Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites
The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 46; pp. 16875 - 16884 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.11.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials. |
---|---|
AbstractList | The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI
) and formamidinium lead iodide (FAPbI
), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI
between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI
are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI
produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials. The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials. The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials.The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead iodide (FAPbI3), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI3 between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI3 are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule-cage interaction in FAPbI3 produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom-atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials. The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI₃) and formamidinium lead iodide (FAPbI₃), has been an enigmatic subject of great interest. Beyond aiding in the ease of processing of thin films for photovoltaic devices, there have been suggestions that many of the remarkable properties of the halide perovskites can be attributed to the dipolar nature and the dynamic behavior of these cations. Here, we establish the dynamics of the molecular cations in FAPbI₃ between 4 K and 340 K and the nature of their interaction with the surrounding inorganic cage using a combination of solid state nuclear magnetic resonance and dielectric spectroscopies, neutron scattering, calorimetry, and ab initio calculations. Detailed comparisons with the reported temperature dependence of the dynamics of MAPbI₃ are then carried out which reveal the molecular ions in the two different compounds to exhibit very similar rotation rates (≈8 ps) at room temperature, despite differences in other temperature regimes. For FA, rotation about the N···N axis, which reorients the molecular dipole, is the dominant motion in all phases, with an activation barrier of ≈21 meV in the ambient phase, compared to ≈110 meV for the analogous dipole reorientation of MA. Geometrical frustration of the molecule–cage interaction in FAPbI₃ produces a disordered γ-phase and subsequent glassy freezing at yet lower temperatures. Hydrogen bonds suggested by atom–atom distances from neutron total scattering experiments imply a substantial role for the molecules in directing structure and dictating properties. The temperature dependence of reorientation of the dipolar molecular cations systematically described here can clarify various hypotheses including those of large-polaron charge transport and fugitive electron spin polarization that have been invoked in the context of these unusual materials. |
Author | Han, Songi Stoumpos, Constantinos C Olds, Daniel Fabini, Douglas H Page, Katharine Hu, Jerry G Laurita, Geneva Siaw, Ting Ann Kanatzidis, Mercouri G Seshadri, Ram |
AuthorAffiliation | Neutron Scattering Division Materials Department and Materials Research Laboratory Department of Chemistry and Biochemistry Northwestern University Department of Chemical Engineering University of California Department of Chemistry and Argonne-Northwestern Solar Energy Research Center Bates College |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Materials Department and Materials Research Laboratory – name: University of California – name: Bates College – name: Department of Chemistry and Argonne-Northwestern Solar Energy Research Center – name: Neutron Scattering Division – name: Northwestern University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Douglas H orcidid: 0000-0002-2391-1507 surname: Fabini fullname: Fabini, Douglas H organization: University of California – sequence: 2 givenname: Ting Ann surname: Siaw fullname: Siaw, Ting Ann organization: University of California – sequence: 3 givenname: Constantinos C orcidid: 0000-0001-8396-9578 surname: Stoumpos fullname: Stoumpos, Constantinos C organization: Northwestern University – sequence: 4 givenname: Geneva orcidid: 0000-0001-9577-150X surname: Laurita fullname: Laurita, Geneva organization: Bates College – sequence: 5 givenname: Daniel orcidid: 0000-0002-4611-4113 surname: Olds fullname: Olds, Daniel organization: Neutron Scattering Division – sequence: 6 givenname: Katharine orcidid: 0000-0002-9071-3383 surname: Page fullname: Page, Katharine organization: Neutron Scattering Division – sequence: 7 givenname: Jerry G surname: Hu fullname: Hu, Jerry G organization: University of California – sequence: 8 givenname: Mercouri G orcidid: 0000-0003-2037-4168 surname: Kanatzidis fullname: Kanatzidis, Mercouri G organization: Northwestern University – sequence: 9 givenname: Songi surname: Han fullname: Han, Songi organization: University of California – sequence: 10 givenname: Ram orcidid: 0000-0001-5858-4027 surname: Seshadri fullname: Seshadri, Ram email: seshadri@mrl.ucsb.edu organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29094934$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1411781$$D View this record in Osti.gov |
BookMark | eNqF0c9vFCEUB3Biauy2evNsiCcPTuUB8-toWrVN1tQYeyZvmEdknYUKM032v5d1Vw9G44lAPg8e33fGTkIMxNhzEBcgJLzZoM0X7SD6WjWP2ApqKaoaZHPCVkIIWbVdo07ZWc6bstWygyfsVPai173SK3Z7F_wDpYwTv9oF3HqbeXT8Y5zILhMm_pli8hRmnH0M3Ad-vRuSH_macOQ3cfQj8U-U4kP-5mfKT9ljh1OmZ8f1nN29f_fl8rpa3364uXy7rlB33VzZdsSeQNGgwCqJdSfbxorOKqf7WrjRDdiiVXYgdM61TqlhQOFAS0BRqs7Zy8O9Mc_eZFvetl9tDIHsbEADtB0U9OqA7lP8vlCezdZnS9OEgeKSjQRoeqGhRPc_WkyvpFZaFPriSJdhS6O5T36LaWd-hVrA6wOwKeacyP0mIMx-ZmY_M3OcWeHyD15-8zPuOaGf_lV07Hd_uIlLCiXtv9MfdpqnsA |
CitedBy_id | crossref_primary_10_1016_j_jallcom_2019_153414 crossref_primary_10_1021_acs_langmuir_4c05162 crossref_primary_10_1039_D2TA09069D crossref_primary_10_1016_j_jssc_2020_121477 crossref_primary_10_1021_acs_jpcc_1c01171 crossref_primary_10_1021_acs_jpclett_1c00087 crossref_primary_10_1021_acsenergylett_9b01291 crossref_primary_10_1021_acs_jpclett_0c00673 crossref_primary_10_1021_acs_chemmater_1c00885 crossref_primary_10_1021_acs_jpclett_0c02688 crossref_primary_10_1021_acsami_4c12762 crossref_primary_10_1088_2516_1075_ad5898 crossref_primary_10_1063_1674_0068_cjcp2006109 crossref_primary_10_1021_acs_jpca_7b11558 crossref_primary_10_1021_acs_jpclett_9b01855 crossref_primary_10_1016_j_mtcomm_2024_110028 crossref_primary_10_1021_acs_chemrev_1c00237 crossref_primary_10_1021_acs_jpcc_9b02140 crossref_primary_10_3390_polym13091440 crossref_primary_10_1557_mrs_2020_142 crossref_primary_10_1002_adma_201802486 crossref_primary_10_1002_adom_202100549 crossref_primary_10_1021_acs_chemmater_9b00648 crossref_primary_10_1016_j_mtphys_2021_100459 crossref_primary_10_1021_acsenergylett_8b01227 crossref_primary_10_1039_D2TA05207E crossref_primary_10_1103_PhysRevB_110_024301 crossref_primary_10_3390_e24020145 crossref_primary_10_1002_adma_201705801 crossref_primary_10_1021_acsami_2c20648 crossref_primary_10_1107_S2053273318003224 crossref_primary_10_1002_adfm_202006243 crossref_primary_10_1021_acs_chemmater_0c03958 crossref_primary_10_1103_PhysRevB_110_045142 crossref_primary_10_1021_jacs_7b12860 crossref_primary_10_1103_PhysRevMaterials_2_065404 crossref_primary_10_1016_j_jallcom_2020_158210 crossref_primary_10_1021_acs_nanolett_2c03403 crossref_primary_10_3390_nano11051131 crossref_primary_10_1021_acs_chemmater_8b00862 crossref_primary_10_1021_acs_jctc_0c01261 crossref_primary_10_1002_aesr_202200160 crossref_primary_10_1021_acs_chemmater_3c01740 crossref_primary_10_1007_s40042_022_00505_y crossref_primary_10_1021_acs_chemmater_4c02043 crossref_primary_10_1002_adma_201707312 crossref_primary_10_1021_acs_chemmater_9b04032 crossref_primary_10_1039_D1TA03572J crossref_primary_10_1103_PhysRevB_98_094105 crossref_primary_10_1021_acs_jpcc_1c06835 crossref_primary_10_1039_D3TA05315F crossref_primary_10_1021_jacs_2c10149 crossref_primary_10_1021_acs_jpclett_3c02498 crossref_primary_10_1007_s41061_021_00361_7 crossref_primary_10_1021_acs_jpclett_8b02227 crossref_primary_10_1021_jacs_9b13396 crossref_primary_10_1039_D3TA07925B crossref_primary_10_1039_D0SE00382D crossref_primary_10_1021_acsomega_2c04503 crossref_primary_10_1038_s41566_019_0546_8 crossref_primary_10_3390_nano11082024 crossref_primary_10_1021_acscentsci_9b00367 crossref_primary_10_1038_s41598_021_99621_1 crossref_primary_10_1002_chem_201806032 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1021_acs_jpclett_2c02313 crossref_primary_10_1038_s41467_018_05531_8 crossref_primary_10_1063_5_0001908 crossref_primary_10_1021_acs_jpclett_2c03247 crossref_primary_10_1021_acs_chemmater_4c01413 crossref_primary_10_1088_0256_307X_41_2_026301 crossref_primary_10_1021_acs_chemmater_8b01851 crossref_primary_10_1039_D0MA00643B crossref_primary_10_1021_acs_chemmater_4c01498 crossref_primary_10_1021_acs_jpclett_8b02811 crossref_primary_10_1021_acs_chemmater_8b03755 crossref_primary_10_1039_C8CC09236B crossref_primary_10_1021_jacs_9b07381 crossref_primary_10_1021_acsmaterialslett_9b00209 crossref_primary_10_1063_5_0159708 crossref_primary_10_1021_acs_inorgchem_9b03214 crossref_primary_10_1039_D4DT00116H crossref_primary_10_1039_D1TC04181A crossref_primary_10_1146_annurev_matsci_080819_012808 crossref_primary_10_1038_s41467_022_29207_6 crossref_primary_10_1002_er_8008 crossref_primary_10_1016_j_matdes_2022_110951 crossref_primary_10_1038_s41598_018_36218_1 crossref_primary_10_1016_j_mtadv_2024_100534 crossref_primary_10_1021_acs_jpcc_1c03169 crossref_primary_10_1002_aenm_202001349 crossref_primary_10_1021_acs_jpcc_1c03280 crossref_primary_10_1039_D1MA00076D crossref_primary_10_1107_S160057671901166X crossref_primary_10_1088_2399_6528_ab9c2e crossref_primary_10_1021_acs_langmuir_4c02782 crossref_primary_10_1103_PhysRevResearch_5_043016 crossref_primary_10_1021_acs_jpclett_9b02353 crossref_primary_10_1021_jacs_0c07338 crossref_primary_10_1021_acs_jpclett_9b02750 crossref_primary_10_1039_C8CE00702K crossref_primary_10_1016_j_cjsc_2023_100023 crossref_primary_10_1021_acs_jpcc_1c01814 crossref_primary_10_1021_acs_jpclett_3c00185 crossref_primary_10_1039_C7TC05572B crossref_primary_10_1039_D4TA02833C crossref_primary_10_1103_PhysRevLett_134_096302 crossref_primary_10_1021_acsenergylett_2c00140 crossref_primary_10_1002_adom_202301342 crossref_primary_10_1038_s41557_020_0490_8 crossref_primary_10_1002_adfm_202301663 crossref_primary_10_1039_D2TC04529J crossref_primary_10_1038_s41570_021_00309_x crossref_primary_10_1016_j_ssnmr_2019_03_005 crossref_primary_10_1063_5_0076738 crossref_primary_10_1021_acs_jpclett_8b01628 crossref_primary_10_1021_acs_chemmater_7b04017 crossref_primary_10_1021_acs_jpclett_1c00616 crossref_primary_10_1038_s41427_020_00249_w crossref_primary_10_1039_D2TC00559J crossref_primary_10_1016_j_physb_2020_412703 crossref_primary_10_1021_acs_chemmater_0c01862 crossref_primary_10_1021_acs_inorgchem_2c00351 crossref_primary_10_1038_s41598_022_14452_y crossref_primary_10_1002_aenm_201901350 crossref_primary_10_1021_acs_chemrev_3c00532 crossref_primary_10_1021_acs_jpcc_2c07835 crossref_primary_10_1039_C8QI00144H crossref_primary_10_1039_D0TC02038A crossref_primary_10_1002_crat_202400228 crossref_primary_10_1016_j_jmr_2022_107351 crossref_primary_10_1021_acs_chemmater_0c04500 crossref_primary_10_1021_acs_jpcc_9b00555 crossref_primary_10_1021_acs_jpcc_9b02736 crossref_primary_10_1038_s41467_024_53698_0 crossref_primary_10_1021_jacs_2c05316 crossref_primary_10_1039_C8EE03051K crossref_primary_10_1021_acs_jpcc_0c11289 crossref_primary_10_1021_acs_jpclett_2c00454 crossref_primary_10_1021_acs_inorgchem_8b01597 crossref_primary_10_1021_acs_jpcc_8b00602 |
Cites_doi | 10.1021/acs.jpclett.6b00094 10.1103/PhysRev.73.679 10.1021/jacs.5b01025 10.1515/zna-1991-0305 10.1021/acs.jpcc.6b03570 10.1016/0038-1098(85)90959-7 10.1063/1.453467 10.1021/jacs.6b06287 10.1039/f19757100980 10.1039/b201611g 10.1021/acs.jpclett.5b02821 10.1021/acs.chemmater.6b01874 10.1107/S0021889801002242 10.1021/ja809598r 10.1021/acs.nanolett.5b01854 10.1143/JPSJ.66.1508 10.1107/S0021889811038970 10.1021/acs.jpclett.6b00002 10.1103/PhysRevB.47.558 10.1039/C5EE03874J 10.1080/01411590290029854 10.1021/acs.chemmater.6b05372 10.1021/acs.jpclett.5b02462 10.1038/nphoton.2014.284 10.1016/j.jmr.2012.05.017 10.1039/C5CC00979K 10.1126/sciadv.1601650 10.1126/science.1228604 10.1021/acs.jpclett.5b01555 10.1021/acs.jpclett.5b00968 10.1016/0031-8914(51)90069-9 10.1002/anie.201309368 10.1107/S0021889811001609 10.1021/acs.chemmater.5b04143 10.1039/C6CP02917E 10.1002/anie.201609538 10.1021/acsenergylett.7b00591 10.1021/acs.chemmater.6b00968 10.1103/PhysRevB.50.17953 10.1021/acs.chemrev.5b00715 10.1038/srep21687 10.1088/0953-8984/19/33/335219 10.1515/znb-1978-1214 10.1103/PhysRevB.49.4993 10.1021/acs.jpcc.7b00596 10.1021/acsenergylett.6b00381 10.1039/C7SC01429E 10.1103/PhysRevB.54.11169 10.1021/acs.accounts.5b00229 10.1107/S0108768197014821 10.1103/PhysRevB.49.14251 10.1038/srep35685 10.1002/adma.201603072 10.1016/0022-3697(92)90121-S 10.1021/jp508880y 10.1039/C6TA06607K 10.1006/jmra.1995.0010 10.1103/PhysRevMaterials.1.042401 10.1146/annurev-matsci-070616-124152 10.1038/ncomms8124 10.1073/pnas.1405780111 10.1103/PhysRevLett.100.136406 10.1039/C7SC01590A 10.1038/420131a 10.1039/C7CC00995J 10.1002/aenm.201700600 10.1073/pnas.1102079108 10.1039/C6CP02947G 10.5281/zenodo.11813 10.1063/1.1711903 10.1021/acs.jpclett.6b01199 10.1021/acs.jpclett.6b01822 10.1021/jacs.7b04930 10.1021/nl500390f 10.1021/acs.inorgchem.6b01539 10.1016/0022-3697(90)90021-7 10.1039/C5CP05348J 10.1126/science.aaf9570 10.1103/PhysRevB.92.100303 10.1039/C4CC09944C 10.1016/0927-0256(96)00008-0 10.1246/bcsj.65.2264 10.1021/acsenergylett.6b00402 10.1126/science.267.5206.1924 10.1039/C5TA06398A 10.1021/ic401215x 10.1039/C5NR06386H 10.1107/S0108768110014734 10.1021/acs.jpclett.6b02542 10.1139/v90-063 10.1038/ncomms16086 10.1103/PhysRevB.59.1758 10.1103/PhysRevB.13.5188 10.1021/acs.jpclett.5b01432 10.1103/PhysRevLett.118.136001 10.1016/j.jmr.2015.12.012 10.1016/j.nimb.2012.05.037 10.1021/acs.jpclett.7b00807 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.7b09536 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 16884 |
ExternalDocumentID | 1411781 29094934 10_1021_jacs_7b09536 c169338229 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM 7X8 7S9 L.6 ADOJD OTOTI |
ID | FETCH-LOGICAL-a488t-c7da9e13eb31c32a58276c08c3f4950fdfba7ac3cbeafff7f33bba0f1421a0eb3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Mon Nov 25 02:36:44 EST 2024 Fri Jul 11 07:16:37 EDT 2025 Fri Jul 11 15:14:08 EDT 2025 Thu Apr 03 07:05:57 EDT 2025 Tue Jul 01 03:21:23 EDT 2025 Thu Apr 24 23:03:13 EDT 2025 Thu Aug 27 13:50:14 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-c7da9e13eb31c32a58276c08c3f4950fdfba7ac3cbeafff7f33bba0f1421a0eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0001-8396-9578 0000-0002-2391-1507 0000-0001-9577-150X 0000-0003-2037-4168 0000-0002-9071-3383 0000-0001-5858-4027 0000-0002-4611-4113 0000000223911507 0000000290713383 000000019577150X 0000000158584027 0000000246114113 0000000183969578 0000000320374168 |
OpenAccessLink | https://www.osti.gov/biblio/1599744 |
PMID | 29094934 |
PQID | 1959324340 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | osti_scitechconnect_1411781 proquest_miscellaneous_2116904195 proquest_miscellaneous_1959324340 pubmed_primary_29094934 crossref_primary_10_1021_jacs_7b09536 crossref_citationtrail_10_1021_jacs_7b09536 acs_journals_10_1021_jacs_7b09536 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-11-22 |
PublicationDateYYYYMMDD | 2017-11-22 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref45/cit45 ref99/cit99 ref3/cit3 ref81/cit81 ref16/cit16 ref52/cit52 ref23/cit23 ref2/cit2 ref77/cit77 ref71/cit71 ref20/cit20 ref48/cit48 ref74/cit74 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref13/cit13 ref61/cit61 ref67/cit67 ref38/cit38 ref90/cit90 ref64/cit64 ref54/cit54 ref6/cit6 ref18/cit18 ref97/cit97 ref101/cit101 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 Sherwood J. N. (ref5/cit5) 1979 ref32/cit32 ref39/cit39 ref43/cit43 ref80/cit80 ref28/cit28 ref55/cit55 ref66/cit66 ref22/cit22 ref33/cit33 ref87/cit87 Weber D. (ref12/cit12) 1978; 33 ref44/cit44 ref70/cit70 ref98/cit98 ref9/cit9 ref27/cit27 ref63/cit63 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref53/cit53 ref21/cit21 ref46/cit46 ref49/cit49 ref75/cit75 ref24/cit24 ref50/cit50 ref78/cit78 ref36/cit36 Larson A. C. (ref91/cit91) 2000 ref83/cit83 ref79/cit79 ref100/cit100 ref25/cit25 ref72/cit72 Owens F. J. (ref65/cit65) 1979 ref14/cit14 ref57/cit57 ref51/cit51 ref40/cit40 ref68/cit68 ref94/cit94 ref26/cit26 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref4/cit4 ref30/cit30 ref47/cit47 ref84/cit84 ref1/cit1 ref7/cit7 |
References_xml | – ident: ref80/cit80 doi: 10.1021/acs.jpclett.6b00094 – ident: ref72/cit72 doi: 10.1103/PhysRev.73.679 – ident: ref52/cit52 doi: 10.1021/jacs.5b01025 – ident: ref29/cit29 doi: 10.1515/zna-1991-0305 – ident: ref37/cit37 doi: 10.1021/acs.jpcc.6b03570 – ident: ref27/cit27 doi: 10.1016/0038-1098(85)90959-7 – ident: ref15/cit15 doi: 10.1063/1.453467 – volume-title: Magnetic resonance of phase transitions year: 1979 ident: ref65/cit65 – ident: ref53/cit53 doi: 10.1021/jacs.6b06287 – ident: ref75/cit75 doi: 10.1039/f19757100980 – ident: ref76/cit76 doi: 10.1039/b201611g – ident: ref14/cit14 doi: 10.1021/acs.jpclett.5b02821 – ident: ref30/cit30 doi: 10.1021/acs.chemmater.6b01874 – ident: ref92/cit92 doi: 10.1107/S0021889801002242 – start-page: 86 year: 2000 ident: ref91/cit91 publication-title: Los Alamos Natl. Lab. Rep. LAUR – ident: ref9/cit9 doi: 10.1021/ja809598r – ident: ref83/cit83 doi: 10.1021/acs.nanolett.5b01854 – ident: ref18/cit18 doi: 10.1143/JPSJ.66.1508 – ident: ref93/cit93 doi: 10.1107/S0021889811038970 – ident: ref63/cit63 doi: 10.1021/acs.jpclett.6b00002 – ident: ref94/cit94 doi: 10.1103/PhysRevB.47.558 – ident: ref11/cit11 doi: 10.1039/C5EE03874J – ident: ref67/cit67 doi: 10.1080/01411590290029854 – ident: ref79/cit79 doi: 10.1021/acs.chemmater.6b05372 – ident: ref48/cit48 doi: 10.1021/acs.jpclett.5b02462 – ident: ref74/cit74 doi: 10.1038/nphoton.2014.284 – ident: ref85/cit85 doi: 10.1016/j.jmr.2012.05.017 – ident: ref34/cit34 doi: 10.1039/C5CC00979K – ident: ref44/cit44 doi: 10.1126/sciadv.1601650 – ident: ref10/cit10 doi: 10.1126/science.1228604 – ident: ref16/cit16 doi: 10.1021/acs.jpclett.5b01555 – ident: ref60/cit60 doi: 10.1021/acs.jpclett.5b00968 – ident: ref6/cit6 doi: 10.1016/0031-8914(51)90069-9 – ident: ref1/cit1 doi: 10.1002/anie.201309368 – ident: ref89/cit89 doi: 10.1107/S0021889811001609 – ident: ref69/cit69 doi: 10.1021/acs.chemmater.5b04143 – ident: ref36/cit36 doi: 10.1039/C6CP02917E – ident: ref19/cit19 doi: 10.1002/anie.201609538 – ident: ref64/cit64 doi: 10.1021/acsenergylett.7b00591 – ident: ref38/cit38 doi: 10.1021/acs.chemmater.6b00968 – ident: ref98/cit98 doi: 10.1103/PhysRevB.50.17953 – ident: ref3/cit3 doi: 10.1021/acs.chemrev.5b00715 – ident: ref39/cit39 doi: 10.1038/srep21687 – ident: ref90/cit90 doi: 10.1088/0953-8984/19/33/335219 – volume: 33 start-page: 1443 year: 1978 ident: ref12/cit12 publication-title: Z. Naturforsch. B Chem. Sci. doi: 10.1515/znb-1978-1214 – ident: ref8/cit8 doi: 10.1103/PhysRevB.49.4993 – ident: ref70/cit70 doi: 10.1021/acs.jpcc.7b00596 – ident: ref55/cit55 doi: 10.1021/acsenergylett.6b00381 – ident: ref56/cit56 doi: 10.1039/C7SC01429E – ident: ref96/cit96 doi: 10.1103/PhysRevB.54.11169 – ident: ref2/cit2 doi: 10.1021/acs.accounts.5b00229 – ident: ref78/cit78 doi: 10.1107/S0108768197014821 – ident: ref95/cit95 doi: 10.1103/PhysRevB.49.14251 – ident: ref46/cit46 doi: 10.1038/srep35685 – ident: ref54/cit54 doi: 10.1002/adma.201603072 – ident: ref17/cit17 doi: 10.1016/0022-3697(92)90121-S – ident: ref51/cit51 doi: 10.1021/jp508880y – ident: ref43/cit43 doi: 10.1039/C6TA06607K – ident: ref84/cit84 doi: 10.1006/jmra.1995.0010 – ident: ref21/cit21 doi: 10.1103/PhysRevMaterials.1.042401 – ident: ref82/cit82 doi: 10.1146/annurev-matsci-070616-124152 – ident: ref24/cit24 doi: 10.1038/ncomms8124 – ident: ref50/cit50 doi: 10.1073/pnas.1405780111 – ident: ref100/cit100 doi: 10.1103/PhysRevLett.100.136406 – ident: ref59/cit59 doi: 10.1039/C7SC01590A – ident: ref81/cit81 doi: 10.1038/420131a – ident: ref45/cit45 doi: 10.1039/C7CC00995J – ident: ref20/cit20 doi: 10.1002/aenm.201700600 – ident: ref68/cit68 doi: 10.1073/pnas.1102079108 – ident: ref31/cit31 doi: 10.1039/C6CP02947G – ident: ref87/cit87 doi: 10.5281/zenodo.11813 – ident: ref7/cit7 doi: 10.1063/1.1711903 – ident: ref33/cit33 doi: 10.1021/acs.jpclett.6b01199 – ident: ref25/cit25 doi: 10.1021/acs.jpclett.6b01822 – ident: ref73/cit73 doi: 10.1021/jacs.7b04930 – ident: ref47/cit47 doi: 10.1021/nl500390f – ident: ref4/cit4 doi: 10.1021/acs.inorgchem.6b01539 – ident: ref13/cit13 doi: 10.1016/0022-3697(90)90021-7 – ident: ref23/cit23 doi: 10.1039/C5CP05348J – ident: ref49/cit49 doi: 10.1126/science.aaf9570 – ident: ref22/cit22 doi: 10.1103/PhysRevB.92.100303 – ident: ref41/cit41 doi: 10.1039/C4CC09944C – ident: ref97/cit97 doi: 10.1016/0927-0256(96)00008-0 – ident: ref66/cit66 doi: 10.1246/bcsj.65.2264 – ident: ref62/cit62 doi: 10.1021/acsenergylett.6b00402 – ident: ref71/cit71 doi: 10.1126/science.267.5206.1924 – ident: ref61/cit61 doi: 10.1039/C5TA06398A – ident: ref40/cit40 doi: 10.1021/ic401215x – ident: ref35/cit35 doi: 10.1039/C5NR06386H – ident: ref77/cit77 doi: 10.1107/S0108768110014734 – ident: ref32/cit32 doi: 10.1021/acs.jpclett.6b02542 – ident: ref28/cit28 doi: 10.1139/v90-063 – ident: ref26/cit26 doi: 10.1038/ncomms16086 – ident: ref99/cit99 doi: 10.1103/PhysRevB.59.1758 – volume-title: The plastically crystalline state: Orientationally disordered crystals year: 1979 ident: ref5/cit5 – ident: ref101/cit101 doi: 10.1103/PhysRevB.13.5188 – ident: ref42/cit42 doi: 10.1021/acs.jpclett.5b01432 – ident: ref57/cit57 doi: 10.1103/PhysRevLett.118.136001 – ident: ref86/cit86 doi: 10.1016/j.jmr.2015.12.012 – ident: ref88/cit88 doi: 10.1016/j.nimb.2012.05.037 – ident: ref58/cit58 doi: 10.1021/acs.jpclett.7b00807 |
SSID | ssj0004281 |
Score | 2.58438 |
Snippet | The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI3) and formamidinium lead... The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI ) and formamidinium lead... The role of organic molecular cations in the high-performance perovskite photovoltaic absorbers, methylammonium lead iodide (MAPbI₃) and formamidinium lead... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16875 |
SubjectTerms | ambient temperature calorimetry cations freezing hydrogen bonding iodides lead neutron diffraction neutrons nuclear magnetic resonance spectroscopy photovoltaic cells solids |
Title | Universal Dynamics of Molecular Reorientation in Hybrid Lead Iodide Perovskites |
URI | http://dx.doi.org/10.1021/jacs.7b09536 https://www.ncbi.nlm.nih.gov/pubmed/29094934 https://www.proquest.com/docview/1959324340 https://www.proquest.com/docview/2116904195 https://www.osti.gov/biblio/1411781 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEA5aH_TF-6hViaBPsmVz7PUo1VqFqniAb0uSTaAou9LdCvrrneyhWCn6ukxgkpkh821mvkHoiFApwDe4wzw3cbgkvhOGTDskkYAOXEVkSbs4vPYHj_zqyXv6LpCdfsGnlh9I5d1AWl40fx4tUB_i16ZAvfvv_kcakibNDUKf1QXu06vtBaTyHxdQK4NAmp1clpdMfwVdNK06VW3Jc3dSyK76-M3c-If-q2i5zjPxaeUYa2hOp-tosdeMd9tAN3VJBgidVVPpc5wZPGzG5eI7nY1HdWdSikcpHrzb7i5sh3LiyywZJRrf6nH2ltsfwPkmeuyfP_QGTj1dwREQtIWjgkREmjBA00QxKryQBr5yQ8UMgCbXJEaKQCimpBbGmMAwJsGuhnBKhAurtlArzVK9g3CiI6KkojSShjOQZwCUhOeFkeKJ0EEbHcIhxHV05HH58E0BeNiv9dG00UljlljV9OR2SsbLDOnjL-nXipZjhlzHWjiGdMJy4ipbPKQKwDuEBCEBvRrDx3D69qlEpDqbgIaWr5lyxt3ZMgCd_cjlINpG25XXfOlCI4DNEeO7_9h5By1RmysQ4lC6h1rFeKL3IdMp5EHp5p8ezvfC |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7R5UAvBfqgy9NI9FQFxY-8jmgBLZRdUAsSt8h2bGkFSqpNthL8esZZZ1GRVuJqjaOxZyzPF898A3BEmZLoGyLgUVgEQtE4SFNuAlooRAehpqqlXRyN4-GduLyP7n2xuquFQSVq_FLdPuK_sgs4miAcTJSjR4s_wCrGIcw59Mngz2sZJEtpF-0macx9nvvb2e4e0vV_91CvwvO0PMZs75rzdRgvtGxTTB6OZ4061s9vCBzfvYwN-OSjTnIyd5NNWDHlZ1gbdM3evsC1T9BAodN5j_qaVJaMuua55LepphNfp1SSSUmGT67Wi7gWneSiKiaFITdmWv2r3e_g-ivcnZ_dDoaB77UQSDzCTaCTQmaGcsTWVHMmo5QlsQ5TzS1CqNAWVslEaq6VkdbaxHKu0MqWCkZliLO-Qa-sSvMdSGEyqpVmLFNWcJTnCJtkFKWZFoU0SR8OcRNyf1bqvH0GZwhD3Kjfmj787KyTa09W7npmPC6R_rGQ_jsn6Vgit-MMnWNw4RhytUsl0g2iH0qTlKJenf1z3H33cCJLU81QQ8fezAQX4XIZBNJxFgoU7cPW3HkWurAMQXTGxfY7Vn4Aa8Pb0VV-dTH-tQMfmYsiKA0Y24VeM52ZPYyBGrXfev4LMNYAMg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_sFVpftF_qaW230D6VSPYjX49yepxttWIr-Bb2Ew4lkUtOsH99Z3ObKxUO9DWZDbO7s-z8MjO_AfhMmZJoGyLiSWwioWga5Tm3ETUK0UGsqepoF0_P0sml-HaVXK0B7WthUIkGv9R0QXx_qm-NCwwDnioIX2TKU6Slz-C5j9h5oz4c_fpXCsly2nu8WZ7ykOv-cLS_i3Tz3100qPFMrfYzu_tmvAkXS027NJPrg3mrDvSfBySOT5rKK9gI3ic5XJjLa1iz1Rt4Oeqbvr2FnyFRA4WOFr3qG1I7cto30SUXtp5NQ71SRaYVmdz7mi_iW3WSk9pMjSXndlbfNf63cPMOLsfHv0eTKPRciCQe5TbSmZGFpRwxNtWcySRnWarjXHOHUCp2ximZSc21stI5lznOFe62o4JRGeOoLRhUdWV3gBhbUK00Y4VygqM8R_gkkyQvtDDSZkP4hItQhjPTlF04nCEc8U_D0gzha79DpQ6k5b53xs0K6S9L6dsFWccKuT2_2SU6GZ4pV_uUIt0iCqI0yynq1dtAiavvAyiysvUcNfQszkxwEa-WQUCdFrFA0SFsLwxoqQsrEEwXXOw-YuYf4cX50bj8cXL2fQ_WmXcmKI0Yew-Ddja3--gKtepDZ_x_AX7pArU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Universal+Dynamics+of+Molecular+Reorientation+in+Hybrid+Lead+Iodide+Perovskites&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Fabini%2C+Douglas+H&rft.au=Siaw%2C+Ting+Ann&rft.au=Stoumpos%2C+Constantinos+C&rft.au=Laurita%2C+Geneva&rft.date=2017-11-22&rft.issn=1520-5126&rft.volume=139&rft.issue=46+p.16875-16884&rft.spage=16875&rft.epage=16884&rft_id=info:doi/10.1021%2Fjacs.7b09536&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |