Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile

Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence....

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 13; no. 1; p. e0296921
Main Authors Garrett, Elizabeth M., Mehra, Anchal, Sekulovic, Ognjen, Tamayo, Rita
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 22.02.2021
Subjects
Online AccessGet full text
ISSN2150-7511
2150-7511
DOI10.1128/mbio.02969-21

Cover

Loading…
Abstract Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “ cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
AbstractList Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “ cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system.
ABSTRACT Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “ cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the " switch," and expression of is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the switch and c-di-GMP work together to regulate expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the switch. Phenotypic characterization of these phase-locked -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes expression and associated phenotypes independently of switch orientation. We identified multiple promoters controlling transcription, including one within the ON orientation of the switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control expression.
Author Tamayo, Rita
Sekulovic, Ognjen
Mehra, Anchal
Garrett, Elizabeth M.
Author_xml – sequence: 1
  givenname: Elizabeth M.
  surname: Garrett
  fullname: Garrett, Elizabeth M.
  organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 2
  givenname: Anchal
  surname: Mehra
  fullname: Mehra, Anchal
  organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
– sequence: 3
  givenname: Ognjen
  surname: Sekulovic
  fullname: Sekulovic, Ognjen
  organization: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
– sequence: 4
  givenname: Rita
  orcidid: 0000-0002-3745-3316
  surname: Tamayo
  fullname: Tamayo, Rita
  organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35164558$$D View this record in MEDLINE/PubMed
BookMark eNp1ks9vFCEUgImpsXXt0avhaBqnAsPMwMWk2fijSRtNdz0TBphdNgyswJjs2X9ctts1rVEuj8DHx-PxXoITH7wB4DVGlxgT9n7sbbhEhLe8IvgZOCO4QVXXYHzyaH4KzlPaoDLqGrMavQCndYNb2jTsDPy6nVy2W2fgnVlNTuYQd_DWqLX0No0JzoPPMTiY1wZ-i0FPKtvgYRjgfIx3i-U7KD28yrutVdLBhV35EpZR-nREF7uUzQith3MXUo5W22C1SVDbYbDKOvMKPB-kS-b8Ic7A908fl_Mv1c3Xz9fzq5tKUsZyRUyvCeWcaURQ09OWEo6YrmvV91S2PSKGUExNQ3g_aIQx5R3HxGApNWd1X8_A9cGrg9yIbbSjjDsRpBX3CyGuhIzZKmcE1riWnZZ4UIQSRXvCS806XCycduXSGfhwcG2nfjRamVIm6Z5In-54uxar8FMwRinHTRG8fRDE8GMyKYvRJmWck96EKQnSltc1bdO1Bb04oDKNRGzCFEuRk8BI7JtA7JtA3DeBILjAbx4n9iej45cXoD4AKoaUohmEslnuv6rkad1_tdVfp47if_O_AQjq0N8
CitedBy_id crossref_primary_10_1128_jb_00188_23
crossref_primary_10_1038_s41522_023_00393_5
crossref_primary_10_1128_mbio_03397_22
crossref_primary_10_1099_mic_0_001508
crossref_primary_10_1128_spectrum_00450_24
crossref_primary_10_1371_journal_ppat_1010677
crossref_primary_10_1099_mic_0_001537
crossref_primary_10_1128_jb_00164_23
Cites_doi 10.1128/JB.00100-12
10.1128/JB.00501-13
10.1016/j.chom.2016.07.010
10.1002/j.1460-2075.1986.tb04372.x
10.1101/2021.09.29.462200
10.1016/j.anaerobe.2019.102073
10.1111/mmi.13121
10.1126/science.1159519
10.1371/journal.ppat.1002024
10.1126/science.aau5238
10.1016/j.mib.2011.01.002
10.1128/JB.00333-15
10.1128/CMR.17.3.581-611.2004
10.1128/IAI.74.2.1387-1393.2006
10.1371/journal.pgen.1006701
10.1111/mmi.14828
10.1134/S0026261713010074
10.1074/jbc.R113.472274
10.1038/nrmicro2109
10.1016/j.mib.2010.02.003
10.1146/annurev.biochem.73.011303.073908
10.1016/j.anaerobe.2015.01.002
10.1128/AEM.03656-14
10.1101/2021.10.30.466581
10.1128/mSphere.00423-18
10.1371/journal.pbio.3000379
10.1146/annurev-micro-102215-095331
10.1016/j.tig.2020.09.004
10.1080/19490976.2017.1362526
10.1128/CMR.00023-18
10.1111/j.1365-2958.2009.06812.x
10.1128/JB.00816-15
10.1371/journal.ppat.1008708
10.1371/journal.pgen.1007332
10.1128/MMBR.05028-11
10.1146/annurev.micro.112408.134054
10.1073/pnas.82.17.5724
10.1128/ecosal.2.4.2.2
10.1371/journal.pone.0083748
10.1093/femsre/fuw013
10.1128/IAI.00347-17
10.1128/JB.00331-15
10.1038/nsmb.1702
10.1371/journal.pgen.1003493
10.1002/9780471729259.mc09a02s20
10.1128/JB.00056-18
ContentType Journal Article
Copyright Copyright © 2022 Garrett et al.
Copyright © 2022 Garrett et al. 2022 Garrett et al.
Copyright_xml – notice: Copyright © 2022 Garrett et al.
– notice: Copyright © 2022 Garrett et al. 2022 Garrett et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.1128/mbio.02969-21
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList


CrossRef
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Ballard, Jimmy D
Editor_xml – sequence: 1
  givenname: Jimmy D
  surname: Ballard
  fullname: Ballard, Jimmy D
ExternalDocumentID oai_doaj_org_article_1d13a7da1fc242c4b29351713b39478d
PMC8844915
02969-21
35164558
10_1128_mbio_02969_21
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI143638
– fundername: NIAID NIH HHS
  grantid: R37 AI107029
– fundername: NIAID NIH HHS
  grantid: R01 AI107029
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI143638
  funderid: https://doi.org/10.13039/100000060
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01AI107029
  funderid: https://doi.org/10.13039/100000060
– fundername: Gouvernement du Canada | Canadian Institutes of Health Research (IRSC)
  funderid: https://doi.org/10.13039/501100000024
– fundername: ;
– fundername: ;
  grantid: R01AI143638
– fundername: ;
  grantid: R01AI107029
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
ADACO
BXI
HZ
M~E
RHF
7X8
5PM
ID FETCH-LOGICAL-a488t-2ebd24998d0205b4642908d33cbb4a6b02e2414e529bfd011497912e1aad983b3
IEDL.DBID M48
ISSN 2150-7511
IngestDate Wed Aug 27 01:32:28 EDT 2025
Thu Aug 21 14:03:41 EDT 2025
Fri Jul 11 02:04:24 EDT 2025
Tue Feb 22 21:30:05 EST 2022
Thu Aug 28 04:23:20 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jul 01 01:52:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords c-di-GMP
cyclic diguanylate
bet-hedging
biofilm
phenotypic heterogeneity
motility
population heterogeneity
phase variation
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-2ebd24998d0205b4642908d33cbb4a6b02e2414e529bfd011497912e1aad983b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0002-3745-3316
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02969-21
PMID 35164558
PQID 2629056576
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_1d13a7da1fc242c4b29351713b39478d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844915
proquest_miscellaneous_2629056576
asm2_journals_10_1128_mbio_02969_21
pubmed_primary_35164558
crossref_citationtrail_10_1128_mbio_02969_21
crossref_primary_10_1128_mbio_02969_21
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-22
PublicationDateYYYYMMDD 2021-02-22
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-22
  day: 22
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Purcell, EB, McKee, RW, Bordeleau, E, Burrus, V, Tamayo, R (B41) 2016; 198
Sekulovic, O, Mathias Garrett, E, Bourgeois, J, Tamayo, R, Shen, A, Camilli, A (B21) 2018; 14
Anjuwon-Foster, BR, Tamayo, R (B27) 2018; 9
Groisman, EA (B43) 2016; 70
Anjuwon-Foster, BR, Maldonado-Vazquez, N, Tamayo, R (B24) 2018; 200
Emerson, JE, Reynolds, CB, Fagan, RP, Shaw, HA, Goulding, D, Fairweather, NF (B28) 2009; 74
Edwards, AN, Pascual, RA, Childress, KO, Nawrocki, KL, Woods, EC, McBride, SM (B42) 2015; 32
Magdanova, LA, Golyasnaya, NV (B2) 2013; 82
El Meouche, I, Peltier, J, Monot, M, Soutourina, O, Pestel-Caron, M, Dupuy, B, Pons, JL (B26) 2013; 8
Chou, SH, Galperin, MY (B13) 2016; 198
Ryall, B, Eydallin, G, Ferenci, T (B14) 2012; 76
Hengge, R (B9) 2009; 7
Smith, KD, Lipchock, SV, Ames, TD, Wang, J, Breaker, RR, Strobel, SA (B12) 2009; 16
Bouillaut, L, McBride, SM, Sorg, JA (B46) 2011; Unit 9A.2
van der Woude, MW (B16) 2011; 14
Sekulovic, O, Bourgeois, J, Shen, A, Camilli, A (B22) 2019; 60
Krell, T, Lacal, J, Busch, A, Silva-Jimenez, H, Guazzaroni, ME, Ramos, JL (B6) 2010; 64
Sudarsan, N, Lee, ER, Weinberg, Z, Moy, RH, Kim, JN, Link, KH, Breaker, RR (B11) 2008; 321
McKee, RW, Mangalea, MR, Purcell, EB, Borchardt, EK, Tamayo, R (B25) 2013; 195
Hengge, R, Grundling, A, Jenal, U, Ryan, R, Yildiz, F (B7) 2016; 198
Purcell, EB, McKee, RW, Courson, DS, Garrett, EM, McBride, SM, Cheney, RE, Tamayo, R (B10) 2017; 85
Jiang, X, Hall, AB, Arthur, TD, Plichta, DR, Covington, CT, Poyet, M, Crothers, J, Moses, PL, Tolonen, AC, Vlamakis, H, Alm, EJ, Xavier, RJ (B45) 2019; 363
Garrett, EM, Sekulovic, O, Wetzel, D, Jones, JB, Edwards, AN, Vargas-Cuebas, G, McBride, SM, Tamayo, R (B34) 2019; 17
Bourret, RB, Silversmith, RE (B5) 2010; 13
Casadesus, J, Low, DA (B3) 2013; 288
Sekulovic, O, Ospina Bedoya, M, Fivian-Hughes, AS, Fairweather, NF, Fortier, LC (B30) 2015; 98
B33
Snyder, JA, Lloyd, AL, Lockatell, CV, Johnson, DE, Mobley, HL (B37) 2006; 74
Purcell, EB, Tamayo, R (B8) 2016; 40
van der Woude, MW, Baumler, AJ (B15) 2004; 17
Abraham, JM, Freitag, CS, Clements, JR, Eisenstein, BI (B18) 1985; 82
B39
Sekulovic, O, Fortier, LC (B31) 2015; 81
Dhungel, BA, Govind, R (B32) 2021; 116
Soutourina, OA, Monot, M, Boudry, P, Saujet, L, Pichon, C, Sismeiro, O, Semenova, E, Severinov, K, Le Bouguenec, C, Coppee, JY, Dupuy, B, Martin-Verstraete, I (B35) 2013; 9
Trzilova, D, Anjuwon-Foster, BR, Rivera, DT, Tamayo, R (B44) 2020; 16
Fang, FC, Frawley, ER, Tapscott, T, Vazquez-Torres, A (B4) 2016; 20
Purcell, EB, McKee, RW, McBride, SM, Waters, CM, Tamayo, R (B40) 2012; 194
Trzilova, D, Tamayo, R (B17) 2021; 37
Blomfield, I, van der Woude, M (B20) 2007; 2
Grindley, NDF, Whiteson, KL, Rice, PA (B38) 2006; 75
Trastoy, R, Manso, T, Fernandez-Garcia, L, Blasco, L, Ambroa, A, Perez Del Molino, ML, Bou, G, Garcia-Contreras, R, Wood, TK, Tomas, M (B1) 2018; 31
Reynolds, CB, Emerson, JE, de la Riva, L, Fagan, RP, Fairweather, NF (B29) 2011; 7
Klemm, P (B19) 1986; 5
McKee, RW, Harvest, CK, Tamayo, R (B36) 2018; 3
Anjuwon-Foster, BR, Tamayo, R (B23) 2017; 13
References_xml – ident: e_1_3_2_41_2
  doi: 10.1128/JB.00100-12
– ident: e_1_3_2_26_2
  doi: 10.1128/JB.00501-13
– ident: e_1_3_2_5_2
  doi: 10.1016/j.chom.2016.07.010
– ident: e_1_3_2_20_2
  doi: 10.1002/j.1460-2075.1986.tb04372.x
– ident: e_1_3_2_40_2
  doi: 10.1101/2021.09.29.462200
– ident: e_1_3_2_23_2
  doi: 10.1016/j.anaerobe.2019.102073
– ident: e_1_3_2_31_2
  doi: 10.1111/mmi.13121
– ident: e_1_3_2_12_2
  doi: 10.1126/science.1159519
– ident: e_1_3_2_30_2
  doi: 10.1371/journal.ppat.1002024
– ident: e_1_3_2_46_2
  doi: 10.1126/science.aau5238
– ident: e_1_3_2_17_2
  doi: 10.1016/j.mib.2011.01.002
– ident: e_1_3_2_14_2
  doi: 10.1128/JB.00333-15
– ident: e_1_3_2_16_2
  doi: 10.1128/CMR.17.3.581-611.2004
– ident: e_1_3_2_38_2
  doi: 10.1128/IAI.74.2.1387-1393.2006
– ident: e_1_3_2_24_2
  doi: 10.1371/journal.pgen.1006701
– ident: e_1_3_2_33_2
  doi: 10.1111/mmi.14828
– ident: e_1_3_2_3_2
  doi: 10.1134/S0026261713010074
– ident: e_1_3_2_4_2
  doi: 10.1074/jbc.R113.472274
– ident: e_1_3_2_10_2
  doi: 10.1038/nrmicro2109
– ident: e_1_3_2_6_2
  doi: 10.1016/j.mib.2010.02.003
– ident: e_1_3_2_39_2
  doi: 10.1146/annurev.biochem.73.011303.073908
– ident: e_1_3_2_43_2
  doi: 10.1016/j.anaerobe.2015.01.002
– ident: e_1_3_2_32_2
  doi: 10.1128/AEM.03656-14
– ident: e_1_3_2_34_2
  doi: 10.1101/2021.10.30.466581
– ident: e_1_3_2_37_2
  doi: 10.1128/mSphere.00423-18
– ident: e_1_3_2_35_2
  doi: 10.1371/journal.pbio.3000379
– ident: e_1_3_2_44_2
  doi: 10.1146/annurev-micro-102215-095331
– ident: e_1_3_2_18_2
  doi: 10.1016/j.tig.2020.09.004
– ident: e_1_3_2_28_2
  doi: 10.1080/19490976.2017.1362526
– ident: e_1_3_2_2_2
  doi: 10.1128/CMR.00023-18
– ident: e_1_3_2_29_2
  doi: 10.1111/j.1365-2958.2009.06812.x
– ident: e_1_3_2_42_2
  doi: 10.1128/JB.00816-15
– ident: e_1_3_2_45_2
  doi: 10.1371/journal.ppat.1008708
– ident: e_1_3_2_22_2
  doi: 10.1371/journal.pgen.1007332
– ident: e_1_3_2_15_2
  doi: 10.1128/MMBR.05028-11
– ident: e_1_3_2_7_2
  doi: 10.1146/annurev.micro.112408.134054
– ident: e_1_3_2_19_2
  doi: 10.1073/pnas.82.17.5724
– ident: e_1_3_2_21_2
  doi: 10.1128/ecosal.2.4.2.2
– ident: e_1_3_2_27_2
  doi: 10.1371/journal.pone.0083748
– ident: e_1_3_2_9_2
  doi: 10.1093/femsre/fuw013
– ident: e_1_3_2_11_2
  doi: 10.1128/IAI.00347-17
– ident: e_1_3_2_8_2
  doi: 10.1128/JB.00331-15
– ident: e_1_3_2_13_2
  doi: 10.1038/nsmb.1702
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pgen.1003493
– ident: e_1_3_2_47_2
  doi: 10.1002/9780471729259.mc09a02s20
– ident: e_1_3_2_25_2
  doi: 10.1128/JB.00056-18
– volume: 194
  start-page: 3307
  year: 2012
  end-page: 3316
  ident: B40
  article-title: Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile
  publication-title: J Bacteriol
  doi: 10.1128/JB.00100-12
– volume: 200
  year: 2018
  ident: B24
  article-title: Characterization of flagellum and toxin phase variation in Clostridioides difficile ribotype 012 isolates
  publication-title: J Bacteriol
  doi: 10.1128/JB.00056-18
– volume: 198
  start-page: 565
  year: 2016
  end-page: 577
  ident: B41
  article-title: Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile
  publication-title: J Bacteriol
  doi: 10.1128/JB.00816-15
– volume: 14
  year: 2018
  ident: B21
  article-title: Genome-wide detection of conservative site-specific recombination in bacteria
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1007332
– volume: 288
  start-page: 13929
  year: 2013
  end-page: 13935
  ident: B3
  article-title: Programmed heterogeneity: epigenetic mechanisms in bacteria
  publication-title: J Biol Chem
  doi: 10.1074/jbc.R113.472274
– volume: 74
  start-page: 1387
  year: 2006
  end-page: 1393
  ident: B37
  article-title: Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection
  publication-title: Infect Immun
  doi: 10.1128/IAI.74.2.1387-1393.2006
– volume: 321
  start-page: 411
  year: 2008
  end-page: 413
  ident: B11
  article-title: Riboswitches in eubacteria sense the second messenger cyclic di-GMP
  publication-title: Science
  doi: 10.1126/science.1159519
– volume: 64
  start-page: 539
  year: 2010
  end-page: 559
  ident: B6
  article-title: Bacterial sensor kinases: diversity in the recognition of environmental signals
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev.micro.112408.134054
– volume: Unit 9A.2
  start-page: 1
  year: 2011
  end-page: 17
  ident: B46
  article-title: Genetic manipulation of Clostridium difficile
  publication-title: Curr Protoc Microbiol
  doi: 10.1002/9780471729259.mc09a02s20
– volume: 8
  year: 2013
  ident: B26
  article-title: Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0083748
– volume: 7
  year: 2011
  ident: B29
  article-title: The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1002024
– volume: 85
  year: 2017
  ident: B10
  article-title: A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase
  publication-title: Infect Immun
  doi: 10.1128/IAI.00347-17
– volume: 9
  year: 2013
  ident: B35
  article-title: Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003493
– volume: 20
  start-page: 144
  year: 2016
  end-page: 153
  ident: B4
  article-title: Discrimination and integration of stress signals by pathogenic bacteria
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.07.010
– volume: 9
  start-page: 76
  year: 2018
  end-page: 83
  ident: B27
  article-title: Phase variation of Clostridium difficile virulence factors
  publication-title: Gut Microbes
  doi: 10.1080/19490976.2017.1362526
– volume: 2
  year: 2007
  ident: B20
  article-title: Regulation of fimbrial expression
  publication-title: EcoSal Plus
  doi: 10.1128/ecosal.2.4.2.2
– volume: 195
  start-page: 5174
  year: 2013
  end-page: 5185
  ident: B25
  article-title: The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD
  publication-title: J Bacteriol
  doi: 10.1128/JB.00501-13
– volume: 7
  start-page: 263
  year: 2009
  end-page: 273
  ident: B9
  article-title: Principles of c-di-GMP signalling in bacteria
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro2109
– volume: 14
  start-page: 205
  year: 2011
  end-page: 211
  ident: B16
  article-title: Phase variation: how to create and coordinate population diversity
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2011.01.002
– volume: 37
  start-page: 59
  year: 2021
  end-page: 72
  ident: B17
  article-title: Site-specific recombination: how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations
  publication-title: Trends Genet
  doi: 10.1016/j.tig.2020.09.004
– volume: 116
  start-page: 1347
  year: 2021
  end-page: 1360
  ident: B32
  article-title: Phase-variable expression of pdcB, a phosphodiesterase, influences sporulation in Clostridioides difficile
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14828
– volume: 3
  year: 2018
  ident: B36
  article-title: Cyclic diguanylate regulates virulence factor genes via multiple riboswitches in Clostridium difficile
  publication-title: mSphere
  doi: 10.1128/mSphere.00423-18
– volume: 76
  start-page: 597
  year: 2012
  end-page: 625
  ident: B14
  article-title: Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition
  publication-title: Microbiol Mol Biol Rev
  doi: 10.1128/MMBR.05028-11
– volume: 81
  start-page: 1364
  year: 2015
  end-page: 1374
  ident: B31
  article-title: Global transcriptional response of Clostridium difficile carrying the CD38 prophage
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.03656-14
– volume: 70
  start-page: 103
  year: 2016
  end-page: 124
  ident: B43
  article-title: Feedback control of two-component regulatory systems
  publication-title: Annu Rev Microbiol
  doi: 10.1146/annurev-micro-102215-095331
– volume: 13
  start-page: 113
  year: 2010
  end-page: 115
  ident: B5
  article-title: Two-component signal transduction
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2010.02.003
– ident: B33
  article-title: Reyes Ruiz LM , King KA , Garrett EM , Tamayo R . 2021 . Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile . bioRxiv doi: 10.1101/2021.10.30.466581 .
– volume: 5
  start-page: 1389
  year: 1986
  end-page: 1393
  ident: B19
  article-title: Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli
  publication-title: EMBO J
  doi: 10.1002/j.1460-2075.1986.tb04372.x
– volume: 40
  start-page: 753
  year: 2016
  end-page: 773
  ident: B8
  article-title: Cyclic diguanylate signaling in Gram-positive bacteria
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuw013
– volume: 13
  year: 2017
  ident: B23
  article-title: A genetic switch controls the production of flagella and toxins in Clostridium difficile
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006701
– volume: 198
  start-page: 15
  year: 2016
  end-page: 26
  ident: B7
  article-title: Bacterial signal transduction by cyclic Di-GMP and other nucleotide second messengers
  publication-title: J Bacteriol
  doi: 10.1128/JB.00331-15
– volume: 16
  start-page: 1218
  year: 2009
  end-page: 1223
  ident: B12
  article-title: Structural basis of ligand binding by a c-di-GMP riboswitch
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1702
– volume: 98
  start-page: 329
  year: 2015
  end-page: 342
  ident: B30
  article-title: The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13121
– volume: 363
  start-page: 181
  year: 2019
  end-page: 187
  ident: B45
  article-title: Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut
  publication-title: Science
  doi: 10.1126/science.aau5238
– volume: 17
  year: 2019
  ident: B34
  article-title: Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.3000379
– ident: B39
  article-title: Trzilova D , Warren MAH , Gadda NC , Williams CL , Tamayo R . 2021 . Flagellum and toxin phase variation impacts colonization and disease development in a mouse model of Clostridioides difficile infection . bioRxiv doi: 10.1101/2021.09.29.462200 .
– volume: 31
  year: 2018
  ident: B1
  article-title: Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.00023-18
– volume: 74
  start-page: 541
  year: 2009
  end-page: 556
  ident: B28
  article-title: A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2009.06812.x
– volume: 32
  start-page: 98
  year: 2015
  end-page: 104
  ident: B42
  article-title: An alkaline phosphatase reporter for use in Clostridium difficile
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2015.01.002
– volume: 82
  start-page: 1
  year: 2013
  end-page: 10
  ident: B2
  article-title: Heterogeneity as an adaptive trait of microbial populations
  publication-title: Microbiology
  doi: 10.1134/S0026261713010074
– volume: 16
  year: 2020
  ident: B44
  article-title: Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1008708
– volume: 198
  start-page: 32
  year: 2016
  end-page: 46
  ident: B13
  article-title: Diversity of cyclic di-GMP-binding proteins and mechanisms
  publication-title: J Bacteriol
  doi: 10.1128/JB.00333-15
– volume: 17
  start-page: 581
  year: 2004
  end-page: 611
  ident: B15
  article-title: Phase and antigenic variation in bacteria
  publication-title: Clin Microbiol Rev
  doi: 10.1128/CMR.17.3.581-611.2004
– volume: 82
  start-page: 5724
  year: 1985
  end-page: 5727
  ident: B18
  article-title: An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.82.17.5724
– volume: 60
  start-page: 102073
  year: 2019
  ident: B22
  article-title: Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2019.102073
– volume: 75
  start-page: 567
  year: 2006
  end-page: 605
  ident: B38
  article-title: Mechanisms of site-specific recombination
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073908
SSID ssj0000331830
Score 2.330155
Snippet Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls...
Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase...
Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase...
ABSTRACT Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0296921
SubjectTerms Animals
Bacterial Proteins - metabolism
Bacteriology
bet-hedging
Biofilms
c-di-GMP
Clostridioides - metabolism
Clostridioides difficile - genetics
cyclic diguanylate
Cyclic GMP - metabolism
Gene Expression Regulation, Bacterial
motility
phase variation
phenotypic heterogeneity
Research Article
Second Messenger Systems
Signal Transduction - genetics
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access - NZ
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZhQ6GX0qYvt01RaekpTi1ZtqXjZkkILduWJAu5CcmSU0PWDuvNYc_545nxi25ooDdjj1_zzVjfWKMZQr7Euc1MmpkwzwxOM0YutMwyTBrPoqxIVFzgD_35z_R0Ib5fJpc7hA9rYXoNNoemWbYT-aNnc_ltacv6MOIqVSGuHd9NuBLRhOxOp4tfP8Y_K1GMdhoNBTUfngffXrg23xqH2nL9_-KYD1Ml_xp7Tp6TZz1ppNMO5Rdkx1d75EnXRnLzktzN-6xAetZ1lq9XGzr3uKa3bJYNnXXp6BS4Hv3dVXgFNGhd0NlydXZ-cUBNRafrzQ0CRs_LK7xZO4gNol1dc1pWdHZdY6cPV9al8w3F_iplDl-WV2RxcnwxOw375gqhAZ9dh9xbB6GXkg4IY2IFxCEqki4G8KwwqY24h8FdeNCxLRyGTSpTjHtmjFMytvFrMqnqyr8lNAXWBzQLgg-fCGGsTQxsFVLlhRKi4AH5jBrXA7a6DTy41IiLbnHRnAXkYABE5319cmyTcf2Y-NdR_KYrzPGY4BGiOwphPe12B1iX7t1TM8dikznDihw4Sy4ssCCwVgbvqUQmXUA-Dbahwf9wUsVUvr5tNE9Bbzh3nAbkTWcr463gEqlIEhmQbMuKtp5l-0hV_mlrfEsphGLJu_9S3XvylGOqDa605x_IZL269fvAldb2Y-8c9wpYEdM
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLaZs-nD5QaOkpbixZtqRjujSEwpaSB-QmJEtuDVk7rDeHPfePd8byLrulIZfcjD1IQt9IM2ONviHkU145aUtp00paPGbMfOqYY5g0LjNZFzqv8Yf-7Ed5eim-XxVXW6W-MCcs0gPHiTtinuVWesvqCqxJJRzYJ2iH5S7XQiqPuy_YvK1gatiDc9TVbE2qydXR3DXdl4zrUqfICzqx_Zzv2KKBsv9_fua_6ZJb9ufkGXk6Oo70OA74OXkU2hfkcSwludojf2ZjZiA9i9Xlu8WKzgLe6236eU-nMSWdgr9Hf0aWV0CEdjWdzhdn5xeH1Lb0eLm6QdDoefMLOxsM2Vo0cpvTpqXT6w6rffima3zoKdZYaSrYXV6Sy5NvF9PTdCywkFpYt8uUB-ch_NLKg9NYOAGxiM6UzwFAJ2zpMh7AwItQcO1qj6GTlprxwKz1WgECr8ik7drwhtASPD9wtSAACYUQ1rnCwlOtdFVrIWqekI8442ZcIb0Zgg-uDOJiBlwMZwk5XANiqpGjHEtlXN8l_nkjfhPJOe4S_IroboSQU3t4AZpmRk0z92laQg7WumFgDeLBim1Dd9sbXsK84flxmZDXUVc2XUETpSgKlRC5o0U7Y9n90ja_B55vpYTQrNh_iMG_JU84ZuPgZXz-jkyWi9vwHtyppfswrJy_NW0dHw
  priority: 102
  providerName: Directory of Open Access Journals
Title Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile
URI https://www.ncbi.nlm.nih.gov/pubmed/35164558
https://journals.asm.org/doi/10.1128/mbio.02969-21
https://www.proquest.com/docview/2629056576
https://pubmed.ncbi.nlm.nih.gov/PMC8844915
https://doaj.org/article/1d13a7da1fc242c4b29351713b39478d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiReEOMzMCojEE_LiB0njh8QKhVjAhXQtkp9i-zY2SK1yUg6iT7zj3OXj0KnTeKlqtpT3PrufL-zz78j5E2YGaljqf1MajxmDKxvmGFYNC4DmUcqzHFDf_otPp6JL_No_pdSqJ_A5sbUDvtJzerF4a-f6w_g8O-7CzDJu6UpqsOAq1j5eKV8F4KSRB-d9ki_XZRDNF7ccYEYF_gScMbAuHn9CbA462bJtwJVy-d_Ewi9Xkv5T3A6ekDu96iSjjsz2CN3XPmQ3O36TK4fkd_TvmyQnnSt56t6TacOL_0WzbKhk65enQIYpD86ClhQF61yOlnWJ6dnB1SXdLxaX6JG6WlxjoO1UW4Q7YjPaVHSyaLCViC2qArrGooNWIoMlp7HZHb06Wxy7PfdF3wNTr3yuTMWcjOVWECUkRGQqKggsSFo1wgdm4A7mGjhIq5MbjGvUlIx7pjWViWhCZ-QnbIq3TNCY4CFgMMgO3GRENqYSMO7PFFZroTIuUde44yng_bTNjPhSYp6SVu9pJx55GBQSJr1BObYR2Nxm_jbjfhlx9xxm-BH1O5GCAm32w-q-jzt_TdlloVaWs3yDEBNJgzAJDBnBv9TCZlYj7wabCMFB8VTF1266qpJeQzzhofLsUeedrayGQoeEYsoSjwit6xo67dsf1MWFy0JeJIIoVj0_D_GfUHucazEwYv4fJ_srOor9xKg1MqMyO54PPv-ddRuRcDr5zkbtY7zB5AbH4c
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swELeqVtP2Mu17dF-eNu2ptNgYsB-zaFW2Nt3UJlLfLBubjSqBKqQPed4_vjsg0VKt0t4QHBh8d_h3vi9CPsa5zUyamTDPDLoZIxdaZhkGjWdRViQqLnBDf3yWjqbi22VyuUPSdS7MFfblnTWHppm3fnxUbNyI7vsRyqO5LevDiKtUhZg_vod-Q5DsvcFg-v1ks7sSxSir0bqo5u374P8LA_Cttagt2f8vnHk7XPKv9ef4EXnYA0c66Dj9mOz46gm517WSXD0lv8d9ZCA977rL14sVHXvM6y2beUOHXUg6BbxHf3RVXoEjtC7ocL44v5gcUFPRwXJ1jUyjF-VPHKxdyNakXW1zWlZ0OKux24cr69L5hmKPlTKHv8szMj3-MhmOwr7BQmhAb5ch99aB-aWkA9CYWAG2iIqki4GBVpjURtzDAi88zLEtHJpOKlOMe2aMUzK28XOyW9WVf0loCsgPoBYYID4RwlibGDgqpMoLJUTBA_IBZ1z3GtLo1vjgUiNfdMsXzVlADtYM0XlfoxxbZczuIv-0Ib_uinPcRfgZubshwpra7QkQMd2rqGaOxSZzhhU54JZcWEBCILEMvlOJTLqAvF_LhgYdRMeKqXx902iewryh_zgNyItOVjZDwSNSkSQyINmWFG29y_aVqvzV1vmWUgjFkv3_mrp35P5oMj7Vp1_PTl6RBxxDbzDznr8mu8vFjX8D2Glp3_aK8gc8xRY2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTSBeEN-ETyMQT8sWO05iP5ZCNRgd07ZKe7Ps2IFIa1I13UOf-ce5y0dFJybxVqWXpL3fXfy73PmOkA9xbjOTZibMM4NpxsiFllmGReNZlBWJigt8oT89SY9m4ttlcrlD0mEvTK_B5sA08zaRj569cEU_j1Aezm1ZH0RcpSrE_eN7mKgC-94bjWY_jjdvV6IYbTUammrePA-ev3B9vrUWtS37_8Uzb5ZL_rX-TB6Q-z1xpKMO6Ydkx1ePyJ1ulOT6Mfk97SsD6Vk3Xb5erunU477espk3dNyVpFPge_S06_IKiNC6oOP58uz8Yp-aio5W6wWCRs_Ln3izdiEbRLve5rSs6PiqxmkfrqxL5xuKM1bKHJ4uT8hs8uVifBT2AxZCA367Crm3DsIvJR2QxsQKiEVUJF0MAFphUhtxDwu88KBjWzgMnVSmGPfMGKdkbOOnZLeqK_-c0BSYH1AtCEB8IoSxNjHwqZAqL5QQBQ_Ie9S4HvDVbfDBpUZcdIuL5iwg-wMgOu97lOOojKvbxD9uxBddc47bBD8huhsh7KndHgAL072LauZYbDJnWJEDb8mFBSYEFsvgfyqRSReQd4NtaPBBTKyYytfXjeYp6A3zx2lAnnW2srkVXCIVSSIDkm1Z0dZv2f6mKn-1fb6lFEKx5MV_qe4tuXv6eaK_fz05fknucay8wY33_BXZXS2v_WugTiv7pveTPwijFdI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Regulatory+Mechanisms+Control+the+Production+of+CmrRST%2C+an+Atypical+Signal+Transduction+System+in+Clostridioides+difficile&rft.jtitle=mBio&rft.au=Garrett%2C+Elizabeth+M&rft.au=Mehra%2C+Anchal&rft.au=Sekulovic%2C+Ognjen&rft.au=Tamayo%2C+Rita&rft.date=2021-02-22&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=13&rft.issue=1&rft.spage=e0296921&rft_id=info:doi/10.1128%2Fmbio.02969-21&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon