Microbiome Analysis for Wastewater Surveillance during COVID-19
Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time mon...
Saved in:
Published in | mBio Vol. 13; no. 4; p. e0059122 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
30.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals.
Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials.
IMPORTANCE
Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. |
---|---|
AbstractList | Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases.Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2 and allows assessing and mitigating COVID-19 outbreaks, by evaluating the total microbial assemblage in a community. Composite wastewater samples (24 h) were collected weekly from a manhole between December 2020 and November 2021 in Maryland, USA. RT-qPCR results showed concentrations of SARS-CoV-2 RNA recovered from wastewater samples reflected incidence of COVID-19 cases. When a drastic increase in COVID-19 was detected in February 2021, samples were selected for microbiome analysis (DNA metagenomics, RNA metatranscriptomics, and targeted SARS-CoV-2 sequencing). Targeted SARS-CoV-2 sequencing allowed for detection of important genetic mutations, such as spike: K417N, D614G, P681H, T716I, S982A, and D1118H, commonly associated with increased cell entry and reinfection. Microbiome analysis (DNA and RNA) provided important insight with respect to human health-related factors, including detection of pathogens and their virulence/antibiotic resistance genes. Specific microbial species comprising the wastewater microbiome correlated with incidence of SARS-CoV-2 RNA, suggesting potential association with SARS-CoV-2 infection. Climatic conditions, namely, temperature, were related to incidence of COVID-19 and detection of SARS-CoV-2 in wastewater, having been monitored as part of an environmental risk score assessment carried out in this study. In summary, the wastewater microbiome provides useful public health information, and hence, a valuable tool to proactively detect and characterize pathogenic agents circulating in a community. In effect, metagenomics of wastewater can serve as an early warning system for communicable diseases, by providing a larger source of information for health departments and public officials. IMPORTANCE Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be detected in feces of infected individuals. Therefore, wastewater samples can be used to test all individuals of a community contributing to the sewage collection system, i.e., the infrastructure, such as gravity pipes, manholes, tanks, lift stations, control structures, and force mains, that collects used water from residential and commercial sources and conveys the flow to a wastewater treatment plant. Here, we profile community wastewater collected from a manhole, detect presence of SARS-CoV-2, identify genetic mutations of SARS-CoV-2, and perform COVID-19 risk score assessment of the study area. Using metagenomics analysis, we also detect other microorganisms (bacteria, fungi, protists, and viruses) present in the samples. Results show that by analyzing all microorganisms present in wastewater, pathogens circulating in a community can provide an early warning for contagious diseases. |
Author | Usmani, Moiz Wimalarante, Malinda Dorsey, Suzanne Zhou, Isaac Huq, Anwar Jutla, Antarpreet Colwell, Rita R. Leddy, Menu Tien, Ching-Tzone Graubics, Karlis Fanelli, Brian Brumfield, Kyle D. Dadlani, Manoj Cotruvo, Joseph A. Jinasena, Dilini Registe, Nathaniel Withanachchi, Chiran Abayagunawardena, Rushan |
Author_xml | – sequence: 1 givenname: Kyle D. orcidid: 0000-0002-3234-3337 surname: Brumfield fullname: Brumfield, Kyle D. organization: Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA – sequence: 2 givenname: Menu surname: Leddy fullname: Leddy, Menu organization: Essential Environmental and Engineering Systems, Huntington Beach, California, USA – sequence: 3 givenname: Moiz surname: Usmani fullname: Usmani, Moiz organization: Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA – sequence: 4 givenname: Joseph A. surname: Cotruvo fullname: Cotruvo, Joseph A. organization: Joseph Cotruvo and Associates LLC, Washington, DC, USA – sequence: 5 givenname: Ching-Tzone surname: Tien fullname: Tien, Ching-Tzone organization: Maryland Department of Environment, Baltimore, Maryland, USA – sequence: 6 givenname: Suzanne surname: Dorsey fullname: Dorsey, Suzanne organization: Maryland Department of Environment, Baltimore, Maryland, USA – sequence: 7 givenname: Karlis surname: Graubics fullname: Graubics, Karlis organization: CosmosID Inc., Germantown, Maryland, USA – sequence: 8 givenname: Brian surname: Fanelli fullname: Fanelli, Brian organization: CosmosID Inc., Germantown, Maryland, USA – sequence: 9 givenname: Isaac surname: Zhou fullname: Zhou, Isaac organization: CosmosID Inc., Germantown, Maryland, USA – sequence: 10 givenname: Nathaniel surname: Registe fullname: Registe, Nathaniel organization: CosmosID Inc., Germantown, Maryland, USA – sequence: 11 givenname: Manoj surname: Dadlani fullname: Dadlani, Manoj organization: CosmosID Inc., Germantown, Maryland, USA – sequence: 12 givenname: Malinda surname: Wimalarante fullname: Wimalarante, Malinda organization: Inspection Experts Inc., Columbia, Maryland, USA – sequence: 13 givenname: Dilini surname: Jinasena fullname: Jinasena, Dilini organization: Inspection Experts Inc., Columbia, Maryland, USA – sequence: 14 givenname: Rushan surname: Abayagunawardena fullname: Abayagunawardena, Rushan organization: Inspection Experts Inc., Columbia, Maryland, USA – sequence: 15 givenname: Chiran surname: Withanachchi fullname: Withanachchi, Chiran organization: Inspection Experts Inc., Columbia, Maryland, USA – sequence: 16 givenname: Anwar surname: Huq fullname: Huq, Anwar organization: Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA – sequence: 17 givenname: Antarpreet surname: Jutla fullname: Jutla, Antarpreet organization: Geohealth and Hydrology Laboratory, Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA – sequence: 18 givenname: Rita R. orcidid: 0000-0001-5432-1502 surname: Colwell fullname: Colwell, Rita R. organization: Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland, USA, CosmosID Inc., Germantown, Maryland, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35726918$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtv3CAURlGVqnk0y24rL6tKToELBjatoulrpFRZ9LVEGF9PGdkmATtV_n3sTBollcIGBIfD5X6HZG-IAxLyitETxrh-19chnlAqDSs5f0YOOJO0VJKxvQfrfXKc85bOA4BpoC_IPkjFK8P0AfnwLfgUZ02PxenguuscctHGVPx2ecS_bsRUfJ_SFYauc4PHoplSGDbF6vzX-mPJzEvyvHVdxuO7-Yj8_Pzpx-preXb-Zb06PSud0HosjdBe-KbxvkaowDfAoW1rB4o7bFVNKwnGgUfdaFqbRjlJlTTCgAaJSsMRWe-8TXRbe5FC79K1jS7Y242YNtalMfgObYucCUANrRLCe2Xc8pqgXuuq9uBn1_ud62Kqe2w8DmNy3SPp45Mh_LGbeGWN4JXUbBa8uROkeDlhHm0fsselQxinbHmlDBeUKj6jb3eoyz232zilucnZMmqXAO0SoL0N0PIFfv2wsPuK_sU1A-UOmDPLOWF7jzwlhP94H0Y3hrj8K3RP3LoBW3i4Dg |
CitedBy_id | crossref_primary_10_3389_fpubh_2023_1145275 crossref_primary_10_1016_j_hazadv_2025_100635 crossref_primary_10_1016_j_watres_2024_121513 crossref_primary_10_1016_j_envres_2024_118556 crossref_primary_10_1007_s11625_022_01253_5 crossref_primary_10_1021_acs_jproteome_3c00040 crossref_primary_10_1128_mbio_01476_23 crossref_primary_10_1016_j_envpol_2024_124752 crossref_primary_10_3389_fmicb_2024_1337368 crossref_primary_10_1080_19420862_2022_2133666 crossref_primary_10_1016_j_scitotenv_2023_165867 crossref_primary_10_3390_w15061018 crossref_primary_10_1007_s15010_022_01931_7 crossref_primary_10_1016_j_scitotenv_2023_165984 crossref_primary_10_1016_j_scitotenv_2022_160178 crossref_primary_10_1016_j_scitotenv_2023_162058 crossref_primary_10_1080_19490976_2023_2297860 crossref_primary_10_3390_v14102205 crossref_primary_10_1007_s11010_023_04760_w crossref_primary_10_1371_journal_pone_0278061 crossref_primary_10_1128_msystems_00709_23 crossref_primary_10_3390_jof11020086 crossref_primary_10_1016_j_envres_2024_119439 crossref_primary_10_1016_j_mimet_2024_107051 crossref_primary_10_1016_j_watres_2022_119421 crossref_primary_10_1016_j_ebiom_2024_105512 crossref_primary_10_1016_j_scitotenv_2024_175014 crossref_primary_10_1021_envhealth_3c00105 crossref_primary_10_3390_diagnostics12092143 crossref_primary_10_1128_cmr_00103_22 crossref_primary_10_3389_fpubh_2023_1181911 crossref_primary_10_3390_w16243571 crossref_primary_10_1080_1040841X_2023_2282447 crossref_primary_10_1128_spectrum_03050_22 crossref_primary_10_1016_j_onehlt_2023_100536 crossref_primary_10_2166_wh_2023_279 crossref_primary_10_1016_j_scitotenv_2023_164001 crossref_primary_10_1007_s00436_023_08088_8 crossref_primary_10_1016_j_isci_2024_109043 crossref_primary_10_1016_j_scitotenv_2025_178419 crossref_primary_10_1021_acsestwater_3c00384 crossref_primary_10_3390_toxics13010003 |
Cites_doi | 10.1016/j.jcv.2021.104878 10.5942/jawwa.2017.109.0116 10.1007/s00705-010-0619-y 10.1128/mBio.02703-20 10.1016/j.cell.2016.08.007 10.1073/pnas.1523817113 10.1038/s41579-021-00639-z 10.3389/fmicb.2019.00101 10.3389/fmicb.2014.00358 10.1371/journal.pone.0228899 10.1016/j.watres.2021.117433 10.1016/j.watres.2019.06.003 10.3343/alm.2021.41.1.25 10.1073/pnas.2008373117 10.21105/joss.01442 10.1016/j.nmni.2020.100835 10.1016/j.scitotenv.2020.138764 10.1002/0471710431 10.1261/rna.076141.120 10.1016/j.scitotenv.2020.140621 10.1016/j.envint.2022.107217 10.1016/j.cell.2020.06.043 10.1056/NEJMoa2001191 10.1038/s41421-021-00349-z 10.1038/s41587-020-0684-z 10.1017/S095026881000316X 10.1016/j.scitotenv.2020.139652 10.1016/j.scitotenv.2021.145721 10.1016/j.rmcr.2020.101203 10.1371/journal.pone.0262573 10.1038/s41467-018-07992-3 10.1021/ez500266s 10.1002/jmv.26673 10.15585/mmwr.mm6936a4 10.1128/msphere.00808-21 10.1007/BF02538737 10.1016/j.scitotenv.2020.141326 10.1016/j.scitotenv.2020.142867 10.1016/S1473-3099(20)30120-1 10.1021/acsestwater.1c00160 10.1128/MRA.00280-21 10.1126/science.abe9187 10.1038/s41579-021-00573-0 10.1016/j.watres.2020.116112 10.1038/s41392-021-00623-2 10.1093/bioinformatics/btr509 10.1007/s00101-021-01018-2 10.1126/science.1254529 10.1016/j.scitotenv.2020.144549 10.3389/fmicb.2021.651151 10.1038/s42003-020-01439-6 10.1021/acs.estlett.0c00730 10.1007/s13762-021-03349-4 10.3389/fimmu.2021.765965 10.1021/acs.estlett.0c00357 10.1128/mBio.02574-14 10.1016/j.scitotenv.2021.150121 10.1016/j.isci.2021.103589 10.1128/mSystems.00614-20 10.1021/acs.est.0c02172 10.1038/s41591-021-01285-x 10.1073/pnas.2119600119 10.7326/M20-0504 10.1016/j.watres.2020.116296 10.3389/frwa.2021.626849 10.3389/fmicb.2018.01291 10.1080/23744235.2021.1903550 10.1038/s41591-020-1000-7 10.1001/jama.2020.3786 10.3389/fgene.2019.00904 10.1111/j.1462-2920.2012.02757.x 10.1016/j.scitotenv.2021.149930 10.1038/s41598-019-50624-z 10.1016/j.scitotenv.2020.144216 10.1038/s41467-021-26298-5 10.1371/journal.pone.0253293 10.1371/journal.pone.0240007 10.1016/j.chom.2015.09.009 10.3390/ijms21083004 10.1126/scitranslmed.aaf6786 10.3390/d12060240 10.2166/wh.2011.019 10.1038/188430a0 10.1016/B978-0-12-811257-1.00003-6 10.1016/j.watres.2021.117993 10.3389/fmicb.2020.590683 10.1093/jpids/pit085 10.7554/eLife.57149 10.1101/mcs.a006031 10.1053/j.gastro.2020.02.055 10.1016/j.scitotenv.2021.150151 10.1016/B978-0-12-821881-5.00008-8 10.1128/AEM.03575-14 10.1021/acs.jproteome.0c00822 10.1093/bioinformatics/btu170 10.1016/j.watres.2020.115942 10.3201/eid2705.204410 10.1101/pdb.top084970 10.3390/ijerph15102211 10.1093/femsec/fiab001 10.1136/bmj.n83 10.3389/fmicb.2018.02435 10.1371/journal.pone.0231210 10.4269/ajtmh.21-0328 10.1093/femsmc/xtac003 10.1128/AEM.01448-21 10.1016/j.pestbp.2018.03.009 10.1016/j.scitotenv.2021.147829 10.1038/s41598-021-95772-3 10.1017/ice.2020.368 10.1038/s41591-021-01318-5 10.1002/jmv.25825 10.1177/1756284820974914 10.1053/j.gastro.2020.05.048 10.1016/j.scitotenv.2017.11.102 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Brumfield et al. Copyright © 2022 Brumfield et al. 2022 Brumfield et al. |
Copyright_xml | – notice: Copyright © 2022 Brumfield et al. – notice: Copyright © 2022 Brumfield et al. 2022 Brumfield et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.00591-22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Swanson, Michele S. |
Editor_xml | – sequence: 1 givenname: Michele S. surname: Swanson fullname: Swanson, Michele S. |
ExternalDocumentID | oai_doaj_org_article_fe2143e83f744cc79ad32340c886bc3c PMC9426581 00591-22 35726918 10_1128_mbio_00591_22 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES030317 – fundername: HHS | National Institutes of Health (NIH) grantid: R01ES030317A funderid: https://doi.org/10.13039/100000002 – fundername: National Science Foundation (NSF) grantid: OCE1839171 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation (NSF) grantid: CBET1751854 funderid: https://doi.org/10.13039/100000001 – fundername: National Science Foundation (NSF) grantid: CCF1918749 funderid: https://doi.org/10.13039/100000001 – fundername: ; grantid: CCF1918749 – fundername: ; grantid: CBET1751854 – fundername: ; grantid: R01ES030317A – fundername: ; grantid: OCE1839171 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF - 0R BXI HZ 7X8 5PM |
ID | FETCH-LOGICAL-a488t-948c4cddccbe363cd323ffba372aef7b06539a3ce8d80b9d7a50759493835e783 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 00:28:56 EDT 2025 Thu Aug 21 14:13:42 EDT 2025 Thu Jul 10 17:47:56 EDT 2025 Wed Aug 31 12:57:51 EDT 2022 Wed Feb 19 02:18:37 EST 2025 Tue Jul 01 00:57:32 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | RNA sequencing risk assessment wastewater wastewater monitoring wastewater surveillance environmental risk shotgun sequencing wastewater-based epidemiology microbiome COVID-19 SARS-CoV-2 metatranscriptomics metagenomics whole metagenome sequencing RT-qPCR DNA sequencing |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-948c4cddccbe363cd323ffba372aef7b06539a3ce8d80b9d7a50759493835e783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare the following potential conflicts of interest, with respect to the research, authorship, and/or publication of this article: R.R.C. is the founder of CosmosID, Inc., Rockville, MD and Distinguished University Professor, University of Maryland, College Park, MD; K.G., M.D., B.F., I.Z., and N.R. were employed by CosmosID, Inc. and M.W., D.J., R.A., and C.W. were employed by Inspection Experts, Inc., at the time this work was completed; J.A.C. is the founder of Joseph Cotruvo and Associates LLC, Washington, DC; M.L. is the founder of Essential Environmental and Engineering Systems, Huntington Beach. Specific roles of these authors are articulated in the 'Acknowledgements' section. This does not alter our decision to publish or adherence to policies on sharing data and materials. |
ORCID | 0000-0002-3234-3337 0000-0001-5432-1502 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.00591-22 |
PMID | 35726918 |
PQID | 2679240072 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fe2143e83f744cc79ad32340c886bc3c pubmedcentral_primary_oai_pubmedcentral_nih_gov_9426581 proquest_miscellaneous_2679240072 asm2_journals_10_1128_mbio_00591_22 pubmed_primary_35726918 crossref_primary_10_1128_mbio_00591_22 crossref_citationtrail_10_1128_mbio_00591_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-30 |
PublicationDateYYYYMMDD | 2022-08-30 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_123_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_127_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_112_2 e_1_3_2_92_2 e_1_3_2_131_2 e_1_3_2_50_2 WHO (e_1_3_2_6_2) 2020 e_1_3_2_116_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 European Centre for Disease Prevention and Control (e_1_3_2_102_2) 2021 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_126_2 e_1_3_2_82_2 e_1_3_2_103_2 e_1_3_2_122_2 Gerardi MH (e_1_3_2_79_2) 2004 e_1_3_2_107_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_115_2 e_1_3_2_130_2 e_1_3_2_70_2 e_1_3_2_111_2 Tangcharoensathien V (e_1_3_2_101_2) 2021; 372 e_1_3_2_119_2 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_125_2 e_1_3_2_121_2 Harwood V (e_1_3_2_60_2) 2017 e_1_3_2_106_2 e_1_3_2_129_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_114_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_118_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_124_2 e_1_3_2_61_2 e_1_3_2_120_2 e_1_3_2_80_2 e_1_3_2_109_2 e_1_3_2_105_2 e_1_3_2_128_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 Environmental Health Administration (e_1_3_2_83_2) 1978 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_113_2 e_1_3_2_72_2 e_1_3_2_117_2 Miura, F, Kitajima, M, Omori, R (B108) 2021; 769 Planas, D, Bruel, T, Grzelak, L, Guivel-Benhassine, F, Staropoli, I, Porrot, F, Planchais, C, Buchrieser, J, Rajah, MM, Bishop, E, Albert, M, Donati, F, Prot, M, Behillil, S, Enouf, V, Maquart, M, Smati-Lafarge, M, Varon, E, Schortgen, F, Yahyaoui, L, Gonzalez, M, De Sèze, J, Péré, H, Veyer, D, Sève, A, Simon-Lorière, E, Fafi-Kremer, S, Stefic, K, Mouquet, H, Hocqueloux, L, van der Werf, S, Prazuck, T, Schwartz, O (B120) 2021; 27 Brinkmann, A, Ulm, S-L, Uddin, S, Förster, S, Seifert, D, Oehme, R, Corty, M, Schaade, L, Michel, J, Nitsche, A (B73) 2021; 12 Rezasoltani, S, Yadegar, A, Hatami, B, Aghdaei, HA, Zali, MR (B49) 2020; 11 Assress, HA, Selvarajan, R, Nyoni, H, Ntushelo, K, Mamba, BB, Msagati, TAM (B130) 2019; 9 Gushgari, AJ, Venkatesan, AK, Chen, J, Steele, JC, Halden, RU (B24) 2019; 161 Holm, RH, Nagarkar, M, Yeager, RA, Talley, D, Chaney, AC, Rai, JP, Mukherjee, A, Rai, SN, Bhatnagar, A, Smith, T (B70) 2022; 3 Feng, S, Roguet, A, McClary-Gutierrez, JS, Newton, RJ, Kloczko, N, Meiman, JG, McLellan, SL (B71) 2021; 1 Harvey, WT, Carabelli, AM, Jackson, B, Gupta, RK, Thomson, EC, Harrison, EM, Ludden, C, Reeve, R, Rambaut, A, Peacock, SJ, Robertson, DL (B76) 2021; 19 Vo, V, Tillett, RL, Chang, C-L, Gerrity, D, Betancourt, WQ, Oh, EC (B26) 2022; 805 (B82) 1978 Nakamura, T, Hamasaki, M, Yoshitomi, H, Ishibashi, T, Yoshiyama, C, Maeda, E, Sera, N, Yoshida, H (B19) 2015; 81 Rampersad, S, Tennant, P, Tennant, P, Fermin, G, Foster, JE (B46) 2018 Nori, P, Cowman, K, Chen, V, Bartash, R, Szymczak, W, Madaline, T, Punjabi Katiyar, C, Jain, R, Aldrich, M, Weston, G, Gialanella, P, Corpuz, M, Gendlina, I, Guo, Y (B52) 2021; 42 Usmani, M, Yusuf, J, Gangwar, M, Magers, B, Chaves-Gonzalez, J, Wu, C-Y, Colwell, RR, Jutla, AS (B6) 2022; 106 Medema, G, Heijnen, L, Elsinga, G, Italiaander, R, Brouwer, A (B31) 2020; 7 Spanner, C, Darienko, T, Biehler, T, Sonntag, B, Pröschold, T (B128) 2020; 12 B36 Karkman, A, Pärnänen, K, Larsson, DGJ (B41) 2019; 10 Ekwanzala, MD, Budeli, P, Unuofin, JO, Shah, MP, Sarkar, A, Mandal, S (B45) 2021 Combe, M, Garijo, R, Geller, R, Cuevas, JM, Sanjuán, R (B75) 2015; 18 Smith, SD (B57) 2019; 4 Zhong, Y, Xu, F, Wu, J, Schubert, J, Li, MM (B42) 2021; 41 Karkman, A, Berglund, F, Flach, C-F, Kristiansson, E, Larsson, DGJ (B37) 2020; 3 Thuy-Boun, PS, Mehta, S, Gruening, B, McGowan, T, Nguyen, A, Rajczewski, AT, Johnson, JE, Griffin, TJ, Wolan, DW, Jagtap, PD (B69) 2021; 20 Bustin, SA, Nolan, T (B13) 2020; 21 B2 Giacobbo, A, Rodrigues, MAS, Zoppas Ferreira, J, Bernardes, AM, de Pinho, MN (B48) 2021; 774 B3 Ponnusamy, D, Kozlova, EV, Sha, J, Erova, TE, Azar, SR, Fitts, EC, Kirtley, ML, Tiner, BL, Andersson, JA, Grim, CJ, Isom, RP, Hasan, NA, Colwell, RR, Chopra, AK (B93) 2016; 113 Bivins, A, Greaves, J, Fischer, R, Yinda, KC, Ahmed, W, Kitajima, M, Munster, VJ, Bibby, K (B47) 2020; 7 Andersson, P, Tong, SYC, Lilliebridge, RA, Brenner, NC, Martin, LM, Spencer, E, Delima, J, Singh, G, McCann, F, Hudson, C, Johns, T, Giffard, PM (B79) 2014; 3 Newton, RJ, McLellan, SL, Dila, DK, Vineis, JH, Morrison, HG, Eren, AM, Sogin, ML (B77) 2015; 6 Randazzo, W, Truchado, P, Cuevas-Ferrando, E, Simón, P, Allende, A, Sánchez, G (B32) 2020; 181 Moghadas, SM, Fitzpatrick, MC, Sah, P, Pandey, A, Shoukat, A, Singer, BH, Galvani, AP (B9) 2020; 117 Heijnen, L, Medema, G (B21) 2011; 9 Chen, Y, Chen, L, Deng, Q, Zhang, G, Wu, K, Ni, L, Yang, Y, Liu, B, Wang, W, Wei, C, Yang, J, Ye, G, Cheng, Z (B16) 2020; 92 Hemmes, JH, Winkler, K, Kool, SM (B84) 1960; 188 Palanisamy, V, Gajendiran, V, Mani, K (B124) 2021; 19 Czeisler, MÉ, Marynak, K, Clarke, KEN, Salah, Z, Shakya, I, Thierry, JM, Ali, N, McMillan, H, Wiley, JF, Weaver, MD, Czeisler, CA, Rajaratnam, SMW, Howard, ME (B98) 2020; 69 Agrawal, S, Orschler, L, Lackner, S (B43) 2021; 10 Gerardi, MH, Zimmerman, MC (B78) 2004 Xia, S, Wen, Z, Wang, L, Lan, Q, Jiao, F, Tai, L, Wang, Q, Sun, F, Jiang, S, Lu, L, Zhu, Y (B119) 2021; 7 Berchenko, Y, Manor, Y, Freedman, LS, Kaliner, E, Grotto, I, Mendelson, E, Huppert, A (B17) 2017; 9 VandeWalle, JL, Goetz, GW, Huse, SM, Morrison, HG, Sogin, ML, Hoffmann, RG, Yan, K, McLellan, SL (B125) 2012; 14 Li, H (B91) 2011; 27 Nayfach, S, Pollard, KS (B55) 2016; 166 Bolger, AM, Lohse, M, Usadel, B (B89) 2014; 30 Gonzalez, R, Curtis, K, Bivins, A, Bibby, K, Weir, MH, Yetka, K, Thompson, H, Keeling, D, Mitchell, J, Gonzalez, D (B35) 2020; 186 La Rosa, G, Iaconelli, M, Pourshaban, M, Fratini, M, Muscillo, M (B20) 2010; 155 Williams, RJ, Howe, A, Hofmockel, KS (B97) 2014; 5 Connelly, S, Fanelli, B, Hasan, NA, Kaleko, M, Colwell, RR (B94) 2019; 10 B50 Wibmer, CK, Ayres, F, Hermanus, T, Madzivhandila, M, Kgagudi, P, Oosthuysen, B, Lambson, BE, de Oliveira, T, Vermeulen, M, van der Berg, K, Rossouw, T, Boswell, M, Ueckermann, V, Meiring, S, von Gottberg, A, Cohen, C, Morris, L, Bhiman, JN, Moore, PL (B121) 2021; 27 Korber, B, Fischer, WM, Gnanakaran, S, Yoon, H, Theiler, J, Abfalterer, W, Hengartner, N, Giorgi, EE, Bhattacharya, T, Foley, B, Hastie, KM, Parker, MD, Partridge, DG, Evans, CM, Freeman, TM, de Silva, TI, Group, S-1G, McDanal, C, Perez, LG, Tang, H, Moon-Walker, A, Whelan, SP, LaBranche, CC, Saphire, EO, Montefiori, DC (B117) 2020; 182 Spurbeck, RR, Minard-Smith, A, Catlin, L (B25) 2021; 789 Ferté, T, Ramel, V, Cazanave, C, Lafon, M-E, Bébéar, C, Malvy, D, Georges-Walryck, A, Dehail, P (B11) 2021; 141 Acharya, K, Blackburn, A, Mohammed, J, Haile, AT, Hiruy, AM, Werner, D (B126) 2020; 184 Lubinski, B, Fernandes, MV, Frazier, L, Tang, T, Daniel, S, Diel, DG, Jaimes, JA, Whittaker, GR (B118) 2022; 25 Miao, J, Dong, X, Chi, Y, Lin, D, Chen, F, Du, Y, Liu, P, Liu, X (B127) 2018; 147 Peccia, J, Zulli, A, Brackney, DE, Grubaugh, ND, Kaplan, EH, Casanovas-Massana, A, Ko, AI, Malik, AA, Wang, D, Wang, M, Warren, JL, Weinberger, DM, Arnold, W, Omer, SB (B22) 2020; 38 Zhang, H, Feng, J, Chen, S, Li, B, Sekar, R, Zhao, Z, Jia, J, Wang, Y, Kang, P (B129) 2018; 9 Daughton, CG (B72) 2018; 619–620 Lauer, SA, Grantz, KH, Bi, Q, Jones, FK, Zheng, Q, Meredith, HR, Azman, AS, Reich, NG, Lessler, J (B7) 2020; 172 Wang, W, Xu, Y, Gao, R, Lu, R, Han, K, Wu, G, Tan, W (B15) 2020; 323 Hussain, I, Cher, GLY, Abid, MA, Abid, MB (B65) 2021; 12 Kumar, M, Patel, AK, Shah, AV, Raval, J, Rajpara, N, Joshi, M, Joshi, CG (B30) 2020; 746 Rothman, JA, Loveless, TB, Kapcia, J, Adams, EE, Steele, JA, Zimmer-Faust, AG, Langlois, K, Hideaki, N, Wanless, D, Griffith, M, Mao, L, Chokry, J, Griffith, JF, Whiteson, KL (B123) 2021; 87 Adhikari, S, Halden, RU (B23) 2022; 163 Syal, K (B12) 2021; 93 Tsujimoto, Y, Terada, J, Kimura, M, Moriya, A, Motohashi, A, Izumi, S, Kawajiri, K, Hakkaku, K, Morishita, M, Saito, S, Takumida, H, Watanabe, H, Tsukada, A, Morita, C, Yamaguchi, Y, Katsuno, T, Kusaba, Y, Sakamoto, K, Hashimoto, M, Suzuki, M, Takasaki, J, Hojo, M, Miyoshi-Akiyama, T, Sugiyama, H (B14) 2021; 53 Lindner, BG, Suttner, B, Zhu, KJ, Conrad, RE, Rodriguez-R, LM, Hatt, JK, Brown, J, Konstantinidis, KT (B106) 2022; 210 Harwood, V, Shanks, O, Koraijkic, A, Verbyla, M, Ahmed, W, Iriate, M, Rose, JB, Jiménez-Cisneros, B (B59) 2017 Leddy, MB, Hasan, NA, Subramanian, P, Heberling, C, Cotruvo, J, Colwell, RR (B38) 2017; 109 B112 Tindale, LC, Stockdale, JE, Coombe, M, Garlock, ES, Lau, WYV, Saraswat, M, Zhang, L, Chen, D, Wallinga, J, Colijn, C (B8) 2020; 9 Rangan, R, Zheludev, IN, Hagey, RJ, Pham, EA, Wayment-Steele, HK, Glenn, JS, Das, R (B116) 2020; 26 (B5) 2020 Faqihi, F, Alharthy, A, Pirompanich, P, Noor, A, Shahzad, A, Nasim, N, Balhamar, A, Memish, ZA, Karakitsos, D (B66) 2020; 31 Crits-Christoph, A, Kantor, RS, Olm, MR, Whitney, ON, Al-Shayeb, B, Lou, YC, Flamholz, A, Kennedy, LC, Greenwald, H, Hinkle, A, Hetzel, J, Spitzer, S, Koble, J, Tan, A, Hyde, F, Schroth, G, Kuersten, S, Banfield, JF, Nelson, KL (B111) 2021; 12 Xiao, F, Tang, M, Zheng, X, Liu, Y, Li, X, Shan, H (B63) 2020; 158 Hemmes, JH, Winkler, KC, Kool, SM (B85) 1962; 28 Kukurba, KR, Montgomery, SB (B44) 2015; 2015 Brumfield, KD, Hasan, NA, Leddy, MB, Cotruvo, J, Rashed, SM, Colwell, RR, Huq, A (B88) 2020; 15 Wu, F, Xiao, A, Zhang, J, Moniz, K, Endo, N, Armas, F, Bonneau, R, Brown, MA, Bushman, M, Chai, PR, Duvallet, C, Erickson, TB, Foppe, K, Ghaeli, N, Gu, X, Hanage, WP, Huang, KH, Lee, WL, Matus, M, McElroy, KA, Nagler, J, Rhode, SF, Santillana, M, Tucker, JA, Wuertz, S, Zhao, S, Thompson, J, Alm, EJ (B104) 2022; 805 Safford, HR, Shapiro, K, Bischel, HN (B10) 2022; 119 Zuo, T, Zhang, F, Lui, GCY, Yeoh, YK, Li, AYL, Zhan, H, Wan, Y, Chung, ACK, Cheung, CP, Chen, N, Lai, CKC, Chen, Z, Tso, EYK, Fung, KSC, Chan, V, Ling, L, Joynt, G, Hui, DSC, Chan, FKL, Chan, PKS, Ng, SC (B51) 2020; 159 Brooks, EF, Bhatt, AS (B60) 2021; 7 Dong, E, Du, H, Gardner, L (B4) 2020; 20 Fontana, C, Favaro, M, Minelli, S, Bossa, MC, Altieri, A (B67) 2021; 11 Stachler, E, Bibby, K (B54) 2014; 1 Franke, KR, Isett, R, Robbins, A, Paquette-Straub, C, Shapiro, CA, Lee, MM, Crowgey, EL (B113) 2022; 17 B80 Olesen, SW, Imakaev, M, Duvallet, C (B105) 2021; 202 B81 Sherchan, SP, Shahin, S, Ward, LM, Tandukar, S, Aw, TG, Schmitz, B, Ahmed, W, Kitajima, M (B33) 2020; 743 B83 B86 B87 Larson, RC, Berman, O, Nourinejad, M (B27) 2020; 15 Tangcharoensathien, V, Bassett, MT, Meng, Q, Mills, A (B100) 2021; 372 Kerkhof, LJ (B74) 2021; 97 Lax, S, Smith, DP, Hampton-Marcell, J, Owens, SM, Handley, KM, Scott, NM, Gibbons, SM, Larsen, P, Shogan, BD, Weiss, S, Metcalf, JL, Ursell, LK, Vázquez-Baeza, Y, Van Treuren, W, Hasan, NA, Gibson, MK, Colwell, R, Dantas, G, Knight, R, Gilbert, JA (B92) 2014; 345 Baker, RE, Mahmud, AS, Miller, IF, Rajeev, M, Rasambainarivo, F, Rice, BL, Takahashi, S, Tatem, AJ, Wagner, CE, Wang, L-F, Wesolowski, A, Metcalf, CJE (B1) 2022; 20 Yamamoto, S, Saito, M, Tamura, A, Prawisuda, D, Mizutani, T, Yotsuyanagi, H (B53) 2021; 16 Brumfield, KD, Cotruvo, JA, Shanks, OC, Sivaganesan, M, Hey, J, Hasan, NA, Huq, A, Colwell, RR, Leddy, MB (B95) 2021; 3 Wu, F, Zhang, J, Xiao, A, Gu, X, Lee, WL, Armas, F, Kauffman, K, Hanage, W, Matus, M, Ghaeli, N, Endo, N, Duvallet, C, Poyet, M, Moniz, K, Washburne, AD, Erickson, TB |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1016/j.jcv.2021.104878 – ident: e_1_3_2_39_2 doi: 10.5942/jawwa.2017.109.0116 – ident: e_1_3_2_21_2 doi: 10.1007/s00705-010-0619-y – ident: e_1_3_2_51_2 – ident: e_1_3_2_112_2 doi: 10.1128/mBio.02703-20 – ident: e_1_3_2_56_2 doi: 10.1016/j.cell.2016.08.007 – ident: e_1_3_2_94_2 doi: 10.1073/pnas.1523817113 – ident: e_1_3_2_2_2 doi: 10.1038/s41579-021-00639-z – ident: e_1_3_2_95_2 doi: 10.3389/fmicb.2019.00101 – ident: e_1_3_2_98_2 doi: 10.3389/fmicb.2014.00358 – ident: e_1_3_2_40_2 doi: 10.1371/journal.pone.0228899 – ident: e_1_3_2_106_2 doi: 10.1016/j.watres.2021.117433 – volume-title: Considerations on the use of self-tests for COVID-19 in the EU/EEA. year: 2021 ident: e_1_3_2_102_2 – ident: e_1_3_2_25_2 doi: 10.1016/j.watres.2019.06.003 – ident: e_1_3_2_43_2 doi: 10.3343/alm.2021.41.1.25 – ident: e_1_3_2_10_2 doi: 10.1073/pnas.2008373117 – ident: e_1_3_2_58_2 doi: 10.21105/joss.01442 – volume-title: Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief, 27 March 2020. year: 2020 ident: e_1_3_2_6_2 – ident: e_1_3_2_116_2 doi: 10.1016/j.nmni.2020.100835 – ident: e_1_3_2_30_2 doi: 10.1016/j.scitotenv.2020.138764 – start-page: 3 volume-title: Wastewater pathogens. year: 2004 ident: e_1_3_2_79_2 doi: 10.1002/0471710431 – ident: e_1_3_2_113_2 – ident: e_1_3_2_117_2 doi: 10.1261/rna.076141.120 – ident: e_1_3_2_34_2 doi: 10.1016/j.scitotenv.2020.140621 – ident: e_1_3_2_24_2 doi: 10.1016/j.envint.2022.107217 – ident: e_1_3_2_82_2 – ident: e_1_3_2_118_2 doi: 10.1016/j.cell.2020.06.043 – ident: e_1_3_2_103_2 doi: 10.1056/NEJMoa2001191 – ident: e_1_3_2_120_2 doi: 10.1038/s41421-021-00349-z – ident: e_1_3_2_23_2 doi: 10.1038/s41587-020-0684-z – ident: e_1_3_2_19_2 doi: 10.1017/S095026881000316X – ident: e_1_3_2_104_2 doi: 10.1016/j.scitotenv.2020.139652 – volume-title: Department of Health and Mental Hygiene year: 1978 ident: e_1_3_2_83_2 – ident: e_1_3_2_49_2 doi: 10.1016/j.scitotenv.2021.145721 – ident: e_1_3_2_67_2 doi: 10.1016/j.rmcr.2020.101203 – ident: e_1_3_2_114_2 doi: 10.1371/journal.pone.0262573 – ident: e_1_3_2_42_2 doi: 10.1038/s41467-018-07992-3 – ident: e_1_3_2_55_2 doi: 10.1021/ez500266s – ident: e_1_3_2_3_2 – ident: e_1_3_2_13_2 doi: 10.1002/jmv.26673 – ident: e_1_3_2_84_2 – ident: e_1_3_2_99_2 doi: 10.15585/mmwr.mm6936a4 – ident: e_1_3_2_57_2 doi: 10.1128/msphere.00808-21 – ident: e_1_3_2_86_2 doi: 10.1007/BF02538737 – ident: e_1_3_2_31_2 doi: 10.1016/j.scitotenv.2020.141326 – ident: e_1_3_2_65_2 doi: 10.1016/j.scitotenv.2020.142867 – ident: e_1_3_2_5_2 doi: 10.1016/S1473-3099(20)30120-1 – ident: e_1_3_2_72_2 doi: 10.1021/acsestwater.1c00160 – ident: e_1_3_2_44_2 doi: 10.1128/MRA.00280-21 – ident: e_1_3_2_81_2 – ident: e_1_3_2_100_2 doi: 10.1126/science.abe9187 – ident: e_1_3_2_77_2 doi: 10.1038/s41579-021-00573-0 – ident: e_1_3_2_127_2 doi: 10.1016/j.watres.2020.116112 – ident: e_1_3_2_115_2 doi: 10.1038/s41392-021-00623-2 – ident: e_1_3_2_92_2 doi: 10.1093/bioinformatics/btr509 – ident: e_1_3_2_97_2 – ident: e_1_3_2_69_2 doi: 10.1007/s00101-021-01018-2 – ident: e_1_3_2_93_2 doi: 10.1126/science.1254529 – ident: e_1_3_2_109_2 doi: 10.1016/j.scitotenv.2020.144549 – ident: e_1_3_2_74_2 doi: 10.3389/fmicb.2021.651151 – ident: e_1_3_2_38_2 doi: 10.1038/s42003-020-01439-6 – ident: e_1_3_2_48_2 doi: 10.1021/acs.estlett.0c00730 – ident: e_1_3_2_88_2 – ident: e_1_3_2_125_2 doi: 10.1007/s13762-021-03349-4 – ident: e_1_3_2_66_2 doi: 10.3389/fimmu.2021.765965 – ident: e_1_3_2_32_2 doi: 10.1021/acs.estlett.0c00357 – ident: e_1_3_2_78_2 doi: 10.1128/mBio.02574-14 – ident: e_1_3_2_87_2 – ident: e_1_3_2_91_2 – ident: e_1_3_2_105_2 doi: 10.1016/j.scitotenv.2021.150121 – ident: e_1_3_2_119_2 doi: 10.1016/j.isci.2021.103589 – ident: e_1_3_2_35_2 doi: 10.1128/mSystems.00614-20 – ident: e_1_3_2_110_2 doi: 10.1021/acs.est.0c02172 – ident: e_1_3_2_122_2 doi: 10.1038/s41591-021-01285-x – ident: e_1_3_2_11_2 doi: 10.1073/pnas.2119600119 – ident: e_1_3_2_8_2 doi: 10.7326/M20-0504 – ident: e_1_3_2_36_2 doi: 10.1016/j.watres.2020.116296 – ident: e_1_3_2_96_2 doi: 10.3389/frwa.2021.626849 – ident: e_1_3_2_130_2 doi: 10.3389/fmicb.2018.01291 – ident: e_1_3_2_15_2 doi: 10.1080/23744235.2021.1903550 – ident: e_1_3_2_41_2 doi: 10.1038/s41591-020-1000-7 – ident: e_1_3_2_16_2 doi: 10.1001/jama.2020.3786 – ident: e_1_3_2_123_2 doi: 10.3389/fgene.2019.00904 – ident: e_1_3_2_126_2 doi: 10.1111/j.1462-2920.2012.02757.x – ident: e_1_3_2_27_2 doi: 10.1016/j.scitotenv.2021.149930 – ident: e_1_3_2_131_2 doi: 10.1038/s41598-019-50624-z – ident: e_1_3_2_29_2 doi: 10.1016/j.scitotenv.2020.144216 – ident: e_1_3_2_59_2 doi: 10.1038/s41467-021-26298-5 – ident: e_1_3_2_54_2 doi: 10.1371/journal.pone.0253293 – ident: e_1_3_2_28_2 doi: 10.1371/journal.pone.0240007 – ident: e_1_3_2_76_2 doi: 10.1016/j.chom.2015.09.009 – ident: e_1_3_2_14_2 doi: 10.3390/ijms21083004 – ident: e_1_3_2_18_2 doi: 10.1126/scitranslmed.aaf6786 – ident: e_1_3_2_129_2 doi: 10.3390/d12060240 – ident: e_1_3_2_22_2 doi: 10.2166/wh.2011.019 – ident: e_1_3_2_85_2 doi: 10.1038/188430a0 – ident: e_1_3_2_47_2 doi: 10.1016/B978-0-12-811257-1.00003-6 – ident: e_1_3_2_107_2 doi: 10.1016/j.watres.2021.117993 – ident: e_1_3_2_50_2 doi: 10.3389/fmicb.2020.590683 – ident: e_1_3_2_80_2 doi: 10.1093/jpids/pit085 – ident: e_1_3_2_9_2 doi: 10.7554/eLife.57149 – ident: e_1_3_2_61_2 doi: 10.1101/mcs.a006031 – ident: e_1_3_2_64_2 doi: 10.1053/j.gastro.2020.02.055 – ident: e_1_3_2_108_2 doi: 10.1016/j.scitotenv.2021.150151 – ident: e_1_3_2_46_2 doi: 10.1016/B978-0-12-821881-5.00008-8 – ident: e_1_3_2_20_2 doi: 10.1128/AEM.03575-14 – ident: e_1_3_2_70_2 doi: 10.1021/acs.jproteome.0c00822 – ident: e_1_3_2_4_2 – ident: e_1_3_2_90_2 doi: 10.1093/bioinformatics/btu170 – ident: e_1_3_2_33_2 doi: 10.1016/j.watres.2020.115942 – ident: e_1_3_2_111_2 doi: 10.3201/eid2705.204410 – ident: e_1_3_2_45_2 doi: 10.1101/pdb.top084970 – ident: e_1_3_2_63_2 doi: 10.3390/ijerph15102211 – ident: e_1_3_2_75_2 doi: 10.1093/femsec/fiab001 – volume: 372 start-page: n83 year: 2021 ident: e_1_3_2_101_2 article-title: Are overwhelmed health systems an inevitable consequence of covid-19? Experiences from China, Thailand, and New York State publication-title: BMJ doi: 10.1136/bmj.n83 – ident: e_1_3_2_37_2 doi: 10.3389/fmicb.2018.02435 – start-page: 3 volume-title: Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project) year: 2017 ident: e_1_3_2_60_2 – ident: e_1_3_2_89_2 doi: 10.1371/journal.pone.0231210 – ident: e_1_3_2_7_2 doi: 10.4269/ajtmh.21-0328 – ident: e_1_3_2_71_2 doi: 10.1093/femsmc/xtac003 – ident: e_1_3_2_124_2 doi: 10.1128/AEM.01448-21 – ident: e_1_3_2_128_2 doi: 10.1016/j.pestbp.2018.03.009 – ident: e_1_3_2_26_2 doi: 10.1016/j.scitotenv.2021.147829 – ident: e_1_3_2_68_2 doi: 10.1038/s41598-021-95772-3 – ident: e_1_3_2_53_2 doi: 10.1017/ice.2020.368 – ident: e_1_3_2_121_2 doi: 10.1038/s41591-021-01318-5 – ident: e_1_3_2_17_2 doi: 10.1002/jmv.25825 – ident: e_1_3_2_62_2 doi: 10.1177/1756284820974914 – ident: e_1_3_2_52_2 doi: 10.1053/j.gastro.2020.05.048 – ident: e_1_3_2_73_2 doi: 10.1016/j.scitotenv.2017.11.102 – volume: 619–620 start-page: 748 year: 2018 end-page: 764 ident: B72 article-title: Monitoring wastewater for assessing community health: Sewage Chemical-Information Mining (SCIM) publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.11.102 – volume: 31 start-page: 101203 year: 2020 ident: B66 article-title: Co-infection of SARS-CoV-2 and Bordetella bronchiseptica in a young man with idiopathic non-cystic bronchiectasis and vitamin D(3) deficiency publication-title: Respir Med Case Rep doi: 10.1016/j.rmcr.2020.101203 – volume: 804 start-page: 150151 year: 2022 ident: B107 article-title: SARS-CoV-2 wastewater surveillance data can predict hospitalizations and ICU admissions publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150151 – volume: 4 start-page: 1442 year: 2019 ident: B57 article-title: phylosmith: an R-package for reproducible and efficient microbiome analysis with phyloseq-objects publication-title: JOSS doi: 10.21105/joss.01442 – volume: 789 start-page: 147829 year: 2021 ident: B25 article-title: Feasibility of neighborhood and building scale wastewater-based genomic epidemiology for pathogen surveillance publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.147829 – volume: 42 start-page: 84 year: 2021 end-page: 88 ident: B52 article-title: Bacterial and fungal coinfections in COVID-19 patients hospitalized during the New York City pandemic surge publication-title: Infect Control Hosp Epidemiol doi: 10.1017/ice.2020.368 – volume: 163 start-page: 107217 year: 2022 ident: B23 article-title: Opportunities and limits of wastewater-based epidemiology for tracking global health and attainment of UN sustainable development goals publication-title: Environ Int doi: 10.1016/j.envint.2022.107217 – volume: 3 start-page: 626849 year: 2021 ident: B95 article-title: Metagenomic sequencing and quantitative real-time PCR for fecal pollution assessment in an urban watershed publication-title: Front Water doi: 10.3389/frwa.2021.626849 – volume: 10 year: 2021 ident: B43 article-title: Metatranscriptomic analysis reveals SARS-CoV-2 mutations in wastewater of the Frankfurt Metropolitan Area in Southern Germany publication-title: Microbiol Resour Announc doi: 10.1128/MRA.00280-21 – volume: 19 start-page: 5079 year: 2021 end-page: 5096 ident: B124 article-title: Meta-analysis to identify the core microbiome in diverse wastewater publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-021-03349-4 – volume: 15 year: 2020 ident: B39 article-title: Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available NEON data publication-title: PLoS One doi: 10.1371/journal.pone.0228899 – volume: 25 start-page: 103589 year: 2022 ident: B118 article-title: Functional evaluation of the P681H mutation on the proteolytic activation of the SARS-CoV-2 variant B.1.1.7 (Alpha) spike publication-title: iScience doi: 10.1016/j.isci.2021.103589 – volume: 93 start-page: 1837 year: 2021 end-page: 1842 ident: B12 article-title: Guidelines on newly identified limitations of diagnostic tools for COVID‐19 and consequences publication-title: J Med Virol doi: 10.1002/jmv.26673 – volume: 166 start-page: 1103 year: 2016 end-page: 1116 ident: B55 article-title: Toward accurate and quantitative comparative metagenomics publication-title: Cell doi: 10.1016/j.cell.2016.08.007 – volume: 728 start-page: 138764 year: 2020 ident: B29 article-title: First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138764 – volume: 12 start-page: 1703 year: 2021 ident: B73 article-title: AmpliCoV: rapid whole-genome sequencing using multiplex PCR amplification and real-time Oxford Nanopore MinION sequencing enables rapid variant identification of SARS-CoV-2 publication-title: Front Microbiol doi: 10.3389/fmicb.2021.651151 – volume: 30 start-page: 2114 year: 2014 end-page: 2120 ident: B89 article-title: Trimmomatic: a flexible trimmer for Illumina sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 9 start-page: 434 year: 2011 end-page: 442 ident: B21 article-title: Surveillance of influenza A and the pandemic influenza A (H1N1) 2009 in sewage and surface water in the Netherlands publication-title: J Water Health doi: 10.2166/wh.2011.019 – ident: B3 article-title: WHO . 2020 . WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 . https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020 . – volume: 15 year: 2020 ident: B27 article-title: Sampling manholes to home in on SARS-CoV-2 infections publication-title: PLoS One doi: 10.1371/journal.pone.0240007 – volume: 5 year: 2020 ident: B34 article-title: SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases publication-title: mSystems doi: 10.1128/mSystems.00614-20 – volume: 17 year: 2022 ident: B113 article-title: Genomic surveillance of SARS-CoV-2 in the state of Delaware reveals tremendous genomic diversity publication-title: PLoS One doi: 10.1371/journal.pone.0262573 – start-page: 3 year: 2004 end-page: 6 ident: B78 publication-title: Wastewater pathogens. ;John Wiley & Sons – volume: 743 start-page: 140621 year: 2020 ident: B33 article-title: First detection of SARS-CoV-2 RNA in wastewater in North America: a study in Louisiana, USA publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.140621 – volume: 9 year: 2020 ident: B8 article-title: Evidence for transmission of COVID-19 prior to symptom onset publication-title: Elife doi: 10.7554/eLife.57149 – volume: 7 start-page: 937 year: 2020 end-page: 942 ident: B47 article-title: Persistence of SARS-CoV-2 in water and wastewater publication-title: Environ Sci Technol Lett doi: 10.1021/acs.estlett.0c00730 – volume: 26 start-page: 937 year: 2020 end-page: 959 ident: B116 article-title: RNA genome conservation and secondary structure in SARS-CoV-2 and SARS-related viruses: a first look publication-title: RNA doi: 10.1261/rna.076141.120 – volume: 27 start-page: 622 year: 2021 end-page: 625 ident: B121 article-title: SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma publication-title: Nat Med doi: 10.1038/s41591-021-01285-x – volume: 20 start-page: 193 year: 2022 end-page: 113 ident: B1 article-title: Infectious disease in an era of global change publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00639-z – volume: 182 start-page: 812 year: 2020 end-page: 827.e19 ident: B117 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 7 start-page: 511 year: 2020 end-page: 516 ident: B31 article-title: Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in the Netherlands publication-title: Environ Sci Technol Lett doi: 10.1021/acs.estlett.0c00357 – volume: 372 start-page: n83 year: 2021 ident: B100 article-title: Are overwhelmed health systems an inevitable consequence of covid-19? Experiences from China, Thailand, and New York State publication-title: BMJ – volume: 15 start-page: 2211 year: 2018 ident: B62 article-title: A metagenomic approach to evaluating surface water quality in Haiti publication-title: IJERPH doi: 10.3390/ijerph15102211 – volume: 9 start-page: 280 year: 2017 end-page: 281 ident: B17 article-title: Estimation of polio infection prevalence from environmental surveillance data publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf6786 – volume: 181 start-page: 115942 year: 2020 ident: B32 article-title: SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area publication-title: Water Res doi: 10.1016/j.watres.2020.115942 – ident: B80 article-title: United States Census Bureau . 2020 . Annual estimates of the resident population: April 1, 2010 to July 1, 2019 . http://www.census.gov/ . – ident: B83 article-title: INNOVAPrep . 2020 . Concentrating pipette select wastewater application note-Revision B . https://uploads-ssl.webflow.com/57aa3257c3e841c509f276e2/5f888d1b3bddf35ae661965c_CONCENTRATINGPIPETTESELECT%20WASTEWATER%20APPLICATION%20NOTE%201.17.03%20PM-compressed.pdf . – volume: 140 start-page: 1 year: 2012 end-page: 13 ident: B18 article-title: Role of environmental poliovirus surveillance in global polio eradication and beyond publication-title: Epidemiol Infect doi: 10.1017/S095026881000316X – volume: 26 start-page: 1398 year: 2020 end-page: 1404 ident: B40 article-title: Revealing COVID-19 transmission in Australia by SARS-CoV-2 genome sequencing and agent-based modeling publication-title: Nat Med doi: 10.1038/s41591-020-1000-7 – volume: 12 start-page: 765965 year: 2021 ident: B65 article-title: Role of gut microbiome in COVID-19: an insight into pathogenesis and therapeutic potential publication-title: Front Immunol doi: 10.3389/fimmu.2021.765965 – volume: 158 start-page: 1831 year: 2020 end-page: 1833.e3 ident: B63 article-title: Evidence for gastrointestinal infection of SARS-CoV-2 publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.02.055 – ident: B90 article-title: Joint Genome Institute . 2020 . BBMap short read aligner, and other bioinformatics tools . https://jgi.doe.gov/data-and-tools/software-tools/bbtools/ . – volume: 382 start-page: 929 year: 2020 end-page: 936 ident: B102 article-title: First case of 2019 novel coronavirus in the United States publication-title: N Engl J Med doi: 10.1056/NEJMoa2001191 – start-page: 187 year: 2021 end-page: 204 ident: B45 article-title: Application of metatranscriptomics in wastewater treatment processes publication-title: Wastewater treatment. ;Elsevier doi: 10.1016/B978-0-12-821881-5.00008-8 – volume: 371 start-page: 126 year: 2021 end-page: 127 ident: B99 article-title: COVID-19 testing: one size does not fit all publication-title: Science doi: 10.1126/science.abe9187 – volume: 210 start-page: 117993 year: 2022 ident: B106 article-title: Toward shotgun metagenomic approaches for microbial source tracking sewage spills based on laboratory mesocosms publication-title: Water Res doi: 10.1016/j.watres.2021.117993 – volume: 11 start-page: 3097 year: 2020 ident: B49 article-title: Antimicrobial resistance as a hidden menace lurking behind the COVID-19 outbreak: the global impacts of too much hygiene on AMR publication-title: Front Microbiol – volume: 20 start-page: 533 year: 2020 end-page: 534 ident: B4 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30120-1 – volume: 81 start-page: 1859 year: 2015 end-page: 1864 ident: B19 article-title: Environmental surveillance of poliovirus in sewage water around the introduction period for inactivated polio vaccine in Japan publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03575-14 – start-page: 3 year: 2017 end-page: 41 ident: B59 article-title: General and host-associated bacterial indicators of faecal pollution publication-title: Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project) ;Michigan State University ;East Lansing, MI – volume: 184 start-page: 116112 year: 2020 ident: B126 article-title: Metagenomic water quality monitoring with a portable laboratory publication-title: Water Res doi: 10.1016/j.watres.2020.116112 – volume: 119 year: 2022 ident: B10 article-title: Opinion: wastewater analysis can be a powerful public health tool—if it’s done sensibly publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2119600119 – volume: 7 year: 2022 ident: B56 article-title: Meconium microbiome of very preterm infants across Germany publication-title: mSphere doi: 10.1128/msphere.00808-21 – volume: 9 start-page: 1291 year: 2018 ident: B129 article-title: Disentangling the drivers of diversity and distribution of fungal community composition in wastewater treatment plants across spatial scales publication-title: Front Microbiol doi: 10.3389/fmicb.2018.01291 – volume: 147 start-page: 96 year: 2018 end-page: 101 ident: B127 article-title: Pseudoperonospora cubensis in China: Its sensitivity to and control by oxathiapiprolin publication-title: Pestic Biochem Physiol doi: 10.1016/j.pestbp.2018.03.009 – volume: 9 start-page: 14056 year: 2019 ident: B130 article-title: Diversity, co-occurrence and implications of fungal communities in wastewater treatment plants publication-title: Sci Rep doi: 10.1038/s41598-019-50624-z – volume: 186 start-page: 116296 year: 2020 ident: B35 article-title: COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology publication-title: Water Res doi: 10.1016/j.watres.2020.116296 – volume: 1 start-page: 405 year: 2014 end-page: 409 ident: B54 article-title: Metagenomic evaluation of the highly abundant human gut bacteriophage CrAssphage for source tracking of human fecal pollution publication-title: Environ Sci Technol Lett doi: 10.1021/ez500266s – volume: 769 start-page: 144549 year: 2021 ident: B108 article-title: Duration of SARS-CoV-2 viral shedding in faeces as a parameter for wastewater-based epidemiology: Re-analysis of patient data using a shedding dynamics model publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144549 – volume: 774 start-page: 145721 year: 2021 ident: B48 article-title: A critical review on SARS-CoV-2 infectivity in water and wastewater. What do we know? publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.145721 – volume: 13 start-page: 175628482097491 year: 2020 end-page: 175628482097414 ident: B61 article-title: The gut microbiome: an under-recognised contributor to the COVID-19 pandemic? publication-title: Therap Adv Gastroenterol doi: 10.1177/1756284820974914 – ident: B112 article-title: CDC . 2022 . COVID Data Tracker . https://covid.cdc.gov/covid-data-tracker/#datatracker-home . – volume: 2015 start-page: 951 year: 2015 end-page: 969 ident: B44 article-title: RNA sequencing and analysis publication-title: Cold Spring Harb Protoc doi: 10.1101/pdb.top084970 – volume: 18 start-page: 424 year: 2015 end-page: 432 ident: B75 article-title: Single-cell analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.09.009 – volume: 172 start-page: 577 year: 2020 end-page: 582 ident: B7 article-title: The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application publication-title: Ann Intern Med doi: 10.7326/M20-0504 – volume: 12 start-page: 6017 year: 2021 ident: B58 article-title: Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats publication-title: Nat Commun doi: 10.1038/s41467-021-26298-5 – volume: 41 start-page: 25 year: 2021 end-page: 43 ident: B42 article-title: Application of next generation sequencing in laboratory medicine publication-title: Ann Lab Med doi: 10.3343/alm.2021.41.1.25 – volume: 345 start-page: 1048 year: 2014 end-page: 1052 ident: B92 article-title: Longitudinal analysis of microbial interaction between humans and the indoor environment publication-title: Science doi: 10.1126/science.1254529 – volume: 5 start-page: 358 year: 2014 ident: B97 article-title: Demonstrating microbial co-occurrence pattern analyses within and between ecosystems publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00358 – volume: 69 start-page: 1250 year: 2020 end-page: 1257 ident: B98 article-title: Delay or avoidance of medical care because of COVID-19–related concerns—United States, June 2020 publication-title: MMWR Morb Mortal Wkly Rep doi: 10.15585/mmwr.mm6936a4 – volume: 53 start-page: 581 year: 2021 end-page: 589 ident: B14 article-title: Diagnostic accuracy of nasopharyngeal swab, nasal swab and saliva swab samples for the detection of SARS-CoV-2 using RT-PCR publication-title: Infect Dis (Lond) doi: 10.1080/23744235.2021.1903550 – volume: 97 start-page: fiab001 year: 2021 ident: B74 article-title: Is Oxford Nanopore sequencing ready for analyzing complex microbiomes? publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fiab001 – volume: 27 start-page: 917 year: 2021 end-page: 924 ident: B120 article-title: Sensitivity of infectious SARS-CoV-2 B.1.1.7 and B.1.351 variants to neutralizing antibodies publication-title: Nat Med doi: 10.1038/s41591-021-01318-5 – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: B94 article-title: Oral metallo-Beta-Lactamase protects the gut microbiome from carbapenem-mediated damage and reduces propagation of antibiotic resistance in pigs publication-title: Front Microbiol doi: 10.3389/fmicb.2019.00101 – volume: 39 start-page: 100835 year: 2021 ident: B115 article-title: A single nucleotide distinguishes the SARS-CoV-2 in the Wuhan outbreak in December 2019 from that in Beijing-Xinfadi in June 2020, China publication-title: New Microbes New Infect doi: 10.1016/j.nmni.2020.100835 – volume: 155 start-page: 589 year: 2010 end-page: 593 ident: B20 article-title: Molecular detection and genetic diversity of norovirus genogroup IV: a yearlong monitoring of sewage throughout Italy publication-title: Arch Virol doi: 10.1007/s00705-010-0619-y – volume: 10 start-page: 80 year: 2019 ident: B41 article-title: Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments publication-title: Nat Commun doi: 10.1038/s41467-018-07992-3 – ident: B87 article-title: Andrews SC . 2019 . FastQC . https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ . – ident: B2 article-title: United Nations Environment Program and International Livestock Research Institute . 2020 . Preventing the next pandemic - Zoonotic diseases and hot to break the chain of transmission . United Nations . https://www.unep.org/resources/report/preventing-future-zoonotic-disease-outbreaks-protecting-environment-animals-and . – volume: 159 start-page: 944 year: 2020 end-page: 955.e8 ident: B51 article-title: Alterations in gut microbiota of patients with COVID-19 during time of hospitalization publication-title: Gastroenterology doi: 10.1053/j.gastro.2020.05.048 – volume: 87 year: 2021 ident: B123 article-title: RNA viromics of Southern California wastewater and detection of SARS-CoV-2 single-nucleotide variants publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01448-21 – volume: 188 start-page: 430 year: 1960 end-page: 431 ident: B84 article-title: Virus survival as a seasonal factor in influenza and poliomyelitis publication-title: Nature doi: 10.1038/188430a0 – ident: B81 article-title: Maryland Department of Health . 2021 . Coronavirus Disease 2019 (COVID-19) Outbreak . https://coronavirus.maryland.gov . – volume: 12 start-page: 240 year: 2020 ident: B128 article-title: Endosymbiotic green algae in Paramecium bursaria: a new isolation method and a simple diagnostic PCR approach for the identification publication-title: Diversity doi: 10.3390/d12060240 – volume: 3 start-page: 711 year: 2020 ident: B37 article-title: Predicting clinical resistance prevalence using sewage metagenomic data publication-title: Commun Biol doi: 10.1038/s42003-020-01439-6 – year: 2020 ident: B5 publication-title: Modes of transmission of virus causing COVID-19: implications for IPC precaution recommendations: scientific brief, 27 March 2020. ;World Health Organization – volume: 28 start-page: 221 year: 1962 end-page: 233 ident: B85 article-title: Virus survival as a seasonal factor in influenza and poliomyelitis publication-title: Antonie Van Leeuwenhoek doi: 10.1007/BF02538737 – volume: 106 start-page: 1 year: 2022 end-page: 9 ident: B6 article-title: Asymmetric relationship between ambient air temperature and incidence of COVID-19 in the human population publication-title: Am J Trop Med Hyg doi: 10.4269/ajtmh.21-0328 – volume: 161 start-page: 171 year: 2019 end-page: 180 ident: B24 article-title: Long-term tracking of opioid consumption in two United States cities using wastewater-based epidemiology approach publication-title: Water Res doi: 10.1016/j.watres.2019.06.003 – year: 1978 ident: B82 article-title: Design Guidelines for Sewerage Facilities ,M-DHMH-EHA-S-001 publication-title: Department of Health and Mental Hygiene ;Maryland – volume: 323 start-page: 1843 year: 2020 end-page: 1844 ident: B15 article-title: Detection of SARS-CoV-2 in different types of clinical specimens publication-title: JAMA doi: 10.1001/jama.2020.3786 – volume: 19 start-page: 409 year: 2021 end-page: 424 ident: B76 article-title: SARS-CoV-2 variants, spike mutations and immune escape publication-title: Nat Rev Microbiol doi: 10.1038/s41579-021-00573-0 – volume: 20 start-page: 1451 year: 2021 end-page: 1454 ident: B69 article-title: Metaproteomics analysis of SARS-CoV-2-infected patient samples reveals presence of potential coinfecting microorganisms publication-title: J Proteome Res doi: 10.1021/acs.jproteome.0c00822 – volume: 805 start-page: 150121 year: 2022 ident: B104 article-title: SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.150121 – year: 2021 ident: B101 publication-title: Considerations on the use of self-tests for COVID-19 in the EU/EEA. ;Author ;Stockholm – start-page: 55 year: 2018 end-page: 82 ident: B46 article-title: Replication and expression strategies of viruses: virology publication-title: Viruses ;Academic Press doi: 10.1016/B978-0-12-811257-1.00003-6 – ident: B36 article-title: Stamps BW , Leddy MB , Plumlee MH , Hasan NA , Colwell RR , Spear JR . 2018 . Characterization of the microbiome at the world’s largest potable water reuse facility . 9 : 2435 . doi: 10.3389/fmicb.2018.02435 . – volume: 109 start-page: E503 year: 2017 end-page: E512 ident: B38 article-title: Characterization of microbial signatures from advanced treated wastewater biofilms publication-title: jawwa doi: 10.5942/jawwa.2017.109.0116 – volume: 38 start-page: 1164 year: 2020 end-page: 1167 ident: B22 article-title: Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0684-z – volume: 113 start-page: 722 year: 2016 end-page: 727 ident: B93 article-title: Cross-talk among flesh-eating Aeromonas hydrophila strains in mixed infection leading to necrotizing fasciitis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1523817113 – volume: 16 year: 2021 ident: B53 article-title: The human microbiome and COVID-19: a systematic review publication-title: PLoS One doi: 10.1371/journal.pone.0253293 – volume: 10 start-page: 904 year: 2019 ident: B122 article-title: Advances and challenges in metatranscriptomic analysis publication-title: Front Genet doi: 10.3389/fgene.2019.00904 – ident: B86 article-title: PRISM Climate Group . 2022 . PRISM climate data . https://www.prism.oregonstate.edu . – volume: 805 start-page: 149930 year: 2022 ident: B26 article-title: SARS-CoV-2 variant detection at a university dormitory using wastewater genomic tools publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.149930 – volume: 6 start-page: 203 year: 2021 ident: B114 article-title: SARS-CoV-2 mutations, vaccines, and immunity: implication of variants of concern publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-021-00623-2 – volume: 7 start-page: a006031 year: 2021 ident: B60 article-title: The gut microbiome: a missing link in understanding the gastrointestinal manifestations of COVID-19? publication-title: Cold Spring Harb Mol Case Stud doi: 10.1101/mcs.a006031 – volume: 736 start-page: 139652 year: 2020 ident: B103 article-title: First detection of SARS-CoV-2 in untreated wastewaters in Italy publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.139652 – volume: 71 start-page: 38 year: 2022 end-page: 49 ident: B68 article-title: Rare superinfection in a COVID-19 patient: a chronology publication-title: Anaesthesist doi: 10.1007/s00101-021-01018-2 – volume: 92 start-page: 833 year: 2020 end-page: 840 ident: B16 article-title: The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients publication-title: J Med Virol doi: 10.1002/jmv.25825 – volume: 15 year: 2020 ident: B88 article-title: A comparative analysis of drinking water employing metagenomics publication-title: PLoS One doi: 10.1371/journal.pone.0231210 – volume: 117 start-page: 17513 year: 2020 end-page: 17515 ident: B9 article-title: The implications of silent transmission for the control of COVID-19 outbreaks publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2008373117 – volume: 27 start-page: 2987 year: 2011 end-page: 2993 ident: B91 article-title: A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr509 – ident: B96 article-title: Oksanen J , Blanchet FG , Friendly M , Kindt R , Legendre P , McGlinn D , Minchin PR , O’Hara RB , Simpson GL , Solymos P , Henry M , Stevens H , Szoecs E , Wagner H . 2020 . Vegan: Community Ecology Package . https://cran.r-project.org/web/packages/vegan/vegan.pdf . – volume: 7 start-page: 109 year: 2021 ident: B119 article-title: Structure-based evidence for the enhanced transmissibility of the dominant SARS-CoV-2 B.1.1.7 variant (Alpha) publication-title: Cell Discov doi: 10.1038/s41421-021-00349-z – volume: 27 start-page: 1405 year: 2021 end-page: 1415 ident: B110 article-title: Monitoring SARS-CoV-2 circulation and diversity through community wastewater sequencing, the Netherlands and Belgium publication-title: Emerg Infect Dis doi: 10.3201/eid2705.204410 – volume: 746 start-page: 141326 year: 2020 ident: B30 article-title: First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.141326 – volume: 6 year: 2015 ident: B77 article-title: Sewage reflects the microbiomes of human populations publication-title: mBio doi: 10.1128/mBio.02574-14 – volume: 3 start-page: xtac003 year: 2022 ident: B70 article-title: Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Kentucky publication-title: FEMS Microbes doi: 10.1093/femsmc/xtac003 – ident: B50 article-title: CDC . 2021 . Be antibiotics aware: smart use, best care . https://www.cdc.gov/patientsafety/features/be-antibiotics-aware.html . – volume: 12 year: 2021 ident: B111 article-title: Genome sequencing of sewage detects regionally prevalent SARS-CoV-2 variants publication-title: mBio doi: 10.1128/mBio.02703-20 – volume: 3 start-page: 189 year: 2014 end-page: 196 ident: B79 article-title: Multisite direct determination of the potential for environmental contamination of urine samples used for diagnosis of sexually transmitted infections publication-title: J Pediatric Infect Dis Soc doi: 10.1093/jpids/pit085 – volume: 21 start-page: 3004 year: 2020 ident: B13 article-title: RT-qPCR Testing of SARS-CoV-2: A Primer publication-title: Int J Mol Sci doi: 10.3390/ijms21083004 – volume: 202 start-page: 117433 year: 2021 ident: B105 article-title: Making waves: Defining the lead time of wastewater-based epidemiology for COVID-19 publication-title: Water Res doi: 10.1016/j.watres.2021.117433 – volume: 141 start-page: 104878 year: 2021 ident: B11 article-title: Accuracy of COVID-19 rapid antigenic tests compared to RT-PCR in a student population: The StudyCov study publication-title: J Clin Virol doi: 10.1016/j.jcv.2021.104878 – volume: 764 start-page: 142867 year: 2021 ident: B64 article-title: The wastewater microbiome: a novel insight for COVID-19 surveillance publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.142867 – volume: 1 start-page: 1955 year: 2021 end-page: 1965 ident: B71 article-title: Evaluation of sampling, analysis, and normalization methods for SARS-CoV-2 concentrations in wastewater to assess COVID-19 burdens in Wisconsin communities publication-title: ACS Est Water doi: 10.1021/acsestwater.1c00160 – volume: 14 start-page: 2538 year: 2012 end-page: 2552 ident: B125 article-title: Acinetobacter, Aeromonas and Trichococcus populations dominate the microbial community within urban sewer infrastructure publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2012.02757.x – volume: 54 start-page: 5311 year: 2020 ident: B109 article-title: Letter to the editor: wastewater-based epidemiology can overcome representativeness and stigma issues related to COVID-19 publication-title: Environ Sci Technol doi: 10.1021/acs.est.0c02172 – volume: 11 start-page: 16355 year: 2021 ident: B67 article-title: Co-infections observed in SARS-CoV-2 positive patients using a rapid diagnostic test publication-title: Sci Rep doi: 10.1038/s41598-021-95772-3 – volume: 761 start-page: 144216 year: 2021 ident: B28 article-title: SARS-CoV-2 RNA monitoring in wastewater as a potential early warning system for COVID-19 transmission in the community: A temporal case study publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.144216 |
SSID | ssj0000331830 |
Score | 2.5133207 |
Snippet | Traditionally, testing for COVID-19 is done by detecting SARS-CoV-2 in samples collected from nasal swabs and/or saliva. However, SARS-CoV-2 can also be... Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of SARS-CoV-2... ABSTRACT Wastewater surveillance (WS), when coupled with advanced molecular techniques, offers near real-time monitoring of community-wide transmission of... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0059122 |
SubjectTerms | COVID-19 COVID-19 - epidemiology COVID-19 Testing Editor's Pick Genomics and Proteomics Humans microbiome Microbiota Research Article RNA, Viral - analysis RNA, Viral - genetics SARS-CoV-2 SARS-CoV-2 - genetics Wastewater wastewater monitoring Wastewater-Based Epidemiological Monitoring wastewater-based epidemiology |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZT9wwELYQCImXipajC6UKAvWpgWTsxPYT2tIiDlEeylLeLMeHWInNInYXiX_POJe6qEgob8nk-mbGHh_zDSH7RlovAYclNuzHYZ7bWMrMxToH47V2klbE85e_89MBO7_NbhcItLkwDYKTAz0ZVQv5nWeDOBwVw_FBSJdMY8BmdykDydAZl_r9wdVFN7OS0GCnSUuo-fo-bHvx2TDXD1V0_f-LMV9vlfyn7zlZJR-aoDHq11r-SBZc-Yks12Ukn9fI0eWwplMauaglGYkwGI3-6kmYG0Pooj-zxycXKgyhkqM6NzE6vro5-xmncp0MTn5dH5_GTWGEWKO_TWPJhGHGWmMKR3NqLAXqfaEpB-08Lyq-WU2NE1YkhbRcY9SXSYbA08xxQTfIYjku3WcSaYuDMMvB4cESVE-gl2HeFNSkLrdpj-wFtFSrF1UNGkCogKmqMFUAPfK9BVOZhls8lLi4f0v8Wyf-UJNqvCX4I2imEwpc2NUJtAzVuJbyDjDoc4J6zpgxXOqAB_6MEHlhqOmR3VavCn0nLIjo0o1nEwU5l2EPLccXbdZ67l5FMw65TEWP8DkLmPuW-Svl8K7i55YY9WQi3XoXdNtkBUJGRZimTr6QxenjzO1gnDMtvjaG_QIcH_oN priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBYlUOjL2Npuy7oWj449zUssyZb0VNpuoS1kfeiy5U3I-sECjTOaZND_vneyHZKxsJfhN_tA4ruT7k4-fUfIe6tcUBTSEof1ODwIlyqV-9QU1AZjvGKReH74tbga8ZtxPl5r9YU1YTU9cA1cL3gKLt1LFgTn1gplHKOM962URWmZxd0XfN5aMhX3YIa22m9JNansTcvJ7BNetcxSbJTbMfMp3fBFkbL_b3Hmn-WSa_5n8Jw8awLH5Lye8Auy46t9slu3knw8IGfDSU2pNPVJSzSSQECa_DBzPB8D-JK75cNvj12GQNFJfT8xubz9fv05zdQhGQ2-fLu8SpvmCKmBNbdIFZeWW-esLT0rmEVUQigNE9T4IMrIOWuY9dLJfqmcMBD55YoD-Cz3QrKXpFPNKv-aJMZBIuYE9fAAsMEgxQwPtmQ284XLuuQU0dKNdc91TByo1IipjphqSrvkYwumtg2_OLa5uN8m_mEl_qsm1tgmeIGaWQkhH3Z8AVaiGyvR_7KSLnnX6lXD-sGfIqbys-Vc00IorKMVMNCrWs-roVguaKEy2SViwwI25rL5pZr8jBzdCiKfXGZv_sfkj8gexUsXeJLdf0s6i4elP4ZQaFGeRKt_AtjYBls priority: 102 providerName: Directory of Open Access Journals |
Title | Microbiome Analysis for Wastewater Surveillance during COVID-19 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35726918 https://journals.asm.org/doi/10.1128/mbio.00591-22 https://www.proquest.com/docview/2679240072 https://pubmed.ncbi.nlm.nih.gov/PMC9426581 https://doaj.org/article/fe2143e83f744cc79ad32340c886bc3c |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3db9MwELdQJ9BeEOOzwKogEE9kNLYT2w_TVAZjgMoeoNA3y_EHVFpT6Adi__3unKTQaVWkPCSXOLk7x79zfL8j5IVVLigKYYnD9Tg8CJcqlfvUFNQGY7xikXh--Lk4HfGP43z8j1KoUeDi2tAO60mN5ucHf39fHEGHP6wTYOTraTmZHWAWZZZS-BrvwKAksJjBsEH68aPM0Hn7Lcvm1at2yS2WC1ooLP7RMYsp3RinIp3_dRj06lLK_8amkzvkdgMqk0HtBXvkhq_ukpt1mcmLe-RoOKnplqY-aUlIEgCryXezwLkzUG3yZTX_47ECEThBUucuJsdn3z68TTN1n4xO3n09Pk2bwgmpgf64TBWXllvnrC09K5h1jLIQSsMENT6IMvLRGma9dLJfKicMoMJccTAMy72Q7AHpVLPKPyKJcRCkOUE9bLwP5kP6GR5syWzmC5d1yXPUlm4Np2NQQaVG9eqoXk1pl7xqlaltwz2OJTDOt4m_XIv_qkk3tgm-QcushZArOx6YzX_opuvp4CmAQi9ZEJxbK5RBfcDLSFmUltkuedbaVUPfwh8mpvKz1ULTQihcYyugoYe1nddNte7SJWLDAzaeZfNMNfkZ-bsVoKJcZo-33vMJ2aWYZYFT1_2npLOcr_w-YJ9l2SM7g8Ho7FMvzh3A_v0460VPvwRSjgPc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VVoheEO8uzyAeJ1ISO4ntA0JLS7XLdtsD3dKbcWxHLOruomYX1D_E72QmjxVbUYlLlVsyiu15JDP2zDcAL61yhWIYljjKx0kK4UKlUh-ajNnCGK94BTw_PMh6o-TTSXqyBr_bWpjv1Jf3tNw25aQ6xyfDpo3oph-hfDvJx7NtKpmMQ8aaZMqBP_-FoVr5rr-Lcn3F2N7Ho51e2HQTCA0q6TxUibSJdc7a3POMW8cZL4rccMGML0RegbQabr10MsqVEwZdpVQlOFueeiE5vvcabNA5JQZ5G93u6HCw3M2JONlG1IJ4Xpwnfu9xQWzl31e1CPiXX3sxPfOv_93eLbjZOKpBt9as27Dmp3fget268vwuvB-OawiniQ9aYJMAHeDgiylpPw7FFXxenP301NUIFSuo6yGDncPj_m4Yq3swuhL23Yf16WzqtyAwDgM_J5jHK4lQJQjSJilszm3sMxd34AVxSzfWVOoqUGFSE091xVPNWAfetMzUtsEzp7Yap5eRv16S_6iBPC4j_ECSWRIR_nZ1A9VRN-asC8_Q0fSSFyJJrBXKED9wMVJmueW2A89buWq0VzqEMVM_W5SaZUJR3q7AgR7Ucl4OxVPBMhXLDogVDViZy-qT6fhbhQmu0NNKZfzwv1j3DG70job7er9_MHgEm4wqOmibPHoM6_OzhX-CftY8f9ooeQBfr9qu_gAXvTlP |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VVKC-IO6G04jjCRd71_buPlQoNEQNoS0SpPRtWe8hIhGnqhOq_qH-zs76iEhFJV4qv9kj7-4c9szuzDcAr7UwThAMS4zPx0kcM6EQqQ1VRrRTygpaAc_v7We74-TzUXq0BudtLUzDwXJLldPqIN9b9rFxTT9C_n6aT2ZbvmQyDglpkilH9uwUQ7Vye9hHub4hZPDp-85u2HQTCBUq6TwUCdeJNkbr3NKMakMJdS5XlBFlHcsrkFZFteWGR7kwTKGrlIoEZ0tTyzjF996A9epgrAPrvd74YLTczYmot42oBfG8PE_83uN6yMq_r2oR8C-_9nJ65l__u8EduN04qkGv1qy7sGaLe3Czbl15dh8-7E1qCKepDVpgkwAd4OCHKv1-HIor-LY4-WN9VyNUrKCuhwx2Dg6H_TAWD2B8Lex7CJ1iVthNCJTBwM8wYvFKIlQJD2mTOJ1THdvMxF145bklW12QVaBCuPQ8lRVPJSFdeNcyU-oGz9y31fh9FfnbJflxDeRxFeFHL5klkcffrm6gNsrGnKWzBB1Ny6ljSaI1E8rzAxfDeZZrqrvwspWrRHv1hzCqsLNFKUnGhM_bZTjQo1rOy6FoykgmYt4FtqIBK3NZfVJMflWY4AI9rZTHj_-LdS_g1tf-QH4Z7o-ewAbxBR1-lzx6Cp35ycI-Qzdrnj9vdDyAn9dtVhe0eDjr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microbiome+Analysis+for+Wastewater+Surveillance+during+COVID-19&rft.jtitle=mBio&rft.au=Brumfield%2C+Kyle+D&rft.au=Leddy%2C+Menu&rft.au=Usmani%2C+Moiz&rft.au=Cotruvo%2C+Joseph+A&rft.date=2022-08-30&rft.eissn=2150-7511&rft.volume=13&rft.issue=4&rft.spage=e0059122&rft_id=info:doi/10.1128%2Fmbio.00591-22&rft_id=info%3Apmid%2F35726918&rft.externalDocID=35726918 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |