJ, Kim, SH, Shin, MG (B35) 2019; 57
Zimbeck, AJ, Iqbal, N, Ahlquist, AM, Farley, MM, Harrison, LH, Chiller, T, Lockhart, SR (B98) 2010; 54
Kean, R, Brown, J, Gulmez, D, Ware, A, Ramage, G (B2) 2020; 6
B90
Woods, K, Hofken, T (B56) 2016; 99
Burhans, WC, Weinberger, M, Marchetti, MA, Ramachandran, L, D’Urso, G, Huberman, JA (B66) 2003; 532
Ko, H-C, Hsiao, T-Y, Chen, C-T, Yang, Y-L (B82) 2013; 51
B92
Kim, SH, Iyer, KR, Pardeshi, L, Munoz, JF, Robbins, N, Cuomo, CA, Wong, KH, Cowen, LE (B18) 2019; 10
Misas, E, Escandon, P, McEwen, JG, Clay, OK (B57) 2019; 28
Li, WJ, Liu, JY, Shi, C, Zhao, Y, Meng, LN, Wu, F, Xiang, MJ (B58) 2019; 170
B10
Kordalewska, M, Lee, A, Park, S, Berrio, I, Chowdhary, A, Zhao, Y, Perlin, DS (B52) 2018; 62
Jiménez-Ortigosa, C, Moore, C, Denning, DW, Perlin, DS (B102) 2017; 61
McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, Garimella, K, Altshuler, D, Gabriel, S, Daly, M, DePristo, MA (B89) 2010; 20
Maras, B, Angiolella, L, Mignogna, G, Vavala, E, Macone, A, Colone, M, Pitari, G, Stringaro, A, Dupre, S, Palamara, AT (B73) 2014; 9
Rybak, JM, Muñoz, JF, Barker, KS, Parker, JE, Esquivel, BD, Berkow, EL, Lockhart, SR, Gade, L, Palmer, GE, White, TC, Kelly, SL, Cuomo, CA, Rogers, PD (B16) 2020; 11
Yadav, A, Singh, A, Wang, Y, van Haren, MH, Singh, A, de Groot, T, Meis, JF, Xu, J, Chowdhary, A (B24) 2021; 7
References_xml – ident: e_1_3_2_72_2
  doi: 10.1016/j.cellbi.2006.04.006
– ident: e_1_3_2_66_2
  doi: 10.1093/infdis/154.1.76
– ident: e_1_3_2_18_2
  doi: 10.1128/AAC.00651-17
– ident: e_1_3_2_45_2
  doi: 10.1128/AAC.06253-11
– ident: e_1_3_2_14_2
  doi: 10.3390/genes9090461
– ident: e_1_3_2_103_2
  doi: 10.1128/AAC.01277-17
– ident: e_1_3_2_61_2
  doi: 10.1128/AAC.00535-10
– ident: e_1_3_2_33_2
  doi: 10.1128/AAC.01811-10
– ident: e_1_3_2_43_2
  doi: 10.1128/AAC.01145-12
– ident: e_1_3_2_25_2
  doi: 10.3390/jof7020081
– ident: e_1_3_2_3_2
  doi: 10.3390/jof6010030
– ident: e_1_3_2_49_2
  doi: 10.1371/journal.pbio.1001692
– ident: e_1_3_2_24_2
  doi: 10.3390/jof6040321
– ident: e_1_3_2_8_2
  doi: 10.1093/cid/ciw691
– ident: e_1_3_2_21_2
  doi: 10.3389/fmicb.2019.02788
– ident: e_1_3_2_36_2
  doi: 10.1128/JCM.01624-18
– ident: e_1_3_2_68_2
  doi: 10.1128/EC.00299-07
– ident: e_1_3_2_47_2
  doi: 10.3389/fmed.2016.00011
– ident: e_1_3_2_82_2
  doi: 10.1126/sciadv.1500248
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1348-0421.2008.00083.x
– ident: e_1_3_2_58_2
  doi: 10.1002/pro.3727
– ident: e_1_3_2_55_2
  doi: 10.1091/mbc.e05-06-0502
– ident: e_1_3_2_70_2
  doi: 10.1128/mBio.00595-17
– ident: e_1_3_2_94_2
  doi: 10.1128/AAC.01162-08
– ident: e_1_3_2_85_2
  doi: 10.1038/srep35766
– ident: e_1_3_2_39_2
  doi: 10.1111/j.1365-2958.2006.05235.x
– ident: e_1_3_2_22_2
  doi: 10.1101/2020.07.09.196600
– ident: e_1_3_2_84_2
  doi: 10.1038/mtna.2015.37
– ident: e_1_3_2_67_2
  doi: 10.1016/j.mrfmmm.2003.08.019
– ident: e_1_3_2_44_2
  doi: 10.1128/AAC.01510-06
– ident: e_1_3_2_63_2
  doi: 10.1128/AAC.49.6.2226-2236.2005
– ident: e_1_3_2_99_2
  doi: 10.1128/AAC.00836-10
– ident: e_1_3_2_35_2
  doi: 10.1186/1471-2180-9-167
– ident: e_1_3_2_80_2
  doi: 10.1016/j.copbio.2017.02.013
– ident: e_1_3_2_97_2
  doi: 10.1016/j.cmi.2018.05.012
– ident: e_1_3_2_71_2
  doi: 10.1016/S0378-1097(03)00059-4
– ident: e_1_3_2_56_2
  doi: 10.15698/mic2016.07.512
– ident: e_1_3_2_57_2
  doi: 10.1111/mmi.13244
– ident: e_1_3_2_65_2
  doi: 10.1128/aac.32.5.702
– ident: e_1_3_2_95_2
  doi: 10.1128/AAC.01711-09
– ident: e_1_3_2_40_2
  doi: 10.1111/j.1567-1364.2009.00578.x
– ident: e_1_3_2_101_2
  doi: 10.1128/AAC.49.8.3264-3273.2005
– ident: e_1_3_2_13_2
  doi: 10.1016/j.fgb.2019.103243
– ident: e_1_3_2_73_2
  doi: 10.1093/genetics/147.2.435
– ident: e_1_3_2_92_2
  doi: 10.1101/gr.114876.110
– ident: e_1_3_2_12_2
  doi: 10.1128/JCM.00367-15
– ident: e_1_3_2_81_2
  doi: 10.1016/j.fgb.2016.06.007
– ident: e_1_3_2_102_2
  doi: 10.1128/AAC.04922-14
– ident: e_1_3_2_100_2
  doi: 10.1128/AAC.01229-16
– ident: e_1_3_2_76_2
  doi: 10.1146/annurev-micro-030117-020345
– volume: 10
  start-page: 112
  year: 2010
  ident: e_1_3_2_79_2
  article-title: The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context
  publication-title: Discov Med
– ident: e_1_3_2_88_2
– ident: e_1_3_2_98_2
  doi: 10.1128/AAC.00443-09
– ident: e_1_3_2_6_2
  doi: 10.3201/eid2007.131765
– ident: e_1_3_2_52_2
  doi: 10.1093/ofid/ofz262
– ident: e_1_3_2_87_2
– ident: e_1_3_2_91_2
– ident: e_1_3_2_83_2
  doi: 10.1007/s12275-013-2577-z
– ident: e_1_3_2_28_2
  doi: 10.1128/AAC.00057-19
– ident: e_1_3_2_50_2
  doi: 10.1006/bbrc.1995.1272
– volume-title: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard
  year: 2008
  ident: e_1_3_2_86_2
– ident: e_1_3_2_96_2
  doi: 10.1128/AAC.00123-14
– ident: e_1_3_2_11_2
– ident: e_1_3_2_7_2
– ident: e_1_3_2_26_2
  doi: 10.1093/cid/ciy411
– ident: e_1_3_2_42_2
  doi: 10.1038/s41598-019-41513-6
– ident: e_1_3_2_34_2
  doi: 10.1099/00221287-145-10-2701
– ident: e_1_3_2_5_2
– ident: e_1_3_2_15_2
  doi: 10.1128/AAC.01427-18
– ident: e_1_3_2_51_2
  doi: 10.1111/nyas.12831
– ident: e_1_3_2_29_2
  doi: 10.1128/JCM.00007-19
– ident: e_1_3_2_59_2
  doi: 10.1016/j.resmic.2019.08.005
– ident: e_1_3_2_19_2
  doi: 10.1128/mBio.02529-18
– ident: e_1_3_2_89_2
  doi: 10.1038/ng.806
– ident: e_1_3_2_54_2
  doi: 10.1016/S2666-5247(20)30090-2
– ident: e_1_3_2_74_2
  doi: 10.1371/journal.pone.0098387
– ident: e_1_3_2_9_2
  doi: 10.1093/jac/dkx480
– ident: e_1_3_2_31_2
  doi: 10.3201/eid2509.190686
– ident: e_1_3_2_4_2
  doi: 10.1093/mmy/myy054
– ident: e_1_3_2_93_2
– ident: e_1_3_2_64_2
  doi: 10.1016/j.micinf.2011.01.015
– ident: e_1_3_2_78_2
  doi: 10.15698/mic2019.03.670
– ident: e_1_3_2_17_2
  doi: 10.1128/mBio.00365-20
– ident: e_1_3_2_90_2
  doi: 10.1101/gr.107524.110
– ident: e_1_3_2_23_2
  doi: 10.3390/jof6040307
– ident: e_1_3_2_48_2
  doi: 10.1128/AAC.00555-13
– ident: e_1_3_2_20_2
  doi: 10.1128/AAC.01466-20
– ident: e_1_3_2_27_2
  doi: 10.1128/mSphere.00279-20
– ident: e_1_3_2_46_2
  doi: 10.1128/aac.47.8.2404-2412.2003
– ident: e_1_3_2_60_2
  doi: 10.1073/pnas.0437148100
– ident: e_1_3_2_32_2
  doi: 10.1186/1746-4811-8-34
– ident: e_1_3_2_37_2
  doi: 10.1128/EC.00151-07
– ident: e_1_3_2_16_2
  doi: 10.1038/s41467-018-07779-6
– ident: e_1_3_2_62_2
  doi: 10.1021/pr4002178
– ident: e_1_3_2_69_2
  doi: 10.3389/fmicb.2016.01995
– ident: e_1_3_2_77_2
  doi: 10.1371/journal.ppat.1007478
– ident: e_1_3_2_41_2
  doi: 10.1111/j.1365-2958.2008.06176.x
– ident: e_1_3_2_53_2
  doi: 10.1128/AAC.00238-18
– ident: e_1_3_2_75_2
  doi: 10.1371/journal.pgen.1004570
– ident: e_1_3_2_38_2
  doi: 10.1128/EC.3.6.1639-1652.2004
– ident: e_1_3_2_10_2
  doi: 10.1128/mBio.03364-19
– ident: e_1_3_2_30_2
  doi: 10.1093/genetics/iyab029
– volume: 62
  year: 2018
  ident: B14
  article-title: Limited ERG11 mutations identified in isolates of Candida auris directly contribute to reduced azole susceptibility
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01427-18
– volume: 65
  year: 2020
  ident: B19
  article-title: Experimental evolution identifies adaptive aneuploidy as a mechanism of fluconazole resistance in Candida auris
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01466-20
– volume: 28
  start-page: 2024
  year: 2019
  end-page: 2029
  ident: B57
  article-title: The LUFS domain, its transcriptional regulator proteins, and drug resistance in the fungal pathogen Candida auris
  publication-title: Protein Sci
  doi: 10.1002/pro.3727
– volume: 54
  start-page: 3308
  year: 2010
  end-page: 3317
  ident: B60
  article-title: Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00535-10
– volume: 6
  start-page: 30
  year: 2020
  ident: B2
  article-title: Candida auris: a decade of understanding of an enigmatic pathogenic yeast
  publication-title: J Fungi (Basel)
  doi: 10.3390/jof6010030
– volume: 62
  year: 2018
  ident: B52
  article-title: Understanding echinocandin resistance in the emerging pathogen Candida auris
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00238-18
– volume: 46
  start-page: 90
  year: 2017
  end-page: 97
  ident: B79
  article-title: Toward a quantitative understanding of antibiotic resistance evolution
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2017.02.013
– volume: 51
  start-page: 345
  year: 2013
  end-page: 351
  ident: B82
  article-title: Candida albicans ENO1 null mutants exhibit altered drug susceptibility, hyphal formation, and virulence
  publication-title: J Microbiol
  doi: 10.1007/s12275-013-2577-z
– volume: 131
  start-page: 103243
  year: 2019
  ident: B12
  article-title: Candida auris and multidrug resistance: defining the new normal
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2019.103243
– volume: 63
  year: 2019
  ident: B27
  article-title: Abrogation of triazole resistance upon deletion of CDR1 in a clinical isolate of Candida auris
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00057-19
– year: 2021
  ident: B29
  article-title: Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris
  publication-title: Genetics iyab029
  doi: 10.1093/genetics/iyab029
– volume: 5
  year: 2020
  ident: B26
  article-title: A zinc cluster transcription factor contributes to the intrinsic fluconazole resistance of Candida auris
  publication-title: mSphere
  doi: 10.1128/mSphere.00279-20
– volume: 3
  start-page: 1639
  year: 2004
  end-page: 1652
  ident: B37
  article-title: TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.3.6.1639-1652.2004
– volume: 3
  start-page: 11
  year: 2016
  ident: B46
  article-title: Emerging threats in antifungal-resistant fungal pathogens
  publication-title: Front Med (Lausanne)
  doi: 10.3389/fmed.2016.00011
– volume: 9
  start-page: 1029
  year: 2009
  end-page: 1050
  ident: B39
  article-title: Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation
  publication-title: FEMS Yeast Res
  doi: 10.1111/j.1567-1364.2009.00578.x
– volume: 54
  start-page: 2655
  year: 2010
  end-page: 2659
  ident: B94
  article-title: Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains
  publication-title: AAC
  doi: 10.1128/AAC.01711-09
– volume: 68
  start-page: 624
  year: 2008
  end-page: 641
  ident: B40
  article-title: An isochromosome confers drug resistance in vivo by amplification of two genes, ERG11 and TAC1
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2008.06176.x
– volume: 6
  start-page: 1889
  year: 2007
  end-page: 1904
  ident: B36
  article-title: Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00151-07
– volume: 9
  start-page: 461
  year: 2018
  ident: B13
  article-title: Evolutionary emergence of drug resistance in Candida opportunistic pathogens
  publication-title: Genes (Basel)
  doi: 10.3390/genes9090461
– volume: 61
  year: 2017
  ident: B17
  article-title: Loss of C-5 sterol desaturase activity results in increased resistance to azole and echinocandin antifungals in a clinical isolate of Candida parapsilosis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00651-17
– volume: 51
  start-page: 982
  year: 2007
  end-page: 990
  ident: B43
  article-title: Reduced susceptibility to polyenes associated with a missense mutation in the ERG6 gene in a clinical isolate of Candida glabrata with pseudohyphal growth
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01510-06
– volume: 6
  start-page: 35766
  year: 2016
  ident: B84
  article-title: Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system
  publication-title: Sci Rep
  doi: 10.1038/srep35766
– volume: 57
  start-page: 3182
  year: 2013
  end-page: 3193
  ident: B47
  article-title: Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00555-13
– volume: 6
  start-page: 2194
  year: 2007
  end-page: 2205
  ident: B67
  article-title: Role of DNA mismatch repair and double-strand break repair in genome stability and antifungal drug resistance in Candida albicans
  publication-title: Eukaryot Cell
  doi: 10.1128/EC.00299-07
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: B41
  article-title: Gene duplication associated with increased fluconazole tolerance in Candida auris cells of advanced generational age
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-41513-6
– volume: 58
  start-page: 3626
  year: 2014
  end-page: 3635
  ident: B95
  article-title: Positions and numbers of FKS mutations in Candida albicans selectively influence in vitro and in vivo susceptibilities to echinocandin treatment
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00123-14
– volume: 532
  start-page: 227
  year: 2003
  end-page: 243
  ident: B66
  article-title: Apoptosis-like yeast cell death in response to DNA damage and replication defects
  publication-title: Mutat Res
  doi: 10.1016/j.mrfmmm.2003.08.019
– volume: 73
  start-page: 891
  year: 2018
  end-page: 899
  ident: B8
  article-title: A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkx480
– volume: 54
  start-page: 5042
  year: 2010
  end-page: 5047
  ident: B98
  article-title: FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from U.S. population-based surveillance
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00836-10
– volume: 11
  year: 2020
  ident: B16
  article-title: Mutations in TAC1B: a novel genetic determinant of clinical fluconazole resistance in Candida auris
  publication-title: mBio
  doi: 10.1128/mBio.00365-20
– volume: 21
  start-page: 974
  year: 2011
  end-page: 984
  ident: B91
  article-title: CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing
  publication-title: Genome Res
  doi: 10.1101/gr.114876.110
– volume: 9
  year: 2014
  ident: B73
  article-title: Glutathione metabolism in Candida albicans resistant strains to fluconazole and micafungin
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0098387
– ident: B4
  article-title: CDC . 2019 . Antibiotic Resistance Threats in the United States, 2019 . www.cdc.gov/DrugResistance/Biggest-Threats.html . Accessed 26 March 2020 .
– volume: 17
  start-page: 295
  year: 2006
  end-page: 307
  ident: B54
  article-title: The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans
  publication-title: Mol Biol Cell
  doi: 10.1091/mbc.e05-06-0502
– ident: B92
  article-title: Team RDC . 2008 . The R project for statistical computing . http://www.R-project.org .
– volume: 7
  start-page: 1995
  year: 2016
  end-page: 1995
  ident: B68
  article-title: Genetic drivers of multidrug resistance in Candida glabrata
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2016.01995
– volume: 49
  start-page: 3264
  year: 2005
  end-page: 3273
  ident: B100
  article-title: Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.8.3264-3273.2005
– volume: 57
  start-page: 1
  year: 2019
  end-page: 12
  ident: B3
  article-title: Candida auris: the recent emergence of a multidrug-resistant fungal pathogen
  publication-title: Med Mycol
  doi: 10.1093/mmy/myy054
– volume: 56
  start-page: 4223
  year: 2012
  end-page: 4232
  ident: B44
  article-title: Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.06253-11
– volume: 207
  start-page: 910
  year: 1995
  end-page: 915
  ident: B49
  article-title: Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1995.1272
– volume: 59
  start-page: 3570
  year: 2015
  end-page: 3573
  ident: B101
  article-title: Implication of Candida parapsilosis FKS1 and FKS2 mutations in reduced echinocandin susceptibility
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.04922-14
– volume: 24
  start-page: 1214.e1
  year: 2018
  end-page: 1214.e4
  ident: B96
  article-title: Accuracy of Sensititre YeastOne echinocandins epidemiological cut-off values for identification of FKS mutant Candida albicans and Candida glabrata: a ten year national survey of the Fungal Infection Network of Switzerland (FUNGINOS)
  publication-title: Clin Microbiol Infect
  doi: 10.1016/j.cmi.2018.05.012
– volume: 1
  issue: 5
  year: 2020
  ident: B53
  article-title: Pan-resistant Candida auris: New York subcluster susceptible to antifungal combinations
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30090-2
– volume: 100
  start-page: 2249
  year: 2003
  end-page: 2254
  ident: B59
  article-title: Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0437148100
– volume: 145
  start-page: 2701
  year: 1999
  end-page: 2713
  ident: B33
  article-title: Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans
  publication-title: Microbiology
  doi: 10.1099/00221287-145-10-2701
– volume: 219
  start-page: 187
  year: 2003
  end-page: 194
  ident: B70
  article-title: Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative gluathione degradation pathway
  publication-title: FEMS Microbiol Lett
  doi: 10.1016/S0378-1097(03)00059-4
– volume: 12
  start-page: 2921
  year: 2013
  end-page: 2932
  ident: B61
  article-title: Effect of amphotericin B on the metabolic profiles of Candida albicans
  publication-title: J Proteome Res
  doi: 10.1021/pr4002178
– volume: 147
  start-page: 435
  year: 1997
  end-page: 450
  ident: B72
  article-title: Large scale identification of genes involved in cell surface biosynthesis and architecture in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/147.2.435
– ident: B90
  article-title: Cingolani P . 2017 . SnpEff v4.3T: Genomic variant annotations and functional effect prediction toolbox . http://snpeff.sourceforge.net/ .
– volume: 10
  year: 2019
  ident: B18
  article-title: Genetic analysis of Candida auris implicates Hsp90 in morphogenesis and azole tolerance and Cdr1 in azole resistance
  publication-title: mBio
  doi: 10.1128/mBio.02529-18
– volume: 10
  year: 2014
  ident: B74
  article-title: Pooled segregant sequencing reveals genetic determinants of yeast pseudohyphal growth
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004570
– volume: 10
  start-page: 2788
  year: 2019
  ident: B20
  article-title: Review on antifungal resistance mechanisms in the emerging pathogen Candida auris
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2019.02788
– volume: 53
  start-page: 1823
  year: 2015
  end-page: 1830
  ident: B11
  article-title: Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00367-15
– year: 2008
  ident: B85
  publication-title: Reference method for broth dilution antifungal susceptibility testing of yeasts; Approved standard ;, 3rd ed ;CLSI document M27-A3. 28 ;CLSI ;Wayne, PA
– ident: B21
  article-title: Sharma D , Paul RA , Chakrabarti A , Bhattacharya S , Soman R , Shankarnarayan SA , Chavan D , Das P , Kaur H , Ghosh A . 2020 . Caspofungin resistance in Candia auris due to mutations in Fks1 with adjunctive role of chitin and key cell wall stress response pathway genes . BioRxiv doi: 10.1101/2020.07.09.196600 .
– volume: 71
  start-page: 753
  year: 2017
  end-page: 775
  ident: B75
  article-title: Molecular evolution of antifungal drug resistance
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-030117-020345
– volume: 56
  start-page: 6417
  year: 2012
  end-page: 6421
  ident: B42
  article-title: Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01145-12
– volume: 49
  start-page: 2226
  year: 2005
  end-page: 2236
  ident: B62
  article-title: Genome-wide expression profiling of the response to azole, polyene, echinocandin, and pyrimidine antifungal agents in Candida albicans
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.6.2226-2236.2005
– volume: 32
  start-page: 702
  year: 1988
  end-page: 705
  ident: B64
  article-title: Role of cell defense against oxidative damage in the resistance of Candida albicans to the killing effect of amphotericin B
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/aac.32.5.702
– volume: 99
  start-page: 512
  year: 2016
  end-page: 527
  ident: B56
  article-title: The zinc cluster proteins Upc2 and Ecm22 promote filamentation in Saccharomyces cerevisiae by sterol biosynthesis-dependent and -independent pathways
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13244
– volume: 53
  start-page: 41
  year: 2009
  end-page: 44
  ident: B1
  article-title: Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital
  publication-title: Microbiol Immunol
  doi: 10.1111/j.1348-0421.2008.00083.x
– volume: 6
  start-page: ofz262
  year: 2019
  ident: B51
  article-title: Development of high-level echinocandin resistance in a patient with recurrent Candida auris candidemia secondary to chronic candiduria
  publication-title: Open Forum Infect Dis
  doi: 10.1093/ofid/ofz262
– volume: 3
  start-page: 285
  year: 2016
  end-page: 292
  ident: B55
  article-title: Filamentation protects Candida albicans from amphotericin B-induced programmed cell death via a mechanism involving the yeast metacaspase, MCA1
  publication-title: Microb Cell
  doi: 10.15698/mic2016.07.512
– volume: 20
  start-page: 1250
  year: 2014
  end-page: 1251
  ident: B5
  article-title: Candida auris-associated candidemia, South Africa
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2007.131765
– volume: 13
  start-page: 457
  year: 2011
  end-page: 467
  ident: B63
  article-title: Amphotericin B mediates killing in Cryptococcus neoformans through the induction of a strong oxidative burst
  publication-title: Microbes Infect
  doi: 10.1016/j.micinf.2011.01.015
– ident: B10
  article-title: Bishop L , Cummins M , Guy R , Hoffman P , Jeffery K , Jeffery-Smith A , Brown C . 2017 . Guidance for the laboratory investigation, management and infection prevention and control for cases of Candida auris . Public Health England. Updated 11 August 2017 .
– volume: 53
  start-page: 3690
  year: 2009
  end-page: 3699
  ident: B97
  article-title: Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-d-glucan synthase: implication for the existing susceptibility breakpoint
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00443-09
– volume: 6
  start-page: 321
  year: 2020
  ident: B23
  article-title: Amphotericin B and other polyenes: discovery, clinical use, mode of action and drug resistance
  publication-title: J Fungi (Basel)
  doi: 10.3390/jof6040321
– volume: 6
  start-page: 142
  year: 2019
  end-page: 159
  ident: B77
  article-title: Microevolution of the pathogenic yeasts Candida albicans and Candida glabrata during antifungal therapy and host infection
  publication-title: Microb Cell
  doi: 10.15698/mic2019.03.670
– ident: B86
  article-title: Andrews S . 2010 . FastQC, Babraham Bioinformatics . http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ .
– ident: B87
  article-title: Li H . 2013 . Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM . arXiv 1303.3997 . https://arxiv.org/abs/1303.3997 .
– ident: B6
  article-title: CDC . 2020 . Candida auris : antifungal susceptibility testing and interpretation . https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html . Accessed 26 March 2020 .
– volume: 11
  year: 2013
  ident: B48
  article-title: Fitness trade-offs restrict the evolution of resistance to amphotericin B
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1001692
– volume: 11
  year: 2020
  ident: B9
  article-title: Tracing the evolutionary history and global expansion of Candida auris using population genomic analyses
  publication-title: mBio
  doi: 10.1128/mBio.03364-19
– volume: 1354
  start-page: 1
  year: 2015
  end-page: 11
  ident: B50
  article-title: Mechanisms of echinocandin antifungal drug resistance
  publication-title: Ann N Y Acad Sci
  doi: 10.1111/nyas.12831
– volume: 1
  year: 2015
  ident: B81
  article-title: A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1500248
– volume: 8
  year: 2017
  ident: B69
  article-title: Mismatch repair of DNA replication errors contributes to microevolution in the pathogenic fungus Cryptococcus neoformans
  publication-title: mBio
  doi: 10.1128/mBio.00595-17
– volume: 94
  start-page: 88
  year: 2016
  end-page: 94
  ident: B80
  article-title: Experimental evolution in fungi: an untapped resource
  publication-title: Fungal Genet Biol
  doi: 10.1016/j.fgb.2016.06.007
– volume: 7
  start-page: 81
  year: 2021
  ident: B24
  article-title: Colonisation and transmission dynamics of Candida auris among chronic respiratory diseases patients hospitalised in a chest hospital, Delhi, India: a comparative analysis of whole genome sequencing and microsatellite typing
  publication-title: J Fungi (Basel)
  doi: 10.3390/jof7020081
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: B89
  article-title: The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 9
  start-page: 5346
  year: 2018
  ident: B15
  article-title: Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07779-6
– volume: 57
  year: 2019
  ident: B35
  article-title: Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.01624-18
– volume: 61
  year: 2017
  ident: B102
  article-title: Emergence of echinocandin resistance due to a point mutation in the FKS1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01277-17
– volume: 154
  start-page: 76
  year: 1986
  end-page: 83
  ident: B65
  article-title: Amphotericin B-induced oxidative damage and killing of Candida albicans
  publication-title: J Infect Dis
  doi: 10.1093/infdis/154.1.76
– volume: 4
  year: 2015
  ident: B83
  article-title: Off-target effects in CRISPR/Cas9-mediated genome engineering
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1038/mtna.2015.37
– volume: 8
  start-page: 34
  year: 2012
  ident: B31
  article-title: An improved allele-specific PCR primer design method for SNP marker analysis and its application
  publication-title: Plant Methods
  doi: 10.1186/1746-4811-8-34
– volume: 68
  start-page: 15
  year: 2019
  end-page: 21
  ident: B25
  article-title: Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciy411
– volume: 47
  start-page: 2404
  year: 2003
  end-page: 2412
  ident: B45
  article-title: Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/aac.47.8.2404-2412.2003
– volume: 43
  start-page: 491
  year: 2011
  end-page: 498
  ident: B88
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– volume: 61
  year: 2017
  ident: B99
  article-title: Echinocandin resistance in Candida species isolates from liver transplant recipients
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01229-16
– volume: 10
  start-page: 112
  year: 2010
  end-page: 118
  ident: B78
  article-title: The evolution of antibiotic resistance: insight into the roles of molecular mechanisms of resistance and treatment context
  publication-title: Discov Med
– volume: 53
  start-page: 112
  year: 2009
  end-page: 122
  ident: B93
  article-title: Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints
  publication-title: AAC
  doi: 10.1128/AAC.01162-08
– volume: 6
  start-page: 307
  year: 2020
  ident: B22
  article-title: Molecular epidemiology of Candida auris outbreak in a major secondary-care hospital in Kuwait
  publication-title: J Fungi (Basel)
  doi: 10.3390/jof6040307
– volume: 55
  start-page: 3774
  year: 2011
  end-page: 3781
  ident: B32
  article-title: New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01811-10
– volume: 25
  start-page: 1780
  year: 2019
  end-page: 1781
  ident: B30
  article-title: Potential fifth clade of Candida auris, Iran, 2018
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2509.190686
– volume: 9
  start-page: 167
  year: 2009
  ident: B34
  article-title: Rapid detection of ERG11 gene mutations in clinical Candida albicans isolates with reduced susceptibility to fluconazole by rolling circle amplification and DNA sequencing
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-9-167
– volume: 30
  start-page: 665
  year: 2006
  end-page: 671
  ident: B71
  article-title: Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae
  publication-title: Cell Biol Int
  doi: 10.1016/j.cellbi.2006.04.006
– volume: 61
  start-page: 704
  year: 2006
  end-page: 722
  ident: B38
  article-title: Pdr1 regulates multidrug resistance in Candida glabrata: gene disruption and genome-wide expression studies
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2006.05235.x
– volume: 57
  year: 2019
  ident: B28
  article-title: Insights into the unique nature of the East Asian clade of the emerging pathogenic yeast Candida auris
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00007-19
– volume: 64
  start-page: 134
  year: 2017
  end-page: 140
  ident: B7
  article-title: Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciw691
– volume: 170
  start-page: 272
  year: 2019
  end-page: 279
  ident: B58
  article-title: FLO8 deletion leads to azole resistance by upregulating CDR1 and CDR2 in Candida albicans
  publication-title: Res Microbiol
  doi: 10.1016/j.resmic.2019.08.005
– volume: 15
  year: 2019
  ident: B76
  article-title: Finding the needle in a haystack: mapping antifungal drug resistance in fungal pathogen by genomic approaches
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007478
SSID ssj0000331830
Score 2.578033
Snippet Candida auris is a recently discovered human fungal pathogen and has shown an alarming potential for developing multi- and pan-resistance toward all classes of...
is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular mechanisms of MDR...
Candida auris is globally recognized as an opportunistic fungal pathogen of high concern, due to its extensive multidrug resistance (MDR). Still, molecular...
Candida aurisC. auris
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Antifungal Agents - pharmacology
Candida - drug effects
Candida - genetics
Candida - pathogenicity
Candidiasis - microbiology
Directed Molecular Evolution - methods
Drug Resistance, Multiple, Fungal - genetics
Fungal Proteins - genetics
Genome, Fungal
Humans
Microbial Sensitivity Tests
Mutation
Research Article
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBclZbCXse9lX2hs7GnubFmWpce0pCsb6WAsrG9CH6cukNijTgL973dybNOUFfZqnWWju9P9zj79jpAPpSiCSEOWWCFswi26lBVSJcpJjwEFg1JLYDo7F2dz_vWiuDggrD8L061gc2SaVfsjf_BsJj-vjhf1UZrnsf0YpumHBVM8HZHDyWT-_dvwZQUF0E7TnlDz9n249-LcbC8OtXT9_8KYt0slb8Se04fkQQca6WSn5UfkAKrH5N6ujeT1E7L9AlW9guTXwgPtWUZoHej0Bn3_8ppOcSvagqcn8SiLNzQyCjX0B2wRLDZ01pUW0vN6C0s6g3gmeNGs2pnaQX-1uUTxJkJOtJWnZH46_XlylnT9FBKDbrpOvJEpD1lqQOQBkUIonJQ285iGCedBibIUWUgFC8pGVnmL2E84QIHcceVC_oyMqrqCF4QKzwyKQYkjXHGrFCtMhG6cOVSAHZP3cZF1r07d5hpM6qgK3apCs3RMPvU60K6jJI-dMZZ3iX8cxP_suDjuEjyOCh2EIoV2ewENSnceqTMFwpjM5CAzDiozAYAZ3DNMkXlXujF515uDRpeL_1FMBfWm0YgaFStj54Exeb4zj-FRmPEzRFV8TMo9w9l7l_2RavG7pfWWOCuT8uV_Ld0rcp_F6ppYQ1S8JqP11QbeIDxa27edP_wFBjcMcQ
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2nTVFp6alubNmWpWMTNg2FzaE0NDejx6hd2LVLvLuQf58Z2bvsloZeepUGWWhen_DoG8be17IKMgt5aqW0aWnRpaxUOtVOeUwomJQigen0Qp5fll-vqqudVl9UEzbQAw8Hd5xrkMbkpgCVl6BzEwCEQdWaKveudhR9MeftXKZiDC7IVrMNqaZQx4uTWfcJh6l1GcVf0y_EXi6KlP1_w5l_lkvu5J-zR-zhCBz552HDj9k9aJ-w-0MryZunbP0F2m4B6Y-ZB75hGuFd4JMdCv_5DZ9gOFqD56f0nMUbTqxCPf8GawSMPZ-O5YX8olvDnE-B3gXP-kVcKU7669VPFO8JdqK9PGOXZ5Pvp-fp2FMhNeiqy9QblZUhzwzIIiBaCJVTyuYer2LSedCyrmUeMimCtsQsbxH_SQcoULhSu1A8Zwdt18JLxqUXBsWgxplSl1ZrURmCb6VwqACbsHd0yM3oFH0T7xtCNaSKJqqiEVnCPm500LiRlpy6Y8zvEv-wFf898HHcJXhCCt0KEY12HEDjakbjav5lXAl7uzGHBt2O_qWYFrpV3yBy1KKm7gMJezGYx_ZTeOsXiKzKhNV7hrO3l_2ZdvYrUnsrXFUodfg_Nv-KPRBUgENlRtVrdrC8XsERIqilfROd5RZH_hnr
  priority: 102
  providerName: Directory of Open Access Journals
Title Genome-Wide Analysis of Experimentally Evolved Candida auris Reveals Multiple Novel Mechanisms of Multidrug Resistance
URI https://www.ncbi.nlm.nih.gov/pubmed/33820824
https://journals.asm.org/doi/10.1128/mBio.03333-20
https://www.proquest.com/docview/2509270747
https://pubmed.ncbi.nlm.nih.gov/PMC8092288
https://doaj.org/article/19e6aa1a3e814e91afee2a004a51dc7c
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBejZbCXse95H0FjY09zZ8m2LD2MkZa0ZSMdjIXlTUiW1AYSu42TsPz3O8lO1pQW9uIH65Bt3Z3ud7L0O4Q-FCx3LHEk1ozpONPgUppxEYuSGwgoEJQCgenwjJ2Osm_jfPyPUqgbwObW1M7XkxrNpwd_rtZfweG_tAdg-OfZ4aQ-SNLUVyWD7H0fglLhfXTYIf0wKafeeP2KC8S4JC4AZ2wYN2_2AJOzamZ0J1AFPv_bQOjNvZTXgtPxI_SwQ5W435rBY3TPVk_Q_bbO5PopWp3Yqp7Z-PfEWLyhIcG1w4Nr_P7TNR7AXLWyBh_5sy5GYU851OCfdgVossHDbu8hPqtXdoqH1h8anjSz0FNoNPPlOYg3HpOCMT1Do-PBr6PTuCu4ECvw40VsFE8yRxJlWeoASri85FwTA3kaK40VrCgYcQmjTmhPO68BHLLSgkBaZqJ06XO0V9WVfYkwM1SBmC2gJROZFoLmymO7jJagDB2h936Q5UbhMiQjlEuvChlUIWkSoU8bHciy4yz3pTOmd4l_3IpftmQddwkeeoVuhTzHdrhRz89l57KSCMuUIiq1nGRWEOWspQomFZUTUxZlhN5tzEGCT_ofLaqy9bKRACsFLXxpggi9aM1j-6g0BczFaRahYsdwdt5lt6WaXATebw69Us5f_e9XvkYPqN-B4_cZ5W_Q3mK-tG8BQi10D-33-6Mf33thCQKuJ2PSCw7zFyWBG0s
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTQheEN90fBmBeCJb4iSO_dhNHYWtRUKr2JvljzN0ahO0tJX233NOk2qdmMRrfHEi353vZ_v8O0I-Fjz3PPZJZDg3UWbQpQwXMpJWOAwoGJQaAtPRmA8n2beL_GKH8O4uzGWoyzurD3Q9b87xg2OHjei2HqE4nB9Nq4M4TUMJMlyq74VzQ7TsvX5_8v10s7uCAmircUeqefs9nH_xA2wrFjWU_f_CmbfTJW_En5NH5GELHGl_renHZAfKJ-TeupTk9VOy-gJlNYfo59QB7ZhGaOXp4AaF_-yaDnA6WoGjx-E6i9M0sArV9AesEDDWdNSmF9JxtYIZHUG4Fzyt501PTaO7Wv5C8TrATrSXZ2RyMjg_HkZtTYVIo6suIqdFnPkk1sBTj2jB51YIkzhcinHrQPKi4ImPOfPSBGZ5g_iPW0CB1GbS-vQ52S2rEl4Syh3TKAYFtmQyM1KyXAf4ljGLCjA98iEMsmqdolbNeoMJFVShGlUoFvfI504Hyra05KE6xuwu8U8b8T9rPo67BI-CQjdCgUa7eYBWpVqvVIkErnWiUxBJBjLRHoBpnDd0njhb2B5535mDQrcLZym6hGpZK0SOkhWh-kCPvFibx-ZTuOpniKyyHim2DGfrX7ZbyunvhtpbYK9MiP3_Grp35P7wfHSmzr6OT1-RByxk24Scovw12V1cLeENwqWFedv6xl_i-BDU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTSBeEN9048MIxBPZEidx7MdutAxGC0JU7M3yxxkqtcm0tJX233NOk2qdmMRrfXEq353vd_H5d4S8K3jueeyTyHBuosygSxkuZCStcBhQMCg1BKajMT-dZF_O8_Mdwru7MO0K1oe6njcH-cGzL5xv-xGKo_nxtDqM0zS0IMNUfS8cVKF97_X7k29nm68rKIC2Gnekmjefw_0X52dbsaih7P8XzrxZLnkt_gwfkPstcKT9taYfkh0oH5E761aSV4_J6hOU1RyiX1MHtGMaoZWng2sU_rMrOsDtaAWOnoTrLE7TwCpU0x-wQsBY01FbXkjH1QpmdAThXvC0njczNYPucvkbxesAO9FenpDJcPDz5DRqeypEGl11ETkt4swnsQaeekQLPrdCmMRhKsatA8mLgic-5sxLE5jlDeI_bgEFUptJ69OnZLesSnhOKHdMoxgUOJLJzEjJch3gW8YsKsD0yNuwyKpTqWryDSZUUIVqVKFY3CMfOh0o29KSh-4Ys9vE32_EL9Z8HLcJHgeFboQCjXbzAxqVar1SJRK41olOQSQZyER7AKZx39B54mxhe-RNZw4K3S6cpegSqmWtEDlKVoTuAz3ybG0em1dh1s8QWWU9UmwZztZ_2R4pp38aam-BszIh9v9r6V6Tu98_DtXXz-OzA3KPhWKbUFKUvyC7i8slvES0tDCvWtf4C7SjEHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genome-Wide+Analysis+of+Experimentally+Evolved+Candida+auris+Reveals+Multiple+Novel+Mechanisms+of+Multidrug+Resistance&rft.jtitle=mBio&rft.au=Carolus%2C+Hans&rft.au=Pierson%2C+Siebe&rft.au=Mu%C3%B1oz%2C+Jos%C3%A9+F.&rft.au=Suboti%C4%87%2C+Ana&rft.date=2021-04-05&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=12&rft.issue=2&rft_id=info:doi/10.1128%2FmBio.03333-20&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_mBio_03333_20
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon