Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria

Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 14; no. 1; p. e0336322
Main Authors Gavira, José A., Rico-Jiménez, Miriam, Ortega, Álvaro, Petukhova, Natalia V., Bug, Dmitrii S., Castellví, Albert, Porozov, Yuri B., Zhulin, Igor B., Krell, Tino, Matilla, Miguel A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 28.02.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica . AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
AbstractList ABSTRACT Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica . AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica . AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria.
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Author Petukhova, Natalia V.
Matilla, Miguel A.
Rico-Jiménez, Miriam
Castellví, Albert
Porozov, Yuri B.
Ortega, Álvaro
Krell, Tino
Gavira, José A.
Bug, Dmitrii S.
Zhulin, Igor B.
Author_xml – sequence: 1
  givenname: José A.
  orcidid: 0000-0002-7386-6484
  surname: Gavira
  fullname: Gavira, José A.
  organization: Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain
– sequence: 2
  givenname: Miriam
  surname: Rico-Jiménez
  fullname: Rico-Jiménez, Miriam
  organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
– sequence: 3
  givenname: Álvaro
  orcidid: 0000-0001-8202-293X
  surname: Ortega
  fullname: Ortega, Álvaro
  organization: Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
– sequence: 4
  givenname: Natalia V.
  surname: Petukhova
  fullname: Petukhova, Natalia V.
  organization: Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia
– sequence: 5
  givenname: Dmitrii S.
  surname: Bug
  fullname: Bug, Dmitrii S.
  organization: Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain
– sequence: 6
  givenname: Albert
  surname: Castellví
  fullname: Castellví, Albert
  organization: Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain
– sequence: 7
  givenname: Yuri B.
  surname: Porozov
  fullname: Porozov, Yuri B.
  organization: The Center of Bio- and Chemoinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
– sequence: 8
  givenname: Igor B.
  orcidid: 0000-0002-6708-5323
  surname: Zhulin
  fullname: Zhulin, Igor B.
  organization: Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
– sequence: 9
  givenname: Tino
  orcidid: 0000-0002-9040-3166
  surname: Krell
  fullname: Krell, Tino
  organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
– sequence: 10
  givenname: Miguel A.
  orcidid: 0000-0002-8468-9604
  surname: Matilla
  fullname: Matilla, Miguel A.
  organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36602305$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rFTEQhoO02Fp76a3spQhb87XJ7o1wWqsWCi2o12HydcxhN6nJrui_N6enlrbQEEhm8s7DZN5XaC-m6BB6Q_AJIbT_MOmQTjBjgrWUvkCHlHS4lR0hew_uB-i4lA2uizHSM_wSHTAhMGW4O0Sr88nltYvGNck3EJvV8ifE5puLJcR18ylNUMO6r0eIc7sqJZkAs7PNKZjZ5QCv0b6Hsbjju_MI_fh8_v3sa3t59eXibHXZAu_7ue2F9EOvpeecGGJhEF6YwQ4WY8uE7kBK6Z2rcadJb2qScQyaeGG15tawI3Sx49oEG3WTwwT5r0oQ1G0i5bWCPAczOkUY9gY6bhloLrtuYMZ7MWgtmaxoWVkfd6ybRU_OGhfnDOMj6OOXGH6qdfqthkEyKnAFvLsD5PRrcWVWUyjGjXVILi1FUSkI6QnnXZW-30mhTFRt0pJjHZMiWG0tVFsL1a2FitIqfvuwsfuO_htWBe1OYHIqJTt_L3kOyJ7oTZhhDmn7rzA-U_UPrKC4zw
CitedBy_id crossref_primary_10_1021_acssynbio_4c00219
crossref_primary_10_1128_aem_02384_24
crossref_primary_10_1128_msystems_00165_24
crossref_primary_10_1111_1751_7915_14296
crossref_primary_10_1146_annurev_micro_050323_040543
crossref_primary_10_1038_s41467_024_50275_3
crossref_primary_10_1186_s12866_023_02946_2
crossref_primary_10_1111_1751_7915_14368
Cites_doi 10.1038/s41467-020-18400-0
10.1128/mbio.03497-21
10.1038/nature14488
10.1002/cbf.1307
10.1107/S0021889805038987
10.1107/S0907444909052925
10.1109/SC.2006.54
10.1007/s00253-020-10869-5
10.1073/pnas.1811509116
10.1007/978-1-0716-0270-6_3
10.7831/ras.6.105
10.1016/S0006-3495(00)76713-0
10.1016/bs.mie.2015.05.001
10.1093/nar/gku1028
10.1016/j.jmb.2018.03.003
10.1073/pnas.0602902103
10.1080/09168451.2018.1525275
10.1111/nph.18159
10.1021/jm060522a
10.1093/nar/gkz988
10.1111/tpj.12615
10.1107/S0907444911001314
10.1111/1462-2920.13241
10.1016/j.scib.2021.01.002
10.1107/S2059798318001365
10.1016/j.ympev.2012.12.014
10.1073/pnas.1212256110
10.1007/s10482-013-0095-y
10.1111/1462-2920.14398
10.1111/1462-2920.15920
10.1107/S0907444994003112
10.1016/j.molcel.2011.04.003
10.1021/ci300425v
10.3389/fmicb.2017.00079
10.1016/j.csbj.2021.03.029
10.1128/mbio.03458-21
10.1016/j.jmb.2006.09.090
10.1128/mBio.03066-19
10.1093/nar/gkv1189
10.1111/febs.15764
10.1111/mmi.13930
10.1146/annurev-micro-030322-040423
10.1107/S0907444910007493
10.1021/acs.jctc.1c00302
10.1021/cb300208g
10.1093/nar/gky766
10.1107/S0907444913000061
10.1128/AEM.01057-18
10.1099/mic.0.2008/022772-0
10.1111/mmi.14115
10.1101/cshperspect.a040022
10.1128/mBio.01819-21
10.1107/S0907444910026582
10.1073/pnas.1018894108
10.1038/s41586-021-03819-2
10.1105/tpc.109.066480
10.1016/j.femsre.2003.10.003
10.1016/j.sbi.2004.07.004
10.1038/s41564-022-01244-3
10.1107/S0907444909042073
10.1111/j.1365-2958.2011.07960.x
10.1063/1.447334
10.1038/s41580-022-00479-6
10.1128/mBio.01894-18
10.1021/acsinfecdis.1c00175
10.1073/pnas.0609359104
10.1128/MMBR.00033-17
10.1016/j.molcel.2004.10.004
10.1021/acs.jctc.5b00864
10.1371/journal.ppat.1003508
10.1093/molbev/msu300
10.1093/femsre/fuab043
10.1093/nar/gkz506
10.1093/nar/gkp445
10.1371/journal.pone.0195332
10.1063/1.445869
10.1128/mSystems.00951-21
10.1073/pnas.1306811110
10.1021/acs.cgd.7b01353
10.1073/pnas.0701547104
10.1016/j.bpj.2011.06.046
10.1016/j.ijbiomac.2019.02.064
10.1107/S0907444909047337
10.1073/pnas.2003271117
10.1111/j.1365-2958.2012.07992.x
10.1073/pnas.2118002119
10.1002/0471142735.im1815s81
10.1007/s00253-020-10938-9
10.1099/mic.0.083261-0
10.1107/S2053230X13033141
10.1021/jm051256o
10.1016/j.tplants.2011.12.005
10.1016/j.copbio.2021.09.006
10.1038/s41586-021-03425-2
10.1007/s00204-018-2328-3
10.1146/annurev-arplant-042817-040226
10.1074/jbc.M116.718841
10.1128/JB.00376-06
10.1038/s41598-021-99552-x
10.1128/genomeA.00373-16
10.1038/s41598-018-20283-7
10.1371/journal.pgen.1009414
10.1016/j.jmb.2007.05.022
10.1093/nar/gkf436
10.1016/j.tim.2004.12.006
10.1111/j.1751-7915.2011.00322.x
10.1016/j.pbi.2019.10.003
ContentType Journal Article
Copyright Copyright © 2023 Gavira et al.
Copyright © 2023 Gavira et al. 2023 Gavira et al.
Copyright_xml – notice: Copyright © 2023 Gavira et al.
– notice: Copyright © 2023 Gavira et al. 2023 Gavira et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.03363-22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Sperandio, Vanessa
Editor_xml – sequence: 1
  givenname: Vanessa
  surname: Sperandio
  fullname: Sperandio, Vanessa
ExternalDocumentID oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07
PMC9973260
03363-22
36602305
10_1128_mbio_03363_22
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131760
– fundername: Spanish Research Council
  grantid: PIE-202040I003
– fundername: HHS | National Institutes of Health (NIH)
  grantid: 1R35GM131760
  funderid: https://doi.org/10.13039/100000002
– fundername: Seneca Foundation CARM
  grantid: 20786/PI/18
– fundername: Spanish Ministry for Science and Innovation
  grantid: PID2019-103972GA-I00
– fundername: Junta de Andalucia
  grantid: P18-FR-1621
– fundername: EC | European Regional Development Fund (ERDF)
  grantid: RTI2018-094393-BC21-MCIU/AEI/FEDER
  funderid: https://doi.org/10.13039/501100008530
– fundername: Spanish Ministry for Science and Innovation
  grantid: PID2020-116261GB-I00
– fundername: Spanish Ministry for Science and Innovation
  grantid: PID2020-112612GB-I00
– fundername: ;
  grantid: PID2019-103972GA-I00
– fundername: ;
  grantid: 1R35GM131760
– fundername: ;
  grantid: P18-FR-1621
– fundername: ;
  grantid: 20786/PI/18
– fundername: ;
  grantid: PID2020-116261GB-I00
– fundername: ;
  grantid: RTI2018-094393-BC21-MCIU/AEI/FEDER
– fundername: ;
  grantid: PIE-202040I003
– fundername: ;
  grantid: PID2020-112612GB-I00
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
M~E
NPM
RHF
7X8
5PM
ID FETCH-LOGICAL-a488t-867f98b7f441c1da96f6c9d9d00d36b5a777fee9d05b18c0d3340ab1f6dbb4dc3
IEDL.DBID DOA
ISSN 2150-7511
IngestDate Wed Aug 27 01:23:55 EDT 2025
Thu Aug 21 18:38:45 EDT 2025
Thu Jul 10 22:20:38 EDT 2025
Sun Aug 11 18:20:25 EDT 2024
Wed Feb 19 02:25:08 EST 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 00:57:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords antibiotic
ligands
auxin
protein evolution
signal transduction
transcriptional regulator
LysR
sensor domain
structural biology
signal sensing
antagonist
indole-3-acetic acid
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-867f98b7f441c1da96f6c9d9d00d36b5a777fee9d05b18c0d3340ab1f6dbb4dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-9040-3166
0000-0002-8468-9604
0000-0002-6708-5323
0000-0002-7386-6484
0000-0001-8202-293X
OpenAccessLink https://doaj.org/article/130fca54d3ab475593cff69bb7378c07
PMID 36602305
PQID 2761181445
PQPubID 23479
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9973260
proquest_miscellaneous_2761181445
asm2_journals_10_1128_mbio_03363_22
pubmed_primary_36602305
crossref_primary_10_1128_mbio_03363_22
crossref_citationtrail_10_1128_mbio_03363_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-28
PublicationDateYYYYMMDD 2023-02-28
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2023
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_28_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_100_2
e_1_3_2_104_2
e_1_3_2_81_2
e_1_3_2_108_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_31_2
e_1_3_2_73_2
e_1_3_2_12_2
e_1_3_2_58_2
e_1_3_2_96_2
e_1_3_2_3_2
e_1_3_2_35_2
e_1_3_2_77_2
e_1_3_2_92_2
e_1_3_2_50_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_63_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_67_2
e_1_3_2_103_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_97_2
e_1_3_2_2_2
e_1_3_2_93_2
e_1_3_2_70_2
Schrödinger LLC (e_1_3_2_107_2) 2021
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_102_2
e_1_3_2_106_2
e_1_3_2_9_2
e_1_3_2_37_2
e_1_3_2_18_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_33_2
e_1_3_2_79_2
e_1_3_2_14_2
e_1_3_2_56_2
e_1_3_2_98_2
e_1_3_2_94_2
e_1_3_2_71_2
e_1_3_2_110_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_65_2
e_1_3_2_42_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_69_2
e_1_3_2_46_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_80_2
e_1_3_2_101_2
e_1_3_2_109_2
Harding SE (e_1_3_2_82_2) 1992
e_1_3_2_105_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_99_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_95_2
e_1_3_2_4_2
e_1_3_2_91_2
e_1_3_2_72_2
Galperin, MY (B1) 2018; 20
Ortega, A, Amorós, D, García de la Torre, J (B36) 2011; 101
Lin, H, Li, Y, Hill, RT (B66) 2022; 73
Aklujkar, M, Risso, C, Smith, J, Beaulieu, D, Dubay, R, Giloteaux, L, DiBurro, K, Holmes, D (B61) 2014; 160
Adams, PD, Afonine, PV, Bunkóczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Hung, LW, Kapral, GJ, Grosse-Kunstleve, RW, McCoy, AJ, Moriarty, NW, Oeffner, R, Read, RJ, Richardson, DC, Richardson, JS, Terwilliger, TC, Zwart, PH (B92) 2010; 66
Friesner, RA, Murphy, RB, Repasky, MP, Frye, LL, Greenwood, JR, Halgren, TA, Sanschagrin, PC, Mainz, DT (B108) 2006; 49
Koh, S, Hwang, J, Guchhait, K, Lee, EG, Kim, SY, Kim, S, Lee, S, Chung, JM, Jung, HS, Lee, SJ, Ryu, CM, Lee, SG, Oh, TK, Kwon, O, Kim, MH (B48) 2016; 291
Corral-Lugo, A, Matilla, MA, Martín-Mora, D, Silva Jiménez, H, Mesa Torres, N, Kato, J, Hida, A, Oku, S, Conejero-Muriel, M, Gavira, JA, Krell, T (B55) 2018; 9
Prezioso, SM, Xue, K, Leung, N, Gray-Owen, SD, Christendat, D (B16) 2018; 430
Klein, T, Henn, C, de Jong, JC, Zimmer, C, Kirsch, B, Maurer, CK, Pistorius, D, Muller, R, Steinbach, A, Hartmann, RW (B47) 2012; 7
O'Leary, NA, Wright, MW, Brister, JR, Ciufo, S, Haddad, D, McVeigh, R, Rajput, B, Robbertse, B, Smith-White, B, Ako-Adjei, D, Astashyn, A, Badretdin, A, Bao, Y, Blinkova, O, Brover, V, Chetvernin, V, Choi, J, Cox, E, Ermolaeva, O, Farrell, CM, Goldfarb, T, Gupta, T, Haft, D, Hatcher, E, Hlavina, W, Joardar, VS, Kodali, VK, Li, W, Maglott, D, Masterson, P, McGarvey, KM, Murphy, MR, O'Neill, K, Pujar, S, Rangwala, SH, Rausch, D, Riddick, LD, Schoch, C, Shkeda, A, Storz, SS, Sun, H, Thibaud-Nissen, F, Tolstoy, I, Tully, RE, Vatsan, AR, Wallin, C, Webb, D, Wu, W, Landrum, MJ, Kimchi, A (B103) 2016; 44
Gavira, JA, Gumerov, VM, Rico-Jiménez, M, Petukh, M, Upadhyay, AA, Ortega, A, Matilla, MA, Zhulin, IB, Krell, T (B52) 2020; 11
Greenidge, PA, Kramer, C, Mozziconacci, J-C, Wolf, RM (B101) 2013; 53
Koentjoro, MP, Ogawa, N (B9) 2018; 6
Busch, A, Lacal, J, Martos, A, Ramos, JL, Krell, T (B19) 2007; 104
Petersson, SV, Johansson, AI, Kowalczyk, M, Makoveychuk, A, Wang, JY, Moritz, T, Grebe, M, Benfey, PN, Sandberg, G, Ljung, K (B75) 2009; 21
Duca, DR, Glick, BR (B60) 2020; 104
Matilla, MA, Nogellova, V, Morel, B, Krell, T, Salmond, GP (B28) 2016; 18
Kunkel, BN, Johnson, JMB (B68) 2021; 13
Wei, Y, Ng, W-L, Cong, J, Bassler, BL (B46) 2012; 83
(B106) 2021
Addi, T, Poitevin, S, McKay, N, El Mecherfi, KE, Kheroua, O, Jourde-Chiche, N, de Macedo, A, Gondouin, B, Cerini, C, Brunet, P, Dignat-George, F, Burtey, S, Dou, L (B65) 2019; 93
Wang, Y, Cao, Q, Cao, Q, Gan, J, Sun, N, Yang, C-G, Bae, T, Wu, M, Lan, L (B12) 2021; 66
Ilangovan, A, Fletcher, M, Rampioni, G, Pustelny, C, Rumbaugh, K, Heeb, S, Camara, M, Truman, A, Chhabra, SR, Emsley, J, Williams, P (B26) 2013; 9
Gumerov, VM, Ortega, DR, Adebali, O, Ulrich, LE, Zhulin, IB (B2) 2020; 48
Brown, PH, Balbo, A, Schuck, P (B84) 2008; Chapter18
Fillet, S, Krell, T, Morel, B, Lu, D, Zhang, X, Ramos, JL (B37) 2011; 108
Matilla, MA, Velando, F, Tajuelo, A, Martín-Mora, D, Xu, W, Sourjik, V, Gavira, JA, Krell, T (B56) 2022; 13
Alexander, RP, Zhulin, IB (B53) 2007; 104
Painter, J, Merritt, EA (B95) 2006; 39
Momany, C, Neidle, EL (B10) 2012; 83
Duca, D, Lorv, J, Patten, CL, Rose, D, Glick, BR (B69) 2014; 106
Johnson, KS, Elgamoudi, BA, Jen, FE-C, Day, CJ, Sweeney, EG, Pryce, ML, Guillemin, K, Haselhorst, T, Korolik, V, Ottemann, KM (B22) 2021; 12
Lacal, J, Busch, A, Guazzaroni, M-E, Krell, T, Ramos, JL (B50) 2006; 103
Nicastro, R, Raucci, S, Michel, AH, Stumpe, M, Osuna, GMG, Jaquenoud, M, Kornmann, B, Virgilio, CD (B64) 2021; 17
Zhao, Y (B30) 2018; 69
Amin, SA, Hmelo, LR, van Tol, HM, Durham, BP, Carlson, LT, Heal, KR, Morales, RL, Berthiaume, CT, Parker, MS, Djunaedi, B, Ingalls, AE, Parsek, MR, Moran, MA, Armbrust, EV (B70) 2015; 522
Kabsch, W (B87) 2010; 66
Touw, WG, Baakman, C, Black, J, Te Beek, TAH, Krieger, E, Joosten, RP, Vriend, G (B109) 2015; 43
Kim, Y, Chhor, G, Tsai, CS, Winans, JB, Jedrzejczak, R, Joachimiak, A, Winans, SC (B42) 2018; 110
Harding, SE, Rowe, AJ, Horton, JC (B81) 1992
Lemaire, K, Van de Velde, S, Van Dijck, P, Thevelein, JM (B78) 2004; 16
Laird, TS, Flores, N, Leveau, JHJ (B67) 2020; 104
Takei, M, Kogure, S, Yokoyama, C, Kouzuma, Y, Suzuki, Y (B62) 2019; 83
Ha, S, Vankova, R, Yamaguchi-Shinozaki, K, Shinozaki, K, Tran, L-SP (B76) 2012; 17
Soukarieh, F, Mashabi, A, Richardson, W, Oton, EV, Romero, M, Roberston, SN, Grossman, S, Sou, T, Liu, R, Halliday, N, Kukavica-Ibrulj, I, Levesque, RC, Bergstrom, CAS, Kellam, B, Emsley, J, Heeb, S, Williams, P, Stocks, MJ, Cámara, M (B18) 2021; 7
Murshudov, GN, Skubak, P, Lebedev, AA, Pannu, NS, Steiner, RA, Nicholls, RA, Winn, MD, Long, F, Vagin, AA, Skubák, P, Lebedev, AA, Pannu, NS, Steiner, RA, Nicholls, RA, Winn, MD, Long, F, Vagin, AA (B93) 2011; 67
Ortega, A, Zhulin, IB, Krell, T (B54) 2017; 81
Della Corte, D, van Beek, HL, Syberg, F, Schallmey, M, Tobola, F, Cormann, KU, Schlicker, C, Baumann, PT, Krumbach, K, Sokolowsky, S, Morris, CJ, Grünberger, A, Hofmann, E, Schröder, GF, Marienhagen, J (B13) 2020; 11
Martin-Mora, D, Ortega, A, Perez-Maldonado, FJ, Krell, T, Matilla, MA (B21) 2018; 8
(B89) 1994; 50
Herud-Sikimić, O, Stiel, AC, Kolb, M, Shanmugaratnam, S, Berendzen, KW, Feldhaus, C, Höcker, B, Jürgens, G (B58) 2021; 592
Holm, L (B41) 2020; 2112
Lu, Y, Tarkowská, D, Turečková, V, Luo, T, Xin, Y, Li, J, Wang, Q, Jiao, N, Strnad, M, Xu, J (B77) 2014; 80
Katoh, K, Misawa, K, Kuma, K, Miyata, T (B104) 2002; 30
Perez-Rueda, E, Hernandez-Guerrero, R, Martinez-Nuñez, MA, Armenta-Medina, D, Sanchez, I, Ibarra, JA (B6) 2018; 13
Chatterjee, A, Cook, LCC, Shu, C-C, Chen, Y, Manias, DA, Ramkrishna, D, Dunny, GM, Hu, W-S (B79) 2013; 110
Hochstrasser, R, Hilbi, H (B80) 2017; 8
Ezezika, OC, Haddad, S, Clark, TJ, Neidle, EL, Momany, C (B44) 2007; 367
Bi, S, Yu, D, Si, G, Luo, C, Li, T, Ouyang, Q, Jakovljevic, V, Sourjik, V, Tu, Y, Lai, L (B23) 2013; 110
Jo, I, Kim, D, No, T, Hong, S, Ahn, J, Ryu, S, Ha, NC (B43) 2019; 116
Greenhut, IV, Slezak, BL, Leveau, JHJ (B74) 2018; 84
Krissinel, E, Henrick, K (B45) 2007; 372
Alexandre, G, Greer-Phillips, S, Zhulin, IB (B3) 2004; 28
Maddocks, SE, Oyston, PC (B7) 2008; 154
Matilla, MA, Ortega, Á, Krell, T (B73) 2021; 19
Peck, MC, Fisher, RF, Long, SR (B25) 2006; 188
Macadangdang, BR, Makanani, SK, Miller, JF (B51) 2022; 76
McPherson, A, Gavira, JA (B85) 2014; 70
Sun, W, Fan, Y, Wan, F, Tao, YJ, Gao, H (B34) 2022; 13
González-Ramírez, LA, Ruiz-Martínez, CR, Estremera-Andújar, RA, Nieves-Marrero, CA, García-Caballero, A, Gavira, JA, López-Garriga, J, García-Ruiz, JM (B86) 2017; 17
Nosé, S (B100) 1984; 81
Bowers, KJ, Chow, DE, Xu, H, Dror, RO, Eastwood, MP, Gregersen, BA, Klepeis, JL, Kolossvary, I, Moraes, MA, Sacerdoti, FD, Salmon, JK, Shan, Y, Shaw, DE (B97) 2006
Jumper, J, Evans, R, Pritzel, A, Green, T, Figurnov, M, Ronneberger, O, Tunyasuvunakool, K, Bates, R, Žídek, A, Potapenko, A, Bridgland, A, Meyer, C, Kohl, SAA, Ballard, AJ, Cowie, A, Romera-Paredes, B, Nikolov, S, Jain, R, Adler, J, Back, T, Petersen, S, Reiman, D, Clancy, E, Zielinski, M, Steinegger, M, Pacholska, M, Berghammer, T, Bodenstein, S, Silver, D, Vinyals, O, Senior, AW, Kavukcuoglu, K, Kohli, P, Hassabis, D (B35) 2021; 596
Wysoczynski-Horita, CL, Boursier, ME, Hill, R, Hansen, K, Blackwell, HE, Churchill, MEA (B49) 2018; 108
Gallei, M, Luschnig, C, Friml, J (B31) 2020; 53
Dwyer, MA, Hellinga, HW (B39) 2004; 14
Fragel, SM, Montada, A, Heermann, R, Baumann, U, Schacherl, M, Schnetz, K (B11) 2019; 47
Matilla, MA, Velando, F, Martín-Mora, D, Monteagudo-Cascales, E, Krell, T (B4) 2022; 46
Sanchis-López, C, Cerna-Vargas, JP, Santamaría-Hernando, S, Ramos, C, Krell, T, Rodríguez-Palenzuela, P, López-Solanilla, E, Huerta-Cepas, J, Rodríguez-Herva, JJ (B57) 2021; 6
Giannopoulou, E-A, Senda, M, Koentjoro, MP, Adachi, N, Ogawa, N, Senda, T (B15) 2021; 288
Oliveira, DL, Pugine, SM, Ferreira, MS, Lins, PG, Costa, EJ, de Melo, MP (B63) 2007; 25
Emsley, P, Lohkamp, B, Scott, WG, Cowtan, K (B94) 2010; 66
Chen, G, Swem, LR, Swem, DL, Stauff, DL, O'Loughlin, CT, Jeffrey, PD, Bassler, BL, Hughson, FM (B24) 2011; 42
Harder, E, Damm, W, Maple, J, Wu, C, Reboul, M, Xiang, JY, Wang, L, Lupyan, D, Dahlgren, MK, Knight, JL, Kaus, JW, Cerutti, DS, Krilov, G, Jorgensen, WL, Abel, R, Friesner, RA (B107) 2016; 12
Evans, PR, Murshudov, GN (B88) 2013; 69
Silva-Jimenez, H, Garcia-Fontana, C, Cadirci, BH, Ramos-Gonzalez, MI, Ramos, JL, Krell, T (B20) 2012; 5
Sainsbury, S, Lane, LA, Ren, J, Gilbert, RJ, Saunders, NJ, Robinson, CV, Stuart, DI, Owens, RJ (B14) 2009; 37
Matilla, MA, Drew, A, Udaondo, Z, Krell, T, Salmond, GPC (B27) 2016; 4
Hong, S, Kim, J, Cho, E, Na, S, Yoo, Y-J, Cho, Y-H, Ryu, S, Ha, N-C (B38) 2022; 119
Liu, W, Chen, J, Jin, L, Liu, Z-Y, Lu, M, Jiang, G, Yang, Q, Quan, C, Nam, KH, Xu, Y (B17) 2021; 11
Ulrich, LE, Koonin, EV, Zhulin, IB (B5) 2005; 13
Matilla, MA, Daddaoua, A, Chini, A, Morel, B, Krell, T (B29) 2018; 46
Nguyen, L-T, Schmidt, HA, von Haeseler, A, Minh, BQ (B105) 2015; 32
Afonine, PV, Mustyakimov, M, Grosse-Kunstleve, RW, Moriarty, NW, Langan, P, Adams, PD (B91) 2010; 66
Schuck, P (B82) 2000; 78
Cancé, C, Martin-Arevalillo, R, Boubekeur, K, Dumas, R (B32) 2022; 235
Fukamizo, T, Kitaoku, Y, Suginta, W (B40) 2019; 128
Brautigam, CA (B83) 2015; 562
Millán, C, Sammito, MD, McCoy, AJ, Nascimento, AFZ, Petrillo, G, Oeffner, RD, Domínguez-Gil, T, Hermoso, JA, Read, RJ, Usón, I (B90) 2018; 74
Waadt, R, Seller, CA, Hsu, P-K, Takahashi, Y, Munemasa, S, Schroeder, JI (B59) 2022; 23
Lu, C, Wu, C, Ghoreishi, D, Chen, W, Wang, L, Damm, W, Ross, GA, Dahlgren, MK, Russell, E, Von Bargen, CD, Abel, R, Friesner, RA, Harder, ED (B99) 2021; 17
Jorgensen, WL, Chandrasekhar, J, Madura, JD, Impey, RW, Klein, ML (B98) 1983; 79
Lyne, PD, Lamb, ML, Saeh, JC (B102) 2006; 49
Chen, VB, Arendall, WB, Headd, JJ, Keedy, DA, Immormino, RM, Kapral, GJ, Murray, LW, Richardson, JS, Richardson, DC (B96) 2010; 66
Rico-Jiménez, M, Roca, A, Krell, T, Matilla, MA (B71) 2022; 24
Reen, FJ, Barret, M, Fargier, E, O'Muinneacháin, M, O'Gara, F (B8) 2013; 66
Bolla, JR, Howe
References_xml – ident: e_1_3_2_14_2
  doi: 10.1038/s41467-020-18400-0
– ident: e_1_3_2_35_2
  doi: 10.1128/mbio.03497-21
– ident: e_1_3_2_71_2
  doi: 10.1038/nature14488
– ident: e_1_3_2_64_2
  doi: 10.1002/cbf.1307
– ident: e_1_3_2_96_2
  doi: 10.1107/S0021889805038987
– ident: e_1_3_2_93_2
  doi: 10.1107/S0907444909052925
– ident: e_1_3_2_98_2
  doi: 10.1109/SC.2006.54
– ident: e_1_3_2_61_2
  doi: 10.1007/s00253-020-10869-5
– volume-title: Release 2022–3: Maestro
  year: 2021
  ident: e_1_3_2_107_2
– ident: e_1_3_2_44_2
  doi: 10.1073/pnas.1811509116
– ident: e_1_3_2_42_2
  doi: 10.1007/978-1-0716-0270-6_3
– ident: e_1_3_2_10_2
  doi: 10.7831/ras.6.105
– ident: e_1_3_2_83_2
  doi: 10.1016/S0006-3495(00)76713-0
– ident: e_1_3_2_84_2
  doi: 10.1016/bs.mie.2015.05.001
– ident: e_1_3_2_110_2
  doi: 10.1093/nar/gku1028
– ident: e_1_3_2_17_2
  doi: 10.1016/j.jmb.2018.03.003
– ident: e_1_3_2_51_2
  doi: 10.1073/pnas.0602902103
– ident: e_1_3_2_63_2
  doi: 10.1080/09168451.2018.1525275
– ident: e_1_3_2_33_2
  doi: 10.1111/nph.18159
– ident: e_1_3_2_103_2
  doi: 10.1021/jm060522a
– ident: e_1_3_2_3_2
  doi: 10.1093/nar/gkz988
– ident: e_1_3_2_78_2
  doi: 10.1111/tpj.12615
– ident: e_1_3_2_94_2
  doi: 10.1107/S0907444911001314
– ident: e_1_3_2_29_2
  doi: 10.1111/1462-2920.13241
– ident: e_1_3_2_13_2
  doi: 10.1016/j.scib.2021.01.002
– ident: e_1_3_2_91_2
  doi: 10.1107/S2059798318001365
– ident: e_1_3_2_9_2
  doi: 10.1016/j.ympev.2012.12.014
– ident: e_1_3_2_80_2
  doi: 10.1073/pnas.1212256110
– ident: e_1_3_2_70_2
  doi: 10.1007/s10482-013-0095-y
– ident: e_1_3_2_2_2
  doi: 10.1111/1462-2920.14398
– ident: e_1_3_2_72_2
  doi: 10.1111/1462-2920.15920
– ident: e_1_3_2_90_2
  doi: 10.1107/S0907444994003112
– ident: e_1_3_2_25_2
  doi: 10.1016/j.molcel.2011.04.003
– ident: e_1_3_2_102_2
  doi: 10.1021/ci300425v
– ident: e_1_3_2_81_2
  doi: 10.3389/fmicb.2017.00079
– ident: e_1_3_2_74_2
  doi: 10.1016/j.csbj.2021.03.029
– ident: e_1_3_2_57_2
  doi: 10.1128/mbio.03458-21
– ident: e_1_3_2_45_2
  doi: 10.1016/j.jmb.2006.09.090
– ident: e_1_3_2_53_2
  doi: 10.1128/mBio.03066-19
– ident: e_1_3_2_104_2
  doi: 10.1093/nar/gkv1189
– ident: e_1_3_2_16_2
  doi: 10.1111/febs.15764
– ident: e_1_3_2_50_2
  doi: 10.1111/mmi.13930
– ident: e_1_3_2_52_2
  doi: 10.1146/annurev-micro-030322-040423
– ident: e_1_3_2_95_2
  doi: 10.1107/S0907444910007493
– ident: e_1_3_2_100_2
  doi: 10.1021/acs.jctc.1c00302
– ident: e_1_3_2_48_2
  doi: 10.1021/cb300208g
– ident: e_1_3_2_30_2
  doi: 10.1093/nar/gky766
– ident: e_1_3_2_89_2
  doi: 10.1107/S0907444913000061
– ident: e_1_3_2_75_2
  doi: 10.1128/AEM.01057-18
– ident: e_1_3_2_8_2
  doi: 10.1099/mic.0.2008/022772-0
– ident: e_1_3_2_43_2
  doi: 10.1111/mmi.14115
– ident: e_1_3_2_69_2
  doi: 10.1101/cshperspect.a040022
– ident: e_1_3_2_23_2
  doi: 10.1128/mBio.01819-21
– ident: e_1_3_2_92_2
  doi: 10.1107/S0907444910026582
– ident: e_1_3_2_38_2
  doi: 10.1073/pnas.1018894108
– ident: e_1_3_2_36_2
  doi: 10.1038/s41586-021-03819-2
– ident: e_1_3_2_76_2
  doi: 10.1105/tpc.109.066480
– ident: e_1_3_2_4_2
  doi: 10.1016/j.femsre.2003.10.003
– ident: e_1_3_2_40_2
  doi: 10.1016/j.sbi.2004.07.004
– ident: e_1_3_2_73_2
  doi: 10.1038/s41564-022-01244-3
– ident: e_1_3_2_97_2
  doi: 10.1107/S0907444909042073
– ident: e_1_3_2_11_2
  doi: 10.1111/j.1365-2958.2011.07960.x
– ident: e_1_3_2_101_2
  doi: 10.1063/1.447334
– ident: e_1_3_2_60_2
  doi: 10.1038/s41580-022-00479-6
– ident: e_1_3_2_56_2
  doi: 10.1128/mBio.01894-18
– ident: e_1_3_2_19_2
  doi: 10.1021/acsinfecdis.1c00175
– volume-title: Analytical ultracentrifugation in biochemistry and polymer science
  year: 1992
  ident: e_1_3_2_82_2
– ident: e_1_3_2_54_2
  doi: 10.1073/pnas.0609359104
– ident: e_1_3_2_55_2
  doi: 10.1128/MMBR.00033-17
– ident: e_1_3_2_79_2
  doi: 10.1016/j.molcel.2004.10.004
– ident: e_1_3_2_108_2
  doi: 10.1021/acs.jctc.5b00864
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.ppat.1003508
– ident: e_1_3_2_106_2
  doi: 10.1093/molbev/msu300
– ident: e_1_3_2_5_2
  doi: 10.1093/femsre/fuab043
– ident: e_1_3_2_12_2
  doi: 10.1093/nar/gkz506
– ident: e_1_3_2_15_2
  doi: 10.1093/nar/gkp445
– ident: e_1_3_2_7_2
  doi: 10.1371/journal.pone.0195332
– ident: e_1_3_2_99_2
  doi: 10.1063/1.445869
– ident: e_1_3_2_58_2
  doi: 10.1128/mSystems.00951-21
– ident: e_1_3_2_24_2
  doi: 10.1073/pnas.1306811110
– ident: e_1_3_2_87_2
  doi: 10.1021/acs.cgd.7b01353
– ident: e_1_3_2_20_2
  doi: 10.1073/pnas.0701547104
– ident: e_1_3_2_37_2
  doi: 10.1016/j.bpj.2011.06.046
– ident: e_1_3_2_41_2
  doi: 10.1016/j.ijbiomac.2019.02.064
– ident: e_1_3_2_88_2
  doi: 10.1107/S0907444909047337
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.2003271117
– ident: e_1_3_2_47_2
  doi: 10.1111/j.1365-2958.2012.07992.x
– ident: e_1_3_2_39_2
  doi: 10.1073/pnas.2118002119
– ident: e_1_3_2_85_2
  doi: 10.1002/0471142735.im1815s81
– ident: e_1_3_2_68_2
  doi: 10.1007/s00253-020-10938-9
– ident: e_1_3_2_62_2
  doi: 10.1099/mic.0.083261-0
– ident: e_1_3_2_86_2
  doi: 10.1107/S2053230X13033141
– ident: e_1_3_2_109_2
  doi: 10.1021/jm051256o
– ident: e_1_3_2_77_2
  doi: 10.1016/j.tplants.2011.12.005
– ident: e_1_3_2_67_2
  doi: 10.1016/j.copbio.2021.09.006
– ident: e_1_3_2_59_2
  doi: 10.1038/s41586-021-03425-2
– ident: e_1_3_2_66_2
  doi: 10.1007/s00204-018-2328-3
– ident: e_1_3_2_31_2
  doi: 10.1146/annurev-arplant-042817-040226
– ident: e_1_3_2_49_2
  doi: 10.1074/jbc.M116.718841
– ident: e_1_3_2_26_2
  doi: 10.1128/JB.00376-06
– ident: e_1_3_2_18_2
  doi: 10.1038/s41598-021-99552-x
– ident: e_1_3_2_28_2
  doi: 10.1128/genomeA.00373-16
– ident: e_1_3_2_22_2
  doi: 10.1038/s41598-018-20283-7
– ident: e_1_3_2_65_2
  doi: 10.1371/journal.pgen.1009414
– ident: e_1_3_2_46_2
  doi: 10.1016/j.jmb.2007.05.022
– ident: e_1_3_2_105_2
  doi: 10.1093/nar/gkf436
– ident: e_1_3_2_6_2
  doi: 10.1016/j.tim.2004.12.006
– ident: e_1_3_2_21_2
  doi: 10.1111/j.1751-7915.2011.00322.x
– ident: e_1_3_2_32_2
  doi: 10.1016/j.pbi.2019.10.003
– volume: 48
  start-page: D459
  year: 2020
  end-page: D464
  ident: B2
  article-title: MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz988
– volume: 83
  start-page: 129
  year: 2019
  end-page: 136
  ident: B62
  article-title: Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland
  publication-title: Biosci Biotechnol Biochem
  doi: 10.1080/09168451.2018.1525275
– volume: 66
  start-page: 213
  year: 2010
  end-page: 221
  ident: B92
  article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909052925
– volume: 101
  start-page: 892
  year: 2011
  end-page: 898
  ident: B36
  article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models
  publication-title: Biophys J
  doi: 10.1016/j.bpj.2011.06.046
– volume: 25
  start-page: 195
  year: 2007
  end-page: 201
  ident: B63
  article-title: Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver
  publication-title: Cell Biochem Funct
  doi: 10.1002/cbf.1307
– volume: 81
  start-page: 511
  year: 1984
  end-page: 519
  ident: B100
  article-title: A unified formulation of the constant temperature molecular dynamics methods
  publication-title: J Chem Phys
  doi: 10.1063/1.447334
– volume: 13
  year: 2022
  ident: B56
  article-title: Chemotaxis of the human pathogen Pseudomonas aeruginosa to the neurotransmitter acetylcholine
  publication-title: mBio
  doi: 10.1128/mbio.03458-21
– volume: 13
  year: 2018
  ident: B6
  article-title: Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195332
– volume: 119
  year: 2022
  ident: B38
  article-title: Crystal structures of YeiE from Cronobacter sakazakii and the role of sulfite tolerance in Gram-negative bacteria
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2118002119
– volume: 17
  start-page: 172
  year: 2012
  end-page: 179
  ident: B76
  article-title: Cytokinins: metabolism and function in plant adaptation to environmental stresses
  publication-title: Trends Plant Sci
  doi: 10.1016/j.tplants.2011.12.005
– volume: 128
  start-page: 985
  year: 2019
  end-page: 993
  ident: B40
  article-title: Periplasmic solute-binding proteins: structure classification and chitooligosaccharide recognition
  publication-title: Int J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.02.064
– volume: 46
  start-page: 11229
  year: 2018
  end-page: 11238
  ident: B29
  article-title: An auxin controls bacterial antibiotics production
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky766
– volume: 11
  year: 2020
  ident: B52
  article-title: How bacterial chemoreceptors evolve novel ligand specificities
  publication-title: mBio
  doi: 10.1128/mBio.03066-19
– volume: 104
  start-page: 8607
  year: 2020
  end-page: 8619
  ident: B60
  article-title: Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-10869-5
– volume: 17
  start-page: 6780
  year: 2017
  end-page: 6786
  ident: B86
  article-title: Efficient screening methodology for protein crystallization based on the counter-diffusion technique
  publication-title: Crystal Growth Des
  doi: 10.1021/acs.cgd.7b01353
– volume: 24
  start-page: 3580
  year: 2022
  end-page: 3597
  ident: B71
  article-title: A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.15920
– volume: 116
  start-page: 3740
  year: 2019
  end-page: 3745
  ident: B43
  article-title: Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1811509116
– volume: 6
  start-page: 105
  year: 2018
  end-page: 118
  ident: B9
  article-title: Structural studies of transcriptional regulation by LysR-type transcriptional regulators in bacteria
  publication-title: Rev Agric Sci
  doi: 10.7831/ras.6.105
– volume: 2112
  start-page: 29
  year: 2020
  end-page: 42
  ident: B41
  article-title: Using Dali for protein structure comparison
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-0716-0270-6_3
– volume: 78
  start-page: 1606
  year: 2000
  end-page: 1619
  ident: B82
  article-title: Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(00)76713-0
– volume: 9
  year: 2018
  ident: B55
  article-title: High-affinity chemotaxis to histamine mediated by the TlpQ chemoreceptor of the human pathogen Pseudomonas aeruginosa
  publication-title: mBio
  doi: 10.1128/mBio.01894-18
– volume: 44
  start-page: D733
  year: 2016
  end-page: D745
  ident: B103
  article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv1189
– volume: 28
  start-page: 113
  year: 2004
  end-page: 126
  ident: B3
  article-title: Ecological role of energy taxis in microorganisms
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/j.femsre.2003.10.003
– volume: 17
  start-page: 4291
  year: 2021
  end-page: 4300
  ident: B99
  article-title: OPLS4: improving force field accuracy on challenging regimes of chemical space
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.1c00302
– volume: 69
  start-page: 417
  year: 2018
  end-page: 435
  ident: B30
  article-title: Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-042817-040226
– volume: 20
  start-page: 4221
  year: 2018
  end-page: 4229
  ident: B1
  article-title: What bacteria want
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14398
– volume: 74
  start-page: 290
  year: 2018
  end-page: 304
  ident: B90
  article-title: Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination
  publication-title: Acta Crystallogr D Struct Biol
  doi: 10.1107/S2059798318001365
– volume: 16
  start-page: 293
  year: 2004
  end-page: 299
  ident: B78
  article-title: Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2004.10.004
– volume: 160
  start-page: 2694
  year: 2014
  end-page: 2709
  ident: B61
  article-title: Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.083261-0
– volume: 13
  start-page: a040022
  year: 2021
  ident: B68
  article-title: Auxin plays multiple roles during plant-pathogen interactions
  publication-title: Cold Spring Harb Perspect Biol
  doi: 10.1101/cshperspect.a040022
– volume: 42
  start-page: 199
  year: 2011
  end-page: 209
  ident: B24
  article-title: A strategy for antagonizing quorum sensing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2011.04.003
– volume: 30
  start-page: 3059
  year: 2002
  end-page: 3066
  ident: B104
  article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkf436
– volume: 110
  start-page: 16814
  year: 2013
  end-page: 16819
  ident: B23
  article-title: Discovery of novel chemoeffectors and rational design of Escherichia coli chemoreceptor specificity
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1306811110
– volume: 21
  start-page: 1659
  year: 2009
  end-page: 1668
  ident: B75
  article-title: An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis
  publication-title: Plant Cell
  doi: 10.1105/tpc.109.066480
– volume: 12
  start-page: 281
  year: 2016
  end-page: 296
  ident: B107
  article-title: OPLS3: a force field providing broad coverage of drug-like small molecules and proteins
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00864
– volume: 84
  year: 2018
  ident: B74
  article-title: iac gene expression in the indole-3-acetic acid-degrading soil bacterium Enterobacter soli LF7
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01057-18
– volume: 8
  start-page: 2102
  year: 2018
  ident: B21
  article-title: The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-20283-7
– volume: 23
  start-page: 680
  year: 2022
  end-page: 694
  ident: B59
  article-title: Plant hormone regulation of abiotic stress responses
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/s41580-022-00479-6
– volume: 367
  start-page: 616
  year: 2007
  end-page: 629
  ident: B44
  article-title: Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.09.090
– volume: 76
  start-page: 389
  year: 2022
  end-page: 411
  ident: B51
  article-title: Accelerated evolution by diversity-generating retroelements
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-030322-040423
– volume: 50
  start-page: 760
  year: 1994
  end-page: 763
  ident: B89
  article-title: The CCP4 suite: programs for protein crystallography
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444994003112
– volume: 66
  start-page: 486
  year: 2010
  end-page: 501
  ident: B94
  article-title: Features and development of Coot
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910007493
– volume: 117
  start-page: 17011
  year: 2020
  end-page: 17018
  ident: B33
  article-title: Assembly and regulation of the chlorhexidine-specific efflux pump AceI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.2003271117
– volume: 110
  start-page: 550
  year: 2018
  end-page: 561
  ident: B42
  article-title: Crystal structure of the ligand-binding domain of a LysR-type transcriptional regulator: transcriptional activation via a rotary switch
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14115
– volume: 81
  year: 2017
  ident: B54
  article-title: Sensory repertoire of bacterial chemoreceptors
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.00033-17
– volume: 104
  start-page: 9535
  year: 2020
  end-page: 9550
  ident: B67
  article-title: Bacterial catabolism of indole-3-acetic acid
  publication-title: Appl Microbiol Biotechnol
  doi: 10.1007/s00253-020-10938-9
– volume: 9
  year: 2013
  ident: B26
  article-title: Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1003508
– volume: 70
  start-page: 2
  year: 2014
  end-page: 20
  ident: B85
  article-title: Introduction to protein crystallization
  publication-title: Acta Crystallogr F Struct Biol Commun
  doi: 10.1107/S2053230X13033141
– volume: 235
  start-page: 402
  year: 2022
  end-page: 419
  ident: B32
  article-title: Auxin response factors are keys to the many auxin doors
  publication-title: New Phytol
  doi: 10.1111/nph.18159
– volume: 12
  year: 2021
  ident: B22
  article-title: The dCache chemoreceptor TlpA of Helicobacter pylori binds multiple attractant and antagonistic ligands via distinct sites
  publication-title: mBio
  doi: 10.1128/mBio.01819-21
– volume: 562
  start-page: 109
  year: 2015
  end-page: 133
  ident: B83
  article-title: Calculations and publication-quality illustrations for analytical ultracentrifugation data
  publication-title: Methods Enzymol
  doi: 10.1016/bs.mie.2015.05.001
– volume: 13
  year: 2022
  ident: B34
  article-title: Functional irreplaceability of Escherichia coli and Shewanella oneidensis OxyRs is critically determined by intrinsic differences in oligomerization
  publication-title: mBio
  doi: 10.1128/mbio.03497-21
– volume: 32
  start-page: 268
  year: 2015
  end-page: 274
  ident: B105
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msu300
– volume: 596
  start-page: 583
  year: 2021
  end-page: 589
  ident: B35
  article-title: Highly accurate protein structure prediction with AlphaFold
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 73
  start-page: 300
  year: 2022
  end-page: 307
  ident: B66
  article-title: Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2021.09.006
– volume: 108
  start-page: 15372
  year: 2011
  end-page: 15377
  ident: B37
  article-title: Intramolecular signal transmission in a tetrameric repressor of the IclR family
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1018894108
– volume: 43
  start-page: D364
  year: 2015
  end-page: D368
  ident: B109
  article-title: A series of PDB-related databanks for everyday needs
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1028
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: B87
  article-title: XDS
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909047337
– volume: 80
  start-page: 52
  year: 2014
  end-page: 68
  ident: B77
  article-title: Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function
  publication-title: Plant J
  doi: 10.1111/tpj.12615
– volume: 592
  start-page: 768
  year: 2021
  end-page: 772
  ident: B58
  article-title: A biosensor for the direct visualization of auxin
  publication-title: Nature
  doi: 10.1038/s41586-021-03425-2
– volume: 83
  start-page: 1095
  year: 2012
  end-page: 1108
  ident: B46
  article-title: Ligand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2012.07992.x
– volume: 110
  start-page: 7086
  year: 2013
  end-page: 7090
  ident: B79
  article-title: Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1212256110
– volume: 49
  start-page: 4805
  year: 2006
  end-page: 4808
  ident: B102
  article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring
  publication-title: J Med Chem
  doi: 10.1021/jm060522a
– volume: 291
  start-page: 8575
  year: 2016
  end-page: 8590
  ident: B48
  article-title: Molecular insights into toluene sensing in the TodS/TodT signal transduction system
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M116.718841
– volume: 106
  start-page: 85
  year: 2014
  end-page: 125
  ident: B69
  article-title: Indole-3-acetic acid in plant-microbe interactions
  publication-title: Antonie Van Leeuwenhoek
  doi: 10.1007/s10482-013-0095-y
– volume: 11
  start-page: 20285
  year: 2021
  ident: B17
  article-title: Functional and structural analysis of catabolite control protein C that responds to citrate
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-99552-x
– volume: 4
  year: 2016
  ident: B27
  article-title: Genome sequence of Serratia plymuthica A153, a model rhizobacterium for the investigation of the synthesis and regulation of haterumalides, zeamine, and andrimid
  publication-title: Genome Announc
  doi: 10.1128/genomeA.00373-16
– volume: 188
  start-page: 5417
  year: 2006
  end-page: 5427
  ident: B25
  article-title: Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti
  publication-title: J Bacteriol
  doi: 10.1128/JB.00376-06
– volume: 288
  start-page: 4560
  year: 2021
  end-page: 4575
  ident: B15
  article-title: Crystal structure of the full-length LysR-type transcription regulator CbnR in complex with promoter DNA
  publication-title: FEBS J
  doi: 10.1111/febs.15764
– volume: 522
  start-page: 98
  year: 2015
  end-page: 101
  ident: B70
  article-title: Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria
  publication-title: Nature
  doi: 10.1038/nature14488
– volume: 79
  start-page: 926
  year: 1983
  end-page: 935
  ident: B98
  article-title: Comparison of simple potential functions for simulating liquid water
  publication-title: J Chem Phys
  doi: 10.1063/1.445869
– volume: 69
  start-page: 1204
  year: 2013
  end-page: 1214
  ident: B88
  article-title: How good are my data and what is the resolution?
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444913000061
– year: 2021
  ident: B106
  publication-title: Release 2022–3: Maestro ;Schrödinger, LLC ;New York, NY
– volume: 5
  start-page: 489
  year: 2012
  end-page: 500
  ident: B20
  article-title: Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems
  publication-title: Microb Biotechnol
  doi: 10.1111/j.1751-7915.2011.00322.x
– volume: 53
  start-page: 43
  year: 2020
  end-page: 49
  ident: B31
  article-title: Auxin signalling in growth: Schrödinger’s cat out of the bag
  publication-title: Curr Opin Plant Biol
  doi: 10.1016/j.pbi.2019.10.003
– volume: 67
  start-page: 355
  year: 2011
  end-page: 367
  ident: B93
  article-title: REFMAC5 for the refinement of macromolecular crystal structures
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444911001314
– volume: 7
  start-page: 2666
  year: 2021
  end-page: 2685
  ident: B18
  article-title: Design and evaluation of new quinazolin-4(3H)-one derived PqsR antagonists as quorum sensing quenchers in Pseudomonas aeruginosa
  publication-title: ACS Infect Dis
  doi: 10.1021/acsinfecdis.1c00175
– volume: 53
  start-page: 201
  year: 2013
  end-page: 209
  ident: B101
  article-title: MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement
  publication-title: J Chem Inf Model
  doi: 10.1021/ci300425v
– volume: 11
  start-page: 4851
  year: 2020
  ident: B13
  article-title: Engineering and application of a biosensor with focused ligand specificity
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18400-0
– volume: 103
  start-page: 8191
  year: 2006
  end-page: 8196
  ident: B50
  article-title: The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0602902103
– start-page: 43
  year: 2006
  end-page: 43
  ident: B97
  article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters
  publication-title: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing ;IEEE ;New York, NY
– volume: 66
  start-page: 1041
  year: 2013
  end-page: 1049
  ident: B8
  article-title: Molecular evolution of LysR-type transcriptional regulation in Pseudomonas aeruginosa
  publication-title: Mol Phylogenet Evol
  doi: 10.1016/j.ympev.2012.12.014
– volume: 6
  year: 2021
  ident: B57
  article-title: Prevalence and specificity of chemoreceptor profiles in plant-associated bacteria
  publication-title: mSystems
  doi: 10.1128/mSystems.00951-21
– volume: 7
  start-page: 1496
  year: 2012
  end-page: 1501
  ident: B47
  article-title: Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization
  publication-title: ACS Chem Biol
  doi: 10.1021/cb300208g
– volume: 108
  start-page: 240
  year: 2018
  end-page: 257
  ident: B49
  article-title: Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13930
– volume: 93
  start-page: 121
  year: 2019
  end-page: 136
  ident: B65
  article-title: Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells
  publication-title: Arch Toxicol
  doi: 10.1007/s00204-018-2328-3
– volume: 39
  start-page: 109
  year: 2006
  end-page: 111
  ident: B95
  article-title: TLSMD web server for the generation of multi-group TLS models
  publication-title: J Appl Crystallogr
  doi: 10.1107/S0021889805038987
– volume: 372
  start-page: 774
  year: 2007
  end-page: 797
  ident: B45
  article-title: Inference of macromolecular assemblies from crystalline state
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2007.05.022
– volume: 7
  start-page: 1817
  year: 2022
  end-page: 1833
  ident: B72
  article-title: Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-022-01244-3
– year: 1992
  ident: B81
  publication-title: Analytical ultracentrifugation in biochemistry and polymer science ;Royal Society of Chemistry ;Cambridge, United Kingdom
– volume: Chapter18
  start-page: Unit18.15
  year: 2008
  ident: B84
  article-title: Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation
  publication-title: Curr Protoc Immunol
  doi: 10.1002/0471142735.im1815s81
– volume: 66
  start-page: 1101
  year: 2021
  end-page: 1118
  ident: B12
  article-title: Histamine activates HinK to promote the virulence of Pseudomonas aeruginosa
  publication-title: Sci Bull
  doi: 10.1016/j.scib.2021.01.002
– volume: 17
  year: 2021
  ident: B64
  article-title: Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1009414
– volume: 8
  start-page: 79
  year: 2017
  ident: B80
  article-title: Intra-species and inter-kingdom signaling of Legionella pneumophila
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2017.00079
– volume: 66
  start-page: 1153
  year: 2010
  end-page: 1163
  ident: B91
  article-title: Joint X-ray and neutron refinement with phenix.refine
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444910026582
– volume: 14
  start-page: 495
  year: 2004
  end-page: 504
  ident: B39
  article-title: Periplasmic binding proteins: a versatile superfamily for protein engineering
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2004.07.004
– volume: 13
  start-page: 52
  year: 2005
  end-page: 56
  ident: B5
  article-title: One-component systems dominate signal transduction in prokaryotes
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2004.12.006
– volume: 430
  start-page: 1265
  year: 2018
  end-page: 1283
  ident: B16
  article-title: Shikimate induced transcriptional activation of protocatechuate biosynthesis genes by QuiR, a LysR-type transcriptional regulator, in Listeria monocytogenes
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2018.03.003
– volume: 104
  start-page: 13774
  year: 2007
  end-page: 13779
  ident: B19
  article-title: Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0701547104
– volume: 18
  start-page: 3635
  year: 2016
  end-page: 3650
  ident: B28
  article-title: Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.13241
– volume: 66
  start-page: 12
  year: 2010
  end-page: 21
  ident: B96
  article-title: MolProbity: all-atom structure validation for macromolecular crystallography
  publication-title: Acta Crystallogr D Biol Crystallogr
  doi: 10.1107/S0907444909042073
– volume: 83
  start-page: 453
  year: 2012
  end-page: 456
  ident: B10
  article-title: Defying stereotypes: the elusive search for a universal model of LysR-type regulation
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07960.x
– volume: 49
  start-page: 6177
  year: 2006
  end-page: 6196
  ident: B108
  article-title: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes
  publication-title: J Med Chem
  doi: 10.1021/jm051256o
– volume: 47
  start-page: 7363
  year: 2019
  end-page: 7379
  ident: B11
  article-title: Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz506
– volume: 19
  start-page: 1786
  year: 2021
  end-page: 1805
  ident: B73
  article-title: The role of solute binding proteins in signal transduction
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2021.03.029
– volume: 37
  start-page: 4545
  year: 2009
  end-page: 4558
  ident: B14
  article-title: The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp445
– volume: 154
  start-page: 3609
  year: 2008
  end-page: 3623
  ident: B7
  article-title: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins
  publication-title: Microbiology (Reading)
  doi: 10.1099/mic.0.2008/022772-0
– volume: 104
  start-page: 2885
  year: 2007
  end-page: 2890
  ident: B53
  article-title: Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0609359104
– volume: 46
  start-page: fuab043
  year: 2022
  ident: B4
  article-title: A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuab043
SSID ssj0000331830
Score 2.3956158
Snippet Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular...
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental...
ABSTRACT Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0336322
SubjectTerms antagonist
Anti-Bacterial Agents
antibiotic
auxin
Bacteria - metabolism
indole-3-acetic acid
Indoleacetic Acids - metabolism
LysR
Phylogeny
Plant Growth Regulators - metabolism
Plants - metabolism
Research Article
signal transduction
Structural Biology
SummonAdditionalLinks – databaseName: Amer. Society for Microbiology Open Access (Activated by CARLI)
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1daxQxMJQrBV-kWj-uVYkoPrl1L5-bx622lBb1QQ_6FpJNogfervTuoP33zuwXXrEg7Msmsx-Zj2Qmk5kh5C1YXCFKFjMN-nwmFHOZ9zOTuaJIYG9IEx1uDXz-os7n4uJKXu0QNsTC9BhcHbvVsnXkj5LNig9Lv2iOc46uRwbT7q5kRuQTsluW86-X484KAACf5kNCzbvPwdwL72Zb61Cbrv9fOubdo5J_rT1n--RhrzTSsqPyI7IT68dkrysjeXtAytM-hjLSJlFX03Jzs6jpNzybXv-gn5olmP8ULqxQtM4GisRAT7pcze4JmZ-dfv94nvWlETIHErfOCqWTKbxOoM1Us-CMSqoywYQ8D1x56bTWKUa4l35WVNDIRe78LKngvQgVf0omdVPH54TiSZOgpdcsCCGCNlimj0vHHBjdQeopeYP4sgNlbGs2sMIiVm2LVcvYlLwf0GmrPrs4Frn4dR_4uxH8d5dW4z7AE6TNCITZsNsG4A3bCxe65FLlpAjceaHBRuJVSsp4r7mGwcMQXg-UtSA96BJxdWw2K8u0wshbIeSUPOsoPX6KK4UGGvToLR7Y-pftnnrxs83QbTAHksoP_wt1R-QB1rDv4uRfkMn6ehNfgqaz9q961v4Dtzn5Zw
  priority: 102
  providerName: American Society for Microbiology
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBLSdKm3TYpLi05xalXT-tQwuZFKKSXZiE3IVlSspC1m33A7r_vjB_bbEhuBV8kjbE0o5FmLM03hHwDj8sHQUOqwJ5PuaQ2da6vU5vnEfwNoYPFXwOXv-TFkP-8Ftf_IIVaBk6fdO0wn9Rwcne4uF8egcL_aAJg8u9jN6oOM4YnkhRW45ewKSnU0cvW0q8XZYaTN-tQNh-_BQuynY7p2uZUY_g_ZXg-vj_5YEM63yRvWksyGTSi3yIvQrlNXjW5JZdvyeCsDawMSRUTWyaD-WJUJr_xwnp5k5xWYwtFeDBt0SztxBR8ctwAONt3ZHh-dnVykbb5ElILajhLc6mizp2KYOIUfW-1jLLQXvss80w6YZVSMQQoC9fPC6hkPLOuH6V3jvuC7ZCNsirDB5Lg9ROvhFPUc8690pi7jwlLLXjiXqge-Yr8Mp28TO1L0NwgV03NVUNpjxx07DRFCzmOmS_uniPfX5H_abA2niM8RtmsiBAiu66oJjem1Tg8p4uFFdwz67gCx4kVMUrtnGIKBg9D-NJJ1oBK4TmJLUM1nxqqJIbjci565H0j6dWnmJTotUGLWpsDa31ZbylHtzVst0ZgJJl9_B-d_0ReY977JrZ-l2zMJvOwB9bRzH2u5_1fKpEM6g
  priority: 102
  providerName: Scholars Portal
Title Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria
URI https://www.ncbi.nlm.nih.gov/pubmed/36602305
https://journals.asm.org/doi/10.1128/mbio.03363-22
https://www.proquest.com/docview/2761181445
https://pubmed.ncbi.nlm.nih.gov/PMC9973260
https://doaj.org/article/130fca54d3ab475593cff69bb7378c07
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIvgifrt-HBXFJ-O1-Wwee3rnoZw-6MK-haRJdMFtxd0F_e-dabrLrnj4IpRAkoGGmUky0878hpDn4HGFKFmkGux5KhRz1PvKUFfXCfwNaaLDTwMXH9T5TLyby_leqS-MCcvwwJlxx3DGptZJEbjzQoP9y9uUlPFec123OY8c7rw9Z2o4gznqarkF1WT18dIv-lcwrDjFQrkTt1qyg7togOz_m535Z7jk3v1zdpPcGA3HoskLvkWuxO42uZZLSf66Q5rTMY8yFn0qXFc0m5-LrviE8endl-JNv3TQhQerFK3pVioxFCcZr9ndJbOz08-vz-lYHoE62HVrWiudTO11AoumrYIzKqnWBBPKMnDlpdNapxihL30FrAqci9L5KqngvQgtv0cmXd_FB6TAaJOgpdcsCCGCNliqj0vHHDjeQeopeYb8sqN-r-zgOrDaIlftwFXL2JS83LLTtiPCOBa6-HYZ-Ysd-fcMrXEZ4QnKZkeEiNjDAOiJHfXE_ktPpuTpVrIWdhD-FnFd7Dcry7TC7Fsh5JTcz5LevYorhU4azOgDHThYy-FMt_g6oHQbxEFS5cP_sfhH5DqWuc-p9I_JZP1jE5-AMbT2R-Rq08w-vj8a9B_at_MK2gtR_wYFTwkZ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0KpaIbhU0ALd8mgqECfSZv2MjylttdAHB7pSb5Yd22VRN0HsrgR_z0weK7ZqJaRcbE-UeB72jMczQ8h7sLh8EDSkCvT5lEtqU-eGOrV5HsHeEDpYPBq4uJSjMf9yLa7XiOxjYX5gXd7b2YGdTRs_Pgo2HkR39Qjzw6mb1AcZQ_cjhaV3A_2GwNkbRTH-erY8XQEA4NWsT6p59z1Yf-EDdGUvalL236dn3r0u-c_-c_qUbHaKY1K0lH5G1kK1RR61pST_bJPipIujDEkdE1slxeL3pEq-4f306iY5rqcWmvBglaJ52lMl-OSozddsn5Px6cnVp1HalUdILUjdPM2lijp3KoJGUw691TLKUnvts8wz6YRVSsUQoC3cMC-hk_HMumGU3jnuS_aCrFd1FXZIgrdNvBJOUc8590pjqT4mLLVgeHuhBuQd4st0_D0zjelAc4NYNQ1WDaUD8rFHpym7DONY6OL2IfAPS_CfbWqNhwCPkDZLIMyI3XQAg5hOwNAtF0sruGfWcQV2EitjlNo5xRRMHqaw31PWgAShW8RWoV7MDFUSo285FwPysqX08lNMSjTSYESt8MDKv6yOVJPvTZZujXmQZLb7X6jbI49HVxfn5vzz5dkr8gRr2rdx86_J-vzXIrwBzWfu3nZs_hdjLf3K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3ZbtQw0KpaFfGCaAt0uZoKxBNpsz7jx_RYFQoFCVbqm2XHdlmJTSp2V6J_35kcK7aiUqW8OJ4cnsOe8XhmCHkPFpcPgoZUgT6fcklt6txQpzbPI9gbQgeLWwNfL-TZmH--FJdrRPaxMB0GZwd2Nm0c-SjZ1z529Qjzw6mb1AcZQ_cjhal3Ax1VwN8bRTH-dr7cXQEA4NWsT6p59zmYf-H9dGUtalL2_0_PvHtc8p_1Z_SUPOkUx6RoKb1F1kK1TTbbUpI3O6Q47eIoQ1LHxFZJsfg7qZIfeD69ukpO6qmFJlxYpWie9lQJPjlq8zXbZ2Q8Ov15fJZ25RFSC1I3T3Opos6diqDRlENvtYyy1F77LPNMOmGVUjEEaAs3zEu4yXhm3TBK7xz3JXtO1qu6CrskwdMmXgmnqOece6WxVB8TllowvL1QA_IO8WV66pjGdKC5QayaBquG0gH52KPTlF2GcSx08fs-8A9L8Os2tcZ9gEdImyUQZsRubgB_mE7A0C0XSyu4Z9ZxBXYSK2OU2jnFFAwehrDfU9aABKFbxFahXswMVRKjbzkXA_KipfTyU0xKNNKgR63wwMq_rPZUk19Nlm6NeZBk9vJBqNsjj76fjMyXTxfnr8hjLGnfhs2_JuvzP4vwBhSfuXvbcfktSYD9Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+an+Auxin+Sensing+Domain+in+Plant-Associated+Bacteria&rft.jtitle=mBio&rft.au=Jos%C3%A9+A.+Gavira&rft.au=Miriam+Rico-Jim%C3%A9nez&rft.au=%C3%81lvaro+Ortega&rft.au=Natalia+V.+Petukhova&rft.date=2023-02-28&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1128%2Fmbio.03363-22&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon