MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells

Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV)...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 12; no. 5; p. e0148421
Main Authors Villalón-Letelier, Fernando, Brooks, Andrew G, Londrigan, Sarah L, Reading, Patrick C
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 26.10.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV.
AbstractList Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV.
Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV.
Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. IMPORTANCE The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV.
The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surfaces of infected cells, pointing to a distinct mechanism of antiviral activity.
The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surfaces of infected cells, pointing to a distinct mechanism of antiviral activity. Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. IMPORTANCE The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV.
Author Villalón-Letelier, Fernando
Brooks, Andrew G
Londrigan, Sarah L
Reading, Patrick C
Author_xml – sequence: 1
  givenname: Fernando
  surname: Villalón-Letelier
  fullname: Villalón-Letelier, Fernando
  organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
– sequence: 2
  givenname: Andrew G
  surname: Brooks
  fullname: Brooks, Andrew G
  organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
– sequence: 3
  givenname: Sarah L
  orcidid: 0000-0003-0989-4971
  surname: Londrigan
  fullname: Londrigan, Sarah L
  organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia
– sequence: 4
  givenname: Patrick C
  orcidid: 0000-0002-8860-5308
  surname: Reading
  fullname: Reading, Patrick C
  organization: WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34517760$$D View this record in MEDLINE/PubMed
BookMark eNp1kktv1DAUhSNUREvpki3yEiGl-Bk7G6RhKO1ILUjlsbUc53rqUSae2k5h-AP8bTKPVu0Cb3x179Fn3ePzsjjoQw9F8ZrgU0Koer_86MMpJlzxkpJnxRElApdSEHLwqD4sTlJa4PEwRhTDL4pDxgWRssJHxd-ryfX0QqFrSDl6mxOa9a4boP9j0AT99HHYdsBmf-fzGjVDRp8CJPQlbIpffYT50JkMG63p0Hm3tmEVQwbfo7Pfqwgp-dAjk1G-AfRtiM5YQMHtqdCiKXRdelU8d6ZLcLK_j4sfn8--Ty_Ky6_ns-nksjRcqVzWQCTmLQXjmrYSllvnVE2pda2rAGzFhOKkJpIy6apWGkMdY4aOU0YaSthxMdtx22AWehX90sS1DsbrbSPEuTYxe9uBlnI0THBWO8E5xlbVDVjVOOdoI5uaj6wPO9ZqaJbQWujzaMET6NNJ72_0PNxpJXglBB0Bb_eAGG6H8Qf00ic72mF6CEPSVEgqGJaKjdJyJ7UxpBTBPTxDsN5kQW-yoLdZ0Ns93-30Ji2pXoQh9qOt_xW_ebzIA_o-JuwfRNDAvA
CitedBy_id crossref_primary_10_1016_j_vetmic_2024_110164
crossref_primary_10_1128_jvi_00716_22
crossref_primary_10_1080_22221751_2022_2164742
crossref_primary_10_1038_s41598_024_63314_2
crossref_primary_10_3390_pathogens12060852
crossref_primary_10_1128_jvi_00419_22
crossref_primary_10_1016_j_ijbiomac_2024_133463
crossref_primary_10_1002_jmv_29445
crossref_primary_10_3390_cells13080698
crossref_primary_10_1128_jvi_01726_23
crossref_primary_10_3390_pathogens13020127
crossref_primary_10_3390_v14112549
crossref_primary_10_1371_journal_ppat_1011619
Cites_doi 10.1126/science.1110340
10.1016/j.celrep.2019.01.075
10.1128/JVI.01254-16
10.1371/journal.pone.0015132
10.1074/jbc.M700414200
10.1128/JVI.00537-16
10.3791/55570
10.1128/jvi.76.6.2912-2923.2002
10.1111/cmi.13170
10.1073/pnas.87.12.4485
10.1038/s41467-021-24724-2
10.1073/pnas.1114728109
10.4049/jimmunol.1102708
10.7554/eLife.57763
10.1074/jbc.AC118.005907
10.1016/s0264-410x(02)00268-2
10.1371/journal.ppat.1003701
10.1128/mBio.01916-18
10.1073/pnas.140129797
10.1128/mBio.03264-20
10.1016/s1074-7613(01)00213-8
10.1128/jvi.74.18.8709-8719.2000
10.1111/j.1462-5822.2012.01759.x
10.1128/JVI.02264-07
10.1083/jcb.200611063
10.1016/j.vaccine.2017.03.063
10.1093/intimm/9.12.1897
10.1038/nm.3956
10.1128/jvi.78.3.1109-1120.2004
10.1074/jbc.M111.256875
10.1016/j.virol.2010.12.003
10.1242/jcs.119909
10.1128/mBio.01882-20
10.1038/ncomms5816
10.1073/pnas.1205246109
10.1128/jvi.74.10.4634-4644.2000
10.1006/viro.1999.0134
10.4049/jimmunol.0901521
10.1128/mBio.00219-21
10.1016/j.nbt.2016.12.002
10.1073/pnas.0806213105
ContentType Journal Article
Copyright Copyright © 2021 Villalón-Letelier et al.
Copyright © 2021 Villalón-Letelier et al. 2021 Villalón-Letelier et al.
Copyright_xml – notice: Copyright © 2021 Villalón-Letelier et al.
– notice: Copyright © 2021 Villalón-Letelier et al. 2021 Villalón-Letelier et al.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1128/mBio.01484-21
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE



CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Goff, Stephen P
Editor_xml – sequence: 1
  givenname: Stephen P
  surname: Goff
  fullname: Goff, Stephen P
– sequence: 1
  givenname: Stephen P.
  surname: Goff
  fullname: Goff, Stephen P.
EndPage e0148421
ExternalDocumentID oai_doaj_org_article_770335439f54400c89bec8bfff2b7b94
10_1128_mBio_01484_21
mBio01484-21
34517760
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC)
  grantid: 1143154
  funderid: https://doi.org/10.13039/501100000925
– fundername: ;
  grantid: 1143154
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAUOK
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CGR
CUY
CVF
DIK
E3Z
EBS
ECM
EIF
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
M~E
NPM
O5R
O5S
O9-
OK1
P2P
PGMZT
RHF
RHI
RNS
RPM
RSF
-
0R
ADACO
BXI
HZ
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-a488t-9e1704d2eafbd65c4cff8922cfdf6eec635841917237f6d7aa2f33a2df631b213
IEDL.DBID RPM
ISSN 2150-7511
IngestDate Tue Oct 22 15:16:45 EDT 2024
Tue Sep 17 21:12:05 EDT 2024
Fri Oct 25 06:19:32 EDT 2024
Fri Dec 06 02:00:59 EST 2024
Tue Dec 28 13:59:22 EST 2021
Wed Oct 16 00:44:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords influenza
glycoproteins
RNA virus
ubiquitination
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-9e1704d2eafbd65c4cff8922cfdf6eec635841917237f6d7aa2f33a2df631b213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0989-4971
0000-0002-8860-5308
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546552/
PMID 34517760
PQID 2572530783
PQPubID 23479
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_770335439f54400c89bec8bfff2b7b94
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8546552
proquest_miscellaneous_2572530783
crossref_primary_10_1128_mBio_01484_21
asm2_journals_10_1128_mBio_01484_21
pubmed_primary_34517760
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Zhang, Y, Tada, T, Ozono, S, Kishigami, S, Fujita, H, Tokunaga, K (B10) 2020; 9
Cadwell, K, Coscoy, L (B25) 2008; 82
Morokuma, Y, Nakamura, N, Kato, A, Notoya, M, Yamamoto, Y, Sakai, Y, Fukuda, H, Yamashina, S, Hirata, Y, Hirose, S (B32) 2007; 282
Umthong, S, Lynch, B, Timilsina, U, Waxman, B, Ivey, EB, Stavrou, S (B9) 2021; 12
Bauer, J, Bakke, O, Morth, JP (B6) 2017; 38
Yu, C, Li, S, Zhang, X, Khan, I, Ahmad, I, Zhou, Y, Li, S, Shi, J, Wang, Y, Zheng, YH (B16) 2020; 11
Coscoy, L, Ganem, D (B3) 2000; 97
Leang, SK, Hurt, AC (B41) 2017; 2017
Bedi, S, Noda, T, Kawaoka, Y, Ono, A (B15) 2018; 9
Lun, CM, Waheed, AA, Majadly, A, Powell, N, Freed, EO (B8) 2021; 12
Fujita, H, Iwabu, Y, Tokunaga, K, Tanaka, Y (B20) 2013; 126
Hutchinson, EC, Charles, PD, Hester, SS, Thomas, B, Trudgian, D, Martinez-Alonso, M, Fodor, E (B31) 2014; 5
Ruigrok, RW, Barge, A, Durrer, P, Brunner, J, Ma, K, Whittaker, GR (B18) 2000; 267
Wang, X, Herr, RA, Chua, WJ, Lybarger, L, Wiertz, EJ, Hansen, TH (B26) 2007; 177
Leung, VKY, Carolan, LA, Worth, LJ, Harper, SA, Peck, H, Tilmanis, D, Laurie, KL, Slavin, MA, Sullivan, SG (B40) 2017; 35
Bartee, E, Mansouri, M, Hovey Nerenberg, BT, Gouveia, K, Fruh, K (B1) 2004; 78
Boyle, JS, Koniaras, C, Lew, AM (B39) 1997; 9
Iyengar, PV, Hirota, T, Hirose, S, Nakamura, N (B2) 2011; 286
Zhang, Y, Tada, T, Ozono, S, Yao, W, Tanaka, M, Yamaoka, S, Kishigami, S, Fujita, H, Tokunaga, K (B11) 2019; 294
Rossman, JS, Lamb, RA (B12) 2011; 411
Bartee, E, Eyster, CA, Viswanathan, K, Mansouri, M, Donaldson, JG, Fruh, K (B7) 2010; 5
Kumar, S, Barouch-Bentov, R, Xiao, F, Schor, S, Pu, S, Biquand, E, Lu, A, Lindenbach, BD, Jacob, Y, Demeret, C, Einav, S (B23) 2019; 26
Boname, JM, Stevenson, PG (B4) 2001; 15
Chen, R, Li, M, Zhang, Y, Zhou, Q, Shu, HB (B21) 2012; 109
Zhang, J, Pekosz, A, Lamb, RA (B19) 2000; 74
Tada, T, Zhang, Y, Koyama, T, Tobiume, M, Tsunetsugu-Yokota, Y, Yamaoka, S, Fujita, H, Tokunaga, K (B14) 2015; 21
Bourgeois-Daigneault, MC, Thibodeau, J (B34) 2012; 188
Herold, MJ, van den Brandt, J, Seibler, J, Reichardt, HM (B38) 2008; 105
Gorai, T, Goto, H, Noda, T, Watanabe, T, Kozuka-Hata, H, Oyama, M, Takano, R, Neumann, G, Watanabe, S, Kawaoka, Y (B29) 2012; 109
Anders, EM, Hartley, CA, Jackson, DC (B35) 1990; 87
Cadwell, K, Coscoy, L (B24) 2005; 309
He, J, Sun, E, Bujny, MV, Kim, D, Davidson, MW, Zhuang, X (B30) 2013; 9
Sun, X, Zeng, H, Kumar, A, Belser, JA, Maines, TR, Tumpey, TM (B13) 2016; 90
Hoffmann, E, Krauss, S, Perez, D, Webby, R, Webster, RG (B36) 2002; 20
Gillespie, L, Gerstenberg, K, Ana-Sosa-Batiz, F, Parsons, MS, Farrukee, R, Krabbe, M, Spann, K, Brooks, AG, Londrigan, SL, Reading, PC (B37) 2016; 90
Meischel, T, Villalon-Letelier, F, Saunders, PM, Reading, PC, Londrigan, SL (B27) 2020; 22
Guerin, JL, Gelfi, J, Boullier, S, Delverdier, M, Bellanger, FA, Bertagnoli, S, Drexler, I, Sutter, G, Messud-Petit, F (B5) 2002; 76
Ali, A, Avalos, RT, Ponimaskin, E, Nayak, DP (B17) 2000; 74
Demirov, D, Gabriel, G, Schneider, C, Hohenberg, H, Ludwig, S (B28) 2012; 14
Jabbour, M, Campbell, EM, Fares, H, Lybarger, L (B22) 2009; 183
Liu, X, Xu, F, Ren, L, Zhao, F, Huang, Y, Wei, L, Wang, Y, Wang, C, Fan, Z, Mei, S, Song, J, Zhao, Z, Cen, S, Liang, C, Wang, J, Guo, F (B33) 2021; 12
e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – volume: 309
  start-page: 127
  year: 2005
  end-page: 130
  ident: B24
  article-title: Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase
  publication-title: Science
  doi: 10.1126/science.1110340
  contributor:
    fullname: Coscoy, L
– volume: 26
  start-page: 1800
  year: 2019
  end-page: 1814
  ident: B23
  article-title: MARCH8 ubiquitinates the hepatitis C virus nonstructural 2 protein and mediates viral envelopment
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.01.075
  contributor:
    fullname: Einav, S
– volume: 90
  start-page: 11157
  year: 2016
  end-page: 11167
  ident: B13
  article-title: Constitutively expressed IFITM3 protein in human endothelial cells poses an early infection block to human influenza viruses
  publication-title: J Virol
  doi: 10.1128/JVI.01254-16
  contributor:
    fullname: Tumpey, TM
– volume: 5
  year: 2010
  ident: B7
  article-title: Membrane-associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015132
  contributor:
    fullname: Fruh, K
– volume: 282
  start-page: 24806
  year: 2007
  end-page: 24815
  ident: B32
  article-title: MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M700414200
  contributor:
    fullname: Hirose, S
– volume: 90
  start-page: 7848
  year: 2016
  end-page: 7863
  ident: B37
  article-title: DC-SIGN and L-SIGN are attachment factors that promote infection of target cells by human metapneumovirus in the presence or absence of cellular glycosaminoglycans
  publication-title: J Virol
  doi: 10.1128/JVI.00537-16
  contributor:
    fullname: Reading, PC
– volume: 2017
  start-page: 55570
  year: 2017
  ident: B41
  article-title: Fluorescence-based neuraminidase inhibition assay to assess the susceptibility of influenza viruses to the neuraminidase inhibitor class of antivirals
  publication-title: J Vis Exp
  doi: 10.3791/55570
  contributor:
    fullname: Hurt, AC
– volume: 76
  start-page: 2912
  year: 2002
  end-page: 2923
  ident: B5
  article-title: Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins
  publication-title: J Virol
  doi: 10.1128/jvi.76.6.2912-2923.2002
  contributor:
    fullname: Messud-Petit, F
– volume: 22
  year: 2020
  ident: B27
  article-title: Influenza A virus interactions with macrophages: lessons from epithelial cells
  publication-title: Cell Microbiol
  doi: 10.1111/cmi.13170
  contributor:
    fullname: Londrigan, SL
– volume: 87
  start-page: 4485
  year: 1990
  end-page: 4489
  ident: B35
  article-title: Bovine and mouse serum beta inhibitors of influenza A viruses are mannose-binding lectins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.87.12.4485
  contributor:
    fullname: Jackson, DC
– volume: 12
  start-page: 4427
  year: 2021
  ident: B33
  article-title: MARCH8 inhibits influenza A virus infection by targeting viral M2 protein for ubiquitination-dependent degradation in lysosomes
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-24724-2
  contributor:
    fullname: Guo, F
– volume: 109
  start-page: 4615
  year: 2012
  end-page: 4620
  ident: B29
  article-title: F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1114728109
  contributor:
    fullname: Kawaoka, Y
– volume: 188
  start-page: 4959
  year: 2012
  end-page: 4970
  ident: B34
  article-title: Autoregulation of MARCH1 expression by dimerization and autoubiquitination
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1102708
  contributor:
    fullname: Thibodeau, J
– volume: 9
  year: 2020
  ident: B10
  article-title: MARCH8 inhibits viral infection by two different mechanisms
  publication-title: Elife
  doi: 10.7554/eLife.57763
  contributor:
    fullname: Tokunaga, K
– volume: 294
  start-page: 3397
  year: 2019
  end-page: 3405
  ident: B11
  article-title: Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection
  publication-title: J Biol Chem
  doi: 10.1074/jbc.AC118.005907
  contributor:
    fullname: Tokunaga, K
– volume: 20
  start-page: 3165
  year: 2002
  end-page: 3170
  ident: B36
  article-title: Eight-plasmid system for rapid generation of influenza virus vaccines
  publication-title: Vaccine
  doi: 10.1016/s0264-410x(02)00268-2
  contributor:
    fullname: Webster, RG
– volume: 9
  year: 2013
  ident: B30
  article-title: Dual function of CD81 in influenza virus uncoating and budding
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003701
  contributor:
    fullname: Zhuang, X
– volume: 9
  year: 2018
  ident: B15
  article-title: A defect in influenza a virus particle assembly specific to primary human macrophages
  publication-title: mBio
  doi: 10.1128/mBio.01916-18
  contributor:
    fullname: Ono, A
– volume: 97
  start-page: 8051
  year: 2000
  end-page: 8056
  ident: B3
  article-title: Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.140129797
  contributor:
    fullname: Ganem, D
– volume: 12
  year: 2021
  ident: B9
  article-title: Elucidating the Antiviral mechanism of different MARCH factors
  publication-title: mBio
  doi: 10.1128/mBio.03264-20
  contributor:
    fullname: Stavrou, S
– volume: 15
  start-page: 627
  year: 2001
  end-page: 636
  ident: B4
  article-title: MHC class I ubiquitination by a viral PHD/LAP finger protein
  publication-title: Immunity
  doi: 10.1016/s1074-7613(01)00213-8
  contributor:
    fullname: Stevenson, PG
– volume: 74
  start-page: 8709
  year: 2000
  end-page: 8719
  ident: B17
  article-title: Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein
  publication-title: J Virol
  doi: 10.1128/jvi.74.18.8709-8719.2000
  contributor:
    fullname: Nayak, DP
– volume: 14
  start-page: 774
  year: 2012
  end-page: 789
  ident: B28
  article-title: Interaction of influenza A virus matrix protein with RACK1 is required for virus release
  publication-title: Cell Microbiol
  doi: 10.1111/j.1462-5822.2012.01759.x
  contributor:
    fullname: Ludwig, S
– volume: 82
  start-page: 4184
  year: 2008
  end-page: 4189
  ident: B25
  article-title: The specificities of Kaposi’s sarcoma-associated herpesvirus-encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine residues within the intracytoplasmic domains of their targets
  publication-title: J Virol
  doi: 10.1128/JVI.02264-07
  contributor:
    fullname: Coscoy, L
– volume: 177
  start-page: 613
  year: 2007
  end-page: 624
  ident: B26
  article-title: Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200611063
  contributor:
    fullname: Hansen, TH
– volume: 35
  start-page: 2558
  year: 2017
  end-page: 2568
  ident: B40
  article-title: Influenza vaccination responses: evaluating impact of repeat vaccination among health care workers
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2017.03.063
  contributor:
    fullname: Sullivan, SG
– volume: 9
  start-page: 1897
  year: 1997
  end-page: 1906
  ident: B39
  article-title: Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization
  publication-title: Int Immunol
  doi: 10.1093/intimm/9.12.1897
  contributor:
    fullname: Lew, AM
– volume: 21
  start-page: 1502
  year: 2015
  end-page: 1507
  ident: B14
  article-title: MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins
  publication-title: Nat Med
  doi: 10.1038/nm.3956
  contributor:
    fullname: Tokunaga, K
– volume: 78
  start-page: 1109
  year: 2004
  end-page: 1120
  ident: B1
  article-title: Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins
  publication-title: J Virol
  doi: 10.1128/jvi.78.3.1109-1120.2004
  contributor:
    fullname: Fruh, K
– volume: 286
  start-page: 39082
  year: 2011
  end-page: 39090
  ident: B2
  article-title: Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.256875
  contributor:
    fullname: Nakamura, N
– volume: 411
  start-page: 229
  year: 2011
  end-page: 236
  ident: B12
  article-title: Influenza virus assembly and budding
  publication-title: Virology
  doi: 10.1016/j.virol.2010.12.003
  contributor:
    fullname: Lamb, RA
– volume: 126
  start-page: 2798
  year: 2013
  end-page: 2809
  ident: B20
  article-title: Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor
  publication-title: J Cell Sci
  doi: 10.1242/jcs.119909
  contributor:
    fullname: Tanaka, Y
– volume: 11
  year: 2020
  ident: B16
  article-title: MARCH8 inhibits Ebola virus glycoprotein, human immunodeficiency virus type 1 envelope glycoprotein, and avian influenza virus H5N1 hemagglutinin maturation
  publication-title: mBio
  doi: 10.1128/mBio.01882-20
  contributor:
    fullname: Zheng, YH
– volume: 5
  start-page: 4816
  year: 2014
  ident: B31
  article-title: Conserved and host-specific features of influenza virion architecture
  publication-title: Nat Commun
  doi: 10.1038/ncomms5816
  contributor:
    fullname: Fodor, E
– volume: 109
  start-page: 14128
  year: 2012
  end-page: 14133
  ident: B21
  article-title: The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1205246109
  contributor:
    fullname: Shu, HB
– volume: 74
  start-page: 4634
  year: 2000
  end-page: 4644
  ident: B19
  article-title: Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins
  publication-title: J Virol
  doi: 10.1128/jvi.74.10.4634-4644.2000
  contributor:
    fullname: Lamb, RA
– volume: 267
  start-page: 289
  year: 2000
  end-page: 298
  ident: B18
  article-title: Membrane interaction of influenza virus M1 protein
  publication-title: Virology
  doi: 10.1006/viro.1999.0134
  contributor:
    fullname: Whittaker, GR
– volume: 183
  start-page: 6500
  year: 2009
  end-page: 6512
  ident: B22
  article-title: Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression
  publication-title: J Immunol
  doi: 10.4049/jimmunol.0901521
  contributor:
    fullname: Lybarger, L
– volume: 12
  year: 2021
  ident: B8
  article-title: Mechanism of viral glycoprotein targeting by membrane-associated RING-CH proteins
  publication-title: mBio
  doi: 10.1128/mBio.00219-21
  contributor:
    fullname: Freed, EO
– volume: 38
  start-page: 7
  year: 2017
  end-page: 15
  ident: B6
  article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family
  publication-title: N Biotechnol
  doi: 10.1016/j.nbt.2016.12.002
  contributor:
    fullname: Morth, JP
– volume: 105
  start-page: 18507
  year: 2008
  end-page: 18512
  ident: B38
  article-title: Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0806213105
  contributor:
    fullname: Reichardt, HM
– ident: e_1_3_2_5_2
  doi: 10.1016/s1074-7613(01)00213-8
– ident: e_1_3_2_22_2
  doi: 10.1073/pnas.1205246109
– ident: e_1_3_2_11_2
  doi: 10.7554/eLife.57763
– ident: e_1_3_2_27_2
  doi: 10.1083/jcb.200611063
– ident: e_1_3_2_9_2
  doi: 10.1128/mBio.00219-21
– ident: e_1_3_2_13_2
  doi: 10.1016/j.virol.2010.12.003
– ident: e_1_3_2_12_2
  doi: 10.1074/jbc.AC118.005907
– ident: e_1_3_2_4_2
  doi: 10.1073/pnas.140129797
– ident: e_1_3_2_18_2
  doi: 10.1128/jvi.74.18.8709-8719.2000
– ident: e_1_3_2_42_2
  doi: 10.3791/55570
– ident: e_1_3_2_40_2
  doi: 10.1093/intimm/9.12.1897
– ident: e_1_3_2_14_2
  doi: 10.1128/JVI.01254-16
– ident: e_1_3_2_35_2
  doi: 10.4049/jimmunol.1102708
– ident: e_1_3_2_41_2
  doi: 10.1016/j.vaccine.2017.03.063
– ident: e_1_3_2_33_2
  doi: 10.1074/jbc.M700414200
– ident: e_1_3_2_29_2
  doi: 10.1111/j.1462-5822.2012.01759.x
– ident: e_1_3_2_2_2
  doi: 10.1128/jvi.78.3.1109-1120.2004
– ident: e_1_3_2_25_2
  doi: 10.1126/science.1110340
– ident: e_1_3_2_28_2
  doi: 10.1111/cmi.13170
– ident: e_1_3_2_32_2
  doi: 10.1038/ncomms5816
– ident: e_1_3_2_6_2
  doi: 10.1128/jvi.76.6.2912-2923.2002
– ident: e_1_3_2_10_2
  doi: 10.1128/mBio.03264-20
– ident: e_1_3_2_17_2
  doi: 10.1128/mBio.01882-20
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1114728109
– ident: e_1_3_2_38_2
  doi: 10.1128/JVI.00537-16
– ident: e_1_3_2_24_2
  doi: 10.1016/j.celrep.2019.01.075
– ident: e_1_3_2_23_2
  doi: 10.4049/jimmunol.0901521
– ident: e_1_3_2_26_2
  doi: 10.1128/JVI.02264-07
– ident: e_1_3_2_3_2
  doi: 10.1074/jbc.M111.256875
– ident: e_1_3_2_7_2
  doi: 10.1016/j.nbt.2016.12.002
– ident: e_1_3_2_19_2
  doi: 10.1006/viro.1999.0134
– ident: e_1_3_2_36_2
  doi: 10.1073/pnas.87.12.4485
– ident: e_1_3_2_8_2
  doi: 10.1371/journal.pone.0015132
– ident: e_1_3_2_31_2
  doi: 10.1371/journal.ppat.1003701
– ident: e_1_3_2_34_2
  doi: 10.1038/s41467-021-24724-2
– ident: e_1_3_2_16_2
  doi: 10.1128/mBio.01916-18
– ident: e_1_3_2_21_2
  doi: 10.1242/jcs.119909
– ident: e_1_3_2_37_2
  doi: 10.1016/s0264-410x(02)00268-2
– ident: e_1_3_2_39_2
  doi: 10.1073/pnas.0806213105
– ident: e_1_3_2_15_2
  doi: 10.1038/nm.3956
– ident: e_1_3_2_20_2
  doi: 10.1128/jvi.74.10.4634-4644.2000
SSID ssj0000331830
Score 2.4281127
Snippet Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into...
The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced...
SourceID doaj
pubmedcentral
proquest
crossref
asm2
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0148421
SubjectTerms Animals
Dogs
Down-Regulation
Gene Expression
HEK293 Cells
Hemagglutinin Glycoproteins, Influenza Virus - genetics
Host-Microbial Interactions
Humans
Influenza A Virus, H1N1 Subtype - genetics
Influenza A Virus, H1N1 Subtype - pathogenicity
Influenza A Virus, H3N2 Subtype - genetics
Influenza A Virus, H3N2 Subtype - pathogenicity
Madin Darby Canine Kidney Cells
Research Article
Ubiquitin-Protein Ligases - genetics
Virus Replication - genetics
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVkhcEG_CS0YgbimbsfM6bktLAVEkYFFvlu3Y6krbBG0SQfkD_G1mnGTFViBxi2zHtjzfjMee8QxjL9IqtRpMFbtKm1gKaeLS2jy2xpdSa08qOXlbnGYnC_nuLD3bYTC9hRlXsN3X7UUw5G84G4pXFwfLZp-uwGRMb8f3ED8SD1x78_ni4_vNzcpMEE5nU0DNq_-h7MW-YWsfCuH6_6ZjXnWV_GPvOb7JboxKI58PVL7Fdlx9m10b0khe3mG_PpDJp-CfHCXhsF3L3w6pR35qPudfl-s-lATRhko3N33HXzeu5acNfXxHBIWE9I7a4jhvVpe2CQEcljU_-jG6ytZcdxzVRf65X3ttHW_82Kur-KFbrdq7bHF89OXwJB4TLMQa-baLS5fkM1mB095UWWql9b4oAayvfOacRWWkkHSgA5H7rMq1Bi-EBqwViYFE3GO7dVO7B4wjX2upEw_CAz3OLUUCRhpLVtAksS5iz2nV1URfFQ4fUCiijQq0UZBE7OVEFPVtiLbxr4YHRLJNIwqSHQoQMmrkOZWjNBMpalw-lSiqcC4I2MJ478HkppQRezYRXCFTkaVE167pW4VyDFJBFs6I3R8AsBlKyDTJ82wWsXwLGltz2a6pl-chcHdBmedTePhfa_GIXQfyn8F9ErLHbLdb9-4JKkCdeToi_jcltwQ0
  priority: 102
  providerName: American Society for Microbiology
– databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN8ECjICcQtdj-04ObalpSDRA1DUm2U7trrSNkGbRKX8Af42Hidb7SIQF26RbcWW541nnJm8IeSVrKUzYOvc18bmggubV86p3NlQCWMCuuSYbXFSHJ-KD2fybKPUF-aEjfTA48btqghJLqPZDFJEvLmyirOWNoQAVtlqZAKdw8ZlKp3BHLE6X5NqQrl7sb9o3-DnM5EjL-jMdBewZYsSZf-f_Mzf0yU37M_RHXJ7chzp3rjgu-SGb-6Rm2Mpyav75OdHDPuU9JPHQhyu7-j7sfzID0P36NfFakgt6XiLjje1Q0_ftr6jJy0-XEYUpaL0HsfGed4tr1ybSBwWDT38PqXLNtT0NLqM9POwCsZ52obprb6mB3657B6Q06PDLwfH-VRkITdRd_u88kzNRQ3eBFsX0gkXQlkBuFCHwnsXHZJS4KUOuApFrYyBwLmB2MuZBcYfklnTNv4xoVG3jTAsAA-AP-hWnIEV1mEklDHnM_ISd11PWtLpdAGBUqNsdJKNBpaR12uh6G8j48bfBu6jyK4HIVF2aojw0RN89L_gk5EXa4HrqFgYLTGNb4dOx7MMJMcoZ0YejQC4nooLyZQq5hlRW9DYWst2T7M4T-TdJVafl_Dkfyz-KbkFmGITTSkUO2TWrwb_LPpIvX2e1OEX9NMQYQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXxJtQQEYgbimbsfM6INSWloLUHoBFvVm2Y5eVtglNsqLLH-BvM-NkC1sViVtkO7HleX3OjGcYe5lWqdVgqthV2sRSSBOX1uaxNb6UWnuC5BRtcZQdTOXH4_T4T0qhcQO7K492VE9q2s63zs-Wb1Hg3wwXYIrXpzuzZov-jMmYrpRfBzSKFN11OCL9oJQFMe9klWXz8luokHV3CmvGKeTwvwp4Xo6f_Msg7d9mt0YkybcH0t9h11x9l90Yaksu77Ffh-QHKvgnR5U5bN_xD0M9kp-ab_Ovs3YRWoK-QyTOzaLn7xrX8aOGHn4gW4Uq9Y7G4jzv50vbhKwOs5rvnY_xszXXPUcMyT8vWq-t440fv-oqvuvm8-4-m-7vfdk9iMeqC7FGYe7j0iX5RFbgtDdVllppvS9KAOsrnzlnEaEUkk55IHKfVbnW4IXQgL0iMZCIB2yjbmr3iHEUdi114kF4oBu7pUjASGPJNZok1kXsBe26WlFdhRMJFIpoowJtFCQRe7Uiivo-pOD418AdItnFIMqcHRqa9kSNgqhyVHEiRRjmU4n6C9eCXFwY7z2Y3JQyYs9XBFcoaeQ-0bVrFp1C5QapILdnxB4ODHAxlZBpkufZJGL5GmusrWW9p559C9m8CypHn8Lj_5h3k90ECqlB0wnZE7bRtwv3FDFRb54Fbv8NrOYMwg
  priority: 102
  providerName: Scholars Portal
Title MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/34517760
https://journals.asm.org/doi/10.1128/mBio.01484-21
https://search.proquest.com/docview/2572530783
https://pubmed.ncbi.nlm.nih.gov/PMC8546552
https://doaj.org/article/770335439f54400c89bec8bfff2b7b94
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2i5C4IN4bHpURiFvazdhpkmO37ANQFwQU9RbZjg2V2mTVpILlD_C3mXGT1RbBhYsV2U5sZb4Zjz3jGcZexkVsFOgitIXSoRRSh5kxSWi0y6RSjlRy8rY4H53N5Nt5PN9jcXcXxjvtG70YlMvVoFx8876VFysz7PzEhh-mk5QyeMcw3Gf7uPxe26J78SsIpoddPE1Ih6ujRTWgkzMZAmWGETKOkoSCUvZUvYKdFckH7v-btvmn0-S1VejkDrvdqo98vJ3mXbZny3vs5jah5OV99mtKxp-Uf7SUjsM0NX-zTULyU_Ex_7JYb3yNF3KofnO9afjrytb8vKKH74gln5reUl8c53R5aSofymFR8uMfrdNsyVXDUXHknzZrp4zllWu_ags-sctl_YDNTo4_T87CNtVCqJCDmzCzUXIoC7DK6WIUG2mcSzMA4wo3stagWpJK2tqBSNyoSJQCJ4QCbBWRhkg8ZL2yKu0B48jhSqrIgXBA13QzEYGW2pA9NIqMDdgL-ut5yyt17rchkOZEptyTKYcoYK86ouQX27gb_-p4RCS76kThsn1Ftf6at6DJE5RrIkbdy8UShRbOBaGbaucc6ERnMmDPO4LnyF5kM1GlrTZ1jhINYkG2zoA92gLgaqgORwFLdqCxM5fdFkS0D-HdIvjxf7_5hN0C8q7BVRRGT1mvWW_sM1SPGt1nN8bj2ft3fX-8gOXpPMJyKtO-Z5TfUOkVZg
link.rule.ids 230,314,727,780,784,864,885,2102,24318,27924,27925,53147,53160,53173,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgguiDfhaQTilrKxnTg5bkvLlraLBF3Um2U7tli0TdAmEZQ_wN9mxsmu2AokbpHjxJbnm_HYY89HyKu0TK1mpoxdqU0suDBxYa2MrfGF0NqjS46nLabZZCben6fnWyRb3YX5iry8i2ZXNxchjo-KjRvRAx9h_uZib17v4jaYiPH--A5gSAK-d8bj2Yfj9e7KiCNWR6ukmle_A_sLDbCNuSik7P-bn3n1uOQf88_hLXJzcBzpuJf0bbLlqjvkWk8leXmX_DrFsE9OPzok4rBtQ496-pGfmo7p5_myCyXBvIHjTU3X0re1a-i0xofvgKJASu-wLrTzbnFp65DEYV7Rgx_DcdmK6paCy0g_dUuvraO1H_7qSrrvFovmHpkdHpztT-KBZCHWoLttXLhEjkTJnPamzFIrrPd5wZj1pc-cs-CQ5AIXdYxLn5VSa-Y51wze8sSwhN8n21VduYeEgm5roRPPuGd4QbfgCTPCWIyEJol1EXmJo64GLWlUWICwXKFsVJCNYklEXq-Eor71GTf-VXEPRbauhImyQwHgRg16pyRYNJ6C1-VTAeYK-gKgzY33nhlpChGRFyuBK1AsjJboytVdo8CWsZRjlDMiD3oArJviIk2kzEYRkRvQ2OjL5ptq_iUk786RfT5lj_5rLJ6T65Oz0xN1cjQ9fkxuMDxPA_Mmy56Q7XbZuafgELXm2YD-319ECI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELaqrUC8oHI2nEYg3lIS27ket8fSUlgQsKhvlu3YYqVtUm0SlfIH-NvMONkVW4HEW2Q7tuU5_NkzniHkVVImRjFdhrZUOhRc6LAwJguNdoVQyiEkR2-LaXo8E-_OkrMtkq7ewgwr2Oyp5twb8lGyL0o35CPM35zvz-s9vAYTIb4f3wYeSqMR2R6PZx9P17crEUdejVZBNa__B_oX-mcbe5EP2f83nHndXfKP_WeyQ24PwJGOe0rfIVu2uktu9Kkkr-6RXx_Q7JPTzxYTcZi2oSd9-pGfio7pt_my8yVevQHwprpr6WFtGzqt8eMSuMgnpbfYFsZ5u7gytQ_iMK_o0Y_BXbaiqqUAGemXbumUsbR2Q6-2pAd2sWjuk9nk6OvBcTgkWQgVyG4bFjbOIlEyq5wu08QI41xeMGZc6VJrDQCSXOChjvHMpWWmFHOcKwa1PNYs5g_IqKoru0soyLYSKnaMO4YPdAseMy20QUtoHBsbkJe46nJFY-kPICyXSBvpaSNZHJDXK6LIiz7ixr8a7iPJ1o0wULYvALaRg9zJDDQaTwB1uUSAuoK5ANPm2jnHdKYLEZAXK4JLECy0lqjK1l0jQZexhKOVMyAPewZYD8VFEmdZGgUk22CNjbls1lTz7z54d47Z5xP26L_W4jm5-elwIt-fTE8fk1sM3Wlg22TpEzJql519Cnio1c8G5v8NOiUIKg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MARCH8+Restricts+Influenza+A+Virus+Infectivity+but+Does+Not+Downregulate+Viral+Glycoprotein+Expression+at+the+Surface+of+Infected+Cells&rft.jtitle=mBio&rft.au=Villal%C3%B3n-Letelier%2C+Fernando&rft.au=Brooks%2C+Andrew+G&rft.au=Londrigan%2C+Sarah+L&rft.au=Reading%2C+Patrick+C&rft.date=2021-10-26&rft.eissn=2150-7511&rft.volume=12&rft.issue=5&rft.spage=e0148421&rft.epage=e0148421&rft_id=info:doi/10.1128%2FmBio.01484-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon