Modelling the Gastrointestinal Carriage of Klebsiella pneumoniae Infections
Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the...
Saved in:
Published in | mBio Vol. 14; no. 1; p. e0312122 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
28.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Klebsiella pneumoniae
is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic.
Klebsiella
colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing
Klebsiella
infections.
Klebsiella pneumoniae
is a leading cause of nosocomial and community acquired infections, making
K. pneumoniae
the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection.
K. pneumoniae
colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of
K. pneumoniae
colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of
K. pneumoniae
without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic
K. pneumoniae
strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of
K. pneumoniae
and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract.
IMPORTANCE
Klebsiella pneumoniae
is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic.
Klebsiella
colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing
Klebsiella
infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of
K. pneumoniae
gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate
Klebsiella
asymptomatic colonization. |
---|---|
AbstractList | ABSTRACT Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization. Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization. Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization.Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization. Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization. Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second largest number of deaths attributed to any antibiotic resistant infection. K. pneumoniae colonizes the nasopharynx and the gastrointestinal tract in an asymptomatic manner without dissemination to other tissues. Importantly, gastrointestinal colonization is a requisite for infection. Our understanding of K. pneumoniae colonization is still based on interrogating mouse models in which animals are pretreated with antibiotics to disturb the colonization resistance imposed by the gut microbiome. In these models, infections disseminate to other tissues. Here, we report a murine model to allow for the study of the gastrointestinal colonization of K. pneumoniae without tissue dissemination. Hypervirulent and antibiotic resistant strains stably colonize the gastrointestinal tract of in an inbred mouse population without antibiotic treatment. The small intestine is the primary site of colonization and is followed by a transition to the colon over time, without dissemination to other tissues. Our model recapitulates the disease dynamics of the metastatic K. pneumoniae strains that are able to disseminate from the gastrointestinal tract to other sterile sites. Colonization is associated with mild to moderate histopathology, no significant inflammation, and no effect on the richness of the microbiome. Our model sums up the clinical scenario in which antibiotic treatment disturbs the colonization of K. pneumoniae and results in dissemination to other tissues. Finally, we establish that the capsule polysaccharide is necessary for the colonization of the large intestine, whereas the type VI secretion system contributes to colonization across the gastrointestinal tract. IMPORTANCE Klebsiella pneumoniae is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic. Klebsiella colonizes the nasopharynx and the gut of healthy subjects in an asymptomatic manner, making gut colonization a requisite for infection. This makes it essential to understand the gastrointestinal carriage in preventing Klebsiella infections. Current research models rely on the perturbation of the gut microbiome by antibiotics, resulting in an invasive infection. Here, we report a new model of K. pneumoniae gut colonization that recapitulates key features of the asymptomatic human gastrointestinal tract colonization. In our model, there is no need to disturb the microbiota to achieve stable colonization, and there is no dissemination to other tissues. Our model sums up the clinical scenario in which antibiotic treatment triggers invasive infection. We envision that our model will be an excellent platform upon which to investigate factors enhancing colonization and invasive infections and to test therapeutics to eliminate Klebsiella asymptomatic colonization. |
Author | Dumigan, Amy Hancock, Steven J. McMullan, Ronan Sa-Pessoa, Joana Campbell, Eric L. Bengoechea, Jose A. Calderon-Gonzalez, Ricardo Lee, Alix Lopez-Campos, Guillermo |
Author_xml | – sequence: 1 givenname: Ricardo surname: Calderon-Gonzalez fullname: Calderon-Gonzalez, Ricardo organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 2 givenname: Alix surname: Lee fullname: Lee, Alix organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 3 givenname: Guillermo surname: Lopez-Campos fullname: Lopez-Campos, Guillermo organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 4 givenname: Steven J. surname: Hancock fullname: Hancock, Steven J. organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 5 givenname: Joana surname: Sa-Pessoa fullname: Sa-Pessoa, Joana organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 6 givenname: Amy surname: Dumigan fullname: Dumigan, Amy organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 7 givenname: Ronan surname: McMullan fullname: McMullan, Ronan organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 8 givenname: Eric L. surname: Campbell fullname: Campbell, Eric L. organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom – sequence: 9 givenname: Jose A. orcidid: 0000-0002-9677-8751 surname: Bengoechea fullname: Bengoechea, Jose A. organization: Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36598189$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFDEYh4NU7Ic9epU5ijA1HzOZ5CLIYuvSihc9h3eSd7ZZZpI1mSn435vtttKK5pKQPHl4-f1OyVGIAQl5w-gFY1x9mHofL6hgnNWcvyAnnLW07lrGjp6cj8l5zltalhBMCfqKHAvZasWUPiHXX6PDcfRhU823WF1BnlP0YcY8-wBjtYKUPGywikN1PWKffaGh2gVcphg8YLUOA9rZx5Bfk5cDjBnPH_Yz8uPy8_fVl_rm29V69emmhkapuRZi0JyDZlY4S3njWiGx51KixV61SgI4TjVvwVmnh77tG0pbNVghO4l6EGdkffC6CFuzS36C9MtE8Ob-IqaNgTR7O6JRrmsQJSjgvBlQ6XawrqSgO47WKVlcHw-u3dJP6CyGOcH4TPr8Jfhbs4l3RheFVl0RvHsQpPhzKbGZyWe7DylgXLLhnaSK6bajBX1_QCFP3GzjkkrC2TBq9mWafZnmvkzDeYHfPh3sz0SP1RVAHACbYs4JB2P9DPsiypx-_K-2_uvXo_jf_G_vZr3y |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111720 crossref_primary_10_1099_jmm_0_001862 crossref_primary_10_1002_cbdv_202402053 crossref_primary_10_1080_19490976_2024_2340486 crossref_primary_10_1016_j_microb_2025_100274 crossref_primary_10_1186_s12941_024_00730_2 crossref_primary_10_1016_j_ijantimicag_2024_107275 crossref_primary_10_1016_j_tim_2025_01_003 crossref_primary_10_1021_acsinfecdis_4c00007 crossref_primary_10_3389_fmicb_2024_1367422 crossref_primary_10_1128_jb_00357_23 crossref_primary_10_1371_journal_ppat_1011900 crossref_primary_10_1016_j_cmicom_2024_100012 crossref_primary_10_1002_mlf2_70003 crossref_primary_10_1016_j_resmic_2024_104257 crossref_primary_10_1080_19475705_2024_2417688 crossref_primary_10_1007_s10096_024_04859_y crossref_primary_10_1128_mbio_02128_23 crossref_primary_10_1128_mbio_02884_24 crossref_primary_10_5694_mja2_52541 crossref_primary_10_3390_nu16234071 crossref_primary_10_1128_iai_00482_23 crossref_primary_10_1016_j_micpath_2025_107510 crossref_primary_10_1038_s41467_025_56309_8 crossref_primary_10_1038_s41575_024_00997_y crossref_primary_10_1093_jambio_lxae079 |
Cites_doi | 10.1016/j.chom.2017.05.004 10.1128/MRA.01441-20 10.1038/emboj.2008.269 10.1371/journal.pone.0061217 10.1111/mmi.14447 10.1073/pnas.120163297 10.1038/s41591-020-0825-4 10.1016/S1473-3099(17)30628-X 10.1016/j.resmic.2004.09.007 10.1038/nrmicro3552 10.1038/nrmicro818 10.1093/femsre/fuy043 10.1016/S0140-6736(21)02724-0 10.1128/JB.187.8.2870-2880.2005 10.1016/j.jinf.2015.07.010 10.1128/AEM.02711-19 10.1128/IAI.72.12.7107-7114.2004 10.1073/pnas.1321364111 10.1038/nmeth.3869 10.1093/jac/dkz028 10.1210/en.2019-00073 10.1128/AAC.00715-09 10.1128/IAI.71.5.2839-2858.2003 10.1128/IAI.00071-20 10.1038/s41467-021-26041-0 10.1016/j.chom.2022.10.002 10.1128/IAI.67.11.6152-6156.1999 10.1136/gut.53.1.62 10.1016/j.tim.2009.08.008 10.1038/s41564-020-0775-0 10.1002/emmm.201201773 10.1016/j.cell.2022.07.003 10.1128/CMR.00001-19 10.1038/s41467-018-05114-7 10.1126/science.1232467 10.1371/journal.ppat.1004405 10.1128/IAI.73.6.3219-3227.2005 10.1099/mgen.0.000196 10.1073/pnas.1501049112 10.1053/j.gastro.2015.07.003 10.1073/pnas.1508820112 10.1080/19490976.2022.2118500 10.1086/422002 10.1186/1741-7007-12-41 10.1128/microbiolspec.PSIB-0031-2019 10.1099/mic.0.2008/022301-0 10.1128/iai.57.2.546-552.1989 10.1016/S1473-3099(17)30489-9 10.1073/pnas.1608858113 10.1371/journal.ppat.1007969 10.7717/peerj.5146 10.1080/19490976.2021.1939599 10.15252/emmm.201607336 10.1128/mSphere.00261-16 10.3390/microorganisms9061282 10.1038/s41579-019-0252-z 10.1128/IAI.05226-11 10.1093/cid/cix270 10.2144/99265bm05 10.3748/wjg.v26.i21.2702 10.1128/jcm.20.5.936-941.1984 10.1128/AAC.00657-08 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Calderon-Gonzalez et al. Copyright © 2023 Calderon-Gonzalez et al. 2023 Calderon-Gonzalez et al. |
Copyright_xml | – notice: Copyright © 2023 Calderon-Gonzalez et al. – notice: Copyright © 2023 Calderon-Gonzalez et al. 2023 Calderon-Gonzalez et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.03121-22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Buchrieser, Carmen |
Editor_xml | – sequence: 1 givenname: Carmen surname: Buchrieser fullname: Buchrieser, Carmen |
ExternalDocumentID | oai_doaj_org_article_8d74ee6a8a224fe895fcd318972ecd86 PMC9972987 03121-22 36598189 10_1128_mbio_03121_22 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BBW510682/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/V007939/1 – fundername: Medical Research Council grantid: MR/V032496/1 – fundername: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BBW510682/1 funderid: https://doi.org/10.13039/501100000268 – fundername: UKRI | Medical Research Council (MRC) grantid: MR/V032496/1 funderid: https://doi.org/10.13039/501100000265 – fundername: Trond Mohn stiftelse (Trond Mohn Foundation) grantid: TMF2019TMT03 funderid: https://doi.org/10.13039/100016190 – fundername: UKRI | Biotechnology and Biological Sciences Research Council (BBSRC) grantid: BB/V007939/1 funderid: https://doi.org/10.13039/501100000268 – fundername: ; grantid: TMF2019TMT03 – fundername: ; grantid: MR/V032496/1 – fundername: ; grantid: BB/V007939/1 – fundername: ; grantid: BBW510682/1 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF M~E NPM RHF 7X8 5PM |
ID | FETCH-LOGICAL-a488t-33f922a91c3dc024d536eb266eceb8586aad20925adcd9fb5b40058fc3676e9f3 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 00:58:38 EDT 2025 Thu Aug 21 18:38:55 EDT 2025 Thu Jul 10 18:13:26 EDT 2025 Sun Aug 11 18:20:25 EDT 2024 Wed Feb 19 02:25:08 EST 2025 Tue Jul 01 00:57:34 EDT 2025 Thu Apr 24 23:02:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | type VI secretion system capsule polysaccharide Klebsiella pneumoniae gut colonization |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-33f922a91c3dc024d536eb266eceb8586aad20925adcd9fb5b40058fc3676e9f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-9677-8751 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.03121-22 |
PMID | 36598189 |
PQID | 2760819570 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8d74ee6a8a224fe895fcd318972ecd86 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9972987 proquest_miscellaneous_2760819570 asm2_journals_10_1128_mbio_03121_22 pubmed_primary_36598189 crossref_citationtrail_10_1128_mbio_03121_22 crossref_primary_10_1128_mbio_03121_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-28 |
PublicationDateYYYYMMDD | 2023-02-28 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2023 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 Nassif, X, Fournier, JM, Arondel, J, Sansonetti, PJ (B54) 1989; 57 Donskey, CJ (B10) 2004; 39 Barthel, M, Hapfelmeier, S, Quintanilla-Martinez, L, Kremer, M, Rohde, M, Hogardt, M, Pfeffer, K, Russmann, H, Hardt, WD (B46) 2003; 71 Holt, KE, Wertheim, H, Zadoks, RN, Baker, S, Whitehouse, CA, Dance, D, Jenney, A, Connor, TR, Hsu, LY, Severin, J, Brisse, S, Cao, H, Wilksch, J, Gorrie, C, Schultz, MB, Edwards, DJ, Nguyen, KV, Nguyen, TV, Dao, TT, Mensink, M, Minh, VL, Nhu, NT, Schultsz, C, Kuntaman, K, Newton, PN, Moore, CE, Strugnell, RA, Thomson, NR (B12) 2015; 112 Lery, LM, Frangeul, L, Tomas, A, Passet, V, Almeida, AS, Bialek-Davenet, S, Barbe, V, Bengoechea, JA, Sansonetti, P, Brisse, S, Tournebize, R (B13) 2014; 12 Gu, D, Dong, N, Zheng, Z, Lin, D, Huang, M, Wang, L, Chan, EW, Shu, L, Yu, J, Zhang, R, Chen, S (B5) 2018; 18 Russo, TA, Marr, CM (B2) 2019; 32 Sands, BE (B20) 2015; 149 Gorrie, CL, Mirceta, M, Wick, RR, Edwards, DJ, Thomson, NR, Strugnell, RA, Pratt, NF, Garlick, JS, Watson, KM, Pilcher, DV, McGloughlin, SA, Spelman, DW, Jenney, AWJ, Holt, KE (B3) 2017; 65 Van Kregten, E, Westerdaal, NA, Willers, JM (B14) 1984; 20 Hancock, SJ, Phan, MD, Luo, Z, Lo, AW, Peters, KM, Nhu, NTK, Forde, BM, Whitfield, J, Yang, J, Strugnell, RA, Paterson, DL, Walsh, TR, Kobe, B, Beatson, SA, Schembri, MA (B60) 2020; 5 Winter, SE, Winter, MG, Xavier, MN, Thiennimitr, P, Poon, V, Keestra, AM, Laughlin, RC, Gomez, G, Wu, J, Lawhon, SD, Popova, IE, Parikh, SJ, Adams, LG, Tsolis, RM, Stewart, VJ, Baumler, AJ (B19) 2013; 339 Callahan, BJ, McMurdie, PJ, Rosen, MJ, Han, AW, Johnson, AJ, Holmes, SP (B55) 2016; 13 Ostaff, MJ, Stange, EF, Wehkamp, J (B33) 2013; 5 Barbier, E, Rodrigues, C, Depret, G, Passet, V, Gal, L, Piveteau, P, Brisse, S (B23) 2020; 86 Lam, MC, Wyres, KL, Duchene, S, Wick, RR, Judd, LM, Gan, YH, Hoh, CH, Archuleta, S, Molton, JS, Kalimuddin, S, Koh, TH, Passet, V, Brisse, S, Holt, KE (B18) 2018; 9 Cherrak, Y, Flaugnatti, N, Durand, E, Journet, L, Cascales, E (B28) 2019; 7 Tan, L, Strong, EJ, Woods, K, West, NP (B58) 2018; 6 Lam, MMC, Wick, RR, Wyres, KL, Gorrie, CL, Judd, LM, Jenney, AWJ, Brisse, S, Holt, KE (B17) 2018; 4 Lam, MMC, Wyres, KL, Wick, RR, Judd, LM, Fostervold, A, Holt, KE, Lohr, IH (B8) 2019; 74 Sana, TG, Flaugnatti, N, Lugo, KA, Lam, LH, Jacobson, A, Baylot, V, Durand, E, Journet, L, Cascales, E, Monack, DM (B53) 2016; 113 Edwards, JA, Tan, N, Toussaint, N, Ou, P, Mueller, C, Stanek, A, Zinsou, V, Roudnitsky, S, Sagal, M, Dresner, L, Schwartzman, A, Huan, C (B21) 2020; 26 Bengoechea, JA, Sa Pessoa, J (B49) 2019; 43 Balestrino, D, Haagensen, JA, Rich, C, Forestier, C (B62) 2005; 187 Donaldson, GP, Lee, SM, Mazmanian, SK (B32) 2016; 14 Yao, H, Qin, S, Chen, S, Shen, J, Du, XD (B6) 2018; 18 Datsenko, KA, Wanner, BL (B61) 2000; 97 Ernst, CM, Braxton, JR, Rodriguez-Osorio, CA, Zagieboylo, AP, Li, L, Pironti, A, Manson, AL, Nair, AV, Benson, M, Cummins, K, Clatworthy, AE, Earl, AM, Cosimi, LA, Hung, DT (B51) 2020; 26 Campos, MA, Vargas, MA, Regueiro, V, Llompart, CM, Alberti, S, Bengoechea, JA (B40) 2004; 72 Padilla, E, Llobet, E, Domenech-Sanchez, A, Martinez-Martinez, L, Bengoechea, JA, Alberti, S (B38) 2010; 54 Flaugnatti, N, Isaac, S, Lemos Rocha, LF, Stutzmann, S, Rendueles, O, Stoudmann, C, Vesel, N, Garcia-Garcera, M, Buffet, A, Sana, TG, Rocha, EPC, Blokesch, M (B50) 2021; 12 Llobet, E, March, C, Gimenez, P, Bengoechea, JA (B34) 2009; 53 Anderson, MC, Vonaesch, P, Saffarian, A, Marteyn, BS, Sansonetti, PJ (B52) 2017; 21 Coburn, B, Li, Y, Owen, D, Vallance, BA, Finlay, BB (B47) 2005; 73 Raffelsberger, N, Hetland, MAK, Svendsen, K, Smabrekke, L, Lohr, IH, Andreassen, LLE, Brisse, S, Holt, KE, Sundsfjord, A, Samuelsen, O, Gravningen, K (B9) 2021; 13 Kidd, TJ, Mills, G, Sa-Pessoa, J, Dumigan, A, Frank, CG, Insua, JL, Ingram, R, Hobley, L, Bengoechea, JA (B39) 2017; 9 Shin, JH, Seeley, RJ (B22) 2019; 160 Millet, YA, Alvarez, D, Ringgaard, S, von Andrian, UH, Davis, BM, Waldor, MK (B43) 2014; 10 Martin, RM, Cao, J, Brisse, S, Passet, V, Wu, W, Zhao, L, Malani, PN, Rao, K, Bachman, MA (B4) 2016; 1 Young, TM, Bray, AS, Nagpal, RK, Caudell, DL, Yadav, H, Zafar, MA (B30) 2020; 88 Qadri, F, Bhuiyan, TR, Dutta, KK, Raqib, R, Alam, MS, Alam, NH, Svennerholm, A-M, Mathan, MM (B42) 2004; 53 Budnick, JA, Bina, XR, Bina, JE (B15) 2021; 10 Mullineaux-Sanders, C, Sanchez-Garrido, J, Hopkins, EGD, Shenoy, AR, Barry, R, Frankel, G (B41) 2019; 17 McMurdie, PJ, Holmes, S (B56) 2013; 8 Lindstedt, K, Buczek, D, Pedersen, T, Hjerde, E, Raffelsberger, N, Suzuki, Y, Brisse, S, Holt, K, Samuelsen, O, Sundsfjord, A (B24) 2022; 14 Demarre, G, Guerout, AM, Matsumoto-Mashimo, C, Rowe-Magnus, DA, Marliere, P, Mazel, D (B59) 2005; 156 Alexeyev, MF (B57) 1999; 26 Llobet, E, Martinez-Moliner, V, Moranta, D, Dahlstrom, KM, Regueiro, V, Tomas, A, Cano, V, Perez-Gutierrez, C, Frank, CG, Fernandez-Carrasco, H, Insua, JL, Salminen, TA, Garmendia, J, Bengoechea, JA (B35) 2015; 112 Federici, S, Kredo-Russo, S, Valdés-Mas, R, Kviatcovsky, D, Weinstock, E, Matiuhin, Y, Silberberg, Y, Atarashi, K, Furuichi, M, Oka, A, Liu, B, Fibelman, M, Weiner, IN, Khabra, E, Cullin, N, Ben-Yishai, N, Inbar, D, Ben-David, H, Nicenboim, J, Kowalsman, N, Lieb, W, Kario, E, Cohen, T, Geffen, YF, Zelcbuch, L, Cohen, A, Rappo, U, Gahali-Sass, I, Golembo, M, Lev, V, Dori-Bachash, M, Shapiro, H, Moresi, C, Cuevas-Sierra, A, Mohapatra, G, Kern, L, Zheng, D, Nobs, SP, Suez, J, Stettner, N, Harmelin, A, Zak, N, Puttagunta, S, Bassan, M, Honda, K, Sokol, H, Bang, C, Franke, A, Schramm, C, Maharshak, N (B48) 2022; 185 Tan, YH, Chen, Y, Chu, WHW, Sham, LT, Gan, YH (B26) 2020; 113 Bonemann, G, Pietrosiuk, A, Diemand, A, Zentgraf, H, Mogk, A (B29) 2009; 28 (B1) 2022; 399 Santos, RL, Raffatellu, M, Bevins, CL, Adams, LG, Tukel, C, Tsolis, RM, Baumler, AJ (B45) 2009; 17 Yilmaz, B, Fuhrer, T, Morgenthaler, D, Krupka, N, Wang, D, Spari, D, Candinas, D, Misselwitz, B, Beldi, G, Sauer, U, Macpherson, AJ (B31) 2022 Llobet, E, Tomas, JM, Bengoechea, JA (B36) 2008; 154 Zhang, Y, Zeng, J, Liu, W, Zhao, F, Hu, Z, Zhao, C, Wang, Q, Wang, X, Chen, H, Li, H, Zhang, F, Li, S, Cao, B, Wang, H (B7) 2015; 71 Llobet, E, Campos, MA, Gimenez, P, Moranta, D, Bengoechea, JA (B37) 2011; 79 Favre-Bonte, S, Licht, TR, Forestier, C, Krogfelt, KA (B25) 1999; 67 Deleo, FR, Chen, L, Porcella, SF, Martens, CA, Kobayashi, SD, Porter, AR, Chavda, KD, Jacobs, MR, Mathema, B, Olsen, RJ, Bonomo, RA, Musser, JM, Kreiswirth, BN (B16) 2014; 111 Kaper, JB, Nataro, JP, Mobley, HL (B44) 2004; 2 Joseph, L, Merciecca, T, Forestier, C, Balestrino, D, Miquel, S (B11) 2021; 9 Storey, D, McNally, A, Astrand, M, Sa-Pessoa Graca Santos, J, Rodriguez-Escudero, I, Elmore, B, Palacios, L, Marshall, H, Hobley, L, Molina, M, Cid, VJ, Salminen, TA, Bengoechea, JA (B27) 2020; 16 |
References_xml | – ident: e_1_3_2_53_2 doi: 10.1016/j.chom.2017.05.004 – ident: e_1_3_2_16_2 doi: 10.1128/MRA.01441-20 – ident: e_1_3_2_30_2 doi: 10.1038/emboj.2008.269 – ident: e_1_3_2_57_2 doi: 10.1371/journal.pone.0061217 – ident: e_1_3_2_27_2 doi: 10.1111/mmi.14447 – ident: e_1_3_2_62_2 doi: 10.1073/pnas.120163297 – ident: e_1_3_2_52_2 doi: 10.1038/s41591-020-0825-4 – ident: e_1_3_2_7_2 doi: 10.1016/S1473-3099(17)30628-X – ident: e_1_3_2_60_2 doi: 10.1016/j.resmic.2004.09.007 – ident: e_1_3_2_33_2 doi: 10.1038/nrmicro3552 – ident: e_1_3_2_45_2 doi: 10.1038/nrmicro818 – ident: e_1_3_2_50_2 doi: 10.1093/femsre/fuy043 – ident: e_1_3_2_2_2 doi: 10.1016/S0140-6736(21)02724-0 – ident: e_1_3_2_63_2 doi: 10.1128/JB.187.8.2870-2880.2005 – ident: e_1_3_2_8_2 doi: 10.1016/j.jinf.2015.07.010 – ident: e_1_3_2_24_2 doi: 10.1128/AEM.02711-19 – ident: e_1_3_2_41_2 doi: 10.1128/IAI.72.12.7107-7114.2004 – ident: e_1_3_2_17_2 doi: 10.1073/pnas.1321364111 – ident: e_1_3_2_56_2 doi: 10.1038/nmeth.3869 – ident: e_1_3_2_9_2 doi: 10.1093/jac/dkz028 – ident: e_1_3_2_23_2 doi: 10.1210/en.2019-00073 – ident: e_1_3_2_39_2 doi: 10.1128/AAC.00715-09 – ident: e_1_3_2_47_2 doi: 10.1128/IAI.71.5.2839-2858.2003 – ident: e_1_3_2_31_2 doi: 10.1128/IAI.00071-20 – ident: e_1_3_2_51_2 doi: 10.1038/s41467-021-26041-0 – ident: e_1_3_2_32_2 doi: 10.1016/j.chom.2022.10.002 – ident: e_1_3_2_26_2 doi: 10.1128/IAI.67.11.6152-6156.1999 – ident: e_1_3_2_43_2 doi: 10.1136/gut.53.1.62 – ident: e_1_3_2_46_2 doi: 10.1016/j.tim.2009.08.008 – ident: e_1_3_2_61_2 doi: 10.1038/s41564-020-0775-0 – ident: e_1_3_2_34_2 doi: 10.1002/emmm.201201773 – ident: e_1_3_2_49_2 doi: 10.1016/j.cell.2022.07.003 – ident: e_1_3_2_3_2 doi: 10.1128/CMR.00001-19 – ident: e_1_3_2_19_2 doi: 10.1038/s41467-018-05114-7 – ident: e_1_3_2_20_2 doi: 10.1126/science.1232467 – ident: e_1_3_2_44_2 doi: 10.1371/journal.ppat.1004405 – ident: e_1_3_2_48_2 doi: 10.1128/IAI.73.6.3219-3227.2005 – ident: e_1_3_2_18_2 doi: 10.1099/mgen.0.000196 – ident: e_1_3_2_13_2 doi: 10.1073/pnas.1501049112 – ident: e_1_3_2_21_2 doi: 10.1053/j.gastro.2015.07.003 – ident: e_1_3_2_36_2 doi: 10.1073/pnas.1508820112 – ident: e_1_3_2_25_2 doi: 10.1080/19490976.2022.2118500 – ident: e_1_3_2_11_2 doi: 10.1086/422002 – ident: e_1_3_2_14_2 doi: 10.1186/1741-7007-12-41 – ident: e_1_3_2_29_2 doi: 10.1128/microbiolspec.PSIB-0031-2019 – ident: e_1_3_2_37_2 doi: 10.1099/mic.0.2008/022301-0 – ident: e_1_3_2_55_2 doi: 10.1128/iai.57.2.546-552.1989 – ident: e_1_3_2_6_2 doi: 10.1016/S1473-3099(17)30489-9 – ident: e_1_3_2_54_2 doi: 10.1073/pnas.1608858113 – ident: e_1_3_2_28_2 doi: 10.1371/journal.ppat.1007969 – ident: e_1_3_2_59_2 doi: 10.7717/peerj.5146 – ident: e_1_3_2_10_2 doi: 10.1080/19490976.2021.1939599 – ident: e_1_3_2_40_2 doi: 10.15252/emmm.201607336 – ident: e_1_3_2_5_2 doi: 10.1128/mSphere.00261-16 – ident: e_1_3_2_12_2 doi: 10.3390/microorganisms9061282 – ident: e_1_3_2_42_2 doi: 10.1038/s41579-019-0252-z – ident: e_1_3_2_38_2 doi: 10.1128/IAI.05226-11 – ident: e_1_3_2_4_2 doi: 10.1093/cid/cix270 – ident: e_1_3_2_58_2 doi: 10.2144/99265bm05 – ident: e_1_3_2_22_2 doi: 10.3748/wjg.v26.i21.2702 – ident: e_1_3_2_15_2 doi: 10.1128/jcm.20.5.936-941.1984 – ident: e_1_3_2_35_2 doi: 10.1128/AAC.00657-08 – volume: 74 start-page: 1218 year: 2019 end-page: 1222 ident: B8 article-title: Convergence of virulence and MDR in a single plasmid vector in MDR Klebsiella pneumoniae ST15 publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkz028 – volume: 97 start-page: 6640 year: 2000 end-page: 6645 ident: B61 article-title: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.120163297 – volume: 17 start-page: 498 year: 2009 end-page: 506 ident: B45 article-title: Life in the inflamed intestine, Salmonella style publication-title: Trends Microbiol doi: 10.1016/j.tim.2009.08.008 – volume: 10 year: 2014 ident: B43 article-title: Insights into Vibrio cholerae intestinal colonization from monitoring fluorescently labeled bacteria publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004405 – volume: 399 start-page: 629 year: 2022 end-page: 655 ident: B1 article-title: Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis publication-title: Lancet doi: 10.1016/S0140-6736(21)02724-0 – volume: 149 start-page: 1275 year: 2015 end-page: 1285 ident: B20 article-title: Biomarkers of inflammation in inflammatory bowel disease publication-title: Gastroenterology doi: 10.1053/j.gastro.2015.07.003 – volume: 9 start-page: 2703 year: 2018 ident: B18 article-title: Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination publication-title: Nat Commun ;2703–018-05114–7 doi: 10.1038/s41467-018-05114-7 – volume: 26 start-page: 2702 year: 2020 end-page: 2714 ident: B21 article-title: Role of regenerating islet-derived proteins in inflammatory bowel disease publication-title: World J Gastroenterol doi: 10.3748/wjg.v26.i21.2702 – volume: 185 start-page: 2879 year: 2022 end-page: 2898 ident: B48 article-title: Targeted suppression of human IBD-associated gut microbiota commensals by phage consortia for treatment of intestinal inflammation publication-title: Cell doi: 10.1016/j.cell.2022.07.003 – volume: 54 start-page: 177 year: 2010 end-page: 183 ident: B38 article-title: Klebsiella pneumoniae AcrAB efflux pump contributes to antimicrobial resistance and virulence publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00715-09 – volume: 9 start-page: 430 year: 2017 end-page: 447 ident: B39 article-title: A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence publication-title: EMBO Mol Med doi: 10.15252/emmm.201607336 – volume: 6 year: 2018 ident: B58 article-title: Homologous alignment cloning: a rapid, flexible and highly efficient general molecular cloning method publication-title: PeerJ doi: 10.7717/peerj.5146 – volume: 7 year: 2019 ident: B28 article-title: Structure and activity of the type VI secretion system publication-title: Microbiol Spectr doi: 10.1128/microbiolspec.PSIB-0031-2019 – volume: 8 year: 2013 ident: B56 article-title: phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 28 start-page: 315 year: 2009 end-page: 325 ident: B29 article-title: Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion publication-title: EMBO J doi: 10.1038/emboj.2008.269 – volume: 26 start-page: 824 year: 1999 end-page: 826, 828 ident: B57 article-title: The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria publication-title: Biotechniques doi: 10.2144/99265bm05 – volume: 112 start-page: E6369 year: 2015 end-page: E6378 ident: B35 article-title: Deciphering tissue-induced Klebsiella pneumoniae lipid A structure publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1508820112 – volume: 71 start-page: 553 year: 2015 end-page: 560 ident: B7 article-title: Emergence of a hypervirulent carbapenem-resistant Klebsiella pneumoniae isolate from clinical infections in China publication-title: J Infect doi: 10.1016/j.jinf.2015.07.010 – volume: 160 start-page: 1506 year: 2019 end-page: 1514 ident: B22 article-title: Reg3 proteins as gut hormones? publication-title: Endocrinology doi: 10.1210/en.2019-00073 – volume: 71 start-page: 2839 year: 2003 end-page: 2858 ident: B46 article-title: Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host publication-title: Infect Immun doi: 10.1128/IAI.71.5.2839-2858.2003 – volume: 79 start-page: 3718 year: 2011 end-page: 3732 ident: B37 article-title: Analysis of the networks controlling the antimicrobial-peptide-dependent induction of Klebsiella pneumoniae virulence factors publication-title: Infect Immun doi: 10.1128/IAI.05226-11 – volume: 4 year: 2018 ident: B17 article-title: Genetic diversity, mobilisation and spread of the yersiniabactin-encoding mobile element ICEKp in Klebsiella pneumoniae populations publication-title: Microb Genom doi: 10.1099/mgen.0.000196 – volume: 13 start-page: 581 year: 2016 end-page: 583 ident: B55 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat Methods doi: 10.1038/nmeth.3869 – volume: 154 start-page: 3877 year: 2008 end-page: 3886 ident: B36 article-title: Capsule polysaccharide is a bacterial decoy for antimicrobial peptides publication-title: Microbiology (Reading) doi: 10.1099/mic.0.2008/022301-0 – volume: 20 start-page: 936 year: 1984 end-page: 941 ident: B14 article-title: New, simple medium for selective recovery of Klebsiella pneumoniae and Klebsiella oxytoca from human feces publication-title: J Clin Microbiol doi: 10.1128/jcm.20.5.936-941.1984 – volume: 88 year: 2020 ident: B30 article-title: Animal model to study Klebsiella pneumoniae gastrointestinal colonization and host-to-host transmission publication-title: Infect Immun doi: 10.1128/IAI.00071-20 – volume: 5 start-page: 1465 year: 2013 end-page: 1483 ident: B33 article-title: Antimicrobial peptides and gut microbiota in homeostasis and pathology publication-title: EMBO Mol Med doi: 10.1002/emmm.201201773 – volume: 187 start-page: 2870 year: 2005 end-page: 2880 ident: B62 article-title: Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation publication-title: J Bacteriol doi: 10.1128/JB.187.8.2870-2880.2005 – volume: 39 start-page: 219 year: 2004 end-page: 226 ident: B10 article-title: The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens publication-title: Clin Infect Dis doi: 10.1086/422002 – volume: 156 start-page: 245 year: 2005 end-page: 255 ident: B59 article-title: A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains publication-title: Res Microbiol doi: 10.1016/j.resmic.2004.09.007 – volume: 9 start-page: 1282 year: 2021 ident: B11 article-title: From Klebsiella pneumoniae colonization to dissemination: an overview of studies implementing murine models publication-title: Microorganisms doi: 10.3390/microorganisms9061282 – volume: 18 year: 2018 ident: B6 article-title: Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae publication-title: The LancetInfectious Diseases doi: 10.1016/S1473-3099(17)30628-X – volume: 5 start-page: 1340 year: 2020 end-page: 1348 ident: B60 article-title: Comprehensive analysis of IncC plasmid conjugation identifies a crucial role for the transcriptional regulator AcaB publication-title: Nat Microbiol doi: 10.1038/s41564-020-0775-0 – volume: 32 year: 2019 ident: B2 article-title: Hypervirulent Klebsiella pneumoniae publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00001-19 – volume: 2 start-page: 123 year: 2004 end-page: 140 ident: B44 article-title: Pathogenic Escherichia coli publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro818 – volume: 73 start-page: 3219 year: 2005 end-page: 3227 ident: B47 article-title: Salmonella enterica serovar Typhimurium pathogenicity island 2 is necessary for complete virulence in a mouse model of infectious enterocolitis publication-title: Infect Immun doi: 10.1128/IAI.73.6.3219-3227.2005 – volume: 67 start-page: 6152 year: 1999 end-page: 6156 ident: B25 article-title: Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice publication-title: Infect Immun doi: 10.1128/IAI.67.11.6152-6156.1999 – volume: 14 start-page: 20 year: 2016 end-page: 32 ident: B32 article-title: Gut biogeography of the bacterial microbiota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3552 – volume: 12 start-page: 5751 year: 2021 ident: B50 article-title: Human commensal gut Proteobacteria withstand type VI secretion attacks through immunity protein-independent mechanisms publication-title: Nat Commun doi: 10.1038/s41467-021-26041-0 – volume: 17 start-page: 701 year: 2019 end-page: 715 ident: B41 article-title: Citrobacter rodentium-host-microbiota interactions: immunity, bioenergetics and metabolism publication-title: Nat Rev Microbiol doi: 10.1038/s41579-019-0252-z – volume: 65 start-page: 208 year: 2017 end-page: 215 ident: B3 article-title: Gastrointestinal carriage is a major reservoir of Klebsiella pneumoniae infection in intensive care patients publication-title: Clin Infect Dis doi: 10.1093/cid/cix270 – volume: 43 start-page: 123 year: 2019 end-page: 144 ident: B49 article-title: Klebsiella pneumoniae infection biology: living to counteract host defences publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuy043 – volume: 72 start-page: 7107 year: 2004 end-page: 7114 ident: B40 article-title: Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides publication-title: Infect Immun doi: 10.1128/IAI.72.12.7107-7114.2004 – volume: 339 start-page: 708 year: 2013 end-page: 711 ident: B19 article-title: Host-derived nitrate boosts growth of E. coli in the inflamed gut publication-title: Science doi: 10.1126/science.1232467 – volume: 112 start-page: E3574 year: 2015 end-page: E3581 ident: B12 article-title: Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1501049112 – volume: 86 year: 2020 ident: B23 article-title: The ZKIR assay, a real-time PCR method for the detection of Klebsiella pneumoniae and closely related species in environmental samples publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02711-19 – volume: 1 year: 2016 ident: B4 article-title: Molecular epidemiology of colonizing and infecting isolates of Klebsiella pneumoniae publication-title: mSphere doi: 10.1128/mSphere.00261-16 – volume: 113 start-page: E5044 year: 2016 end-page: E5051 ident: B53 article-title: Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1608858113 – volume: 111 start-page: 4988 year: 2014 end-page: 4993 ident: B16 article-title: Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1321364111 – year: 2022 ident: B31 article-title: Plasticity of the adult human small intestinal stoma microbiota publication-title: Cell Host Microbe doi: 10.1016/j.chom.2022.10.002 – volume: 18 start-page: 37 year: 2018 end-page: 46 ident: B5 article-title: A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study publication-title: The LancetInfectious Diseases doi: 10.1016/S1473-3099(17)30489-9 – volume: 16 year: 2020 ident: B27 article-title: Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007969 – volume: 14 start-page: 2118500 year: 2022 ident: B24 article-title: Detection of Klebsiella pneumoniae human gut carriage: a comparison of culture, qPCR, and whole metagenomic sequencing methods publication-title: Gut Microbes doi: 10.1080/19490976.2022.2118500 – volume: 26 start-page: 705 year: 2020 end-page: 711 ident: B51 article-title: Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae publication-title: Nat Med doi: 10.1038/s41591-020-0825-4 – volume: 57 start-page: 546 year: 1989 end-page: 552 ident: B54 article-title: Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor publication-title: Infect Immun doi: 10.1128/iai.57.2.546-552.1989 – volume: 10 year: 2021 ident: B15 article-title: Complete genome sequence of Klebsiella pneumoniae strain ATCC 43816 publication-title: Microbiol Resour Announc doi: 10.1128/MRA.01441-20 – volume: 12 start-page: 41 year: 2014 ident: B13 article-title: Comparative analysis of Klebsiella pneumoniae genomes identifies a phospholipase D family protein as a novel virulence factor publication-title: BMC Biol ;41–7007-12–41 doi: 10.1186/1741-7007-12-41 – volume: 21 start-page: 769 year: 2017 end-page: 776 ident: B52 article-title: Shigella sonnei encodes a functional T6SS used for interbacterial competition and niche occupancy publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.05.004 – volume: 13 start-page: 1939599 year: 2021 ident: B9 article-title: Gastrointestinal carriage of Klebsiella pneumoniae in a general adult population: a cross-sectional study of risk factors and bacterial genomic diversity publication-title: Gut Microbes doi: 10.1080/19490976.2021.1939599 – volume: 53 start-page: 298 year: 2009 end-page: 302 ident: B34 article-title: Klebsiella pneumoniae OmpA confers resistance to antimicrobial peptides publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00657-08 – volume: 53 start-page: 62 year: 2004 end-page: 69 ident: B42 article-title: Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut publication-title: Gut doi: 10.1136/gut.53.1.62 – volume: 113 start-page: 889 year: 2020 end-page: 905 ident: B26 article-title: Cell envelope defects of different capsule-null mutants in K1 hypervirulent Klebsiella pneumoniae can affect bacterial pathogenesis publication-title: Mol Microbiol doi: 10.1111/mmi.14447 |
SSID | ssj0000331830 |
Score | 2.4673045 |
Snippet | Klebsiella pneumoniae
is one of the pathogens that is sweeping the world in the antibiotic resistance pandemic.
Klebsiella
colonizes the nasopharynx and the... Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second... Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with the second... ABSTRACT Klebsiella pneumoniae is a leading cause of nosocomial and community acquired infections, making K. pneumoniae the pathogen that is associated with... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0312122 |
SubjectTerms | Animals Anti-Bacterial Agents - pharmacology capsule polysaccharide Gastrointestinal Tract - pathology gut colonization Host-Microbial Interactions Humans Inflammation Klebsiella Infections - epidemiology Klebsiella pneumoniae Mice Research Article type VI secretion system |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVkhcUHmnPBQE4kRK1o5fx6WiLayACyv1ZvkxhpXapNrsHvj3jPMSW1Gp18Rxoplv7Jl45htC3mHAFSIwKLyzGKBYKgurYkr2r7iVJS8rmQqFv30X58vq6wW_2CN0rIUZJNge2_aqO8ifLJuqj1du1RwjCumsoLjsHnCcEY3xYD5f_lhMf1ZKlnBajoSaN5_DtRfnpjv7UEfX_z8f82aq5D97z-kheTA4jfm81_JDsgf1I3KvbyP55zFZpIZmHbd2ju5cfmbbzbpJPBBovum5E7tGmP2CvIn54hJcu0opT_l1DVsE4cpC_mVIyarbJ2R5-vnnyXkxNEkoLNrepmAsakqtnnkWPG64gTOB0bIQ4MEproS1gZaacht80NFxV6VWgtEnqjbQkT0l-3VTw3OSl2GGy7DjEQVYyRLnZcopUEorGryTGXmbJGdGHZkugKDKJPmaTr6G0ox8GAVr_MAzntpdXN42_P00_Lon2Lht4KekpWlQ4sXuLiBKzGBmRgVZAQirLLomEZTm0QeEg5YUfFAiI29GHRu0o3Q4Ymtotq2hUiTviMsyI896nU-vYoJrdGx0RuQOGna-ZfdOvfrdcXWnumSt5NGdRPeC3E_d7PuK-Zdkf7Pewiv0eTbu9QDyv1vS_0s priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ - Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELbQSkhcEOUZXgoCcSI0a8exfYSKUqjgRKXeLD_GsFKbVJvdA_--M052tYuouHBNnMQaf-OZUcbfx9gbLLhiAgFV8A4LFMdV5XSiZv9GOlXLulF0UPjb9_bkrPl6Ls93pL6oJ2ykBx4Nd6ijagBapx0GmwTayBQiAtEoDiHqTLaNMW-nmMp7sCCs1htSTa4PL_2if48I5vOKhHJnbrjke7EoU_b_Lc_8s11yJ_4c32N3p8Sx_DBO-IDdgu4-uz1KSf5-wE5J1Czza5eY0pWf3bBa9sQFgS5Mzx25JULtJ5R9Kk8vwA8LansqrzpYIxAXDsovU1tWNzxkZ8effhydVJNQQuXQ_1aVEMlw7sw8iBgw6EYpWqyY2xYCeC1161xEI3HpYogmeekbkhNMgejawCTxiM26voMnrKzjHLdiLxMasFE1vldor0Fro3kMXhXsNVnOTkgfbC4iuLZkX5vtazkv2LuNYW2YuMZJ8uLipuFvt8OvRpKNmwZ-pFXaDiJu7HwBEWMnxNh_IaZgrzZrbNGX6AeJ66BfD5arljIkqeqCPR7XfPsp0UqDyY0pmNpDw95c9u90i1-Zr5vOJhutnv6PyT9jd0jwfjxU_5zNVss1vMC0aOVfZg-4BtPvDD0 priority: 102 providerName: Directory of Open Access Journals |
Title | Modelling the Gastrointestinal Carriage of Klebsiella pneumoniae Infections |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36598189 https://journals.asm.org/doi/10.1128/mbio.03121-22 https://www.proquest.com/docview/2760819570 https://pubmed.ncbi.nlm.nih.gov/PMC9972987 https://doaj.org/article/8d74ee6a8a224fe895fcd318972ecd86 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1Lb9NAEF6hVqBeEO-aR2QE4oSLs_Z6dw8IhYq2EBUuRMpttc8SKbWLnUj03zPjRyBVc_HB3rWt2W92ZuyZbwh5CwGXCz7ziTUaAhRNeaJFwGT_nGmesjTnWCh8_r04m-Xf5mz-j1KoF2Bza2iH_aRm9fLoz-_rT6DwH7sCGPHh0iyqIwAnHScUduN9MEocmxmc955-uylnCN50YNm8OeuA3MsKJsF6YUqXbi7plp1q6fxv80FvplL-Z5tOHpD7vVMZTzoUPCR3fPmI3O3aTF4_JlNseNZyb8fg7sWnulnVFfJEgHrjvGNdAwwvfFyFeLr0pllgSlR8Vfo1gHShffy1T9kqmydkdvLl5_FZ0jdRSDTo5irJsiAp1XJsM2fBIDuWFRBNF4W33ggmCq0dTSVl2lkng2Emx1aDwSKVm5che0r2yqr0hyRO3Ri2acMCyDLnKdw3E0Z4IaSgzhoekTcoOTUsomoDDCoUilq1olaURuT9IFhlex5ybIex3DX83Wb4VUfAsWvgZ1ylzSDkzW5PVPWF6tVQCcdz7wstNLguwQvJgnWADMmpt04UEXk9rLECPcOfJ7r01bpRlBfoPTGeRuRZt-abRw3QiQjfQsPWu2xfKRe_Wi5vrFuWgj_fec8X5AA73HdV9C_J3qpe-1fgB63MiOxPJrMf01H7HQGOp_PxqEX9Xz6cCTI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqVgguFW9SoASBOJE268Sv41K1bNm2XLpSb5afsGibVJvdQ_99Z5Lsiq2oxDWx42jmG3vG9nxDyGcIuHwMRcicNRCgGCoyIyNe9i-ZETnLS4GJwucXfDQpf1yxqy3CV7kwf7Au76w5MM11e46Pho0b0X09Qnl4baf1ASCRDjIKU-8OnhtC0LUzHE5-jte7K3mBWM1XpJr3-8H8CwPQjbWopez_l595_7rkX-vPyVOy2zuO6bDT9DOyFarn5FFXSvL2BRljUbOWXzsFly79bprFvEYuCDBh7Hdk5gC1XyGtYzqeBdtM8dpTelOFJQBxakJ62l_LqpqXZHJyfHk0yvpCCZkB-1tkRREVpUYNXOEdLLqeFRwiZs6DC1YyyY3xNFeUGe-8ipbZEssJRod0bUHF4hXZruoqvCFp7gcwFVsWQYClyOG7hbQySKkk9c6KhHxCyeke6Y1ugwgqNcpXt_LVlCbk60qw2vVc41jyYvZQ8y_r5jcdycZDDb-hltaNkBu7fQBQ0b2paelFGQI30oB7EoNULDoPcFCCBuclT8jHlY412BIekJgq1MtGU8HRQ2IiT8jrTufroQrOFDg3KiFiAw0b_7L5ppr-bvm6MTdZSbH3X6L7QB6PLs_P9NnpxfgteYLV7bsM-ndkezFfhvfgAy3sfg_4O16cA70 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VqUBcEG_c8jACccKts_a-jqEQWgKFA5F6W-0TIrV2FCcH_j2zfkSkohJXe9e2Zr7ZnfHOfAPwBgMuF3zhM2s0Biia8EyLEJP9S6p5TvOSx0Lhr-fsdF5-vqAXe8CGWphegs2Rbq7ag_xo2UsX-n6E4vjKLOojRCIZZwSX3v32oGoE-5PJ_Nts-3clLyJW84FU8_o8XH_x-WRnL2op-__lZ15Pl_xr_5neg7u945hOOk3fhz1fPYBbXSvJ3w9hFpuatfzaKbp06SfdrFd15IJAE47zTvQKofbTp3VIZ5feNIuY9pQuK79BIC60T8_6tKyqeQTz6ccfJ6dZ3ygh02h_66wogiREy7EtnMVN19GCYcTMmLfeCCqY1o7kklDtrJPBUFPGdoLBRro2L0PxGEZVXfmnkOZujEuxoQEFWPIcn1sII7wQUhBnDU_gdZScGvSk2iCCCBXlq1r5KkISeDcIVtmeazy2vLi8afjb7fBlR7Jx08D3UUvbQZEbu72ASFG9qSnheOk900KjexK8kDRYh3CQnHjrBEvg1aBjhbYUD0h05etNowhn0UOiPE_gSafz7asKRiU6NzIBvoOGnW_ZvVMtfrV83bE2WQp-8F-iewm3v3-Yqi9n57NDuBOb23cF9M9gtF5t_HN0gdbmRY_3Pz67A1k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+the+Gastrointestinal+Carriage+of+Klebsiella+pneumoniae+Infections&rft.jtitle=mBio&rft.au=Calderon-Gonzalez%2C+Ricardo&rft.au=Lee%2C+Alix&rft.au=Lopez-Campos%2C+Guillermo&rft.au=Hancock%2C+Steven+J&rft.date=2023-02-28&rft.eissn=2150-7511&rft.volume=14&rft.issue=1&rft.spage=e0312122&rft_id=info:doi/10.1128%2Fmbio.03121-22&rft_id=info%3Apmid%2F36598189&rft.externalDocID=36598189 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |