MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells
Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV)...
Saved in:
Published in | mBio Vol. 12; no. 5; p. e0148421 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
26.10.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV.
The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV. |
---|---|
AbstractList | Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV.
The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV. Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. IMPORTANCE The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV. The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surfaces of infected cells, pointing to a distinct mechanism of antiviral activity. The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surfaces of infected cells, pointing to a distinct mechanism of antiviral activity. Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into virions. Using stable cell lines with inducible MARCH8 expression, we show that MARCH8 did not alter susceptibility to influenza A virus (IAV) infection, but virions released from infected cells were markedly less infectious. Knockdown of endogenous MARCH8 confirmed its effect on IAV infectivity. The expression of MARCH8 impaired the infectivity of both H3N2 and H1N1 strains and was dependent on its E3 ligase activity. Although virions released in the presence of MARCH8 expressed smaller amounts of viral hemagglutinin (HA) and neuraminidase (NA) proteins, there was no impact on levels of the viral HA, NA, or matrix 2 (M2) proteins detected on the surface of infected cells. Moreover, mutation of lysine residues in the cytoplasmic tails of HA, NA, and/or M2, or in the viral M1 protein, did not abrogate MARCH8-mediated restriction. While MARCH1 and -8 target similar immunological ligands and both restrict HIV-1, only MARCH8 inhibited IAV infectivity. Deletion of the N-terminal cytoplasmic (N-CT) domain of MARCH8 confirmed it to be a critical determinant of IAV inhibition. Of interest, deletion of the MARCH1 N-CT or its replacement with the MARCH8 N-CT resulted in acquisition of IAV restriction. Together, these data demonstrate that MARCH8 restricts a late stage in IAV replication by a mechanism distinct to its reported activity against other viruses. Moreover, we show that the N-CT of MARCH8 is essential for anti-IAV activity, whereas the MARCH1 N-CT inhibits its ability to restrict IAV. IMPORTANCE The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced incorporation into nascent virions. Here, we show that MARCH8 restricts IAV at a late stage in virus replication, but this was not associated with reduced expression of IAV envelope glycoproteins on the surface of infected cells, pointing to a distinct mechanism of antiviral activity. Our studies also demonstrate the differential ability of MARCH1 and -8 to restrict IAV infectivity, highlighting the critical role of the N-CT domain of each protein in modulating IAV restriction. Overall, these studies provide novel insights regarding the mechanisms by which MARCH proteins contribute to cell-intrinsic immunity against IAV. |
Author | Villalón-Letelier, Fernando Brooks, Andrew G Londrigan, Sarah L Reading, Patrick C |
Author_xml | – sequence: 1 givenname: Fernando surname: Villalón-Letelier fullname: Villalón-Letelier, Fernando organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia – sequence: 2 givenname: Andrew G surname: Brooks fullname: Brooks, Andrew G organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia – sequence: 3 givenname: Sarah L orcidid: 0000-0003-0989-4971 surname: Londrigan fullname: Londrigan, Sarah L organization: Department of Microbiology and Immunology, The University of Melbournegrid.1008.9 at the Peter Doherty Institute for Infection and Immunity, Victoria, Australia – sequence: 4 givenname: Patrick C orcidid: 0000-0002-8860-5308 surname: Reading fullname: Reading, Patrick C organization: WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, Victoria, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34517760$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAUhSNUREvpki3yEiGl-Bk7G6RhKO1ILUjlsbUc53rqUSae2k5h-AP8bTKPVu0Cb3x179Fn3ePzsjjoQw9F8ZrgU0Koer_86MMpJlzxkpJnxRElApdSEHLwqD4sTlJa4PEwRhTDL4pDxgWRssJHxd-ryfX0QqFrSDl6mxOa9a4boP9j0AT99HHYdsBmf-fzGjVDRp8CJPQlbIpffYT50JkMG63p0Hm3tmEVQwbfo7Pfqwgp-dAjk1G-AfRtiM5YQMHtqdCiKXRdelU8d6ZLcLK_j4sfn8--Ty_Ky6_ns-nksjRcqVzWQCTmLQXjmrYSllvnVE2pda2rAGzFhOKkJpIy6apWGkMdY4aOU0YaSthxMdtx22AWehX90sS1DsbrbSPEuTYxe9uBlnI0THBWO8E5xlbVDVjVOOdoI5uaj6wPO9ZqaJbQWujzaMET6NNJ72_0PNxpJXglBB0Bb_eAGG6H8Qf00ic72mF6CEPSVEgqGJaKjdJyJ7UxpBTBPTxDsN5kQW-yoLdZ0Ns93-30Ji2pXoQh9qOt_xW_ebzIA_o-JuwfRNDAvA |
CitedBy_id | crossref_primary_10_1016_j_vetmic_2024_110164 crossref_primary_10_1128_jvi_00716_22 crossref_primary_10_1080_22221751_2022_2164742 crossref_primary_10_1038_s41598_024_63314_2 crossref_primary_10_3390_pathogens12060852 crossref_primary_10_1128_jvi_00419_22 crossref_primary_10_1016_j_ijbiomac_2024_133463 crossref_primary_10_1002_jmv_29445 crossref_primary_10_3390_cells13080698 crossref_primary_10_1128_jvi_01726_23 crossref_primary_10_3390_pathogens13020127 crossref_primary_10_3390_v14112549 crossref_primary_10_1371_journal_ppat_1011619 |
Cites_doi | 10.1126/science.1110340 10.1016/j.celrep.2019.01.075 10.1128/JVI.01254-16 10.1371/journal.pone.0015132 10.1074/jbc.M700414200 10.1128/JVI.00537-16 10.3791/55570 10.1128/jvi.76.6.2912-2923.2002 10.1111/cmi.13170 10.1073/pnas.87.12.4485 10.1038/s41467-021-24724-2 10.1073/pnas.1114728109 10.4049/jimmunol.1102708 10.7554/eLife.57763 10.1074/jbc.AC118.005907 10.1016/s0264-410x(02)00268-2 10.1371/journal.ppat.1003701 10.1128/mBio.01916-18 10.1073/pnas.140129797 10.1128/mBio.03264-20 10.1016/s1074-7613(01)00213-8 10.1128/jvi.74.18.8709-8719.2000 10.1111/j.1462-5822.2012.01759.x 10.1128/JVI.02264-07 10.1083/jcb.200611063 10.1016/j.vaccine.2017.03.063 10.1093/intimm/9.12.1897 10.1038/nm.3956 10.1128/jvi.78.3.1109-1120.2004 10.1074/jbc.M111.256875 10.1016/j.virol.2010.12.003 10.1242/jcs.119909 10.1128/mBio.01882-20 10.1038/ncomms5816 10.1073/pnas.1205246109 10.1128/jvi.74.10.4634-4644.2000 10.1006/viro.1999.0134 10.4049/jimmunol.0901521 10.1128/mBio.00219-21 10.1016/j.nbt.2016.12.002 10.1073/pnas.0806213105 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Villalón-Letelier et al. Copyright © 2021 Villalón-Letelier et al. 2021 Villalón-Letelier et al. |
Copyright_xml | – notice: Copyright © 2021 Villalón-Letelier et al. – notice: Copyright © 2021 Villalón-Letelier et al. 2021 Villalón-Letelier et al. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1128/mBio.01484-21 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Goff, Stephen P |
Editor_xml | – sequence: 1 givenname: Stephen P surname: Goff fullname: Goff, Stephen P – sequence: 1 givenname: Stephen P. surname: Goff fullname: Goff, Stephen P. |
EndPage | e0148421 |
ExternalDocumentID | oai_doaj_org_article_770335439f54400c89bec8bfff2b7b94 10_1128_mBio_01484_21 mBio01484-21 34517760 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Health, Australian Government | National Health and Medical Research Council (NHMRC) grantid: 1143154 funderid: https://doi.org/10.13039/501100000925 – fundername: ; grantid: 1143154 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAUOK ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CGR CUY CVF DIK E3Z EBS ECM EIF FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 M~E NPM O5R O5S O9- OK1 P2P PGMZT RHF RHI RNS RPM RSF - 0R ADACO BXI HZ AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-a488t-9e1704d2eafbd65c4cff8922cfdf6eec635841917237f6d7aa2f33a2df631b213 |
IEDL.DBID | RPM |
ISSN | 2150-7511 |
IngestDate | Tue Oct 22 15:16:45 EDT 2024 Tue Sep 17 21:12:05 EDT 2024 Fri Oct 25 06:19:32 EDT 2024 Fri Dec 06 02:00:59 EST 2024 Tue Dec 28 13:59:22 EST 2021 Wed Oct 16 00:44:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | influenza glycoproteins RNA virus ubiquitination |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-9e1704d2eafbd65c4cff8922cfdf6eec635841917237f6d7aa2f33a2df631b213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0989-4971 0000-0002-8860-5308 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546552/ |
PMID | 34517760 |
PQID | 2572530783 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_770335439f54400c89bec8bfff2b7b94 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8546552 proquest_miscellaneous_2572530783 crossref_primary_10_1128_mBio_01484_21 asm2_journals_10_1128_mBio_01484_21 pubmed_primary_34517760 |
PublicationCentury | 2000 |
PublicationDate | 2021-10-26 |
PublicationDateYYYYMMDD | 2021-10-26 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Zhang, Y, Tada, T, Ozono, S, Kishigami, S, Fujita, H, Tokunaga, K (B10) 2020; 9 Cadwell, K, Coscoy, L (B25) 2008; 82 Morokuma, Y, Nakamura, N, Kato, A, Notoya, M, Yamamoto, Y, Sakai, Y, Fukuda, H, Yamashina, S, Hirata, Y, Hirose, S (B32) 2007; 282 Umthong, S, Lynch, B, Timilsina, U, Waxman, B, Ivey, EB, Stavrou, S (B9) 2021; 12 Bauer, J, Bakke, O, Morth, JP (B6) 2017; 38 Yu, C, Li, S, Zhang, X, Khan, I, Ahmad, I, Zhou, Y, Li, S, Shi, J, Wang, Y, Zheng, YH (B16) 2020; 11 Coscoy, L, Ganem, D (B3) 2000; 97 Leang, SK, Hurt, AC (B41) 2017; 2017 Bedi, S, Noda, T, Kawaoka, Y, Ono, A (B15) 2018; 9 Lun, CM, Waheed, AA, Majadly, A, Powell, N, Freed, EO (B8) 2021; 12 Fujita, H, Iwabu, Y, Tokunaga, K, Tanaka, Y (B20) 2013; 126 Hutchinson, EC, Charles, PD, Hester, SS, Thomas, B, Trudgian, D, Martinez-Alonso, M, Fodor, E (B31) 2014; 5 Ruigrok, RW, Barge, A, Durrer, P, Brunner, J, Ma, K, Whittaker, GR (B18) 2000; 267 Wang, X, Herr, RA, Chua, WJ, Lybarger, L, Wiertz, EJ, Hansen, TH (B26) 2007; 177 Leung, VKY, Carolan, LA, Worth, LJ, Harper, SA, Peck, H, Tilmanis, D, Laurie, KL, Slavin, MA, Sullivan, SG (B40) 2017; 35 Bartee, E, Mansouri, M, Hovey Nerenberg, BT, Gouveia, K, Fruh, K (B1) 2004; 78 Boyle, JS, Koniaras, C, Lew, AM (B39) 1997; 9 Iyengar, PV, Hirota, T, Hirose, S, Nakamura, N (B2) 2011; 286 Zhang, Y, Tada, T, Ozono, S, Yao, W, Tanaka, M, Yamaoka, S, Kishigami, S, Fujita, H, Tokunaga, K (B11) 2019; 294 Rossman, JS, Lamb, RA (B12) 2011; 411 Bartee, E, Eyster, CA, Viswanathan, K, Mansouri, M, Donaldson, JG, Fruh, K (B7) 2010; 5 Kumar, S, Barouch-Bentov, R, Xiao, F, Schor, S, Pu, S, Biquand, E, Lu, A, Lindenbach, BD, Jacob, Y, Demeret, C, Einav, S (B23) 2019; 26 Boname, JM, Stevenson, PG (B4) 2001; 15 Chen, R, Li, M, Zhang, Y, Zhou, Q, Shu, HB (B21) 2012; 109 Zhang, J, Pekosz, A, Lamb, RA (B19) 2000; 74 Tada, T, Zhang, Y, Koyama, T, Tobiume, M, Tsunetsugu-Yokota, Y, Yamaoka, S, Fujita, H, Tokunaga, K (B14) 2015; 21 Bourgeois-Daigneault, MC, Thibodeau, J (B34) 2012; 188 Herold, MJ, van den Brandt, J, Seibler, J, Reichardt, HM (B38) 2008; 105 Gorai, T, Goto, H, Noda, T, Watanabe, T, Kozuka-Hata, H, Oyama, M, Takano, R, Neumann, G, Watanabe, S, Kawaoka, Y (B29) 2012; 109 Anders, EM, Hartley, CA, Jackson, DC (B35) 1990; 87 Cadwell, K, Coscoy, L (B24) 2005; 309 He, J, Sun, E, Bujny, MV, Kim, D, Davidson, MW, Zhuang, X (B30) 2013; 9 Sun, X, Zeng, H, Kumar, A, Belser, JA, Maines, TR, Tumpey, TM (B13) 2016; 90 Hoffmann, E, Krauss, S, Perez, D, Webby, R, Webster, RG (B36) 2002; 20 Gillespie, L, Gerstenberg, K, Ana-Sosa-Batiz, F, Parsons, MS, Farrukee, R, Krabbe, M, Spann, K, Brooks, AG, Londrigan, SL, Reading, PC (B37) 2016; 90 Meischel, T, Villalon-Letelier, F, Saunders, PM, Reading, PC, Londrigan, SL (B27) 2020; 22 Guerin, JL, Gelfi, J, Boullier, S, Delverdier, M, Bellanger, FA, Bertagnoli, S, Drexler, I, Sutter, G, Messud-Petit, F (B5) 2002; 76 Ali, A, Avalos, RT, Ponimaskin, E, Nayak, DP (B17) 2000; 74 Demirov, D, Gabriel, G, Schneider, C, Hohenberg, H, Ludwig, S (B28) 2012; 14 Jabbour, M, Campbell, EM, Fares, H, Lybarger, L (B22) 2009; 183 Liu, X, Xu, F, Ren, L, Zhao, F, Huang, Y, Wei, L, Wang, Y, Wang, C, Fan, Z, Mei, S, Song, J, Zhao, Z, Cen, S, Liang, C, Wang, J, Guo, F (B33) 2021; 12 e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – volume: 309 start-page: 127 year: 2005 end-page: 130 ident: B24 article-title: Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase publication-title: Science doi: 10.1126/science.1110340 contributor: fullname: Coscoy, L – volume: 26 start-page: 1800 year: 2019 end-page: 1814 ident: B23 article-title: MARCH8 ubiquitinates the hepatitis C virus nonstructural 2 protein and mediates viral envelopment publication-title: Cell Rep doi: 10.1016/j.celrep.2019.01.075 contributor: fullname: Einav, S – volume: 90 start-page: 11157 year: 2016 end-page: 11167 ident: B13 article-title: Constitutively expressed IFITM3 protein in human endothelial cells poses an early infection block to human influenza viruses publication-title: J Virol doi: 10.1128/JVI.01254-16 contributor: fullname: Tumpey, TM – volume: 5 year: 2010 ident: B7 article-title: Membrane-associated RING-CH proteins associate with Bap31 and target CD81 and CD44 to lysosomes publication-title: PLoS One doi: 10.1371/journal.pone.0015132 contributor: fullname: Fruh, K – volume: 282 start-page: 24806 year: 2007 end-page: 24815 ident: B32 article-title: MARCH-XI, a novel transmembrane ubiquitin ligase implicated in ubiquitin-dependent protein sorting in developing spermatids publication-title: J Biol Chem doi: 10.1074/jbc.M700414200 contributor: fullname: Hirose, S – volume: 90 start-page: 7848 year: 2016 end-page: 7863 ident: B37 article-title: DC-SIGN and L-SIGN are attachment factors that promote infection of target cells by human metapneumovirus in the presence or absence of cellular glycosaminoglycans publication-title: J Virol doi: 10.1128/JVI.00537-16 contributor: fullname: Reading, PC – volume: 2017 start-page: 55570 year: 2017 ident: B41 article-title: Fluorescence-based neuraminidase inhibition assay to assess the susceptibility of influenza viruses to the neuraminidase inhibitor class of antivirals publication-title: J Vis Exp doi: 10.3791/55570 contributor: fullname: Hurt, AC – volume: 76 start-page: 2912 year: 2002 end-page: 2923 ident: B5 article-title: Myxoma virus leukemia-associated protein is responsible for major histocompatibility complex class I and Fas-CD95 down-regulation and defines scrapins, a new group of surface cellular receptor abductor proteins publication-title: J Virol doi: 10.1128/jvi.76.6.2912-2923.2002 contributor: fullname: Messud-Petit, F – volume: 22 year: 2020 ident: B27 article-title: Influenza A virus interactions with macrophages: lessons from epithelial cells publication-title: Cell Microbiol doi: 10.1111/cmi.13170 contributor: fullname: Londrigan, SL – volume: 87 start-page: 4485 year: 1990 end-page: 4489 ident: B35 article-title: Bovine and mouse serum beta inhibitors of influenza A viruses are mannose-binding lectins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.87.12.4485 contributor: fullname: Jackson, DC – volume: 12 start-page: 4427 year: 2021 ident: B33 article-title: MARCH8 inhibits influenza A virus infection by targeting viral M2 protein for ubiquitination-dependent degradation in lysosomes publication-title: Nat Commun doi: 10.1038/s41467-021-24724-2 contributor: fullname: Guo, F – volume: 109 start-page: 4615 year: 2012 end-page: 4620 ident: B29 article-title: F1Fo-ATPase, F-type proton-translocating ATPase, at the plasma membrane is critical for efficient influenza virus budding publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1114728109 contributor: fullname: Kawaoka, Y – volume: 188 start-page: 4959 year: 2012 end-page: 4970 ident: B34 article-title: Autoregulation of MARCH1 expression by dimerization and autoubiquitination publication-title: J Immunol doi: 10.4049/jimmunol.1102708 contributor: fullname: Thibodeau, J – volume: 9 year: 2020 ident: B10 article-title: MARCH8 inhibits viral infection by two different mechanisms publication-title: Elife doi: 10.7554/eLife.57763 contributor: fullname: Tokunaga, K – volume: 294 start-page: 3397 year: 2019 end-page: 3405 ident: B11 article-title: Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection publication-title: J Biol Chem doi: 10.1074/jbc.AC118.005907 contributor: fullname: Tokunaga, K – volume: 20 start-page: 3165 year: 2002 end-page: 3170 ident: B36 article-title: Eight-plasmid system for rapid generation of influenza virus vaccines publication-title: Vaccine doi: 10.1016/s0264-410x(02)00268-2 contributor: fullname: Webster, RG – volume: 9 year: 2013 ident: B30 article-title: Dual function of CD81 in influenza virus uncoating and budding publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003701 contributor: fullname: Zhuang, X – volume: 9 year: 2018 ident: B15 article-title: A defect in influenza a virus particle assembly specific to primary human macrophages publication-title: mBio doi: 10.1128/mBio.01916-18 contributor: fullname: Ono, A – volume: 97 start-page: 8051 year: 2000 end-page: 8056 ident: B3 article-title: Kaposi’s sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.140129797 contributor: fullname: Ganem, D – volume: 12 year: 2021 ident: B9 article-title: Elucidating the Antiviral mechanism of different MARCH factors publication-title: mBio doi: 10.1128/mBio.03264-20 contributor: fullname: Stavrou, S – volume: 15 start-page: 627 year: 2001 end-page: 636 ident: B4 article-title: MHC class I ubiquitination by a viral PHD/LAP finger protein publication-title: Immunity doi: 10.1016/s1074-7613(01)00213-8 contributor: fullname: Stevenson, PG – volume: 74 start-page: 8709 year: 2000 end-page: 8719 ident: B17 article-title: Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein publication-title: J Virol doi: 10.1128/jvi.74.18.8709-8719.2000 contributor: fullname: Nayak, DP – volume: 14 start-page: 774 year: 2012 end-page: 789 ident: B28 article-title: Interaction of influenza A virus matrix protein with RACK1 is required for virus release publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2012.01759.x contributor: fullname: Ludwig, S – volume: 82 start-page: 4184 year: 2008 end-page: 4189 ident: B25 article-title: The specificities of Kaposi’s sarcoma-associated herpesvirus-encoded E3 ubiquitin ligases are determined by the positions of lysine or cysteine residues within the intracytoplasmic domains of their targets publication-title: J Virol doi: 10.1128/JVI.02264-07 contributor: fullname: Coscoy, L – volume: 177 start-page: 613 year: 2007 end-page: 624 ident: B26 article-title: Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3 publication-title: J Cell Biol doi: 10.1083/jcb.200611063 contributor: fullname: Hansen, TH – volume: 35 start-page: 2558 year: 2017 end-page: 2568 ident: B40 article-title: Influenza vaccination responses: evaluating impact of repeat vaccination among health care workers publication-title: Vaccine doi: 10.1016/j.vaccine.2017.03.063 contributor: fullname: Sullivan, SG – volume: 9 start-page: 1897 year: 1997 end-page: 1906 ident: B39 article-title: Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization publication-title: Int Immunol doi: 10.1093/intimm/9.12.1897 contributor: fullname: Lew, AM – volume: 21 start-page: 1502 year: 2015 end-page: 1507 ident: B14 article-title: MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins publication-title: Nat Med doi: 10.1038/nm.3956 contributor: fullname: Tokunaga, K – volume: 78 start-page: 1109 year: 2004 end-page: 1120 ident: B1 article-title: Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins publication-title: J Virol doi: 10.1128/jvi.78.3.1109-1120.2004 contributor: fullname: Fruh, K – volume: 286 start-page: 39082 year: 2011 end-page: 39090 ident: B2 article-title: Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella publication-title: J Biol Chem doi: 10.1074/jbc.M111.256875 contributor: fullname: Nakamura, N – volume: 411 start-page: 229 year: 2011 end-page: 236 ident: B12 article-title: Influenza virus assembly and budding publication-title: Virology doi: 10.1016/j.virol.2010.12.003 contributor: fullname: Lamb, RA – volume: 126 start-page: 2798 year: 2013 end-page: 2809 ident: B20 article-title: Membrane-associated RING-CH (MARCH) 8 mediates the ubiquitination and lysosomal degradation of the transferrin receptor publication-title: J Cell Sci doi: 10.1242/jcs.119909 contributor: fullname: Tanaka, Y – volume: 11 year: 2020 ident: B16 article-title: MARCH8 inhibits Ebola virus glycoprotein, human immunodeficiency virus type 1 envelope glycoprotein, and avian influenza virus H5N1 hemagglutinin maturation publication-title: mBio doi: 10.1128/mBio.01882-20 contributor: fullname: Zheng, YH – volume: 5 start-page: 4816 year: 2014 ident: B31 article-title: Conserved and host-specific features of influenza virion architecture publication-title: Nat Commun doi: 10.1038/ncomms5816 contributor: fullname: Fodor, E – volume: 109 start-page: 14128 year: 2012 end-page: 14133 ident: B21 article-title: The E3 ubiquitin ligase MARCH8 negatively regulates IL-1β-induced NF-κB activation by targeting the IL1RAP coreceptor for ubiquitination and degradation publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1205246109 contributor: fullname: Shu, HB – volume: 74 start-page: 4634 year: 2000 end-page: 4644 ident: B19 article-title: Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins publication-title: J Virol doi: 10.1128/jvi.74.10.4634-4644.2000 contributor: fullname: Lamb, RA – volume: 267 start-page: 289 year: 2000 end-page: 298 ident: B18 article-title: Membrane interaction of influenza virus M1 protein publication-title: Virology doi: 10.1006/viro.1999.0134 contributor: fullname: Whittaker, GR – volume: 183 start-page: 6500 year: 2009 end-page: 6512 ident: B22 article-title: Discrete domains of MARCH1 mediate its localization, functional interactions, and posttranscriptional control of expression publication-title: J Immunol doi: 10.4049/jimmunol.0901521 contributor: fullname: Lybarger, L – volume: 12 year: 2021 ident: B8 article-title: Mechanism of viral glycoprotein targeting by membrane-associated RING-CH proteins publication-title: mBio doi: 10.1128/mBio.00219-21 contributor: fullname: Freed, EO – volume: 38 start-page: 7 year: 2017 end-page: 15 ident: B6 article-title: Overview of the membrane-associated RING-CH (MARCH) E3 ligase family publication-title: N Biotechnol doi: 10.1016/j.nbt.2016.12.002 contributor: fullname: Morth, JP – volume: 105 start-page: 18507 year: 2008 end-page: 18512 ident: B38 article-title: Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0806213105 contributor: fullname: Reichardt, HM – ident: e_1_3_2_5_2 doi: 10.1016/s1074-7613(01)00213-8 – ident: e_1_3_2_22_2 doi: 10.1073/pnas.1205246109 – ident: e_1_3_2_11_2 doi: 10.7554/eLife.57763 – ident: e_1_3_2_27_2 doi: 10.1083/jcb.200611063 – ident: e_1_3_2_9_2 doi: 10.1128/mBio.00219-21 – ident: e_1_3_2_13_2 doi: 10.1016/j.virol.2010.12.003 – ident: e_1_3_2_12_2 doi: 10.1074/jbc.AC118.005907 – ident: e_1_3_2_4_2 doi: 10.1073/pnas.140129797 – ident: e_1_3_2_18_2 doi: 10.1128/jvi.74.18.8709-8719.2000 – ident: e_1_3_2_42_2 doi: 10.3791/55570 – ident: e_1_3_2_40_2 doi: 10.1093/intimm/9.12.1897 – ident: e_1_3_2_14_2 doi: 10.1128/JVI.01254-16 – ident: e_1_3_2_35_2 doi: 10.4049/jimmunol.1102708 – ident: e_1_3_2_41_2 doi: 10.1016/j.vaccine.2017.03.063 – ident: e_1_3_2_33_2 doi: 10.1074/jbc.M700414200 – ident: e_1_3_2_29_2 doi: 10.1111/j.1462-5822.2012.01759.x – ident: e_1_3_2_2_2 doi: 10.1128/jvi.78.3.1109-1120.2004 – ident: e_1_3_2_25_2 doi: 10.1126/science.1110340 – ident: e_1_3_2_28_2 doi: 10.1111/cmi.13170 – ident: e_1_3_2_32_2 doi: 10.1038/ncomms5816 – ident: e_1_3_2_6_2 doi: 10.1128/jvi.76.6.2912-2923.2002 – ident: e_1_3_2_10_2 doi: 10.1128/mBio.03264-20 – ident: e_1_3_2_17_2 doi: 10.1128/mBio.01882-20 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1114728109 – ident: e_1_3_2_38_2 doi: 10.1128/JVI.00537-16 – ident: e_1_3_2_24_2 doi: 10.1016/j.celrep.2019.01.075 – ident: e_1_3_2_23_2 doi: 10.4049/jimmunol.0901521 – ident: e_1_3_2_26_2 doi: 10.1128/JVI.02264-07 – ident: e_1_3_2_3_2 doi: 10.1074/jbc.M111.256875 – ident: e_1_3_2_7_2 doi: 10.1016/j.nbt.2016.12.002 – ident: e_1_3_2_19_2 doi: 10.1006/viro.1999.0134 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.87.12.4485 – ident: e_1_3_2_8_2 doi: 10.1371/journal.pone.0015132 – ident: e_1_3_2_31_2 doi: 10.1371/journal.ppat.1003701 – ident: e_1_3_2_34_2 doi: 10.1038/s41467-021-24724-2 – ident: e_1_3_2_16_2 doi: 10.1128/mBio.01916-18 – ident: e_1_3_2_21_2 doi: 10.1242/jcs.119909 – ident: e_1_3_2_37_2 doi: 10.1016/s0264-410x(02)00268-2 – ident: e_1_3_2_39_2 doi: 10.1073/pnas.0806213105 – ident: e_1_3_2_15_2 doi: 10.1038/nm.3956 – ident: e_1_3_2_20_2 doi: 10.1128/jvi.74.10.4634-4644.2000 |
SSID | ssj0000331830 |
Score | 2.4281127 |
Snippet | Membrane-associated RING-CH8 (MARCH8) impairs the cell surface expression of envelope glycoproteins from different viruses, reducing their incorporation into... The antiviral activity of MARCH8 has been associated with the downregulation of envelope glycoproteins from a range of different viruses, resulting in reduced... |
SourceID | doaj pubmedcentral proquest crossref asm2 pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0148421 |
SubjectTerms | Animals Dogs Down-Regulation Gene Expression HEK293 Cells Hemagglutinin Glycoproteins, Influenza Virus - genetics Host-Microbial Interactions Humans Influenza A Virus, H1N1 Subtype - genetics Influenza A Virus, H1N1 Subtype - pathogenicity Influenza A Virus, H3N2 Subtype - genetics Influenza A Virus, H3N2 Subtype - pathogenicity Madin Darby Canine Kidney Cells Research Article Ubiquitin-Protein Ligases - genetics Virus Replication - genetics |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVkhcEG_CS0YgbimbsfM6bktLAVEkYFFvlu3Y6krbBG0SQfkD_G1mnGTFViBxi2zHtjzfjMee8QxjL9IqtRpMFbtKm1gKaeLS2jy2xpdSa08qOXlbnGYnC_nuLD3bYTC9hRlXsN3X7UUw5G84G4pXFwfLZp-uwGRMb8f3ED8SD1x78_ni4_vNzcpMEE5nU0DNq_-h7MW-YWsfCuH6_6ZjXnWV_GPvOb7JboxKI58PVL7Fdlx9m10b0khe3mG_PpDJp-CfHCXhsF3L3w6pR35qPudfl-s-lATRhko3N33HXzeu5acNfXxHBIWE9I7a4jhvVpe2CQEcljU_-jG6ytZcdxzVRf65X3ttHW_82Kur-KFbrdq7bHF89OXwJB4TLMQa-baLS5fkM1mB095UWWql9b4oAayvfOacRWWkkHSgA5H7rMq1Bi-EBqwViYFE3GO7dVO7B4wjX2upEw_CAz3OLUUCRhpLVtAksS5iz2nV1URfFQ4fUCiijQq0UZBE7OVEFPVtiLbxr4YHRLJNIwqSHQoQMmrkOZWjNBMpalw-lSiqcC4I2MJ478HkppQRezYRXCFTkaVE167pW4VyDFJBFs6I3R8AsBlKyDTJ82wWsXwLGltz2a6pl-chcHdBmedTePhfa_GIXQfyn8F9ErLHbLdb9-4JKkCdeToi_jcltwQ0 priority: 102 providerName: American Society for Microbiology – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELXQSkhcEN8ECjICcQtdj-04ObalpSDRA1DUm2U7trrSNkGbRKX8Af42Hidb7SIQF26RbcWW541nnJm8IeSVrKUzYOvc18bmggubV86p3NlQCWMCuuSYbXFSHJ-KD2fybKPUF-aEjfTA48btqghJLqPZDFJEvLmyirOWNoQAVtlqZAKdw8ZlKp3BHLE6X5NqQrl7sb9o3-DnM5EjL-jMdBewZYsSZf-f_Mzf0yU37M_RHXJ7chzp3rjgu-SGb-6Rm2Mpyav75OdHDPuU9JPHQhyu7-j7sfzID0P36NfFakgt6XiLjje1Q0_ftr6jJy0-XEYUpaL0HsfGed4tr1ybSBwWDT38PqXLNtT0NLqM9POwCsZ52obprb6mB3657B6Q06PDLwfH-VRkITdRd_u88kzNRQ3eBFsX0gkXQlkBuFCHwnsXHZJS4KUOuApFrYyBwLmB2MuZBcYfklnTNv4xoVG3jTAsAA-AP-hWnIEV1mEklDHnM_ISd11PWtLpdAGBUqNsdJKNBpaR12uh6G8j48bfBu6jyK4HIVF2aojw0RN89L_gk5EXa4HrqFgYLTGNb4dOx7MMJMcoZ0YejQC4nooLyZQq5hlRW9DYWst2T7M4T-TdJVafl_Dkfyz-KbkFmGITTSkUO2TWrwb_LPpIvX2e1OEX9NMQYQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZQERIXxJtQQEYgbimbsfM6INSWloLUHoBFvVm2Y5eVtglNsqLLH-BvM-NkC1sViVtkO7HleX3OjGcYe5lWqdVgqthV2sRSSBOX1uaxNb6UWnuC5BRtcZQdTOXH4_T4T0qhcQO7K492VE9q2s63zs-Wb1Hg3wwXYIrXpzuzZov-jMmYrpRfBzSKFN11OCL9oJQFMe9klWXz8luokHV3CmvGKeTwvwp4Xo6f_Msg7d9mt0YkybcH0t9h11x9l90Yaksu77Ffh-QHKvgnR5U5bN_xD0M9kp-ab_Ovs3YRWoK-QyTOzaLn7xrX8aOGHn4gW4Uq9Y7G4jzv50vbhKwOs5rvnY_xszXXPUcMyT8vWq-t440fv-oqvuvm8-4-m-7vfdk9iMeqC7FGYe7j0iX5RFbgtDdVllppvS9KAOsrnzlnEaEUkk55IHKfVbnW4IXQgL0iMZCIB2yjbmr3iHEUdi114kF4oBu7pUjASGPJNZok1kXsBe26WlFdhRMJFIpoowJtFCQRe7Uiivo-pOD418AdItnFIMqcHRqa9kSNgqhyVHEiRRjmU4n6C9eCXFwY7z2Y3JQyYs9XBFcoaeQ-0bVrFp1C5QapILdnxB4ODHAxlZBpkufZJGL5GmusrWW9p559C9m8CypHn8Lj_5h3k90ECqlB0wnZE7bRtwv3FDFRb54Fbv8NrOYMwg priority: 102 providerName: Scholars Portal |
Title | MARCH8 Restricts Influenza A Virus Infectivity but Does Not Downregulate Viral Glycoprotein Expression at the Surface of Infected Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34517760 https://journals.asm.org/doi/10.1128/mBio.01484-21 https://search.proquest.com/docview/2572530783 https://pubmed.ncbi.nlm.nih.gov/PMC8546552 https://doaj.org/article/770335439f54400c89bec8bfff2b7b94 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZ2i5C4IN4bHpURiFvazdhpkmO37ANQFwQU9RbZjg2V2mTVpILlD_C3mXGT1RbBhYsV2U5sZb4Zjz3jGcZexkVsFOgitIXSoRRSh5kxSWi0y6RSjlRy8rY4H53N5Nt5PN9jcXcXxjvtG70YlMvVoFx8876VFysz7PzEhh-mk5QyeMcw3Gf7uPxe26J78SsIpoddPE1Ih6ujRTWgkzMZAmWGETKOkoSCUvZUvYKdFckH7v-btvmn0-S1VejkDrvdqo98vJ3mXbZny3vs5jah5OV99mtKxp-Uf7SUjsM0NX-zTULyU_Ex_7JYb3yNF3KofnO9afjrytb8vKKH74gln5reUl8c53R5aSofymFR8uMfrdNsyVXDUXHknzZrp4zllWu_ags-sctl_YDNTo4_T87CNtVCqJCDmzCzUXIoC7DK6WIUG2mcSzMA4wo3stagWpJK2tqBSNyoSJQCJ4QCbBWRhkg8ZL2yKu0B48jhSqrIgXBA13QzEYGW2pA9NIqMDdgL-ut5yyt17rchkOZEptyTKYcoYK86ouQX27gb_-p4RCS76kThsn1Ftf6at6DJE5RrIkbdy8UShRbOBaGbaucc6ERnMmDPO4LnyF5kM1GlrTZ1jhINYkG2zoA92gLgaqgORwFLdqCxM5fdFkS0D-HdIvjxf7_5hN0C8q7BVRRGT1mvWW_sM1SPGt1nN8bj2ft3fX-8gOXpPMJyKtO-Z5TfUOkVZg |
link.rule.ids | 230,314,727,780,784,864,885,2102,24318,27924,27925,53147,53160,53173,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgguiDfhaQTilrKxnTg5bkvLlraLBF3Um2U7tli0TdAmEZQ_wN9mxsmu2AokbpHjxJbnm_HYY89HyKu0TK1mpoxdqU0suDBxYa2MrfGF0NqjS46nLabZZCben6fnWyRb3YX5iry8i2ZXNxchjo-KjRvRAx9h_uZib17v4jaYiPH--A5gSAK-d8bj2Yfj9e7KiCNWR6ukmle_A_sLDbCNuSik7P-bn3n1uOQf88_hLXJzcBzpuJf0bbLlqjvkWk8leXmX_DrFsE9OPzok4rBtQ496-pGfmo7p5_myCyXBvIHjTU3X0re1a-i0xofvgKJASu-wLrTzbnFp65DEYV7Rgx_DcdmK6paCy0g_dUuvraO1H_7qSrrvFovmHpkdHpztT-KBZCHWoLttXLhEjkTJnPamzFIrrPd5wZj1pc-cs-CQ5AIXdYxLn5VSa-Y51wze8sSwhN8n21VduYeEgm5roRPPuGd4QbfgCTPCWIyEJol1EXmJo64GLWlUWICwXKFsVJCNYklEXq-Eor71GTf-VXEPRbauhImyQwHgRg16pyRYNJ6C1-VTAeYK-gKgzY33nhlpChGRFyuBK1AsjJboytVdo8CWsZRjlDMiD3oArJviIk2kzEYRkRvQ2OjL5ptq_iUk786RfT5lj_5rLJ6T65Oz0xN1cjQ9fkxuMDxPA_Mmy56Q7XbZuafgELXm2YD-319ECI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELaqrUC8oHI2nEYg3lIS27ket8fSUlgQsKhvlu3YYqVtUm0SlfIH-NvMONkVW4HEW2Q7tuU5_NkzniHkVVImRjFdhrZUOhRc6LAwJguNdoVQyiEkR2-LaXo8E-_OkrMtkq7ewgwr2Oyp5twb8lGyL0o35CPM35zvz-s9vAYTIb4f3wYeSqMR2R6PZx9P17crEUdejVZBNa__B_oX-mcbe5EP2f83nHndXfKP_WeyQ24PwJGOe0rfIVu2uktu9Kkkr-6RXx_Q7JPTzxYTcZi2oSd9-pGfio7pt_my8yVevQHwprpr6WFtGzqt8eMSuMgnpbfYFsZ5u7gytQ_iMK_o0Y_BXbaiqqUAGemXbumUsbR2Q6-2pAd2sWjuk9nk6OvBcTgkWQgVyG4bFjbOIlEyq5wu08QI41xeMGZc6VJrDQCSXOChjvHMpWWmFHOcKwa1PNYs5g_IqKoru0soyLYSKnaMO4YPdAseMy20QUtoHBsbkJe46nJFY-kPICyXSBvpaSNZHJDXK6LIiz7ixr8a7iPJ1o0wULYvALaRg9zJDDQaTwB1uUSAuoK5ANPm2jnHdKYLEZAXK4JLECy0lqjK1l0jQZexhKOVMyAPewZYD8VFEmdZGgUk22CNjbls1lTz7z54d47Z5xP26L_W4jm5-elwIt-fTE8fk1sM3Wlg22TpEzJql519Cnio1c8G5v8NOiUIKg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MARCH8+Restricts+Influenza+A+Virus+Infectivity+but+Does+Not+Downregulate+Viral+Glycoprotein+Expression+at+the+Surface+of+Infected+Cells&rft.jtitle=mBio&rft.au=Villal%C3%B3n-Letelier%2C+Fernando&rft.au=Brooks%2C+Andrew+G&rft.au=Londrigan%2C+Sarah+L&rft.au=Reading%2C+Patrick+C&rft.date=2021-10-26&rft.eissn=2150-7511&rft.volume=12&rft.issue=5&rft.spage=e0148421&rft.epage=e0148421&rft_id=info:doi/10.1128%2FmBio.01484-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |