Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria
Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding...
Saved in:
Published in | mBio Vol. 14; no. 1; p. e0336322 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein.
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium
Serratia plymuthica
. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in
S. plymuthica
. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria.
IMPORTANCE
Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. |
---|---|
AbstractList | ABSTRACT Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica . AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica . AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica . Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones. |
Author | Petukhova, Natalia V. Matilla, Miguel A. Rico-Jiménez, Miriam Castellví, Albert Porozov, Yuri B. Ortega, Álvaro Krell, Tino Gavira, José A. Bug, Dmitrii S. Zhulin, Igor B. |
Author_xml | – sequence: 1 givenname: José A. orcidid: 0000-0002-7386-6484 surname: Gavira fullname: Gavira, José A. organization: Laboratory of Crystallographic Studies, IACT (CSIC-UGR), Armilla, Spain – sequence: 2 givenname: Miriam surname: Rico-Jiménez fullname: Rico-Jiménez, Miriam organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain – sequence: 3 givenname: Álvaro orcidid: 0000-0001-8202-293X surname: Ortega fullname: Ortega, Álvaro organization: Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain – sequence: 4 givenname: Natalia V. surname: Petukhova fullname: Petukhova, Natalia V. organization: Bioinformatics Research Center, Pavlov First Saint Petersburg Medical State University, St. Petersburg, Russia – sequence: 5 givenname: Dmitrii S. surname: Bug fullname: Bug, Dmitrii S. organization: Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum, Murcia, Spain – sequence: 6 givenname: Albert surname: Castellví fullname: Castellví, Albert organization: Molecular Biology Institute of Barcelona, CSIC, Barcelona, Spain – sequence: 7 givenname: Yuri B. surname: Porozov fullname: Porozov, Yuri B. organization: The Center of Bio- and Chemoinformatics, I. M. Sechenov First Moscow State Medical University, Moscow, Russia – sequence: 8 givenname: Igor B. orcidid: 0000-0002-6708-5323 surname: Zhulin fullname: Zhulin, Igor B. organization: Department of Microbiology, The Ohio State University, Columbus, Ohio, USA – sequence: 9 givenname: Tino orcidid: 0000-0002-9040-3166 surname: Krell fullname: Krell, Tino organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain – sequence: 10 givenname: Miguel A. orcidid: 0000-0002-8468-9604 surname: Matilla fullname: Matilla, Miguel A. organization: Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36602305$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rFTEQhoO02Fp76a3spQhb87XJ7o1wWqsWCi2o12HydcxhN6nJrui_N6enlrbQEEhm8s7DZN5XaC-m6BB6Q_AJIbT_MOmQTjBjgrWUvkCHlHS4lR0hew_uB-i4lA2uizHSM_wSHTAhMGW4O0Sr88nltYvGNck3EJvV8ifE5puLJcR18ylNUMO6r0eIc7sqJZkAs7PNKZjZ5QCv0b6Hsbjju_MI_fh8_v3sa3t59eXibHXZAu_7ue2F9EOvpeecGGJhEF6YwQ4WY8uE7kBK6Z2rcadJb2qScQyaeGG15tawI3Sx49oEG3WTwwT5r0oQ1G0i5bWCPAczOkUY9gY6bhloLrtuYMZ7MWgtmaxoWVkfd6ybRU_OGhfnDOMj6OOXGH6qdfqthkEyKnAFvLsD5PRrcWVWUyjGjXVILi1FUSkI6QnnXZW-30mhTFRt0pJjHZMiWG0tVFsL1a2FitIqfvuwsfuO_htWBe1OYHIqJTt_L3kOyJ7oTZhhDmn7rzA-U_UPrKC4zw |
CitedBy_id | crossref_primary_10_1021_acssynbio_4c00219 crossref_primary_10_1128_aem_02384_24 crossref_primary_10_1128_msystems_00165_24 crossref_primary_10_1111_1751_7915_14296 crossref_primary_10_1146_annurev_micro_050323_040543 crossref_primary_10_1038_s41467_024_50275_3 crossref_primary_10_1186_s12866_023_02946_2 crossref_primary_10_1111_1751_7915_14368 |
Cites_doi | 10.1038/s41467-020-18400-0 10.1128/mbio.03497-21 10.1038/nature14488 10.1002/cbf.1307 10.1107/S0021889805038987 10.1107/S0907444909052925 10.1109/SC.2006.54 10.1007/s00253-020-10869-5 10.1073/pnas.1811509116 10.1007/978-1-0716-0270-6_3 10.7831/ras.6.105 10.1016/S0006-3495(00)76713-0 10.1016/bs.mie.2015.05.001 10.1093/nar/gku1028 10.1016/j.jmb.2018.03.003 10.1073/pnas.0602902103 10.1080/09168451.2018.1525275 10.1111/nph.18159 10.1021/jm060522a 10.1093/nar/gkz988 10.1111/tpj.12615 10.1107/S0907444911001314 10.1111/1462-2920.13241 10.1016/j.scib.2021.01.002 10.1107/S2059798318001365 10.1016/j.ympev.2012.12.014 10.1073/pnas.1212256110 10.1007/s10482-013-0095-y 10.1111/1462-2920.14398 10.1111/1462-2920.15920 10.1107/S0907444994003112 10.1016/j.molcel.2011.04.003 10.1021/ci300425v 10.3389/fmicb.2017.00079 10.1016/j.csbj.2021.03.029 10.1128/mbio.03458-21 10.1016/j.jmb.2006.09.090 10.1128/mBio.03066-19 10.1093/nar/gkv1189 10.1111/febs.15764 10.1111/mmi.13930 10.1146/annurev-micro-030322-040423 10.1107/S0907444910007493 10.1021/acs.jctc.1c00302 10.1021/cb300208g 10.1093/nar/gky766 10.1107/S0907444913000061 10.1128/AEM.01057-18 10.1099/mic.0.2008/022772-0 10.1111/mmi.14115 10.1101/cshperspect.a040022 10.1128/mBio.01819-21 10.1107/S0907444910026582 10.1073/pnas.1018894108 10.1038/s41586-021-03819-2 10.1105/tpc.109.066480 10.1016/j.femsre.2003.10.003 10.1016/j.sbi.2004.07.004 10.1038/s41564-022-01244-3 10.1107/S0907444909042073 10.1111/j.1365-2958.2011.07960.x 10.1063/1.447334 10.1038/s41580-022-00479-6 10.1128/mBio.01894-18 10.1021/acsinfecdis.1c00175 10.1073/pnas.0609359104 10.1128/MMBR.00033-17 10.1016/j.molcel.2004.10.004 10.1021/acs.jctc.5b00864 10.1371/journal.ppat.1003508 10.1093/molbev/msu300 10.1093/femsre/fuab043 10.1093/nar/gkz506 10.1093/nar/gkp445 10.1371/journal.pone.0195332 10.1063/1.445869 10.1128/mSystems.00951-21 10.1073/pnas.1306811110 10.1021/acs.cgd.7b01353 10.1073/pnas.0701547104 10.1016/j.bpj.2011.06.046 10.1016/j.ijbiomac.2019.02.064 10.1107/S0907444909047337 10.1073/pnas.2003271117 10.1111/j.1365-2958.2012.07992.x 10.1073/pnas.2118002119 10.1002/0471142735.im1815s81 10.1007/s00253-020-10938-9 10.1099/mic.0.083261-0 10.1107/S2053230X13033141 10.1021/jm051256o 10.1016/j.tplants.2011.12.005 10.1016/j.copbio.2021.09.006 10.1038/s41586-021-03425-2 10.1007/s00204-018-2328-3 10.1146/annurev-arplant-042817-040226 10.1074/jbc.M116.718841 10.1128/JB.00376-06 10.1038/s41598-021-99552-x 10.1128/genomeA.00373-16 10.1038/s41598-018-20283-7 10.1371/journal.pgen.1009414 10.1016/j.jmb.2007.05.022 10.1093/nar/gkf436 10.1016/j.tim.2004.12.006 10.1111/j.1751-7915.2011.00322.x 10.1016/j.pbi.2019.10.003 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Gavira et al. Copyright © 2023 Gavira et al. 2023 Gavira et al. |
Copyright_xml | – notice: Copyright © 2023 Gavira et al. – notice: Copyright © 2023 Gavira et al. 2023 Gavira et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.03363-22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Sperandio, Vanessa |
Editor_xml | – sequence: 1 givenname: Vanessa surname: Sperandio fullname: Sperandio, Vanessa |
ExternalDocumentID | oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07 PMC9973260 03363-22 36602305 10_1128_mbio_03363_22 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM131760 – fundername: Spanish Research Council grantid: PIE-202040I003 – fundername: HHS | National Institutes of Health (NIH) grantid: 1R35GM131760 funderid: https://doi.org/10.13039/100000002 – fundername: Seneca Foundation CARM grantid: 20786/PI/18 – fundername: Spanish Ministry for Science and Innovation grantid: PID2019-103972GA-I00 – fundername: Junta de Andalucia grantid: P18-FR-1621 – fundername: EC | European Regional Development Fund (ERDF) grantid: RTI2018-094393-BC21-MCIU/AEI/FEDER funderid: https://doi.org/10.13039/501100008530 – fundername: Spanish Ministry for Science and Innovation grantid: PID2020-116261GB-I00 – fundername: Spanish Ministry for Science and Innovation grantid: PID2020-112612GB-I00 – fundername: ; grantid: PID2019-103972GA-I00 – fundername: ; grantid: 1R35GM131760 – fundername: ; grantid: P18-FR-1621 – fundername: ; grantid: 20786/PI/18 – fundername: ; grantid: PID2020-116261GB-I00 – fundername: ; grantid: RTI2018-094393-BC21-MCIU/AEI/FEDER – fundername: ; grantid: PIE-202040I003 – fundername: ; grantid: PID2020-112612GB-I00 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-a488t-867f98b7f441c1da96f6c9d9d00d36b5a777fee9d05b18c0d3340ab1f6dbb4dc3 |
IEDL.DBID | DOA |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:23:55 EDT 2025 Thu Aug 21 18:38:45 EDT 2025 Thu Jul 10 22:20:38 EDT 2025 Sun Aug 11 18:20:25 EDT 2024 Wed Feb 19 02:25:08 EST 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 00:57:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | antibiotic ligands auxin protein evolution signal transduction transcriptional regulator LysR sensor domain structural biology signal sensing antagonist indole-3-acetic acid |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-867f98b7f441c1da96f6c9d9d00d36b5a777fee9d05b18c0d3340ab1f6dbb4dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-9040-3166 0000-0002-8468-9604 0000-0002-6708-5323 0000-0002-7386-6484 0000-0001-8202-293X |
OpenAccessLink | https://doaj.org/article/130fca54d3ab475593cff69bb7378c07 |
PMID | 36602305 |
PQID | 2761181445 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9973260 proquest_miscellaneous_2761181445 asm2_journals_10_1128_mbio_03363_22 pubmed_primary_36602305 crossref_primary_10_1128_mbio_03363_22 crossref_citationtrail_10_1128_mbio_03363_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_28_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_100_2 e_1_3_2_104_2 e_1_3_2_81_2 e_1_3_2_108_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_31_2 e_1_3_2_73_2 e_1_3_2_12_2 e_1_3_2_58_2 e_1_3_2_96_2 e_1_3_2_3_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_92_2 e_1_3_2_50_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_63_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_67_2 e_1_3_2_103_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_97_2 e_1_3_2_2_2 e_1_3_2_93_2 e_1_3_2_70_2 Schrödinger LLC (e_1_3_2_107_2) 2021 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_102_2 e_1_3_2_106_2 e_1_3_2_9_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_33_2 e_1_3_2_79_2 e_1_3_2_14_2 e_1_3_2_56_2 e_1_3_2_98_2 e_1_3_2_94_2 e_1_3_2_71_2 e_1_3_2_110_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_65_2 e_1_3_2_42_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_69_2 e_1_3_2_46_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_80_2 e_1_3_2_101_2 e_1_3_2_109_2 Harding SE (e_1_3_2_82_2) 1992 e_1_3_2_105_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_99_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_95_2 e_1_3_2_4_2 e_1_3_2_91_2 e_1_3_2_72_2 Galperin, MY (B1) 2018; 20 Ortega, A, Amorós, D, García de la Torre, J (B36) 2011; 101 Lin, H, Li, Y, Hill, RT (B66) 2022; 73 Aklujkar, M, Risso, C, Smith, J, Beaulieu, D, Dubay, R, Giloteaux, L, DiBurro, K, Holmes, D (B61) 2014; 160 Adams, PD, Afonine, PV, Bunkóczi, G, Chen, VB, Davis, IW, Echols, N, Headd, JJ, Hung, LW, Kapral, GJ, Grosse-Kunstleve, RW, McCoy, AJ, Moriarty, NW, Oeffner, R, Read, RJ, Richardson, DC, Richardson, JS, Terwilliger, TC, Zwart, PH (B92) 2010; 66 Friesner, RA, Murphy, RB, Repasky, MP, Frye, LL, Greenwood, JR, Halgren, TA, Sanschagrin, PC, Mainz, DT (B108) 2006; 49 Koh, S, Hwang, J, Guchhait, K, Lee, EG, Kim, SY, Kim, S, Lee, S, Chung, JM, Jung, HS, Lee, SJ, Ryu, CM, Lee, SG, Oh, TK, Kwon, O, Kim, MH (B48) 2016; 291 Corral-Lugo, A, Matilla, MA, Martín-Mora, D, Silva Jiménez, H, Mesa Torres, N, Kato, J, Hida, A, Oku, S, Conejero-Muriel, M, Gavira, JA, Krell, T (B55) 2018; 9 Prezioso, SM, Xue, K, Leung, N, Gray-Owen, SD, Christendat, D (B16) 2018; 430 Klein, T, Henn, C, de Jong, JC, Zimmer, C, Kirsch, B, Maurer, CK, Pistorius, D, Muller, R, Steinbach, A, Hartmann, RW (B47) 2012; 7 O'Leary, NA, Wright, MW, Brister, JR, Ciufo, S, Haddad, D, McVeigh, R, Rajput, B, Robbertse, B, Smith-White, B, Ako-Adjei, D, Astashyn, A, Badretdin, A, Bao, Y, Blinkova, O, Brover, V, Chetvernin, V, Choi, J, Cox, E, Ermolaeva, O, Farrell, CM, Goldfarb, T, Gupta, T, Haft, D, Hatcher, E, Hlavina, W, Joardar, VS, Kodali, VK, Li, W, Maglott, D, Masterson, P, McGarvey, KM, Murphy, MR, O'Neill, K, Pujar, S, Rangwala, SH, Rausch, D, Riddick, LD, Schoch, C, Shkeda, A, Storz, SS, Sun, H, Thibaud-Nissen, F, Tolstoy, I, Tully, RE, Vatsan, AR, Wallin, C, Webb, D, Wu, W, Landrum, MJ, Kimchi, A (B103) 2016; 44 Gavira, JA, Gumerov, VM, Rico-Jiménez, M, Petukh, M, Upadhyay, AA, Ortega, A, Matilla, MA, Zhulin, IB, Krell, T (B52) 2020; 11 Greenidge, PA, Kramer, C, Mozziconacci, J-C, Wolf, RM (B101) 2013; 53 Koentjoro, MP, Ogawa, N (B9) 2018; 6 Busch, A, Lacal, J, Martos, A, Ramos, JL, Krell, T (B19) 2007; 104 Petersson, SV, Johansson, AI, Kowalczyk, M, Makoveychuk, A, Wang, JY, Moritz, T, Grebe, M, Benfey, PN, Sandberg, G, Ljung, K (B75) 2009; 21 Duca, DR, Glick, BR (B60) 2020; 104 Matilla, MA, Nogellova, V, Morel, B, Krell, T, Salmond, GP (B28) 2016; 18 Kunkel, BN, Johnson, JMB (B68) 2021; 13 Wei, Y, Ng, W-L, Cong, J, Bassler, BL (B46) 2012; 83 (B106) 2021 Addi, T, Poitevin, S, McKay, N, El Mecherfi, KE, Kheroua, O, Jourde-Chiche, N, de Macedo, A, Gondouin, B, Cerini, C, Brunet, P, Dignat-George, F, Burtey, S, Dou, L (B65) 2019; 93 Wang, Y, Cao, Q, Cao, Q, Gan, J, Sun, N, Yang, C-G, Bae, T, Wu, M, Lan, L (B12) 2021; 66 Ilangovan, A, Fletcher, M, Rampioni, G, Pustelny, C, Rumbaugh, K, Heeb, S, Camara, M, Truman, A, Chhabra, SR, Emsley, J, Williams, P (B26) 2013; 9 Gumerov, VM, Ortega, DR, Adebali, O, Ulrich, LE, Zhulin, IB (B2) 2020; 48 Brown, PH, Balbo, A, Schuck, P (B84) 2008; Chapter18 Fillet, S, Krell, T, Morel, B, Lu, D, Zhang, X, Ramos, JL (B37) 2011; 108 Matilla, MA, Velando, F, Tajuelo, A, Martín-Mora, D, Xu, W, Sourjik, V, Gavira, JA, Krell, T (B56) 2022; 13 Alexander, RP, Zhulin, IB (B53) 2007; 104 Painter, J, Merritt, EA (B95) 2006; 39 Momany, C, Neidle, EL (B10) 2012; 83 Duca, D, Lorv, J, Patten, CL, Rose, D, Glick, BR (B69) 2014; 106 Johnson, KS, Elgamoudi, BA, Jen, FE-C, Day, CJ, Sweeney, EG, Pryce, ML, Guillemin, K, Haselhorst, T, Korolik, V, Ottemann, KM (B22) 2021; 12 Lacal, J, Busch, A, Guazzaroni, M-E, Krell, T, Ramos, JL (B50) 2006; 103 Nicastro, R, Raucci, S, Michel, AH, Stumpe, M, Osuna, GMG, Jaquenoud, M, Kornmann, B, Virgilio, CD (B64) 2021; 17 Zhao, Y (B30) 2018; 69 Amin, SA, Hmelo, LR, van Tol, HM, Durham, BP, Carlson, LT, Heal, KR, Morales, RL, Berthiaume, CT, Parker, MS, Djunaedi, B, Ingalls, AE, Parsek, MR, Moran, MA, Armbrust, EV (B70) 2015; 522 Kabsch, W (B87) 2010; 66 Touw, WG, Baakman, C, Black, J, Te Beek, TAH, Krieger, E, Joosten, RP, Vriend, G (B109) 2015; 43 Kim, Y, Chhor, G, Tsai, CS, Winans, JB, Jedrzejczak, R, Joachimiak, A, Winans, SC (B42) 2018; 110 Harding, SE, Rowe, AJ, Horton, JC (B81) 1992 Lemaire, K, Van de Velde, S, Van Dijck, P, Thevelein, JM (B78) 2004; 16 Laird, TS, Flores, N, Leveau, JHJ (B67) 2020; 104 Takei, M, Kogure, S, Yokoyama, C, Kouzuma, Y, Suzuki, Y (B62) 2019; 83 Ha, S, Vankova, R, Yamaguchi-Shinozaki, K, Shinozaki, K, Tran, L-SP (B76) 2012; 17 Soukarieh, F, Mashabi, A, Richardson, W, Oton, EV, Romero, M, Roberston, SN, Grossman, S, Sou, T, Liu, R, Halliday, N, Kukavica-Ibrulj, I, Levesque, RC, Bergstrom, CAS, Kellam, B, Emsley, J, Heeb, S, Williams, P, Stocks, MJ, Cámara, M (B18) 2021; 7 Murshudov, GN, Skubak, P, Lebedev, AA, Pannu, NS, Steiner, RA, Nicholls, RA, Winn, MD, Long, F, Vagin, AA, Skubák, P, Lebedev, AA, Pannu, NS, Steiner, RA, Nicholls, RA, Winn, MD, Long, F, Vagin, AA (B93) 2011; 67 Ortega, A, Zhulin, IB, Krell, T (B54) 2017; 81 Della Corte, D, van Beek, HL, Syberg, F, Schallmey, M, Tobola, F, Cormann, KU, Schlicker, C, Baumann, PT, Krumbach, K, Sokolowsky, S, Morris, CJ, Grünberger, A, Hofmann, E, Schröder, GF, Marienhagen, J (B13) 2020; 11 Martin-Mora, D, Ortega, A, Perez-Maldonado, FJ, Krell, T, Matilla, MA (B21) 2018; 8 (B89) 1994; 50 Herud-Sikimić, O, Stiel, AC, Kolb, M, Shanmugaratnam, S, Berendzen, KW, Feldhaus, C, Höcker, B, Jürgens, G (B58) 2021; 592 Holm, L (B41) 2020; 2112 Lu, Y, Tarkowská, D, Turečková, V, Luo, T, Xin, Y, Li, J, Wang, Q, Jiao, N, Strnad, M, Xu, J (B77) 2014; 80 Katoh, K, Misawa, K, Kuma, K, Miyata, T (B104) 2002; 30 Perez-Rueda, E, Hernandez-Guerrero, R, Martinez-Nuñez, MA, Armenta-Medina, D, Sanchez, I, Ibarra, JA (B6) 2018; 13 Chatterjee, A, Cook, LCC, Shu, C-C, Chen, Y, Manias, DA, Ramkrishna, D, Dunny, GM, Hu, W-S (B79) 2013; 110 Hochstrasser, R, Hilbi, H (B80) 2017; 8 Ezezika, OC, Haddad, S, Clark, TJ, Neidle, EL, Momany, C (B44) 2007; 367 Bi, S, Yu, D, Si, G, Luo, C, Li, T, Ouyang, Q, Jakovljevic, V, Sourjik, V, Tu, Y, Lai, L (B23) 2013; 110 Jo, I, Kim, D, No, T, Hong, S, Ahn, J, Ryu, S, Ha, NC (B43) 2019; 116 Greenhut, IV, Slezak, BL, Leveau, JHJ (B74) 2018; 84 Krissinel, E, Henrick, K (B45) 2007; 372 Alexandre, G, Greer-Phillips, S, Zhulin, IB (B3) 2004; 28 Maddocks, SE, Oyston, PC (B7) 2008; 154 Matilla, MA, Ortega, Á, Krell, T (B73) 2021; 19 Peck, MC, Fisher, RF, Long, SR (B25) 2006; 188 Macadangdang, BR, Makanani, SK, Miller, JF (B51) 2022; 76 McPherson, A, Gavira, JA (B85) 2014; 70 Sun, W, Fan, Y, Wan, F, Tao, YJ, Gao, H (B34) 2022; 13 González-Ramírez, LA, Ruiz-Martínez, CR, Estremera-Andújar, RA, Nieves-Marrero, CA, García-Caballero, A, Gavira, JA, López-Garriga, J, García-Ruiz, JM (B86) 2017; 17 Nosé, S (B100) 1984; 81 Bowers, KJ, Chow, DE, Xu, H, Dror, RO, Eastwood, MP, Gregersen, BA, Klepeis, JL, Kolossvary, I, Moraes, MA, Sacerdoti, FD, Salmon, JK, Shan, Y, Shaw, DE (B97) 2006 Jumper, J, Evans, R, Pritzel, A, Green, T, Figurnov, M, Ronneberger, O, Tunyasuvunakool, K, Bates, R, Žídek, A, Potapenko, A, Bridgland, A, Meyer, C, Kohl, SAA, Ballard, AJ, Cowie, A, Romera-Paredes, B, Nikolov, S, Jain, R, Adler, J, Back, T, Petersen, S, Reiman, D, Clancy, E, Zielinski, M, Steinegger, M, Pacholska, M, Berghammer, T, Bodenstein, S, Silver, D, Vinyals, O, Senior, AW, Kavukcuoglu, K, Kohli, P, Hassabis, D (B35) 2021; 596 Wysoczynski-Horita, CL, Boursier, ME, Hill, R, Hansen, K, Blackwell, HE, Churchill, MEA (B49) 2018; 108 Gallei, M, Luschnig, C, Friml, J (B31) 2020; 53 Dwyer, MA, Hellinga, HW (B39) 2004; 14 Fragel, SM, Montada, A, Heermann, R, Baumann, U, Schacherl, M, Schnetz, K (B11) 2019; 47 Matilla, MA, Velando, F, Martín-Mora, D, Monteagudo-Cascales, E, Krell, T (B4) 2022; 46 Sanchis-López, C, Cerna-Vargas, JP, Santamaría-Hernando, S, Ramos, C, Krell, T, Rodríguez-Palenzuela, P, López-Solanilla, E, Huerta-Cepas, J, Rodríguez-Herva, JJ (B57) 2021; 6 Giannopoulou, E-A, Senda, M, Koentjoro, MP, Adachi, N, Ogawa, N, Senda, T (B15) 2021; 288 Oliveira, DL, Pugine, SM, Ferreira, MS, Lins, PG, Costa, EJ, de Melo, MP (B63) 2007; 25 Emsley, P, Lohkamp, B, Scott, WG, Cowtan, K (B94) 2010; 66 Chen, G, Swem, LR, Swem, DL, Stauff, DL, O'Loughlin, CT, Jeffrey, PD, Bassler, BL, Hughson, FM (B24) 2011; 42 Harder, E, Damm, W, Maple, J, Wu, C, Reboul, M, Xiang, JY, Wang, L, Lupyan, D, Dahlgren, MK, Knight, JL, Kaus, JW, Cerutti, DS, Krilov, G, Jorgensen, WL, Abel, R, Friesner, RA (B107) 2016; 12 Evans, PR, Murshudov, GN (B88) 2013; 69 Silva-Jimenez, H, Garcia-Fontana, C, Cadirci, BH, Ramos-Gonzalez, MI, Ramos, JL, Krell, T (B20) 2012; 5 Sainsbury, S, Lane, LA, Ren, J, Gilbert, RJ, Saunders, NJ, Robinson, CV, Stuart, DI, Owens, RJ (B14) 2009; 37 Matilla, MA, Drew, A, Udaondo, Z, Krell, T, Salmond, GPC (B27) 2016; 4 Hong, S, Kim, J, Cho, E, Na, S, Yoo, Y-J, Cho, Y-H, Ryu, S, Ha, N-C (B38) 2022; 119 Liu, W, Chen, J, Jin, L, Liu, Z-Y, Lu, M, Jiang, G, Yang, Q, Quan, C, Nam, KH, Xu, Y (B17) 2021; 11 Ulrich, LE, Koonin, EV, Zhulin, IB (B5) 2005; 13 Matilla, MA, Daddaoua, A, Chini, A, Morel, B, Krell, T (B29) 2018; 46 Nguyen, L-T, Schmidt, HA, von Haeseler, A, Minh, BQ (B105) 2015; 32 Afonine, PV, Mustyakimov, M, Grosse-Kunstleve, RW, Moriarty, NW, Langan, P, Adams, PD (B91) 2010; 66 Schuck, P (B82) 2000; 78 Cancé, C, Martin-Arevalillo, R, Boubekeur, K, Dumas, R (B32) 2022; 235 Fukamizo, T, Kitaoku, Y, Suginta, W (B40) 2019; 128 Brautigam, CA (B83) 2015; 562 Millán, C, Sammito, MD, McCoy, AJ, Nascimento, AFZ, Petrillo, G, Oeffner, RD, Domínguez-Gil, T, Hermoso, JA, Read, RJ, Usón, I (B90) 2018; 74 Waadt, R, Seller, CA, Hsu, P-K, Takahashi, Y, Munemasa, S, Schroeder, JI (B59) 2022; 23 Lu, C, Wu, C, Ghoreishi, D, Chen, W, Wang, L, Damm, W, Ross, GA, Dahlgren, MK, Russell, E, Von Bargen, CD, Abel, R, Friesner, RA, Harder, ED (B99) 2021; 17 Jorgensen, WL, Chandrasekhar, J, Madura, JD, Impey, RW, Klein, ML (B98) 1983; 79 Lyne, PD, Lamb, ML, Saeh, JC (B102) 2006; 49 Chen, VB, Arendall, WB, Headd, JJ, Keedy, DA, Immormino, RM, Kapral, GJ, Murray, LW, Richardson, JS, Richardson, DC (B96) 2010; 66 Rico-Jiménez, M, Roca, A, Krell, T, Matilla, MA (B71) 2022; 24 Reen, FJ, Barret, M, Fargier, E, O'Muinneacháin, M, O'Gara, F (B8) 2013; 66 Bolla, JR, Howe |
References_xml | – ident: e_1_3_2_14_2 doi: 10.1038/s41467-020-18400-0 – ident: e_1_3_2_35_2 doi: 10.1128/mbio.03497-21 – ident: e_1_3_2_71_2 doi: 10.1038/nature14488 – ident: e_1_3_2_64_2 doi: 10.1002/cbf.1307 – ident: e_1_3_2_96_2 doi: 10.1107/S0021889805038987 – ident: e_1_3_2_93_2 doi: 10.1107/S0907444909052925 – ident: e_1_3_2_98_2 doi: 10.1109/SC.2006.54 – ident: e_1_3_2_61_2 doi: 10.1007/s00253-020-10869-5 – volume-title: Release 2022–3: Maestro year: 2021 ident: e_1_3_2_107_2 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.1811509116 – ident: e_1_3_2_42_2 doi: 10.1007/978-1-0716-0270-6_3 – ident: e_1_3_2_10_2 doi: 10.7831/ras.6.105 – ident: e_1_3_2_83_2 doi: 10.1016/S0006-3495(00)76713-0 – ident: e_1_3_2_84_2 doi: 10.1016/bs.mie.2015.05.001 – ident: e_1_3_2_110_2 doi: 10.1093/nar/gku1028 – ident: e_1_3_2_17_2 doi: 10.1016/j.jmb.2018.03.003 – ident: e_1_3_2_51_2 doi: 10.1073/pnas.0602902103 – ident: e_1_3_2_63_2 doi: 10.1080/09168451.2018.1525275 – ident: e_1_3_2_33_2 doi: 10.1111/nph.18159 – ident: e_1_3_2_103_2 doi: 10.1021/jm060522a – ident: e_1_3_2_3_2 doi: 10.1093/nar/gkz988 – ident: e_1_3_2_78_2 doi: 10.1111/tpj.12615 – ident: e_1_3_2_94_2 doi: 10.1107/S0907444911001314 – ident: e_1_3_2_29_2 doi: 10.1111/1462-2920.13241 – ident: e_1_3_2_13_2 doi: 10.1016/j.scib.2021.01.002 – ident: e_1_3_2_91_2 doi: 10.1107/S2059798318001365 – ident: e_1_3_2_9_2 doi: 10.1016/j.ympev.2012.12.014 – ident: e_1_3_2_80_2 doi: 10.1073/pnas.1212256110 – ident: e_1_3_2_70_2 doi: 10.1007/s10482-013-0095-y – ident: e_1_3_2_2_2 doi: 10.1111/1462-2920.14398 – ident: e_1_3_2_72_2 doi: 10.1111/1462-2920.15920 – ident: e_1_3_2_90_2 doi: 10.1107/S0907444994003112 – ident: e_1_3_2_25_2 doi: 10.1016/j.molcel.2011.04.003 – ident: e_1_3_2_102_2 doi: 10.1021/ci300425v – ident: e_1_3_2_81_2 doi: 10.3389/fmicb.2017.00079 – ident: e_1_3_2_74_2 doi: 10.1016/j.csbj.2021.03.029 – ident: e_1_3_2_57_2 doi: 10.1128/mbio.03458-21 – ident: e_1_3_2_45_2 doi: 10.1016/j.jmb.2006.09.090 – ident: e_1_3_2_53_2 doi: 10.1128/mBio.03066-19 – ident: e_1_3_2_104_2 doi: 10.1093/nar/gkv1189 – ident: e_1_3_2_16_2 doi: 10.1111/febs.15764 – ident: e_1_3_2_50_2 doi: 10.1111/mmi.13930 – ident: e_1_3_2_52_2 doi: 10.1146/annurev-micro-030322-040423 – ident: e_1_3_2_95_2 doi: 10.1107/S0907444910007493 – ident: e_1_3_2_100_2 doi: 10.1021/acs.jctc.1c00302 – ident: e_1_3_2_48_2 doi: 10.1021/cb300208g – ident: e_1_3_2_30_2 doi: 10.1093/nar/gky766 – ident: e_1_3_2_89_2 doi: 10.1107/S0907444913000061 – ident: e_1_3_2_75_2 doi: 10.1128/AEM.01057-18 – ident: e_1_3_2_8_2 doi: 10.1099/mic.0.2008/022772-0 – ident: e_1_3_2_43_2 doi: 10.1111/mmi.14115 – ident: e_1_3_2_69_2 doi: 10.1101/cshperspect.a040022 – ident: e_1_3_2_23_2 doi: 10.1128/mBio.01819-21 – ident: e_1_3_2_92_2 doi: 10.1107/S0907444910026582 – ident: e_1_3_2_38_2 doi: 10.1073/pnas.1018894108 – ident: e_1_3_2_36_2 doi: 10.1038/s41586-021-03819-2 – ident: e_1_3_2_76_2 doi: 10.1105/tpc.109.066480 – ident: e_1_3_2_4_2 doi: 10.1016/j.femsre.2003.10.003 – ident: e_1_3_2_40_2 doi: 10.1016/j.sbi.2004.07.004 – ident: e_1_3_2_73_2 doi: 10.1038/s41564-022-01244-3 – ident: e_1_3_2_97_2 doi: 10.1107/S0907444909042073 – ident: e_1_3_2_11_2 doi: 10.1111/j.1365-2958.2011.07960.x – ident: e_1_3_2_101_2 doi: 10.1063/1.447334 – ident: e_1_3_2_60_2 doi: 10.1038/s41580-022-00479-6 – ident: e_1_3_2_56_2 doi: 10.1128/mBio.01894-18 – ident: e_1_3_2_19_2 doi: 10.1021/acsinfecdis.1c00175 – volume-title: Analytical ultracentrifugation in biochemistry and polymer science year: 1992 ident: e_1_3_2_82_2 – ident: e_1_3_2_54_2 doi: 10.1073/pnas.0609359104 – ident: e_1_3_2_55_2 doi: 10.1128/MMBR.00033-17 – ident: e_1_3_2_79_2 doi: 10.1016/j.molcel.2004.10.004 – ident: e_1_3_2_108_2 doi: 10.1021/acs.jctc.5b00864 – ident: e_1_3_2_27_2 doi: 10.1371/journal.ppat.1003508 – ident: e_1_3_2_106_2 doi: 10.1093/molbev/msu300 – ident: e_1_3_2_5_2 doi: 10.1093/femsre/fuab043 – ident: e_1_3_2_12_2 doi: 10.1093/nar/gkz506 – ident: e_1_3_2_15_2 doi: 10.1093/nar/gkp445 – ident: e_1_3_2_7_2 doi: 10.1371/journal.pone.0195332 – ident: e_1_3_2_99_2 doi: 10.1063/1.445869 – ident: e_1_3_2_58_2 doi: 10.1128/mSystems.00951-21 – ident: e_1_3_2_24_2 doi: 10.1073/pnas.1306811110 – ident: e_1_3_2_87_2 doi: 10.1021/acs.cgd.7b01353 – ident: e_1_3_2_20_2 doi: 10.1073/pnas.0701547104 – ident: e_1_3_2_37_2 doi: 10.1016/j.bpj.2011.06.046 – ident: e_1_3_2_41_2 doi: 10.1016/j.ijbiomac.2019.02.064 – ident: e_1_3_2_88_2 doi: 10.1107/S0907444909047337 – ident: e_1_3_2_34_2 doi: 10.1073/pnas.2003271117 – ident: e_1_3_2_47_2 doi: 10.1111/j.1365-2958.2012.07992.x – ident: e_1_3_2_39_2 doi: 10.1073/pnas.2118002119 – ident: e_1_3_2_85_2 doi: 10.1002/0471142735.im1815s81 – ident: e_1_3_2_68_2 doi: 10.1007/s00253-020-10938-9 – ident: e_1_3_2_62_2 doi: 10.1099/mic.0.083261-0 – ident: e_1_3_2_86_2 doi: 10.1107/S2053230X13033141 – ident: e_1_3_2_109_2 doi: 10.1021/jm051256o – ident: e_1_3_2_77_2 doi: 10.1016/j.tplants.2011.12.005 – ident: e_1_3_2_67_2 doi: 10.1016/j.copbio.2021.09.006 – ident: e_1_3_2_59_2 doi: 10.1038/s41586-021-03425-2 – ident: e_1_3_2_66_2 doi: 10.1007/s00204-018-2328-3 – ident: e_1_3_2_31_2 doi: 10.1146/annurev-arplant-042817-040226 – ident: e_1_3_2_49_2 doi: 10.1074/jbc.M116.718841 – ident: e_1_3_2_26_2 doi: 10.1128/JB.00376-06 – ident: e_1_3_2_18_2 doi: 10.1038/s41598-021-99552-x – ident: e_1_3_2_28_2 doi: 10.1128/genomeA.00373-16 – ident: e_1_3_2_22_2 doi: 10.1038/s41598-018-20283-7 – ident: e_1_3_2_65_2 doi: 10.1371/journal.pgen.1009414 – ident: e_1_3_2_46_2 doi: 10.1016/j.jmb.2007.05.022 – ident: e_1_3_2_105_2 doi: 10.1093/nar/gkf436 – ident: e_1_3_2_6_2 doi: 10.1016/j.tim.2004.12.006 – ident: e_1_3_2_21_2 doi: 10.1111/j.1751-7915.2011.00322.x – ident: e_1_3_2_32_2 doi: 10.1016/j.pbi.2019.10.003 – volume: 48 start-page: D459 year: 2020 end-page: D464 ident: B2 article-title: MiST 3.0: an updated microbial signal transduction database with an emphasis on chemosensory systems publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz988 – volume: 83 start-page: 129 year: 2019 end-page: 136 ident: B62 article-title: Identification of an aldehyde oxidase involved in indole-3-acetic acid synthesis in Bombyx mori silk gland publication-title: Biosci Biotechnol Biochem doi: 10.1080/09168451.2018.1525275 – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: B92 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909052925 – volume: 101 start-page: 892 year: 2011 end-page: 898 ident: B36 article-title: Prediction of hydrodynamic and other solution properties of rigid proteins from atomic- and residue-level models publication-title: Biophys J doi: 10.1016/j.bpj.2011.06.046 – volume: 25 start-page: 195 year: 2007 end-page: 201 ident: B63 article-title: Influence of indole acetic acid on antioxidant levels and enzyme activities of glucose metabolism in rat liver publication-title: Cell Biochem Funct doi: 10.1002/cbf.1307 – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: B100 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J Chem Phys doi: 10.1063/1.447334 – volume: 13 year: 2022 ident: B56 article-title: Chemotaxis of the human pathogen Pseudomonas aeruginosa to the neurotransmitter acetylcholine publication-title: mBio doi: 10.1128/mbio.03458-21 – volume: 13 year: 2018 ident: B6 article-title: Abundance, diversity and domain architecture variability in prokaryotic DNA-binding transcription factors publication-title: PLoS One doi: 10.1371/journal.pone.0195332 – volume: 119 year: 2022 ident: B38 article-title: Crystal structures of YeiE from Cronobacter sakazakii and the role of sulfite tolerance in Gram-negative bacteria publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2118002119 – volume: 17 start-page: 172 year: 2012 end-page: 179 ident: B76 article-title: Cytokinins: metabolism and function in plant adaptation to environmental stresses publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2011.12.005 – volume: 128 start-page: 985 year: 2019 end-page: 993 ident: B40 article-title: Periplasmic solute-binding proteins: structure classification and chitooligosaccharide recognition publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.02.064 – volume: 46 start-page: 11229 year: 2018 end-page: 11238 ident: B29 article-title: An auxin controls bacterial antibiotics production publication-title: Nucleic Acids Res doi: 10.1093/nar/gky766 – volume: 11 year: 2020 ident: B52 article-title: How bacterial chemoreceptors evolve novel ligand specificities publication-title: mBio doi: 10.1128/mBio.03066-19 – volume: 104 start-page: 8607 year: 2020 end-page: 8619 ident: B60 article-title: Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10869-5 – volume: 17 start-page: 6780 year: 2017 end-page: 6786 ident: B86 article-title: Efficient screening methodology for protein crystallization based on the counter-diffusion technique publication-title: Crystal Growth Des doi: 10.1021/acs.cgd.7b01353 – volume: 24 start-page: 3580 year: 2022 end-page: 3597 ident: B71 article-title: A bacterial chemoreceptor that mediates chemotaxis to two different plant hormones publication-title: Environ Microbiol doi: 10.1111/1462-2920.15920 – volume: 116 start-page: 3740 year: 2019 end-page: 3745 ident: B43 article-title: Structural basis for HOCl recognition and regulation mechanisms of HypT, a hypochlorite-specific transcriptional regulator publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1811509116 – volume: 6 start-page: 105 year: 2018 end-page: 118 ident: B9 article-title: Structural studies of transcriptional regulation by LysR-type transcriptional regulators in bacteria publication-title: Rev Agric Sci doi: 10.7831/ras.6.105 – volume: 2112 start-page: 29 year: 2020 end-page: 42 ident: B41 article-title: Using Dali for protein structure comparison publication-title: Methods Mol Biol doi: 10.1007/978-1-0716-0270-6_3 – volume: 78 start-page: 1606 year: 2000 end-page: 1619 ident: B82 article-title: Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modeling publication-title: Biophys J doi: 10.1016/S0006-3495(00)76713-0 – volume: 9 year: 2018 ident: B55 article-title: High-affinity chemotaxis to histamine mediated by the TlpQ chemoreceptor of the human pathogen Pseudomonas aeruginosa publication-title: mBio doi: 10.1128/mBio.01894-18 – volume: 44 start-page: D733 year: 2016 end-page: D745 ident: B103 article-title: Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1189 – volume: 28 start-page: 113 year: 2004 end-page: 126 ident: B3 article-title: Ecological role of energy taxis in microorganisms publication-title: FEMS Microbiol Rev doi: 10.1016/j.femsre.2003.10.003 – volume: 17 start-page: 4291 year: 2021 end-page: 4300 ident: B99 article-title: OPLS4: improving force field accuracy on challenging regimes of chemical space publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.1c00302 – volume: 69 start-page: 417 year: 2018 end-page: 435 ident: B30 article-title: Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-042817-040226 – volume: 20 start-page: 4221 year: 2018 end-page: 4229 ident: B1 article-title: What bacteria want publication-title: Environ Microbiol doi: 10.1111/1462-2920.14398 – volume: 74 start-page: 290 year: 2018 end-page: 304 ident: B90 article-title: Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination publication-title: Acta Crystallogr D Struct Biol doi: 10.1107/S2059798318001365 – volume: 16 start-page: 293 year: 2004 end-page: 299 ident: B78 article-title: Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae publication-title: Mol Cell doi: 10.1016/j.molcel.2004.10.004 – volume: 160 start-page: 2694 year: 2014 end-page: 2709 ident: B61 article-title: Anaerobic degradation of aromatic amino acids by the hyperthermophilic archaeon Ferroglobus placidus publication-title: Microbiology (Reading) doi: 10.1099/mic.0.083261-0 – volume: 13 start-page: a040022 year: 2021 ident: B68 article-title: Auxin plays multiple roles during plant-pathogen interactions publication-title: Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a040022 – volume: 42 start-page: 199 year: 2011 end-page: 209 ident: B24 article-title: A strategy for antagonizing quorum sensing publication-title: Mol Cell doi: 10.1016/j.molcel.2011.04.003 – volume: 30 start-page: 3059 year: 2002 end-page: 3066 ident: B104 article-title: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res doi: 10.1093/nar/gkf436 – volume: 110 start-page: 16814 year: 2013 end-page: 16819 ident: B23 article-title: Discovery of novel chemoeffectors and rational design of Escherichia coli chemoreceptor specificity publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1306811110 – volume: 21 start-page: 1659 year: 2009 end-page: 1668 ident: B75 article-title: An auxin gradient and maximum in the Arabidopsis root apex shown by high-resolution cell-specific analysis of IAA distribution and synthesis publication-title: Plant Cell doi: 10.1105/tpc.109.066480 – volume: 12 start-page: 281 year: 2016 end-page: 296 ident: B107 article-title: OPLS3: a force field providing broad coverage of drug-like small molecules and proteins publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00864 – volume: 84 year: 2018 ident: B74 article-title: iac gene expression in the indole-3-acetic acid-degrading soil bacterium Enterobacter soli LF7 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01057-18 – volume: 8 start-page: 2102 year: 2018 ident: B21 article-title: The activity of the C4-dicarboxylic acid chemoreceptor of Pseudomonas aeruginosa is controlled by chemoattractants and antagonists publication-title: Sci Rep doi: 10.1038/s41598-018-20283-7 – volume: 23 start-page: 680 year: 2022 end-page: 694 ident: B59 article-title: Plant hormone regulation of abiotic stress responses publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-022-00479-6 – volume: 367 start-page: 616 year: 2007 end-page: 629 ident: B44 article-title: Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.09.090 – volume: 76 start-page: 389 year: 2022 end-page: 411 ident: B51 article-title: Accelerated evolution by diversity-generating retroelements publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-030322-040423 – volume: 50 start-page: 760 year: 1994 end-page: 763 ident: B89 article-title: The CCP4 suite: programs for protein crystallography publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444994003112 – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: B94 article-title: Features and development of Coot publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910007493 – volume: 117 start-page: 17011 year: 2020 end-page: 17018 ident: B33 article-title: Assembly and regulation of the chlorhexidine-specific efflux pump AceI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.2003271117 – volume: 110 start-page: 550 year: 2018 end-page: 561 ident: B42 article-title: Crystal structure of the ligand-binding domain of a LysR-type transcriptional regulator: transcriptional activation via a rotary switch publication-title: Mol Microbiol doi: 10.1111/mmi.14115 – volume: 81 year: 2017 ident: B54 article-title: Sensory repertoire of bacterial chemoreceptors publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.00033-17 – volume: 104 start-page: 9535 year: 2020 end-page: 9550 ident: B67 article-title: Bacterial catabolism of indole-3-acetic acid publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-020-10938-9 – volume: 9 year: 2013 ident: B26 article-title: Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR) publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1003508 – volume: 70 start-page: 2 year: 2014 end-page: 20 ident: B85 article-title: Introduction to protein crystallization publication-title: Acta Crystallogr F Struct Biol Commun doi: 10.1107/S2053230X13033141 – volume: 235 start-page: 402 year: 2022 end-page: 419 ident: B32 article-title: Auxin response factors are keys to the many auxin doors publication-title: New Phytol doi: 10.1111/nph.18159 – volume: 12 year: 2021 ident: B22 article-title: The dCache chemoreceptor TlpA of Helicobacter pylori binds multiple attractant and antagonistic ligands via distinct sites publication-title: mBio doi: 10.1128/mBio.01819-21 – volume: 562 start-page: 109 year: 2015 end-page: 133 ident: B83 article-title: Calculations and publication-quality illustrations for analytical ultracentrifugation data publication-title: Methods Enzymol doi: 10.1016/bs.mie.2015.05.001 – volume: 13 year: 2022 ident: B34 article-title: Functional irreplaceability of Escherichia coli and Shewanella oneidensis OxyRs is critically determined by intrinsic differences in oligomerization publication-title: mBio doi: 10.1128/mbio.03497-21 – volume: 32 start-page: 268 year: 2015 end-page: 274 ident: B105 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies publication-title: Mol Biol Evol doi: 10.1093/molbev/msu300 – volume: 596 start-page: 583 year: 2021 end-page: 589 ident: B35 article-title: Highly accurate protein structure prediction with AlphaFold publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 73 start-page: 300 year: 2022 end-page: 307 ident: B66 article-title: Microalgal and bacterial auxin biosynthesis: implications for algal biotechnology publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2021.09.006 – volume: 108 start-page: 15372 year: 2011 end-page: 15377 ident: B37 article-title: Intramolecular signal transmission in a tetrameric repressor of the IclR family publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1018894108 – volume: 43 start-page: D364 year: 2015 end-page: D368 ident: B109 article-title: A series of PDB-related databanks for everyday needs publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1028 – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: B87 article-title: XDS publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909047337 – volume: 80 start-page: 52 year: 2014 end-page: 68 ident: B77 article-title: Antagonistic roles of abscisic acid and cytokinin during response to nitrogen depletion in oleaginous microalga Nannochloropsis oceanica expand the evolutionary breadth of phytohormone function publication-title: Plant J doi: 10.1111/tpj.12615 – volume: 592 start-page: 768 year: 2021 end-page: 772 ident: B58 article-title: A biosensor for the direct visualization of auxin publication-title: Nature doi: 10.1038/s41586-021-03425-2 – volume: 83 start-page: 1095 year: 2012 end-page: 1108 ident: B46 article-title: Ligand and antagonist driven regulation of the Vibrio cholerae quorum-sensing receptor CqsS publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2012.07992.x – volume: 110 start-page: 7086 year: 2013 end-page: 7090 ident: B79 article-title: Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1212256110 – volume: 49 start-page: 4805 year: 2006 end-page: 4808 ident: B102 article-title: Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring publication-title: J Med Chem doi: 10.1021/jm060522a – volume: 291 start-page: 8575 year: 2016 end-page: 8590 ident: B48 article-title: Molecular insights into toluene sensing in the TodS/TodT signal transduction system publication-title: J Biol Chem doi: 10.1074/jbc.M116.718841 – volume: 106 start-page: 85 year: 2014 end-page: 125 ident: B69 article-title: Indole-3-acetic acid in plant-microbe interactions publication-title: Antonie Van Leeuwenhoek doi: 10.1007/s10482-013-0095-y – volume: 11 start-page: 20285 year: 2021 ident: B17 article-title: Functional and structural analysis of catabolite control protein C that responds to citrate publication-title: Sci Rep doi: 10.1038/s41598-021-99552-x – volume: 4 year: 2016 ident: B27 article-title: Genome sequence of Serratia plymuthica A153, a model rhizobacterium for the investigation of the synthesis and regulation of haterumalides, zeamine, and andrimid publication-title: Genome Announc doi: 10.1128/genomeA.00373-16 – volume: 188 start-page: 5417 year: 2006 end-page: 5427 ident: B25 article-title: Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti publication-title: J Bacteriol doi: 10.1128/JB.00376-06 – volume: 288 start-page: 4560 year: 2021 end-page: 4575 ident: B15 article-title: Crystal structure of the full-length LysR-type transcription regulator CbnR in complex with promoter DNA publication-title: FEBS J doi: 10.1111/febs.15764 – volume: 522 start-page: 98 year: 2015 end-page: 101 ident: B70 article-title: Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria publication-title: Nature doi: 10.1038/nature14488 – volume: 79 start-page: 926 year: 1983 end-page: 935 ident: B98 article-title: Comparison of simple potential functions for simulating liquid water publication-title: J Chem Phys doi: 10.1063/1.445869 – volume: 69 start-page: 1204 year: 2013 end-page: 1214 ident: B88 article-title: How good are my data and what is the resolution? publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444913000061 – year: 2021 ident: B106 publication-title: Release 2022–3: Maestro ;Schrödinger, LLC ;New York, NY – volume: 5 start-page: 489 year: 2012 end-page: 500 ident: B20 article-title: Study of the TmoS/TmoT two-component system: towards the functional characterization of the family of TodS/TodT like systems publication-title: Microb Biotechnol doi: 10.1111/j.1751-7915.2011.00322.x – volume: 53 start-page: 43 year: 2020 end-page: 49 ident: B31 article-title: Auxin signalling in growth: Schrödinger’s cat out of the bag publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2019.10.003 – volume: 67 start-page: 355 year: 2011 end-page: 367 ident: B93 article-title: REFMAC5 for the refinement of macromolecular crystal structures publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444911001314 – volume: 7 start-page: 2666 year: 2021 end-page: 2685 ident: B18 article-title: Design and evaluation of new quinazolin-4(3H)-one derived PqsR antagonists as quorum sensing quenchers in Pseudomonas aeruginosa publication-title: ACS Infect Dis doi: 10.1021/acsinfecdis.1c00175 – volume: 53 start-page: 201 year: 2013 end-page: 209 ident: B101 article-title: MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement publication-title: J Chem Inf Model doi: 10.1021/ci300425v – volume: 11 start-page: 4851 year: 2020 ident: B13 article-title: Engineering and application of a biosensor with focused ligand specificity publication-title: Nat Commun doi: 10.1038/s41467-020-18400-0 – volume: 103 start-page: 8191 year: 2006 end-page: 8196 ident: B50 article-title: The TodS-TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0602902103 – start-page: 43 year: 2006 end-page: 43 ident: B97 article-title: Scalable algorithms for molecular dynamics simulations on commodity clusters publication-title: SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing ;IEEE ;New York, NY – volume: 66 start-page: 1041 year: 2013 end-page: 1049 ident: B8 article-title: Molecular evolution of LysR-type transcriptional regulation in Pseudomonas aeruginosa publication-title: Mol Phylogenet Evol doi: 10.1016/j.ympev.2012.12.014 – volume: 6 year: 2021 ident: B57 article-title: Prevalence and specificity of chemoreceptor profiles in plant-associated bacteria publication-title: mSystems doi: 10.1128/mSystems.00951-21 – volume: 7 start-page: 1496 year: 2012 end-page: 1501 ident: B47 article-title: Identification of small-molecule antagonists of the Pseudomonas aeruginosa transcriptional regulator PqsR: biophysically guided hit discovery and optimization publication-title: ACS Chem Biol doi: 10.1021/cb300208g – volume: 108 start-page: 240 year: 2018 end-page: 257 ident: B49 article-title: Mechanism of agonism and antagonism of the Pseudomonas aeruginosa quorum sensing regulator QscR with non-native ligands publication-title: Mol Microbiol doi: 10.1111/mmi.13930 – volume: 93 start-page: 121 year: 2019 end-page: 136 ident: B65 article-title: Mechanisms of tissue factor induction by the uremic toxin indole-3 acetic acid through aryl hydrocarbon receptor/nuclear factor-kappa B signaling pathway in human endothelial cells publication-title: Arch Toxicol doi: 10.1007/s00204-018-2328-3 – volume: 39 start-page: 109 year: 2006 end-page: 111 ident: B95 article-title: TLSMD web server for the generation of multi-group TLS models publication-title: J Appl Crystallogr doi: 10.1107/S0021889805038987 – volume: 372 start-page: 774 year: 2007 end-page: 797 ident: B45 article-title: Inference of macromolecular assemblies from crystalline state publication-title: J Mol Biol doi: 10.1016/j.jmb.2007.05.022 – volume: 7 start-page: 1817 year: 2022 end-page: 1833 ident: B72 article-title: Diverse MarR bacterial regulators of auxin catabolism in the plant microbiome publication-title: Nat Microbiol doi: 10.1038/s41564-022-01244-3 – year: 1992 ident: B81 publication-title: Analytical ultracentrifugation in biochemistry and polymer science ;Royal Society of Chemistry ;Cambridge, United Kingdom – volume: Chapter18 start-page: Unit18.15 year: 2008 ident: B84 article-title: Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation publication-title: Curr Protoc Immunol doi: 10.1002/0471142735.im1815s81 – volume: 66 start-page: 1101 year: 2021 end-page: 1118 ident: B12 article-title: Histamine activates HinK to promote the virulence of Pseudomonas aeruginosa publication-title: Sci Bull doi: 10.1016/j.scib.2021.01.002 – volume: 17 year: 2021 ident: B64 article-title: Indole-3-acetic acid is a physiological inhibitor of TORC1 in yeast publication-title: PLoS Genet doi: 10.1371/journal.pgen.1009414 – volume: 8 start-page: 79 year: 2017 ident: B80 article-title: Intra-species and inter-kingdom signaling of Legionella pneumophila publication-title: Front Microbiol doi: 10.3389/fmicb.2017.00079 – volume: 66 start-page: 1153 year: 2010 end-page: 1163 ident: B91 article-title: Joint X-ray and neutron refinement with phenix.refine publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444910026582 – volume: 14 start-page: 495 year: 2004 end-page: 504 ident: B39 article-title: Periplasmic binding proteins: a versatile superfamily for protein engineering publication-title: Curr Opin Struct Biol doi: 10.1016/j.sbi.2004.07.004 – volume: 13 start-page: 52 year: 2005 end-page: 56 ident: B5 article-title: One-component systems dominate signal transduction in prokaryotes publication-title: Trends Microbiol doi: 10.1016/j.tim.2004.12.006 – volume: 430 start-page: 1265 year: 2018 end-page: 1283 ident: B16 article-title: Shikimate induced transcriptional activation of protocatechuate biosynthesis genes by QuiR, a LysR-type transcriptional regulator, in Listeria monocytogenes publication-title: J Mol Biol doi: 10.1016/j.jmb.2018.03.003 – volume: 104 start-page: 13774 year: 2007 end-page: 13779 ident: B19 article-title: Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0701547104 – volume: 18 start-page: 3635 year: 2016 end-page: 3650 ident: B28 article-title: Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX publication-title: Environ Microbiol doi: 10.1111/1462-2920.13241 – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: B96 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr D Biol Crystallogr doi: 10.1107/S0907444909042073 – volume: 83 start-page: 453 year: 2012 end-page: 456 ident: B10 article-title: Defying stereotypes: the elusive search for a universal model of LysR-type regulation publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07960.x – volume: 49 start-page: 6177 year: 2006 end-page: 6196 ident: B108 article-title: Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes publication-title: J Med Chem doi: 10.1021/jm051256o – volume: 47 start-page: 7363 year: 2019 end-page: 7379 ident: B11 article-title: Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz506 – volume: 19 start-page: 1786 year: 2021 end-page: 1805 ident: B73 article-title: The role of solute binding proteins in signal transduction publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2021.03.029 – volume: 37 start-page: 4545 year: 2009 end-page: 4558 ident: B14 article-title: The structure of CrgA from Neisseria meningitidis reveals a new octameric assembly state for LysR transcriptional regulators publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp445 – volume: 154 start-page: 3609 year: 2008 end-page: 3623 ident: B7 article-title: Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins publication-title: Microbiology (Reading) doi: 10.1099/mic.0.2008/022772-0 – volume: 104 start-page: 2885 year: 2007 end-page: 2890 ident: B53 article-title: Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0609359104 – volume: 46 start-page: fuab043 year: 2022 ident: B4 article-title: A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuab043 |
SSID | ssj0000331830 |
Score | 2.3956158 |
Snippet | Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular... Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental... ABSTRACT Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0336322 |
SubjectTerms | antagonist Anti-Bacterial Agents antibiotic auxin Bacteria - metabolism indole-3-acetic acid Indoleacetic Acids - metabolism LysR Phylogeny Plant Growth Regulators - metabolism Plants - metabolism Research Article signal transduction Structural Biology |
SummonAdditionalLinks | – databaseName: Amer. Society for Microbiology Open Access (Activated by CARLI) dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR1daxQxMJQrBV-kWj-uVYkoPrl1L5-bx622lBb1QQ_6FpJNogfervTuoP33zuwXXrEg7Msmsx-Zj2Qmk5kh5C1YXCFKFjMN-nwmFHOZ9zOTuaJIYG9IEx1uDXz-os7n4uJKXu0QNsTC9BhcHbvVsnXkj5LNig9Lv2iOc46uRwbT7q5kRuQTsluW86-X484KAACf5kNCzbvPwdwL72Zb61Cbrv9fOubdo5J_rT1n--RhrzTSsqPyI7IT68dkrysjeXtAytM-hjLSJlFX03Jzs6jpNzybXv-gn5olmP8ULqxQtM4GisRAT7pcze4JmZ-dfv94nvWlETIHErfOCqWTKbxOoM1Us-CMSqoywYQ8D1x56bTWKUa4l35WVNDIRe78LKngvQgVf0omdVPH54TiSZOgpdcsCCGCNlimj0vHHBjdQeopeYP4sgNlbGs2sMIiVm2LVcvYlLwf0GmrPrs4Frn4dR_4uxH8d5dW4z7AE6TNCITZsNsG4A3bCxe65FLlpAjceaHBRuJVSsp4r7mGwcMQXg-UtSA96BJxdWw2K8u0wshbIeSUPOsoPX6KK4UGGvToLR7Y-pftnnrxs83QbTAHksoP_wt1R-QB1rDv4uRfkMn6ehNfgqaz9q961v4Dtzn5Zw priority: 102 providerName: American Society for Microbiology – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlpdBLSdKm3TYpLi05xalXT-tQwuZFKKSXZiE3IVlSspC1m33A7r_vjB_bbEhuBV8kjbE0o5FmLM03hHwDj8sHQUOqwJ5PuaQ2da6vU5vnEfwNoYPFXwOXv-TFkP-8Ftf_IIVaBk6fdO0wn9Rwcne4uF8egcL_aAJg8u9jN6oOM4YnkhRW45ewKSnU0cvW0q8XZYaTN-tQNh-_BQuynY7p2uZUY_g_ZXg-vj_5YEM63yRvWksyGTSi3yIvQrlNXjW5JZdvyeCsDawMSRUTWyaD-WJUJr_xwnp5k5xWYwtFeDBt0SztxBR8ctwAONt3ZHh-dnVykbb5ElILajhLc6mizp2KYOIUfW-1jLLQXvss80w6YZVSMQQoC9fPC6hkPLOuH6V3jvuC7ZCNsirDB5Lg9ROvhFPUc8690pi7jwlLLXjiXqge-Yr8Mp28TO1L0NwgV03NVUNpjxx07DRFCzmOmS_uniPfX5H_abA2niM8RtmsiBAiu66oJjem1Tg8p4uFFdwz67gCx4kVMUrtnGIKBg9D-NJJ1oBK4TmJLUM1nxqqJIbjci565H0j6dWnmJTotUGLWpsDa31ZbylHtzVst0ZgJJl9_B-d_0ReY977JrZ-l2zMJvOwB9bRzH2u5_1fKpEM6g priority: 102 providerName: Scholars Portal |
Title | Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36602305 https://journals.asm.org/doi/10.1128/mbio.03363-22 https://www.proquest.com/docview/2761181445 https://pubmed.ncbi.nlm.nih.gov/PMC9973260 https://doaj.org/article/130fca54d3ab475593cff69bb7378c07 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA-yIvgifrt-HBXFJ-O1-Wwee3rnoZw-6MK-haRJdMFtxd0F_e-dabrLrnj4IpRAkoGGmUky0878hpDn4HGFKFmkGux5KhRz1PvKUFfXCfwNaaLDTwMXH9T5TLyby_leqS-MCcvwwJlxx3DGptZJEbjzQoP9y9uUlPFec123OY8c7rw9Z2o4gznqarkF1WT18dIv-lcwrDjFQrkTt1qyg7togOz_m535Z7jk3v1zdpPcGA3HoskLvkWuxO42uZZLSf66Q5rTMY8yFn0qXFc0m5-LrviE8endl-JNv3TQhQerFK3pVioxFCcZr9ndJbOz08-vz-lYHoE62HVrWiudTO11AoumrYIzKqnWBBPKMnDlpdNapxihL30FrAqci9L5KqngvQgtv0cmXd_FB6TAaJOgpdcsCCGCNliqj0vHHDjeQeopeYb8sqN-r-zgOrDaIlftwFXL2JS83LLTtiPCOBa6-HYZ-Ysd-fcMrXEZ4QnKZkeEiNjDAOiJHfXE_ktPpuTpVrIWdhD-FnFd7Dcry7TC7Fsh5JTcz5LevYorhU4azOgDHThYy-FMt_g6oHQbxEFS5cP_sfhH5DqWuc-p9I_JZP1jE5-AMbT2R-Rq08w-vj8a9B_at_MK2gtR_wYFTwkZ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtQw0KpaIbhU0ALd8mgqECfSZv2MjylttdAHB7pSb5Yd22VRN0HsrgR_z0weK7ZqJaRcbE-UeB72jMczQ8h7sLh8EDSkCvT5lEtqU-eGOrV5HsHeEDpYPBq4uJSjMf9yLa7XiOxjYX5gXd7b2YGdTRs_Pgo2HkR39Qjzw6mb1AcZQ_cjhaV3A_2GwNkbRTH-erY8XQEA4NWsT6p59z1Yf-EDdGUvalL236dn3r0u-c_-c_qUbHaKY1K0lH5G1kK1RR61pST_bJPipIujDEkdE1slxeL3pEq-4f306iY5rqcWmvBglaJ52lMl-OSozddsn5Px6cnVp1HalUdILUjdPM2lijp3KoJGUw691TLKUnvts8wz6YRVSsUQoC3cMC-hk_HMumGU3jnuS_aCrFd1FXZIgrdNvBJOUc8590pjqT4mLLVgeHuhBuQd4st0_D0zjelAc4NYNQ1WDaUD8rFHpym7DONY6OL2IfAPS_CfbWqNhwCPkDZLIMyI3XQAg5hOwNAtF0sruGfWcQV2EitjlNo5xRRMHqaw31PWgAShW8RWoV7MDFUSo285FwPysqX08lNMSjTSYESt8MDKv6yOVJPvTZZujXmQZLb7X6jbI49HVxfn5vzz5dkr8gRr2rdx86_J-vzXIrwBzWfu3nZs_hdjLf3K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3ZbtQw0KpaFfGCaAt0uZoKxBNpsz7jx_RYFQoFCVbqm2XHdlmJTSp2V6J_35kcK7aiUqW8OJ4cnsOe8XhmCHkPFpcPgoZUgT6fcklt6txQpzbPI9gbQgeLWwNfL-TZmH--FJdrRPaxMB0GZwd2Nm0c-SjZ1z529Qjzw6mb1AcZQ_cjhal3Ax1VwN8bRTH-dr7cXQEA4NWsT6p59zmYf-H9dGUtalL2_0_PvHtc8p_1Z_SUPOkUx6RoKb1F1kK1TTbbUpI3O6Q47eIoQ1LHxFZJsfg7qZIfeD69ukpO6qmFJlxYpWie9lQJPjlq8zXbZ2Q8Ov15fJZ25RFSC1I3T3Opos6diqDRlENvtYyy1F77LPNMOmGVUjEEaAs3zEu4yXhm3TBK7xz3JXtO1qu6CrskwdMmXgmnqOece6WxVB8TllowvL1QA_IO8WV66pjGdKC5QayaBquG0gH52KPTlF2GcSx08fs-8A9L8Os2tcZ9gEdImyUQZsRubgB_mE7A0C0XSyu4Z9ZxBXYSK2OU2jnFFAwehrDfU9aABKFbxFahXswMVRKjbzkXA_KipfTyU0xKNNKgR63wwMq_rPZUk19Nlm6NeZBk9vJBqNsjj76fjMyXTxfnr8hjLGnfhs2_JuvzP4vwBhSfuXvbcfktSYD9Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emergence+of+an+Auxin+Sensing+Domain+in+Plant-Associated+Bacteria&rft.jtitle=mBio&rft.au=Jos%C3%A9+A.+Gavira&rft.au=Miriam+Rico-Jim%C3%A9nez&rft.au=%C3%81lvaro+Ortega&rft.au=Natalia+V.+Petukhova&rft.date=2023-02-28&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1128%2Fmbio.03363-22&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_130fca54d3ab475593cff69bb7378c07 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |