Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers

A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into smal...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 140; no. 11; pp. 4100 - 4109
Main Authors Sternhagen, Garrett L, Gupta, Sudipta, Zhang, Yueheng, John, Vijay, Schneider, Gerald J, Zhang, Donghui
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 21.03.2018
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (N agg) and the micellar radius (R m) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, N agg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, R m exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, R m was found to scale with N agg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
AbstractList A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( Nagg) and the micellar radius ( Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5-10 nm range and critical micellar concentration (CMC) in the 0.034-0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number ( Nagg) and the micellar radius ( Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number ( n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (N agg) and the micellar radius (R m) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, N agg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, R m exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, R m was found to scale with N agg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the sub-monomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5 - 10 nm range and critical micellar concentration (CMC) in the 0.034 - 0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. By contrast, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20 for the respective singly and triply charged series. Furthermore, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ∼5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nₐgg) and the micellar radius (Rₘ) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nₐgg exhibited a power law dependence on n with an exponent of ∼1/3 and ∼3/10 for the respective singly and triply charged series. By contrast, Rₘ exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ∼1/10 and ∼1/20 for the respective singly and triply charged series. Furthermore, Rₘ was found to scale with Nₐgg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers by controlling the sequence and position of the ionic monomer.
A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely controlled have been synthesized by the submonomer method. Upon dissolution in water at pH = 9, the amphiphilic peptoids self-assemble into small spherical micelles having hydrodynamic radius in ~5–10 nm range and critical micellar concentration (CMC) in the 0.034–0.094 mg/mL range. Small-angle neutron scattering (SANS) analysis of the micellar solutions revealed unprecedented dependence of the micellar structure on the number and position of ionic monomers along the chain. It was found that the micellar aggregation number (Nagg) and the micellar radius (Rm) both increase as the ionic monomer is positioned progressively away from the junction of the hydrophilic and hydrophobic segments along the polymer chain. By defining an ionic monomer position number (n) as the number of monomers between the junction and the ionic monomer, Nagg exhibited a power law dependence on n with an exponent of ~1/3 and ~3/10 for the respective singly and triply charged series. On the other hand, Rm exhibited a weaker dependence on the ionic monomer position by a power law relationship with an exponent of ~1/10 and ~1/20 for the respective singly and triply charged series. Moreover, Rm was found to scale with Nagg in a power-law relationship with an exponent of 0.32 for the singly charged series, consistent with a weakly charged ionic star-like polymer model in the unscreened regime. This study demonstrated a unique method to precisely tailor the structure of small spherical micelles based on ionic block copolymers through controlling the sequence and position of the ionic monomer.
Author Zhang, Yueheng
Gupta, Sudipta
Sternhagen, Garrett L
John, Vijay
Zhang, Donghui
Schneider, Gerald J
AuthorAffiliation Department of Chemical and Biomolecular Engineering
Louisiana State University
Tulane University
Department of Chemistry and Macromolecular Studies Group
Department of Physics
AuthorAffiliation_xml – name: Department of Physics
– name: Tulane University
– name: Department of Chemical and Biomolecular Engineering
– name: Louisiana State University
– name: Department of Chemistry and Macromolecular Studies Group
Author_xml – sequence: 1
  givenname: Garrett L
  surname: Sternhagen
  fullname: Sternhagen, Garrett L
  organization: Department of Chemistry and Macromolecular Studies Group
– sequence: 2
  givenname: Sudipta
  orcidid: 0000-0001-6642-3776
  surname: Gupta
  fullname: Gupta, Sudipta
  organization: Department of Chemistry and Macromolecular Studies Group
– sequence: 3
  givenname: Yueheng
  surname: Zhang
  fullname: Zhang, Yueheng
  organization: Tulane University
– sequence: 4
  givenname: Vijay
  orcidid: 0000-0001-5426-7585
  surname: John
  fullname: John, Vijay
  email: vj@tulane.edu
  organization: Tulane University
– sequence: 5
  givenname: Gerald J
  surname: Schneider
  fullname: Schneider, Gerald J
  email: gjschneider@lsu.edu
  organization: Louisiana State University
– sequence: 6
  givenname: Donghui
  orcidid: 0000-0003-0779-6438
  surname: Zhang
  fullname: Zhang, Donghui
  email: dhzhang@lsu.edu
  organization: Department of Chemistry and Macromolecular Studies Group
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29506382$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1510666$$D View this record in Osti.gov
BookMark eNqF0U1P3DAQBmCroioL7a1nFHHqoYHx53qPdKEFFYlKwNlynInqxbGXODnw7-totz1URT1ZHj1jeeY9IgcxRSTkI4UzCoyeb6zLZ7oBEIq-IQsqGdSSMnVAFgDA6qVW_JAc5bwpV8E0fUcO2UqC4potyPf7FKbRp1jdY-jqi5yxb4LHXKWulJ4njA7rS-x8xLa6SdG76gdux-Tb6ktI7qlap20KLz0O-T1529mQ8cP-PCaPX68e1tf17d23m_XFbW2F1mPtkDqh2yUKaGyjmw4p2CUq5JwqCZ1wK66xQcmkkByFYMAFl9gid023An5MTnfvpjx6k50f0f10KUZ0o6GSglKqoE87tB1SmSKPpvfZYQg2YpqyYZQqXdYA_P8UKGVLpdhMT_Z0anpszXbwvR1ezO-FFvB5B9yQch6w-0MomDkvM-dl9nkVzv7iZRo75zEO1ofXmvb_nYubNA2xbPvf9Bc03aRq
CitedBy_id crossref_primary_10_1002_marc_202100453
crossref_primary_10_1039_D1PY00079A
crossref_primary_10_1021_acsmacrolett_3c00704
crossref_primary_10_1021_acs_biomac_3c00028
crossref_primary_10_1002_smll_202406128
crossref_primary_10_1021_jacs_3c12221
crossref_primary_10_1021_acs_chemmater_1c00243
crossref_primary_10_1002_pcr2_10065
crossref_primary_10_1016_j_nucana_2022_100007
crossref_primary_10_1016_j_progpolymsci_2023_101737
crossref_primary_10_1021_acsmacrolett_9b01010
crossref_primary_10_1039_D4SM01219D
crossref_primary_10_1002_ange_202306119
crossref_primary_10_1016_j_polymer_2020_122914
crossref_primary_10_1021_acs_langmuir_1c01458
crossref_primary_10_3390_polym13111813
crossref_primary_10_1021_acs_chemrev_2c00220
crossref_primary_10_1021_acsami_9b01407
crossref_primary_10_1002_pol_20200862
crossref_primary_10_1007_s10118_023_2946_y
crossref_primary_10_1021_acspolymersau_2c00036
crossref_primary_10_1098_rsos_192092
crossref_primary_10_1021_acs_macromol_3c01068
crossref_primary_10_3390_catal13020280
crossref_primary_10_1039_D4PY00341A
crossref_primary_10_1002_ange_202313370
crossref_primary_10_1021_acs_macromol_0c02107
crossref_primary_10_1021_acs_macromol_2c00141
crossref_primary_10_1002_anie_202306119
crossref_primary_10_1016_j_colsurfb_2023_113736
crossref_primary_10_1021_acsanm_1c01041
crossref_primary_10_3390_polym13183131
crossref_primary_10_1021_acsmacrolett_0c00855
crossref_primary_10_1002_adhm_202400512
crossref_primary_10_1002_bip_23469
crossref_primary_10_1016_j_progpolymsci_2023_101752
crossref_primary_10_1021_acs_biomac_3c00407
crossref_primary_10_1021_acs_chemrev_1c00024
crossref_primary_10_1002_bip_23265
crossref_primary_10_1021_acs_macromol_3c00646
crossref_primary_10_1002_adma_201905784
crossref_primary_10_1038_s41557_022_01076_y
crossref_primary_10_1039_D3RA04205G
crossref_primary_10_1016_j_polymer_2018_09_017
crossref_primary_10_1002_anie_202313370
crossref_primary_10_1002_pol_20210366
crossref_primary_10_1016_j_cclet_2019_12_026
crossref_primary_10_1021_acsapm_2c01272
crossref_primary_10_1021_jacsau_1c00297
crossref_primary_10_1039_C8SC03415J
crossref_primary_10_1039_C8CP03283A
crossref_primary_10_1039_D0PY00782J
crossref_primary_10_1021_acs_langmuir_8b01939
crossref_primary_10_1016_j_progpolymsci_2023_101677
crossref_primary_10_1002_cmdc_202300217
crossref_primary_10_1021_acsinfecdis_1c00536
crossref_primary_10_1021_acs_macromol_4c02829
crossref_primary_10_1002_bip_23259
crossref_primary_10_1002_chem_202003711
crossref_primary_10_1002_marc_201800362
crossref_primary_10_1021_acs_macromol_3c02338
crossref_primary_10_1039_D1PY00426C
crossref_primary_10_1007_s11426_023_1931_3
crossref_primary_10_1039_D2SM00452F
crossref_primary_10_3390_ma16114175
crossref_primary_10_1021_acs_langmuir_0c03302
crossref_primary_10_1021_acs_analchem_9b04638
crossref_primary_10_1016_j_polymer_2020_122691
crossref_primary_10_1021_acscentsci_3c00208
crossref_primary_10_1039_D0PY01723J
crossref_primary_10_1039_D0TB00477D
crossref_primary_10_1021_acs_analchem_3c03998
crossref_primary_10_1016_j_bbagen_2022_130206
crossref_primary_10_1002_adom_202303077
crossref_primary_10_1080_17435889_2025_2469482
crossref_primary_10_1038_s42004_020_00393_y
crossref_primary_10_1039_D2PY00985D
Cites_doi 10.1039/c0sm01218a
10.1021/ja206199d
10.1039/C2SM26849C
10.1021/ar940080
10.1002/adma.201500275
10.1021/ma946438z
10.1007/12_2011_114
10.1021/acs.chemrev.5b00201
10.1021/ma502488u
10.1021/ma011565y
10.1021/la503830w
10.1016/j.str.2015.11.006
10.1021/ma300195n
10.1021/ma00122a010
10.1039/C5SM00469A
10.1039/c3sm51421h
10.1021/la00063a015
10.1021/ma0114842
10.1002/macp.201400534
10.1021/nn4015714
10.1007/s100510050371
10.1134/S0965545X10060027
10.1021/ja211315e
10.1209/epl/i1997-00498-4
10.1007/BF01415033
10.1021/ma00125a016
10.1126/science.268.5218.1728
10.1021/acs.accounts.5b00439
10.1002/pola.23229
10.1103/PhysRevLett.115.128302
10.1073/pnas.1517169113
10.1021/la302606a
10.1002/app.20429
10.1039/C4PY01782J
10.1021/ja404233d
10.1016/S0006-3495(87)83264-2
10.1021/acs.biomac.6b00654
10.1021/ma300707t
10.1039/c1sm05862b
10.1021/acs.macromol.5b00360
10.1038/srep33491
10.1103/PhysRevLett.81.3872
10.1038/nature15363
10.1016/0032-3861(94)90898-2
10.1021/acs.macromol.6b00353
10.1016/S0032-3861(99)00472-3
10.1016/S0076-6879(96)67027-X
10.1017/S1431927616010473
10.1039/C5NR03702F
10.1021/ma035633n
10.1021/ma202319g
10.1021/ma011265g
ContentType Journal Article
CorporateAuthor Louisiana State Univ., Baton Rouge, LA (United States)
Univ. of California, Berkeley, CA (United States)
CorporateAuthor_xml – name: Univ. of California, Berkeley, CA (United States)
– name: Louisiana State Univ., Baton Rouge, LA (United States)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OIOZB
OTOTI
DOI 10.1021/jacs.8b00461
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 4109
ExternalDocumentID 1510666
29506382
10_1021_jacs_8b00461
c094965582
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ABFRP
OIOZB
OTOTI
TAF
ID FETCH-LOGICAL-a488t-ce1c48d7e40bab8bfe10a7e6e331650f4c938ebe525453e44203435ede3cbf903
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Fri May 19 01:14:57 EDT 2023
Fri Jul 11 03:08:01 EDT 2025
Fri Jul 11 01:29:15 EDT 2025
Mon Jul 21 05:46:41 EDT 2025
Tue Jul 01 03:21:28 EDT 2025
Thu Apr 24 23:02:05 EDT 2025
Thu Aug 27 13:43:47 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-ce1c48d7e40bab8bfe10a7e6e331650f4c938ebe525453e44203435ede3cbf903
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SC0012432; AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
USDOE Office of Science (SC), Biological and Environmental Research (BER)
ORCID 0000-0001-6642-3776
0000-0003-0779-6438
0000-0001-5426-7585
0000000154267585
0000000166423776
0000000307796438
OpenAccessLink https://www.osti.gov/servlets/purl/1510666
PMID 29506382
PQID 2011276623
PQPubID 23479
PageCount 10
ParticipantIDs osti_scitechconnect_1510666
proquest_miscellaneous_2116895003
proquest_miscellaneous_2011276623
pubmed_primary_29506382
crossref_primary_10_1021_jacs_8b00461
crossref_citationtrail_10_1021_jacs_8b00461
acs_journals_10_1021_jacs_8b00461
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-21
PublicationDateYYYYMMDD 2018-03-21
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-21
  day: 21
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2018
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References Borisov O. V. (ref2/cit2) 2011
ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref19/cit19
  doi: 10.1039/c0sm01218a
– ident: ref29/cit29
  doi: 10.1021/ja206199d
– ident: ref37/cit37
  doi: 10.1039/C2SM26849C
– ident: ref11/cit11
  doi: 10.1021/ar940080
– ident: ref23/cit23
  doi: 10.1002/adma.201500275
– ident: ref4/cit4
  doi: 10.1021/ma946438z
– start-page: 57
  volume-title: Self Organized Nanostructures of Amphiphilic Block Copolymers I
  year: 2011
  ident: ref2/cit2
  doi: 10.1007/12_2011_114
– ident: ref21/cit21
  doi: 10.1021/acs.chemrev.5b00201
– ident: ref51/cit51
  doi: 10.1021/ma502488u
– ident: ref3/cit3
  doi: 10.1021/ma011565y
– ident: ref49/cit49
  doi: 10.1021/la503830w
– ident: ref1/cit1
  doi: 10.1016/j.str.2015.11.006
– ident: ref13/cit13
  doi: 10.1021/ma300195n
– ident: ref10/cit10
  doi: 10.1021/ma00122a010
– ident: ref52/cit52
  doi: 10.1039/C5SM00469A
– ident: ref25/cit25
  doi: 10.1039/c3sm51421h
– ident: ref38/cit38
  doi: 10.1021/la00063a015
– ident: ref7/cit7
  doi: 10.1021/ma0114842
– ident: ref26/cit26
  doi: 10.1002/macp.201400534
– ident: ref24/cit24
  doi: 10.1021/nn4015714
– ident: ref14/cit14
  doi: 10.1007/s100510050371
– ident: ref17/cit17
  doi: 10.1134/S0965545X10060027
– ident: ref39/cit39
  doi: 10.1021/ja211315e
– ident: ref43/cit43
  doi: 10.1209/epl/i1997-00498-4
– ident: ref44/cit44
  doi: 10.1007/BF01415033
– ident: ref5/cit5
  doi: 10.1021/ma00125a016
– ident: ref12/cit12
  doi: 10.1126/science.268.5218.1728
– ident: ref31/cit31
  doi: 10.1021/acs.accounts.5b00439
– ident: ref42/cit42
  doi: 10.1002/pola.23229
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.115.128302
– ident: ref32/cit32
  doi: 10.1073/pnas.1517169113
– ident: ref18/cit18
  doi: 10.1021/la302606a
– ident: ref16/cit16
  doi: 10.1002/app.20429
– ident: ref15/cit15
  doi: 10.1039/C4PY01782J
– ident: ref35/cit35
  doi: 10.1021/ja404233d
– ident: ref40/cit40
  doi: 10.1016/S0006-3495(87)83264-2
– ident: ref48/cit48
  doi: 10.1021/acs.biomac.6b00654
– ident: ref28/cit28
  doi: 10.1021/ma300707t
– ident: ref20/cit20
  doi: 10.1039/c1sm05862b
– ident: ref6/cit6
  doi: 10.1021/acs.macromol.5b00360
– ident: ref27/cit27
  doi: 10.1038/srep33491
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.81.3872
– ident: ref30/cit30
  doi: 10.1038/nature15363
– ident: ref45/cit45
  doi: 10.1016/0032-3861(94)90898-2
– ident: ref34/cit34
  doi: 10.1021/acs.macromol.6b00353
– ident: ref46/cit46
  doi: 10.1016/S0032-3861(99)00472-3
– ident: ref36/cit36
  doi: 10.1016/S0076-6879(96)67027-X
– ident: ref33/cit33
  doi: 10.1017/S1431927616010473
– ident: ref41/cit41
  doi: 10.1039/C5NR03702F
– ident: ref50/cit50
  doi: 10.1021/ma035633n
– ident: ref22/cit22
  doi: 10.1021/ma202319g
– ident: ref47/cit47
  doi: 10.1021/ma011265g
SSID ssj0004281
Score 2.5219378
Snippet A series of amphiphilic ionic peptoid block copolymers where the total number (1 or 3) and position of ionic monomers along the polymer chain are precisely...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4100
SubjectTerms composite polymers
electrostatic interactions
hydrodynamics
hydrophilicity
hydrophobicity
ionic peptoid block copolymers
MATERIALS SCIENCE
micelles
N-substituted glycines
neutron diffraction
Sequence-defined polymers
solution self-assembly
Title Solution Self-Assemblies of Sequence-Defined Ionic Peptoid Block Copolymers
URI http://dx.doi.org/10.1021/jacs.8b00461
https://www.ncbi.nlm.nih.gov/pubmed/29506382
https://www.proquest.com/docview/2011276623
https://www.proquest.com/docview/2116895003
https://www.osti.gov/servlets/purl/1510666
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELdQeWAvg8EYXdkUpO1pSpXYTuI8lkLZhoaQukp9i2L7LKGVplrSB_jrucvHKjoV9mpdFNvn8_3O98XYmUtSAE4Zy1JrXzoUxVxb5wdaWK4glLmhbOSbb_HlTF7Po_kmQHbbg8-pPpAph6r2waGV85zHKiEjazSebvIfuQo7mJuoWLQB7ttfkwIy5V8KqFegIO0Gl7WSmbxkX7pUnSa25G64rvTQ_H5cufE_83_F9luc6Y2ag3HAnsHyNXsx7tq7vWFfuwcxbwoL55Pz96dGQFp6hcOhJsDa_wQOYaj1rqiCrvcdVlXxw3ofUQPeeWPqr_CL3r0P2Wzy-XZ86bedFfwcBbbyDYRGKpuADHSulXYQBnkCMQgRImRz0qRCIXsjNB8jAVLyQCCuAgvCaJcG4i3rLYslvGNeDrGSjttUWWpjbVQcI4KwiIqES7W0ffYBNyBrJaPMaqc3R6ODRttt6bOLjiWZaUuTU4eMxQ7q8wfqVVOSYwfdgLibIZSgeriGAodMlSHEIZsN59UxPcOdJzdJvoRiXWYEiXiCyxD_oAnDWKURXol9dtScmIe5cBzHW40fP2HlA7aHv6uTHHn4nvWq-zWcIMqp9Gl9xP8APSH07A
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5VAuvGmXUjASPaFU8WMT58ChbKl22bZCaiv1FmJ7LFUtm4pkhcp_4a_w2xhnk61aaRGXSlxHVjK2x55vPC-Adz7NEEXIWFbGRMrTUSyM81FspBMauSpsyEY-OExGJ-rz6eB0BX51uTDEREVfqhon_nV1gVAmiIi6ccXxNoZyglc_yEKrPox3aTu3hNj7dDwcRW0Tgagg2awji9wq7VJUsSmMNh55XKSYoJSc0IlXNpOaZjIgS2kgUSkRS4IQ6FBa47NY0nfvwX3CPSLYdjvDo-u0S6F5h65Tncg2rv42t0Hv2eqG3uuVdH6XY9pGt-09gt-LVWlCWs63Z7XZtj9vFYz8b5ftMTxsUTXbmR-DJ7CC06ewOuya2T2DSff8x47wwkfB1f3NEPyuWOmJNA8nj3bRE-h2bBzqBbMveFmXZ459JH1_zoahm8RVeOV_Did3MpcX0JuWU1wHVmCilRcu0y407bY6SQgvOcKA0mdGuT68pQXP23ugyhsXvyATK1DbbejD-04SctsWYg_9QC6WjN5ajL6cFyBZMm4jCFVOwClU_7UhTMrWOQG6YKESX52s5bTywSlUTLGcVXkAgCKlaci_jOE80dmAFEAf1uaCuuBFEJ3ucPHyH2b-BlZHxwf7-f74cLIBD-jXTXqn4K-gV3-f4Sbhu9q8bk4Zg693LZ9_AHkdWEs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VRYJeeFOW8ggSPaFUie1NnAOHssuqy0JVqVTqLcT2WEItmxXJCpV_w1_pL-tMNllEpUVcKnF1LMePGc83nhfAa59miIIjlpUxofLEioVxPoyMdEJjrArL0cifDpL9Y_XhZHCyAb-6WBiaREUjVY0Rn7l67nybYYBTBdEH3Zjj4taPcornP0hLq95ORnSkO0KM338e7odtIYGwIPqsQ4uxVdqlqCJTGG08xlGRYoJSxoRQvLKZ1LSaAWlLA4lKiUgSjECH0hqfRZLGvQE32ULI-t3e8Oh36KXQcYewU53I1rf-6mxZ9tnqD9nXK4mH1-PaRr6N78LFamcat5bT3UVtdu3PK0kj_-utuwd3WnQd7C3Z4T5s4OwB3B52Re0ewrR7BgyO8MyHbPL-ZgiGV0HpqWnpVh6O0BP4dsGE8wYHhzivy68ueEdy_zQYclWJc37tfwTH17KWx9CblTN8AkGBiVZeuEw7Lt5tdZIQbnKEBaXPjHJ9eEUbnrf3QZU3pn5Bqha3tsfQhzcdNeS2TcjOdUHO1vTeWfWeLxORrOm3zYSVE4DiLMCW3aVsnROwY02V5tXRW047z8ahYoblosoZCIqUliH_0ieOE50NSBD0YWtJrKu5CGqnu1w8_YeVv4Rbh6Nx_nFyMN2GTfpzE-Up4mfQq78v8DnBvNq8aBgtgC_XTZ6X55Nazg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solution+Self-Assemblies+of+Sequence-Defined+Ionic+Peptoid+Block+Copolymers&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Sternhagen%2C+Garrett+L&rft.au=Gupta%2C+Sudipta&rft.au=Zhang%2C+Yueheng&rft.au=John%2C+Vijay&rft.date=2018-03-21&rft.issn=1520-5126&rft.eissn=1520-5126&rft.volume=140&rft.issue=11&rft.spage=4100&rft_id=info:doi/10.1021%2Fjacs.8b00461&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon