Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites

The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 46; pp. 16875 - 16884
Main Authors Fabini, Douglas H, Siaw, Ting Ann, Stoumpos, Constantinos C, Laurita, Geneva, Olds, Daniel, Page, Katharine, Hu, Jerry G, Kanatzidis, Mercouri G, Han, Songi, Seshadri, Ram
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.11.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
AbstractList The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI ) and formamidinium lead iodide (FAPbI ), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI₃) and formamidinium lead iodide (FAPbI₃), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI₃ between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI₃ are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI₃ produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.
Author Han, Songi
Stoumpos, Constantinos C
Olds, Daniel
Fabini, Douglas H
Page, Katharine
Hu, Jerry G
Laurita, Geneva
Siaw, Ting Ann
Kanatzidis, Mercouri G
Seshadri, Ram
AuthorAffiliation Neutron Scattering Division
Materials Department and Materials Research Laboratory
Department of Chemistry and Biochemistry
Northwestern University
Department of Chemical Engineering
University of California
Department of Chemistry and Argonne-Northwestern Solar Energy Research Center
Bates College
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Materials Department and Materials Research Laboratory
– name: University of California
– name: Bates College
– name: Department of Chemistry and Argonne-Northwestern Solar Energy Research Center
– name: Neutron Scattering Division
– name: Northwestern University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Douglas H
  orcidid: 0000-0002-2391-1507
  surname: Fabini
  fullname: Fabini, Douglas H
  organization: University of California
– sequence: 2
  givenname: Ting Ann
  surname: Siaw
  fullname: Siaw, Ting Ann
  organization: University of California
– sequence: 3
  givenname: Constantinos C
  orcidid: 0000-0001-8396-9578
  surname: Stoumpos
  fullname: Stoumpos, Constantinos C
  organization: Northwestern University
– sequence: 4
  givenname: Geneva
  orcidid: 0000-0001-9577-150X
  surname: Laurita
  fullname: Laurita, Geneva
  organization: Bates College
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0002-4611-4113
  surname: Olds
  fullname: Olds, Daniel
  organization: Neutron Scattering Division
– sequence: 6
  givenname: Katharine
  orcidid: 0000-0002-9071-3383
  surname: Page
  fullname: Page, Katharine
  organization: Neutron Scattering Division
– sequence: 7
  givenname: Jerry G
  surname: Hu
  fullname: Hu, Jerry G
  organization: University of California
– sequence: 8
  givenname: Mercouri G
  orcidid: 0000-0003-2037-4168
  surname: Kanatzidis
  fullname: Kanatzidis, Mercouri G
  organization: Northwestern University
– sequence: 9
  givenname: Songi
  surname: Han
  fullname: Han, Songi
  organization: University of California
– sequence: 10
  givenname: Ram
  orcidid: 0000-0001-5858-4027
  surname: Seshadri
  fullname: Seshadri, Ram
  email: seshadri@mrl.ucsb.edu
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29094934$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1411781$$D View this record in Osti.gov
BookMark eNqF0c9vFCEUB3Biauy2evNsiCcPTuUB8-toWrVN1tQYeyZvmEdknYUKM032v5d1Vw9G44lAPg8e33fGTkIMxNhzEBcgJLzZoM0X7SD6WjWP2ApqKaoaZHPCVkIIWbVdo07ZWc6bstWygyfsVPai173SK3Z7F_wDpYwTv9oF3HqbeXT8Y5zILhMm_pli8hRmnH0M3Ad-vRuSH_macOQ3cfQj8U-U4kP-5mfKT9ljh1OmZ8f1nN29f_fl8rpa3364uXy7rlB33VzZdsSeQNGgwCqJdSfbxorOKqf7WrjRDdiiVXYgdM61TqlhQOFAS0BRqs7Zy8O9Mc_eZFvetl9tDIHsbEADtB0U9OqA7lP8vlCezdZnS9OEgeKSjQRoeqGhRPc_WkyvpFZaFPriSJdhS6O5T36LaWd-hVrA6wOwKeacyP0mIMx-ZmY_M3OcWeHyD15-8zPuOaGf_lV07Hd_uIlLCiXtv9MfdpqnsA
CitedBy_id crossref_primary_10_1016_j_jallcom_2019_153414
crossref_primary_10_1021_acs_langmuir_4c05162
crossref_primary_10_1039_D2TA09069D
crossref_primary_10_1016_j_jssc_2020_121477
crossref_primary_10_1021_acs_jpcc_1c01171
crossref_primary_10_1021_acs_jpclett_1c00087
crossref_primary_10_1021_acsenergylett_9b01291
crossref_primary_10_1021_acs_jpclett_0c00673
crossref_primary_10_1021_acs_chemmater_1c00885
crossref_primary_10_1021_acs_jpclett_0c02688
crossref_primary_10_1021_acsami_4c12762
crossref_primary_10_1088_2516_1075_ad5898
crossref_primary_10_1063_1674_0068_cjcp2006109
crossref_primary_10_1021_acs_jpca_7b11558
crossref_primary_10_1021_acs_jpclett_9b01855
crossref_primary_10_1016_j_mtcomm_2024_110028
crossref_primary_10_1021_acs_chemrev_1c00237
crossref_primary_10_1021_acs_jpcc_9b02140
crossref_primary_10_3390_polym13091440
crossref_primary_10_1557_mrs_2020_142
crossref_primary_10_1002_adma_201802486
crossref_primary_10_1002_adom_202100549
crossref_primary_10_1021_acs_chemmater_9b00648
crossref_primary_10_1016_j_mtphys_2021_100459
crossref_primary_10_1021_acsenergylett_8b01227
crossref_primary_10_1039_D2TA05207E
crossref_primary_10_1103_PhysRevB_110_024301
crossref_primary_10_3390_e24020145
crossref_primary_10_1002_adma_201705801
crossref_primary_10_1021_acsami_2c20648
crossref_primary_10_1107_S2053273318003224
crossref_primary_10_1002_adfm_202006243
crossref_primary_10_1021_acs_chemmater_0c03958
crossref_primary_10_1103_PhysRevB_110_045142
crossref_primary_10_1021_jacs_7b12860
crossref_primary_10_1103_PhysRevMaterials_2_065404
crossref_primary_10_1016_j_jallcom_2020_158210
crossref_primary_10_1021_acs_nanolett_2c03403
crossref_primary_10_3390_nano11051131
crossref_primary_10_1021_acs_chemmater_8b00862
crossref_primary_10_1021_acs_jctc_0c01261
crossref_primary_10_1002_aesr_202200160
crossref_primary_10_1021_acs_chemmater_3c01740
crossref_primary_10_1007_s40042_022_00505_y
crossref_primary_10_1021_acs_chemmater_4c02043
crossref_primary_10_1002_adma_201707312
crossref_primary_10_1021_acs_chemmater_9b04032
crossref_primary_10_1039_D1TA03572J
crossref_primary_10_1103_PhysRevB_98_094105
crossref_primary_10_1021_acs_jpcc_1c06835
crossref_primary_10_1039_D3TA05315F
crossref_primary_10_1021_jacs_2c10149
crossref_primary_10_1021_acs_jpclett_3c02498
crossref_primary_10_1007_s41061_021_00361_7
crossref_primary_10_1021_acs_jpclett_8b02227
crossref_primary_10_1021_jacs_9b13396
crossref_primary_10_1039_D3TA07925B
crossref_primary_10_1039_D0SE00382D
crossref_primary_10_1021_acsomega_2c04503
crossref_primary_10_1038_s41566_019_0546_8
crossref_primary_10_3390_nano11082024
crossref_primary_10_1021_acscentsci_9b00367
crossref_primary_10_1038_s41598_021_99621_1
crossref_primary_10_1002_chem_201806032
crossref_primary_10_1002_aenm_202200111
crossref_primary_10_1021_acs_jpclett_2c02313
crossref_primary_10_1038_s41467_018_05531_8
crossref_primary_10_1063_5_0001908
crossref_primary_10_1021_acs_jpclett_2c03247
crossref_primary_10_1021_acs_chemmater_4c01413
crossref_primary_10_1088_0256_307X_41_2_026301
crossref_primary_10_1021_acs_chemmater_8b01851
crossref_primary_10_1039_D0MA00643B
crossref_primary_10_1021_acs_chemmater_4c01498
crossref_primary_10_1021_acs_jpclett_8b02811
crossref_primary_10_1021_acs_chemmater_8b03755
crossref_primary_10_1039_C8CC09236B
crossref_primary_10_1021_jacs_9b07381
crossref_primary_10_1021_acsmaterialslett_9b00209
crossref_primary_10_1063_5_0159708
crossref_primary_10_1021_acs_inorgchem_9b03214
crossref_primary_10_1039_D4DT00116H
crossref_primary_10_1039_D1TC04181A
crossref_primary_10_1146_annurev_matsci_080819_012808
crossref_primary_10_1038_s41467_022_29207_6
crossref_primary_10_1002_er_8008
crossref_primary_10_1016_j_matdes_2022_110951
crossref_primary_10_1038_s41598_018_36218_1
crossref_primary_10_1016_j_mtadv_2024_100534
crossref_primary_10_1021_acs_jpcc_1c03169
crossref_primary_10_1002_aenm_202001349
crossref_primary_10_1021_acs_jpcc_1c03280
crossref_primary_10_1039_D1MA00076D
crossref_primary_10_1107_S160057671901166X
crossref_primary_10_1088_2399_6528_ab9c2e
crossref_primary_10_1021_acs_langmuir_4c02782
crossref_primary_10_1103_PhysRevResearch_5_043016
crossref_primary_10_1021_acs_jpclett_9b02353
crossref_primary_10_1021_jacs_0c07338
crossref_primary_10_1021_acs_jpclett_9b02750
crossref_primary_10_1039_C8CE00702K
crossref_primary_10_1016_j_cjsc_2023_100023
crossref_primary_10_1021_acs_jpcc_1c01814
crossref_primary_10_1021_acs_jpclett_3c00185
crossref_primary_10_1039_C7TC05572B
crossref_primary_10_1039_D4TA02833C
crossref_primary_10_1103_PhysRevLett_134_096302
crossref_primary_10_1021_acsenergylett_2c00140
crossref_primary_10_1002_adom_202301342
crossref_primary_10_1038_s41557_020_0490_8
crossref_primary_10_1002_adfm_202301663
crossref_primary_10_1039_D2TC04529J
crossref_primary_10_1038_s41570_021_00309_x
crossref_primary_10_1016_j_ssnmr_2019_03_005
crossref_primary_10_1063_5_0076738
crossref_primary_10_1021_acs_jpclett_8b01628
crossref_primary_10_1021_acs_chemmater_7b04017
crossref_primary_10_1021_acs_jpclett_1c00616
crossref_primary_10_1038_s41427_020_00249_w
crossref_primary_10_1039_D2TC00559J
crossref_primary_10_1016_j_physb_2020_412703
crossref_primary_10_1021_acs_chemmater_0c01862
crossref_primary_10_1021_acs_inorgchem_2c00351
crossref_primary_10_1038_s41598_022_14452_y
crossref_primary_10_1002_aenm_201901350
crossref_primary_10_1021_acs_chemrev_3c00532
crossref_primary_10_1021_acs_jpcc_2c07835
crossref_primary_10_1039_C8QI00144H
crossref_primary_10_1039_D0TC02038A
crossref_primary_10_1002_crat_202400228
crossref_primary_10_1016_j_jmr_2022_107351
crossref_primary_10_1021_acs_chemmater_0c04500
crossref_primary_10_1021_acs_jpcc_9b00555
crossref_primary_10_1021_acs_jpcc_9b02736
crossref_primary_10_1038_s41467_024_53698_0
crossref_primary_10_1021_jacs_2c05316
crossref_primary_10_1039_C8EE03051K
crossref_primary_10_1021_acs_jpcc_0c11289
crossref_primary_10_1021_acs_jpclett_2c00454
crossref_primary_10_1021_acs_inorgchem_8b01597
crossref_primary_10_1021_acs_jpcc_8b00602
Cites_doi 10.1021/acs.jpclett.6b00094
10.1103/PhysRev.73.679
10.1021/jacs.5b01025
10.1515/zna-1991-0305
10.1021/acs.jpcc.6b03570
10.1016/0038-1098(85)90959-7
10.1063/1.453467
10.1021/jacs.6b06287
10.1039/f19757100980
10.1039/b201611g
10.1021/acs.jpclett.5b02821
10.1021/acs.chemmater.6b01874
10.1107/S0021889801002242
10.1021/ja809598r
10.1021/acs.nanolett.5b01854
10.1143/JPSJ.66.1508
10.1107/S0021889811038970
10.1021/acs.jpclett.6b00002
10.1103/PhysRevB.47.558
10.1039/C5EE03874J
10.1080/01411590290029854
10.1021/acs.chemmater.6b05372
10.1021/acs.jpclett.5b02462
10.1038/nphoton.2014.284
10.1016/j.jmr.2012.05.017
10.1039/C5CC00979K
10.1126/sciadv.1601650
10.1126/science.1228604
10.1021/acs.jpclett.5b01555
10.1021/acs.jpclett.5b00968
10.1016/0031-8914(51)90069-9
10.1002/anie.201309368
10.1107/S0021889811001609
10.1021/acs.chemmater.5b04143
10.1039/C6CP02917E
10.1002/anie.201609538
10.1021/acsenergylett.7b00591
10.1021/acs.chemmater.6b00968
10.1103/PhysRevB.50.17953
10.1021/acs.chemrev.5b00715
10.1038/srep21687
10.1088/0953-8984/19/33/335219
10.1515/znb-1978-1214
10.1103/PhysRevB.49.4993
10.1021/acs.jpcc.7b00596
10.1021/acsenergylett.6b00381
10.1039/C7SC01429E
10.1103/PhysRevB.54.11169
10.1021/acs.accounts.5b00229
10.1107/S0108768197014821
10.1103/PhysRevB.49.14251
10.1038/srep35685
10.1002/adma.201603072
10.1016/0022-3697(92)90121-S
10.1021/jp508880y
10.1039/C6TA06607K
10.1006/jmra.1995.0010
10.1103/PhysRevMaterials.1.042401
10.1146/annurev-matsci-070616-124152
10.1038/ncomms8124
10.1073/pnas.1405780111
10.1103/PhysRevLett.100.136406
10.1039/C7SC01590A
10.1038/420131a
10.1039/C7CC00995J
10.1002/aenm.201700600
10.1073/pnas.1102079108
10.1039/C6CP02947G
10.5281/zenodo.11813
10.1063/1.1711903
10.1021/acs.jpclett.6b01199
10.1021/acs.jpclett.6b01822
10.1021/jacs.7b04930
10.1021/nl500390f
10.1021/acs.inorgchem.6b01539
10.1016/0022-3697(90)90021-7
10.1039/C5CP05348J
10.1126/science.aaf9570
10.1103/PhysRevB.92.100303
10.1039/C4CC09944C
10.1016/0927-0256(96)00008-0
10.1246/bcsj.65.2264
10.1021/acsenergylett.6b00402
10.1126/science.267.5206.1924
10.1039/C5TA06398A
10.1021/ic401215x
10.1039/C5NR06386H
10.1107/S0108768110014734
10.1021/acs.jpclett.6b02542
10.1139/v90-063
10.1038/ncomms16086
10.1103/PhysRevB.59.1758
10.1103/PhysRevB.13.5188
10.1021/acs.jpclett.5b01432
10.1103/PhysRevLett.118.136001
10.1016/j.jmr.2015.12.012
10.1016/j.nimb.2012.05.037
10.1021/acs.jpclett.7b00807
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/jacs.7b09536
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 16884
ExternalDocumentID 1411781
29094934
10_1021_jacs_7b09536
c169338229
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
7X8
7S9
L.6
ADOJD
OTOTI
ID FETCH-LOGICAL-a488t-c7da9e13eb31c32a58276c08c3f4950fdfba7ac3cbeafff7f33bba0f1421a0eb3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Mon Nov 25 02:36:44 EST 2024
Fri Jul 11 07:16:37 EDT 2025
Fri Jul 11 15:14:08 EDT 2025
Thu Apr 03 07:05:57 EDT 2025
Tue Jul 01 03:21:23 EDT 2025
Thu Apr 24 23:03:13 EDT 2025
Thu Aug 27 13:50:14 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-c7da9e13eb31c32a58276c08c3f4950fdfba7ac3cbeafff7f33bba0f1421a0eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0001-8396-9578
0000-0002-2391-1507
0000-0001-9577-150X
0000-0003-2037-4168
0000-0002-9071-3383
0000-0001-5858-4027
0000-0002-4611-4113
0000000223911507
0000000290713383
000000019577150X
0000000158584027
0000000246114113
0000000183969578
0000000320374168
OpenAccessLink https://www.osti.gov/biblio/1599744
PMID 29094934
PQID 1959324340
PQPubID 23479
PageCount 10
ParticipantIDs osti_scitechconnect_1411781
proquest_miscellaneous_2116904195
proquest_miscellaneous_1959324340
pubmed_primary_29094934
crossref_primary_10_1021_jacs_7b09536
crossref_citationtrail_10_1021_jacs_7b09536
acs_journals_10_1021_jacs_7b09536
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-22
PublicationDateYYYYMMDD 2017-11-22
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref45/cit45
ref99/cit99
ref3/cit3
ref81/cit81
ref16/cit16
ref52/cit52
ref23/cit23
ref2/cit2
ref77/cit77
ref71/cit71
ref20/cit20
ref48/cit48
ref74/cit74
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref13/cit13
ref61/cit61
ref67/cit67
ref38/cit38
ref90/cit90
ref64/cit64
ref54/cit54
ref6/cit6
ref18/cit18
ref97/cit97
ref101/cit101
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
Sherwood J. N. (ref5/cit5) 1979
ref32/cit32
ref39/cit39
ref43/cit43
ref80/cit80
ref28/cit28
ref55/cit55
ref66/cit66
ref22/cit22
ref33/cit33
ref87/cit87
Weber D. (ref12/cit12) 1978; 33
ref44/cit44
ref70/cit70
ref98/cit98
ref9/cit9
ref27/cit27
ref63/cit63
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref53/cit53
ref21/cit21
ref46/cit46
ref49/cit49
ref75/cit75
ref24/cit24
ref50/cit50
ref78/cit78
ref36/cit36
Larson A. C. (ref91/cit91) 2000
ref83/cit83
ref79/cit79
ref100/cit100
ref25/cit25
ref72/cit72
Owens F. J. (ref65/cit65) 1979
ref14/cit14
ref57/cit57
ref51/cit51
ref40/cit40
ref68/cit68
ref94/cit94
ref26/cit26
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref7/cit7
References_xml – ident: ref80/cit80
  doi: 10.1021/acs.jpclett.6b00094
– ident: ref72/cit72
  doi: 10.1103/PhysRev.73.679
– ident: ref52/cit52
  doi: 10.1021/jacs.5b01025
– ident: ref29/cit29
  doi: 10.1515/zna-1991-0305
– ident: ref37/cit37
  doi: 10.1021/acs.jpcc.6b03570
– ident: ref27/cit27
  doi: 10.1016/0038-1098(85)90959-7
– ident: ref15/cit15
  doi: 10.1063/1.453467
– volume-title: Magnetic resonance of phase transitions
  year: 1979
  ident: ref65/cit65
– ident: ref53/cit53
  doi: 10.1021/jacs.6b06287
– ident: ref75/cit75
  doi: 10.1039/f19757100980
– ident: ref76/cit76
  doi: 10.1039/b201611g
– ident: ref14/cit14
  doi: 10.1021/acs.jpclett.5b02821
– ident: ref30/cit30
  doi: 10.1021/acs.chemmater.6b01874
– ident: ref92/cit92
  doi: 10.1107/S0021889801002242
– start-page: 86
  year: 2000
  ident: ref91/cit91
  publication-title: Los Alamos Natl. Lab. Rep. LAUR
– ident: ref9/cit9
  doi: 10.1021/ja809598r
– ident: ref83/cit83
  doi: 10.1021/acs.nanolett.5b01854
– ident: ref18/cit18
  doi: 10.1143/JPSJ.66.1508
– ident: ref93/cit93
  doi: 10.1107/S0021889811038970
– ident: ref63/cit63
  doi: 10.1021/acs.jpclett.6b00002
– ident: ref94/cit94
  doi: 10.1103/PhysRevB.47.558
– ident: ref11/cit11
  doi: 10.1039/C5EE03874J
– ident: ref67/cit67
  doi: 10.1080/01411590290029854
– ident: ref79/cit79
  doi: 10.1021/acs.chemmater.6b05372
– ident: ref48/cit48
  doi: 10.1021/acs.jpclett.5b02462
– ident: ref74/cit74
  doi: 10.1038/nphoton.2014.284
– ident: ref85/cit85
  doi: 10.1016/j.jmr.2012.05.017
– ident: ref34/cit34
  doi: 10.1039/C5CC00979K
– ident: ref44/cit44
  doi: 10.1126/sciadv.1601650
– ident: ref10/cit10
  doi: 10.1126/science.1228604
– ident: ref16/cit16
  doi: 10.1021/acs.jpclett.5b01555
– ident: ref60/cit60
  doi: 10.1021/acs.jpclett.5b00968
– ident: ref6/cit6
  doi: 10.1016/0031-8914(51)90069-9
– ident: ref1/cit1
  doi: 10.1002/anie.201309368
– ident: ref89/cit89
  doi: 10.1107/S0021889811001609
– ident: ref69/cit69
  doi: 10.1021/acs.chemmater.5b04143
– ident: ref36/cit36
  doi: 10.1039/C6CP02917E
– ident: ref19/cit19
  doi: 10.1002/anie.201609538
– ident: ref64/cit64
  doi: 10.1021/acsenergylett.7b00591
– ident: ref38/cit38
  doi: 10.1021/acs.chemmater.6b00968
– ident: ref98/cit98
  doi: 10.1103/PhysRevB.50.17953
– ident: ref3/cit3
  doi: 10.1021/acs.chemrev.5b00715
– ident: ref39/cit39
  doi: 10.1038/srep21687
– ident: ref90/cit90
  doi: 10.1088/0953-8984/19/33/335219
– volume: 33
  start-page: 1443
  year: 1978
  ident: ref12/cit12
  publication-title: Z. Naturforsch. B Chem. Sci.
  doi: 10.1515/znb-1978-1214
– ident: ref8/cit8
  doi: 10.1103/PhysRevB.49.4993
– ident: ref70/cit70
  doi: 10.1021/acs.jpcc.7b00596
– ident: ref55/cit55
  doi: 10.1021/acsenergylett.6b00381
– ident: ref56/cit56
  doi: 10.1039/C7SC01429E
– ident: ref96/cit96
  doi: 10.1103/PhysRevB.54.11169
– ident: ref2/cit2
  doi: 10.1021/acs.accounts.5b00229
– ident: ref78/cit78
  doi: 10.1107/S0108768197014821
– ident: ref95/cit95
  doi: 10.1103/PhysRevB.49.14251
– ident: ref46/cit46
  doi: 10.1038/srep35685
– ident: ref54/cit54
  doi: 10.1002/adma.201603072
– ident: ref17/cit17
  doi: 10.1016/0022-3697(92)90121-S
– ident: ref51/cit51
  doi: 10.1021/jp508880y
– ident: ref43/cit43
  doi: 10.1039/C6TA06607K
– ident: ref84/cit84
  doi: 10.1006/jmra.1995.0010
– ident: ref21/cit21
  doi: 10.1103/PhysRevMaterials.1.042401
– ident: ref82/cit82
  doi: 10.1146/annurev-matsci-070616-124152
– ident: ref24/cit24
  doi: 10.1038/ncomms8124
– ident: ref50/cit50
  doi: 10.1073/pnas.1405780111
– ident: ref100/cit100
  doi: 10.1103/PhysRevLett.100.136406
– ident: ref59/cit59
  doi: 10.1039/C7SC01590A
– ident: ref81/cit81
  doi: 10.1038/420131a
– ident: ref45/cit45
  doi: 10.1039/C7CC00995J
– ident: ref20/cit20
  doi: 10.1002/aenm.201700600
– ident: ref68/cit68
  doi: 10.1073/pnas.1102079108
– ident: ref31/cit31
  doi: 10.1039/C6CP02947G
– ident: ref87/cit87
  doi: 10.5281/zenodo.11813
– ident: ref7/cit7
  doi: 10.1063/1.1711903
– ident: ref33/cit33
  doi: 10.1021/acs.jpclett.6b01199
– ident: ref25/cit25
  doi: 10.1021/acs.jpclett.6b01822
– ident: ref73/cit73
  doi: 10.1021/jacs.7b04930
– ident: ref47/cit47
  doi: 10.1021/nl500390f
– ident: ref4/cit4
  doi: 10.1021/acs.inorgchem.6b01539
– ident: ref13/cit13
  doi: 10.1016/0022-3697(90)90021-7
– ident: ref23/cit23
  doi: 10.1039/C5CP05348J
– ident: ref49/cit49
  doi: 10.1126/science.aaf9570
– ident: ref22/cit22
  doi: 10.1103/PhysRevB.92.100303
– ident: ref41/cit41
  doi: 10.1039/C4CC09944C
– ident: ref97/cit97
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref66/cit66
  doi: 10.1246/bcsj.65.2264
– ident: ref62/cit62
  doi: 10.1021/acsenergylett.6b00402
– ident: ref71/cit71
  doi: 10.1126/science.267.5206.1924
– ident: ref61/cit61
  doi: 10.1039/C5TA06398A
– ident: ref40/cit40
  doi: 10.1021/ic401215x
– ident: ref35/cit35
  doi: 10.1039/C5NR06386H
– ident: ref77/cit77
  doi: 10.1107/S0108768110014734
– ident: ref32/cit32
  doi: 10.1021/acs.jpclett.6b02542
– ident: ref28/cit28
  doi: 10.1139/v90-063
– ident: ref26/cit26
  doi: 10.1038/ncomms16086
– ident: ref99/cit99
  doi: 10.1103/PhysRevB.59.1758
– volume-title: The plastically crystalline state: Orientationally disordered crystals
  year: 1979
  ident: ref5/cit5
– ident: ref101/cit101
  doi: 10.1103/PhysRevB.13.5188
– ident: ref42/cit42
  doi: 10.1021/acs.jpclett.5b01432
– ident: ref57/cit57
  doi: 10.1103/PhysRevLett.118.136001
– ident: ref86/cit86
  doi: 10.1016/j.jmr.2015.12.012
– ident: ref88/cit88
  doi: 10.1016/j.nimb.2012.05.037
– ident: ref58/cit58
  doi: 10.1021/acs.jpclett.7b00807
SSID ssj0004281
Score 2.58438
Snippet The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead...
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI ) and formamidinium lead...
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI₃) and formamidinium lead...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16875
SubjectTerms ambient temperature
calorimetry
cations
freezing
hydrogen bonding
iodides
lead
neutron diffraction
neutrons
nuclear magnetic resonance spectroscopy
photovoltaic cells
solids
Title Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites
URI http://dx.doi.org/10.1021/jacs.7b09536
https://www.ncbi.nlm.nih.gov/pubmed/29094934
https://www.proquest.com/docview/1959324340
https://www.proquest.com/docview/2116904195
https://www.osti.gov/biblio/1411781
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5aH_TF-6hViaBPsmVz7PUo1VqFqniAb0uSTaAou9LdCvrrneyhWCn6ukxgkpkh821mvkHoiFApwDe4wzw3cbgkvhOGTDskkYAOXEVkSbs4vPYHj_zqyXv6LpCdfsGnlh9I5d1AWl40fx4tUB_i16ZAvfvv_kcakibNDUKf1QXu06vtBaTyHxdQK4NAmp1clpdMfwVdNK06VW3Jc3dSyK76-M3c-If-q2i5zjPxaeUYa2hOp-tosdeMd9tAN3VJBgidVVPpc5wZPGzG5eI7nY1HdWdSikcpHrzb7i5sh3LiyywZJRrf6nH2ltsfwPkmeuyfP_QGTj1dwREQtIWjgkREmjBA00QxKryQBr5yQ8UMgCbXJEaKQCimpBbGmMAwJsGuhnBKhAurtlArzVK9g3CiI6KkojSShjOQZwCUhOeFkeKJ0EEbHcIhxHV05HH58E0BeNiv9dG00UljlljV9OR2SsbLDOnjL-nXipZjhlzHWjiGdMJy4ipbPKQKwDuEBCEBvRrDx3D69qlEpDqbgIaWr5lyxt3ZMgCd_cjlINpG25XXfOlCI4DNEeO7_9h5By1RmysQ4lC6h1rFeKL3IdMp5EHp5p8ezvfC
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R5UAvBfqgy9NI9FQFxY-8jmgBLZRdUAsSt8h2bGkFSqpNthL8esZZZ1GRVuJqjaOxZyzPF898A3BEmZLoGyLgUVgEQtE4SFNuAlooRAehpqqlXRyN4-GduLyP7n2xuquFQSVq_FLdPuK_sgs4miAcTJSjR4s_wCrGIcw59Mngz2sZJEtpF-0macx9nvvb2e4e0vV_91CvwvO0PMZs75rzdRgvtGxTTB6OZ4061s9vCBzfvYwN-OSjTnIyd5NNWDHlZ1gbdM3evsC1T9BAodN5j_qaVJaMuua55LepphNfp1SSSUmGT67Wi7gWneSiKiaFITdmWv2r3e_g-ivcnZ_dDoaB77UQSDzCTaCTQmaGcsTWVHMmo5QlsQ5TzS1CqNAWVslEaq6VkdbaxHKu0MqWCkZliLO-Qa-sSvMdSGEyqpVmLFNWcJTnCJtkFKWZFoU0SR8OcRNyf1bqvH0GZwhD3Kjfmj787KyTa09W7npmPC6R_rGQ_jsn6Vgit-MMnWNw4RhytUsl0g2iH0qTlKJenf1z3H33cCJLU81QQ8fezAQX4XIZBNJxFgoU7cPW3HkWurAMQXTGxfY7Vn4Aa8Pb0VV-dTH-tQMfmYsiKA0Y24VeM52ZPYyBGrXfev4LMNYAMg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sFVpftF_qaW230D6VSPYjX49yepxttWIr-Bb2Ew4lkUtOsH99Z3ObKxUO9DWZDbO7s-z8MjO_AfhMmZJoGyLiSWwioWga5Tm3ETUK0UGsqepoF0_P0sml-HaVXK0B7WthUIkGv9R0QXx_qm-NCwwDnioIX2TKU6Slz-C5j9h5oz4c_fpXCsly2nu8WZ7ykOv-cLS_i3Tz3100qPFMrfYzu_tmvAkXS027NJPrg3mrDvSfBySOT5rKK9gI3ic5XJjLa1iz1Rt4Oeqbvr2FnyFRA4WOFr3qG1I7cto30SUXtp5NQ71SRaYVmdz7mi_iW3WSk9pMjSXndlbfNf63cPMOLsfHv0eTKPRciCQe5TbSmZGFpRwxNtWcySRnWarjXHOHUCp2ximZSc21stI5lznOFe62o4JRGeOoLRhUdWV3gBhbUK00Y4VygqM8R_gkkyQvtDDSZkP4hItQhjPTlF04nCEc8U_D0gzha79DpQ6k5b53xs0K6S9L6dsFWccKuT2_2SU6GZ4pV_uUIt0iCqI0yynq1dtAiavvAyiysvUcNfQszkxwEa-WQUCdFrFA0SFsLwxoqQsrEEwXXOw-YuYf4cX50bj8cXL2fQ_WmXcmKI0Yew-Ddja3--gKtepDZ_x_AX7pArU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Dynamics+of+Molecular+Reorientation+in+Hybrid+Lead+Iodide+Perovskites&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fabini%2C+Douglas+H&rft.au=Siaw%2C+Ting+Ann&rft.au=Stoumpos%2C+Constantinos+C&rft.au=Laurita%2C+Geneva&rft.date=2017-11-22&rft.issn=1520-5126&rft.volume=139&rft.issue=46+p.16875-16884&rft.spage=16875&rft.epage=16884&rft_id=info:doi/10.1021%2Fjacs.7b09536&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon