Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into smal...
Saved in:
Published in | Journal of the American Chemical Society Vol. 140; no. 11; pp. 4100 - 4109 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
21.03.2018
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (N agg) and the micellar radius (R m) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, N agg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, R m exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, R m was found to scale with N agg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer. |
---|---|
AbstractList | A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( Nagg) and the micellar radius ( Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( Nagg) and the micellar radius ( Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer. A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (N agg) and the micellar radius (R m) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, N agg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, R m exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, R m was found to scale with N agg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer. A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the sub-monomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5 - 10 nm range and critical micellar concentration (CMC) in the 0.034 - 0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer. A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nₐgg) and the micellar radius (Rₘ) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nₐgg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rₘ exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rₘ was found to scale with Nₐgg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer. A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. On the other hand, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20 for the respective singly and triply charged series. Moreover, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers through controlling the sequence and position of the ionic monomer. |
Author | Zhang, Yueheng Gupta, Sudipta Sternhagen, Garrett L John, Vijay Zhang, Donghui Schneider, Gerald J |
AuthorAffiliation | Department of Chemical and Biomolecular Engineering Louisiana State University Tulane University Department of Chemistry and Macromolecular Studies Group Department of Physics |
AuthorAffiliation_xml | – name: Department of Physics – name: Tulane University – name: Department of Chemical and Biomolecular Engineering – name: Louisiana State University – name: Department of Chemistry and Macromolecular Studies Group |
Author_xml | – sequence: 1 givenname: Garrett L surname: Sternhagen fullname: Sternhagen, Garrett L organization: Department of Chemistry and Macromolecular Studies Group – sequence: 2 givenname: Sudipta orcidid: 0000-0001-6642-3776 surname: Gupta fullname: Gupta, Sudipta organization: Department of Chemistry and Macromolecular Studies Group – sequence: 3 givenname: Yueheng surname: Zhang fullname: Zhang, Yueheng organization: Tulane University – sequence: 4 givenname: Vijay orcidid: 0000-0001-5426-7585 surname: John fullname: John, Vijay email: vj@tulane.edu organization: Tulane University – sequence: 5 givenname: Gerald J surname: Schneider fullname: Schneider, Gerald J email: gjschneider@lsu.edu organization: Louisiana State University – sequence: 6 givenname: Donghui orcidid: 0000-0003-0779-6438 surname: Zhang fullname: Zhang, Donghui email: dhzhang@lsu.edu organization: Department of Chemistry and Macromolecular Studies Group |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29506382$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1510666$$D View this record in Osti.gov |
BookMark | eNqF0U1P3DAQBmCroioL7a1nFHHqoYHx53qPdKEFFYlKwNlynInqxbGXODnw7-totz1URT1ZHj1jeeY9IgcxRSTkI4UzCoyeb6zLZ7oBEIq-IQsqGdSSMnVAFgDA6qVW_JAc5bwpV8E0fUcO2UqC4potyPf7FKbRp1jdY-jqi5yxb4LHXKWulJ4njA7rS-x8xLa6SdG76gdux-Tb6ktI7qlap20KLz0O-T1529mQ8cP-PCaPX68e1tf17d23m_XFbW2F1mPtkDqh2yUKaGyjmw4p2CUq5JwqCZ1wK66xQcmkkByFYMAFl9gid023An5MTnfvpjx6k50f0f10KUZ0o6GSglKqoE87tB1SmSKPpvfZYQg2YpqyYZQqXdYA_P8UKGVLpdhMT_Z0anpszXbwvR1ezO-FFvB5B9yQch6w-0MomDkvM-dl9nkVzv7iZRo75zEO1ofXmvb_nYubNA2xbPvf9Bc03aRq |
CitedBy_id | crossref_primary_10_1002_marc_202100453 crossref_primary_10_1039_D1PY00079A crossref_primary_10_1021_acsmacrolett_3c00704 crossref_primary_10_1021_acs_biomac_3c00028 crossref_primary_10_1002_smll_202406128 crossref_primary_10_1021_jacs_3c12221 crossref_primary_10_1021_acs_chemmater_1c00243 crossref_primary_10_1002_pcr2_10065 crossref_primary_10_1016_j_nucana_2022_100007 crossref_primary_10_1016_j_progpolymsci_2023_101737 crossref_primary_10_1021_acsmacrolett_9b01010 crossref_primary_10_1039_D4SM01219D crossref_primary_10_1002_ange_202306119 crossref_primary_10_1016_j_polymer_2020_122914 crossref_primary_10_1021_acs_langmuir_1c01458 crossref_primary_10_3390_polym13111813 crossref_primary_10_1021_acs_chemrev_2c00220 crossref_primary_10_1021_acsami_9b01407 crossref_primary_10_1002_pol_20200862 crossref_primary_10_1007_s10118_023_2946_y crossref_primary_10_1021_acspolymersau_2c00036 crossref_primary_10_1098_rsos_192092 crossref_primary_10_1021_acs_macromol_3c01068 crossref_primary_10_3390_catal13020280 crossref_primary_10_1039_D4PY00341A crossref_primary_10_1002_ange_202313370 crossref_primary_10_1021_acs_macromol_0c02107 crossref_primary_10_1021_acs_macromol_2c00141 crossref_primary_10_1002_anie_202306119 crossref_primary_10_1016_j_colsurfb_2023_113736 crossref_primary_10_1021_acsanm_1c01041 crossref_primary_10_3390_polym13183131 crossref_primary_10_1021_acsmacrolett_0c00855 crossref_primary_10_1002_adhm_202400512 crossref_primary_10_1002_bip_23469 crossref_primary_10_1016_j_progpolymsci_2023_101752 crossref_primary_10_1021_acs_biomac_3c00407 crossref_primary_10_1021_acs_chemrev_1c00024 crossref_primary_10_1002_bip_23265 crossref_primary_10_1021_acs_macromol_3c00646 crossref_primary_10_1002_adma_201905784 crossref_primary_10_1038_s41557_022_01076_y crossref_primary_10_1039_D3RA04205G crossref_primary_10_1016_j_polymer_2018_09_017 crossref_primary_10_1002_anie_202313370 crossref_primary_10_1002_pol_20210366 crossref_primary_10_1016_j_cclet_2019_12_026 crossref_primary_10_1021_acsapm_2c01272 crossref_primary_10_1021_jacsau_1c00297 crossref_primary_10_1039_C8SC03415J crossref_primary_10_1039_C8CP03283A crossref_primary_10_1039_D0PY00782J crossref_primary_10_1021_acs_langmuir_8b01939 crossref_primary_10_1016_j_progpolymsci_2023_101677 crossref_primary_10_1002_cmdc_202300217 crossref_primary_10_1021_acsinfecdis_1c00536 crossref_primary_10_1021_acs_macromol_4c02829 crossref_primary_10_1002_bip_23259 crossref_primary_10_1002_chem_202003711 crossref_primary_10_1002_marc_201800362 crossref_primary_10_1021_acs_macromol_3c02338 crossref_primary_10_1039_D1PY00426C crossref_primary_10_1007_s11426_023_1931_3 crossref_primary_10_1039_D2SM00452F crossref_primary_10_3390_ma16114175 crossref_primary_10_1021_acs_langmuir_0c03302 crossref_primary_10_1021_acs_analchem_9b04638 crossref_primary_10_1016_j_polymer_2020_122691 crossref_primary_10_1021_acscentsci_3c00208 crossref_primary_10_1039_D0PY01723J crossref_primary_10_1039_D0TB00477D crossref_primary_10_1021_acs_analchem_3c03998 crossref_primary_10_1016_j_bbagen_2022_130206 crossref_primary_10_1002_adom_202303077 crossref_primary_10_1080_17435889_2025_2469482 crossref_primary_10_1038_s42004_020_00393_y crossref_primary_10_1039_D2PY00985D |
Cites_doi | 10.1039/c0sm01218a 10.1021/ja206199d 10.1039/C2SM26849C 10.1021/ar940080 10.1002/adma.201500275 10.1021/ma946438z 10.1007/12_2011_114 10.1021/acs.chemrev.5b00201 10.1021/ma502488u 10.1021/ma011565y 10.1021/la503830w 10.1016/j.str.2015.11.006 10.1021/ma300195n 10.1021/ma00122a010 10.1039/C5SM00469A 10.1039/c3sm51421h 10.1021/la00063a015 10.1021/ma0114842 10.1002/macp.201400534 10.1021/nn4015714 10.1007/s100510050371 10.1134/S0965545X10060027 10.1021/ja211315e 10.1209/epl/i1997-00498-4 10.1007/BF01415033 10.1021/ma00125a016 10.1126/science.268.5218.1728 10.1021/acs.accounts.5b00439 10.1002/pola.23229 10.1103/PhysRevLett.115.128302 10.1073/pnas.1517169113 10.1021/la302606a 10.1002/app.20429 10.1039/C4PY01782J 10.1021/ja404233d 10.1016/S0006-3495(87)83264-2 10.1021/acs.biomac.6b00654 10.1021/ma300707t 10.1039/c1sm05862b 10.1021/acs.macromol.5b00360 10.1038/srep33491 10.1103/PhysRevLett.81.3872 10.1038/nature15363 10.1016/0032-3861(94)90898-2 10.1021/acs.macromol.6b00353 10.1016/S0032-3861(99)00472-3 10.1016/S0076-6879(96)67027-X 10.1017/S1431927616010473 10.1039/C5NR03702F 10.1021/ma035633n 10.1021/ma202319g 10.1021/ma011265g |
ContentType | Journal Article |
CorporateAuthor | Louisiana State Univ., Baton Rouge, LA (United States) Univ. of California, Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Univ. of California, Berkeley, CA (United States) – name: Louisiana State Univ., Baton Rouge, LA (United States) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OIOZB OTOTI |
DOI | 10.1021/jacs.8b00461 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 4109 |
ExternalDocumentID | 1510666 29506382 10_1021_jacs_8b00461 c094965582 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 ABFRP OIOZB OTOTI TAF |
ID | FETCH-LOGICAL-a488t-ce1c48d7e40bab8bfe10a7e6e331650f4c938ebe525453e44203435ede3cbf903 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Fri May 19 01:14:57 EDT 2023 Fri Jul 11 03:08:01 EDT 2025 Fri Jul 11 01:29:15 EDT 2025 Mon Jul 21 05:46:41 EDT 2025 Tue Jul 01 03:21:28 EDT 2025 Thu Apr 24 23:02:05 EDT 2025 Thu Aug 27 13:43:47 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-ce1c48d7e40bab8bfe10a7e6e331650f4c938ebe525453e44203435ede3cbf903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 SC0012432; AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division USDOE Office of Science (SC), Biological and Environmental Research (BER) |
ORCID | 0000-0001-6642-3776 0000-0003-0779-6438 0000-0001-5426-7585 0000000154267585 0000000166423776 0000000307796438 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1510666 |
PMID | 29506382 |
PQID | 2011276623 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1510666 proquest_miscellaneous_2116895003 proquest_miscellaneous_2011276623 pubmed_primary_29506382 crossref_primary_10_1021_jacs_8b00461 crossref_citationtrail_10_1021_jacs_8b00461 acs_journals_10_1021_jacs_8b00461 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-21 |
PublicationDateYYYYMMDD | 2018-03-21 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2018 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | Borisov O. V. (ref2/cit2) 2011 ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref19/cit19 doi: 10.1039/c0sm01218a – ident: ref29/cit29 doi: 10.1021/ja206199d – ident: ref37/cit37 doi: 10.1039/C2SM26849C – ident: ref11/cit11 doi: 10.1021/ar940080 – ident: ref23/cit23 doi: 10.1002/adma.201500275 – ident: ref4/cit4 doi: 10.1021/ma946438z – start-page: 57 volume-title: Self Organized Nanostructures of Amphiphilic Block Copolymers I year: 2011 ident: ref2/cit2 doi: 10.1007/12_2011_114 – ident: ref21/cit21 doi: 10.1021/acs.chemrev.5b00201 – ident: ref51/cit51 doi: 10.1021/ma502488u – ident: ref3/cit3 doi: 10.1021/ma011565y – ident: ref49/cit49 doi: 10.1021/la503830w – ident: ref1/cit1 doi: 10.1016/j.str.2015.11.006 – ident: ref13/cit13 doi: 10.1021/ma300195n – ident: ref10/cit10 doi: 10.1021/ma00122a010 – ident: ref52/cit52 doi: 10.1039/C5SM00469A – ident: ref25/cit25 doi: 10.1039/c3sm51421h – ident: ref38/cit38 doi: 10.1021/la00063a015 – ident: ref7/cit7 doi: 10.1021/ma0114842 – ident: ref26/cit26 doi: 10.1002/macp.201400534 – ident: ref24/cit24 doi: 10.1021/nn4015714 – ident: ref14/cit14 doi: 10.1007/s100510050371 – ident: ref17/cit17 doi: 10.1134/S0965545X10060027 – ident: ref39/cit39 doi: 10.1021/ja211315e – ident: ref43/cit43 doi: 10.1209/epl/i1997-00498-4 – ident: ref44/cit44 doi: 10.1007/BF01415033 – ident: ref5/cit5 doi: 10.1021/ma00125a016 – ident: ref12/cit12 doi: 10.1126/science.268.5218.1728 – ident: ref31/cit31 doi: 10.1021/acs.accounts.5b00439 – ident: ref42/cit42 doi: 10.1002/pola.23229 – ident: ref8/cit8 doi: 10.1103/PhysRevLett.115.128302 – ident: ref32/cit32 doi: 10.1073/pnas.1517169113 – ident: ref18/cit18 doi: 10.1021/la302606a – ident: ref16/cit16 doi: 10.1002/app.20429 – ident: ref15/cit15 doi: 10.1039/C4PY01782J – ident: ref35/cit35 doi: 10.1021/ja404233d – ident: ref40/cit40 doi: 10.1016/S0006-3495(87)83264-2 – ident: ref48/cit48 doi: 10.1021/acs.biomac.6b00654 – ident: ref28/cit28 doi: 10.1021/ma300707t – ident: ref20/cit20 doi: 10.1039/c1sm05862b – ident: ref6/cit6 doi: 10.1021/acs.macromol.5b00360 – ident: ref27/cit27 doi: 10.1038/srep33491 – ident: ref9/cit9 doi: 10.1103/PhysRevLett.81.3872 – ident: ref30/cit30 doi: 10.1038/nature15363 – ident: ref45/cit45 doi: 10.1016/0032-3861(94)90898-2 – ident: ref34/cit34 doi: 10.1021/acs.macromol.6b00353 – ident: ref46/cit46 doi: 10.1016/S0032-3861(99)00472-3 – ident: ref36/cit36 doi: 10.1016/S0076-6879(96)67027-X – ident: ref33/cit33 doi: 10.1017/S1431927616010473 – ident: ref41/cit41 doi: 10.1039/C5NR03702F – ident: ref50/cit50 doi: 10.1021/ma035633n – ident: ref22/cit22 doi: 10.1021/ma202319g – ident: ref47/cit47 doi: 10.1021/ma011265g |
SSID | ssj0004281 |
Score | 2.5219378 |
Snippet | A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4100 |
SubjectTerms | composite polymers electrostatic interactions hydrodynamics hydrophilicity hydrophobicity ionic peptoid block copolymers MATERIALS SCIENCE micelles N-substituted glycines neutron diffraction Sequence-defined polymers solution self-assembly |
Title | Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers |
URI | http://dx.doi.org/10.1021/jacs.8b00461 https://www.ncbi.nlm.nih.gov/pubmed/29506382 https://www.proquest.com/docview/2011276623 https://www.proquest.com/docview/2116895003 https://www.osti.gov/servlets/purl/1510666 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQeWAvg8EYXdkUpO1pSpXYTuI8lkLZhoaQukp9i2L7LKGVplrSB_jrucvHKjoV9mpdFNvn8_3O98XYmUtSAE4Zy1JrXzoUxVxb5wdaWK4glLmhbOSbb_HlTF7Po_kmQHbbg8-pPpAph6r2waGV85zHKiEjazSebvIfuQo7mJuoWLQB7ttfkwIy5V8KqFegIO0Gl7WSmbxkX7pUnSa25G64rvTQ_H5cufE_83_F9luc6Y2ag3HAnsHyNXsx7tq7vWFfuwcxbwoL55Pz96dGQFp6hcOhJsDa_wQOYaj1rqiCrvcdVlXxw3ofUQPeeWPqr_CL3r0P2Wzy-XZ86bedFfwcBbbyDYRGKpuADHSulXYQBnkCMQgRImRz0qRCIXsjNB8jAVLyQCCuAgvCaJcG4i3rLYslvGNeDrGSjttUWWpjbVQcI4KwiIqES7W0ffYBNyBrJaPMaqc3R6ODRttt6bOLjiWZaUuTU4eMxQ7q8wfqVVOSYwfdgLibIZSgeriGAodMlSHEIZsN59UxPcOdJzdJvoRiXWYEiXiCyxD_oAnDWKURXol9dtScmIe5cBzHW40fP2HlA7aHv6uTHHn4nvWq-zWcIMqp9Gl9xP8APSH07A |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5VAuvGmXUjASPaFU8WMT58ChbKl22bZCaiv1FmJ7LFUtm4pkhcp_4a_w2xhnk61aaRGXSlxHVjK2x55vPC-Adz7NEEXIWFbGRMrTUSyM81FspBMauSpsyEY-OExGJ-rz6eB0BX51uTDEREVfqhon_nV1gVAmiIi6ccXxNoZyglc_yEKrPox3aTu3hNj7dDwcRW0Tgagg2awji9wq7VJUsSmMNh55XKSYoJSc0IlXNpOaZjIgS2kgUSkRS4IQ6FBa47NY0nfvwX3CPSLYdjvDo-u0S6F5h65Tncg2rv42t0Hv2eqG3uuVdH6XY9pGt-09gt-LVWlCWs63Z7XZtj9vFYz8b5ftMTxsUTXbmR-DJ7CC06ewOuya2T2DSff8x47wwkfB1f3NEPyuWOmJNA8nj3bRE-h2bBzqBbMveFmXZ459JH1_zoahm8RVeOV_Did3MpcX0JuWU1wHVmCilRcu0y407bY6SQgvOcKA0mdGuT68pQXP23ugyhsXvyATK1DbbejD-04SctsWYg_9QC6WjN5ajL6cFyBZMm4jCFVOwClU_7UhTMrWOQG6YKESX52s5bTywSlUTLGcVXkAgCKlaci_jOE80dmAFEAf1uaCuuBFEJ3ucPHyH2b-BlZHxwf7-f74cLIBD-jXTXqn4K-gV3-f4Sbhu9q8bk4Zg693LZ9_AHkdWEs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VRYJeeFOW8ggSPaFUie1NnAOHssuqy0JVqVTqLcT2WEItmxXJCpV_w1_pL-tMNllEpUVcKnF1LMePGc83nhfAa59miIIjlpUxofLEioVxPoyMdEJjrArL0cifDpL9Y_XhZHCyAb-6WBiaREUjVY0Rn7l67nybYYBTBdEH3Zjj4taPcornP0hLq95ORnSkO0KM338e7odtIYGwIPqsQ4uxVdqlqCJTGG08xlGRYoJSxoRQvLKZ1LSaAWlLA4lKiUgSjECH0hqfRZLGvQE32ULI-t3e8Oh36KXQcYewU53I1rf-6mxZ9tnqD9nXK4mH1-PaRr6N78LFamcat5bT3UVtdu3PK0kj_-utuwd3WnQd7C3Z4T5s4OwB3B52Re0ewrR7BgyO8MyHbPL-ZgiGV0HpqWnpVh6O0BP4dsGE8wYHhzivy68ueEdy_zQYclWJc37tfwTH17KWx9CblTN8AkGBiVZeuEw7Lt5tdZIQbnKEBaXPjHJ9eEUbnrf3QZU3pn5Bqha3tsfQhzcdNeS2TcjOdUHO1vTeWfWeLxORrOm3zYSVE4DiLMCW3aVsnROwY02V5tXRW047z8ahYoblosoZCIqUliH_0ieOE50NSBD0YWtJrKu5CGqnu1w8_YeVv4Rbh6Nx_nFyMN2GTfpzE-Up4mfQq78v8DnBvNq8aBgtgC_XTZ6X55Nazg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+Self-Assemblies+of+Sequence-Defined+Ionic+Peptoid+Block+Copolymers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sternhagen%2C+Garrett+L&rft.au=Gupta%2C+Sudipta&rft.au=Zhang%2C+Yueheng&rft.au=John%2C+Vijay&rft.date=2018-03-21&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=140&rft.issue=11&rft.spage=4100&rft_id=info:doi/10.1021%2Fjacs.8b00461&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |