Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile
Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence....
Saved in:
Published in | mBio Vol. 13; no. 1; p. e0296921 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
22.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2150-7511 2150-7511 |
DOI | 10.1128/mbio.02969-21 |
Cover
Loading…
Abstract | Clostridioides difficile
is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in
C. difficile
, including cell and colony morphology, motility, biofilm formation, and virulence.
Clostridioides difficile
, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts
C. difficile
cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “
cmr
switch,” and expression of
cmrRST
is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the
cmr
switch and c-di-GMP work together to regulate
cmrRST
expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the
cmr
switch. Phenotypic characterization of these phase-locked
cmr
-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes
cmrRST
expression and associated phenotypes independently of
cmr
switch orientation. We identified multiple promoters controlling
cmrRST
transcription, including one within the ON orientation of the
cmr
switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs
cmrRST
expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system.
IMPORTANCE
Clostridioides difficile
is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in
C. difficile
, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of
cmrRST
expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control
cmrRST
expression. |
---|---|
AbstractList | Clostridioides difficile
, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts
C. difficile
cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “
cmr
switch,” and expression of
cmrRST
is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the
cmr
switch and c-di-GMP work together to regulate
cmrRST
expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the
cmr
switch. Phenotypic characterization of these phase-locked
cmr
-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes
cmrRST
expression and associated phenotypes independently of
cmr
switch orientation. We identified multiple promoters controlling
cmrRST
transcription, including one within the ON orientation of the
cmr
switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs
cmrRST
expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. ABSTRACT Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression. Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression. Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the “ cmr switch,” and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated “phase-locked” strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile , including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression. Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression.Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the "cmr switch," and expression of cmrRST is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the cmr switch and c-di-GMP work together to regulate cmrRST expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the cmr switch. Phenotypic characterization of these phase-locked cmr-ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes cmrRST expression and associated phenotypes independently of cmr switch orientation. We identified multiple promoters controlling cmrRST transcription, including one within the ON orientation of the cmr switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs cmrRST expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. IMPORTANCE Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of cmrRST expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control cmrRST expression. Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase variation. The signal transduction system CmrRST, which encodes two response regulators (CmrR and CmrT) and a sensor kinase (CmrS), impacts C. difficile cell and colony morphology, surface and swimming motility, biofilm formation, and virulence in an animal model. CmrRST is subject to phase variation through site-specific recombination and reversible inversion of the " switch," and expression of is also regulated by cyclic diguanylate (c-di-GMP) through a riboswitch. The goal of this study was to determine how the switch and c-di-GMP work together to regulate expression. We generated "phase-locked" strains by mutating key residues in the right inverted repeat flanking the switch. Phenotypic characterization of these phase-locked -ON and -OFF strains demonstrates that they cannot switch between rough and smooth colony morphologies, respectively, or other CmrRST-associated phenotypes. Manipulation of c-di-GMP levels in these mutants showed that c-di-GMP promotes expression and associated phenotypes independently of switch orientation. We identified multiple promoters controlling transcription, including one within the ON orientation of the switch and another that is positively autoregulated by CmrR. Overall, this work reveals a complex regulatory network that governs expression and a unique intersection of phase variation and c-di-GMP signaling. These findings suggest that multiple environmental signals impact the production of this signaling transduction system. Clostridioides difficile is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls numerous physiological traits and processes in C. difficile, including cell and colony morphology, motility, biofilm formation, and virulence. Here, we define the complex, multilevel regulation of expression, including stochastic control through phase variation, modulation by the second messenger c-di-GMP, and positive autoregulation by CmrR. The results of this study suggest that multiple, distinct environmental stimuli and selective pressures must be integrated to appropriately control expression. |
Author | Tamayo, Rita Sekulovic, Ognjen Mehra, Anchal Garrett, Elizabeth M. |
Author_xml | – sequence: 1 givenname: Elizabeth M. surname: Garrett fullname: Garrett, Elizabeth M. organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 2 givenname: Anchal surname: Mehra fullname: Mehra, Anchal organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA – sequence: 3 givenname: Ognjen surname: Sekulovic fullname: Sekulovic, Ognjen organization: Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA – sequence: 4 givenname: Rita orcidid: 0000-0002-3745-3316 surname: Tamayo fullname: Tamayo, Rita organization: Department of Microbiology and Immunology, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35164558$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ks9vFCEUgImpsXXt0avhaBqnAsPMwMWk2fijSRtNdz0TBphdNgyswJjs2X9ctts1rVEuj8DHx-PxXoITH7wB4DVGlxgT9n7sbbhEhLe8IvgZOCO4QVXXYHzyaH4KzlPaoDLqGrMavQCndYNb2jTsDPy6nVy2W2fgnVlNTuYQd_DWqLX0No0JzoPPMTiY1wZ-i0FPKtvgYRjgfIx3i-U7KD28yrutVdLBhV35EpZR-nREF7uUzQith3MXUo5W22C1SVDbYbDKOvMKPB-kS-b8Ic7A908fl_Mv1c3Xz9fzq5tKUsZyRUyvCeWcaURQ09OWEo6YrmvV91S2PSKGUExNQ3g_aIQx5R3HxGApNWd1X8_A9cGrg9yIbbSjjDsRpBX3CyGuhIzZKmcE1riWnZZ4UIQSRXvCS806XCycduXSGfhwcG2nfjRamVIm6Z5In-54uxar8FMwRinHTRG8fRDE8GMyKYvRJmWck96EKQnSltc1bdO1Bb04oDKNRGzCFEuRk8BI7JtA7JtA3DeBILjAbx4n9iej45cXoD4AKoaUohmEslnuv6rkad1_tdVfp47if_O_AQjq0N8 |
CitedBy_id | crossref_primary_10_1128_jb_00188_23 crossref_primary_10_1038_s41522_023_00393_5 crossref_primary_10_1128_mbio_03397_22 crossref_primary_10_1099_mic_0_001508 crossref_primary_10_1128_spectrum_00450_24 crossref_primary_10_1371_journal_ppat_1010677 crossref_primary_10_1099_mic_0_001537 crossref_primary_10_1128_jb_00164_23 |
Cites_doi | 10.1128/JB.00100-12 10.1128/JB.00501-13 10.1016/j.chom.2016.07.010 10.1002/j.1460-2075.1986.tb04372.x 10.1101/2021.09.29.462200 10.1016/j.anaerobe.2019.102073 10.1111/mmi.13121 10.1126/science.1159519 10.1371/journal.ppat.1002024 10.1126/science.aau5238 10.1016/j.mib.2011.01.002 10.1128/JB.00333-15 10.1128/CMR.17.3.581-611.2004 10.1128/IAI.74.2.1387-1393.2006 10.1371/journal.pgen.1006701 10.1111/mmi.14828 10.1134/S0026261713010074 10.1074/jbc.R113.472274 10.1038/nrmicro2109 10.1016/j.mib.2010.02.003 10.1146/annurev.biochem.73.011303.073908 10.1016/j.anaerobe.2015.01.002 10.1128/AEM.03656-14 10.1101/2021.10.30.466581 10.1128/mSphere.00423-18 10.1371/journal.pbio.3000379 10.1146/annurev-micro-102215-095331 10.1016/j.tig.2020.09.004 10.1080/19490976.2017.1362526 10.1128/CMR.00023-18 10.1111/j.1365-2958.2009.06812.x 10.1128/JB.00816-15 10.1371/journal.ppat.1008708 10.1371/journal.pgen.1007332 10.1128/MMBR.05028-11 10.1146/annurev.micro.112408.134054 10.1073/pnas.82.17.5724 10.1128/ecosal.2.4.2.2 10.1371/journal.pone.0083748 10.1093/femsre/fuw013 10.1128/IAI.00347-17 10.1128/JB.00331-15 10.1038/nsmb.1702 10.1371/journal.pgen.1003493 10.1002/9780471729259.mc09a02s20 10.1128/JB.00056-18 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Garrett et al. Copyright © 2022 Garrett et al. 2022 Garrett et al. |
Copyright_xml | – notice: Copyright © 2022 Garrett et al. – notice: Copyright © 2022 Garrett et al. 2022 Garrett et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1128/mbio.02969-21 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Ballard, Jimmy D |
Editor_xml | – sequence: 1 givenname: Jimmy D surname: Ballard fullname: Ballard, Jimmy D |
ExternalDocumentID | oai_doaj_org_article_1d13a7da1fc242c4b29351713b39478d PMC8844915 02969-21 35164558 10_1128_mbio_02969_21 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI143638 – fundername: NIAID NIH HHS grantid: R37 AI107029 – fundername: NIAID NIH HHS grantid: R01 AI107029 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI143638 funderid: https://doi.org/10.13039/100000060 – fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01AI107029 funderid: https://doi.org/10.13039/100000060 – fundername: Gouvernement du Canada | Canadian Institutes of Health Research (IRSC) funderid: https://doi.org/10.13039/501100000024 – fundername: ; – fundername: ; grantid: R01AI143638 – fundername: ; grantid: R01AI107029 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF CGR CUY CVF ECM EIF NPM - 0R ADACO BXI HZ M~E RHF 7X8 5PM |
ID | FETCH-LOGICAL-a488t-2ebd24998d0205b4642908d33cbb4a6b02e2414e529bfd011497912e1aad983b3 |
IEDL.DBID | M48 |
ISSN | 2150-7511 |
IngestDate | Wed Aug 27 01:32:28 EDT 2025 Thu Aug 21 14:03:41 EDT 2025 Fri Jul 11 02:04:24 EDT 2025 Tue Feb 22 21:30:05 EST 2022 Thu Aug 28 04:23:20 EDT 2025 Thu Apr 24 23:10:03 EDT 2025 Tue Jul 01 01:52:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | c-di-GMP cyclic diguanylate bet-hedging biofilm phenotypic heterogeneity motility population heterogeneity phase variation |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-2ebd24998d0205b4642908d33cbb4a6b02e2414e529bfd011497912e1aad983b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0002-3745-3316 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mbio.02969-21 |
PMID | 35164558 |
PQID | 2629056576 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1d13a7da1fc242c4b29351713b39478d pubmedcentral_primary_oai_pubmedcentral_nih_gov_8844915 proquest_miscellaneous_2629056576 asm2_journals_10_1128_mbio_02969_21 pubmed_primary_35164558 crossref_citationtrail_10_1128_mbio_02969_21 crossref_primary_10_1128_mbio_02969_21 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-22 |
PublicationDateYYYYMMDD | 2021-02-22 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Purcell, EB, McKee, RW, Bordeleau, E, Burrus, V, Tamayo, R (B41) 2016; 198 Sekulovic, O, Mathias Garrett, E, Bourgeois, J, Tamayo, R, Shen, A, Camilli, A (B21) 2018; 14 Anjuwon-Foster, BR, Tamayo, R (B27) 2018; 9 Groisman, EA (B43) 2016; 70 Anjuwon-Foster, BR, Maldonado-Vazquez, N, Tamayo, R (B24) 2018; 200 Emerson, JE, Reynolds, CB, Fagan, RP, Shaw, HA, Goulding, D, Fairweather, NF (B28) 2009; 74 Edwards, AN, Pascual, RA, Childress, KO, Nawrocki, KL, Woods, EC, McBride, SM (B42) 2015; 32 Magdanova, LA, Golyasnaya, NV (B2) 2013; 82 El Meouche, I, Peltier, J, Monot, M, Soutourina, O, Pestel-Caron, M, Dupuy, B, Pons, JL (B26) 2013; 8 Chou, SH, Galperin, MY (B13) 2016; 198 Ryall, B, Eydallin, G, Ferenci, T (B14) 2012; 76 Hengge, R (B9) 2009; 7 Smith, KD, Lipchock, SV, Ames, TD, Wang, J, Breaker, RR, Strobel, SA (B12) 2009; 16 Bouillaut, L, McBride, SM, Sorg, JA (B46) 2011; Unit 9A.2 van der Woude, MW (B16) 2011; 14 Sekulovic, O, Bourgeois, J, Shen, A, Camilli, A (B22) 2019; 60 Krell, T, Lacal, J, Busch, A, Silva-Jimenez, H, Guazzaroni, ME, Ramos, JL (B6) 2010; 64 Sudarsan, N, Lee, ER, Weinberg, Z, Moy, RH, Kim, JN, Link, KH, Breaker, RR (B11) 2008; 321 McKee, RW, Mangalea, MR, Purcell, EB, Borchardt, EK, Tamayo, R (B25) 2013; 195 Hengge, R, Grundling, A, Jenal, U, Ryan, R, Yildiz, F (B7) 2016; 198 Purcell, EB, McKee, RW, Courson, DS, Garrett, EM, McBride, SM, Cheney, RE, Tamayo, R (B10) 2017; 85 Jiang, X, Hall, AB, Arthur, TD, Plichta, DR, Covington, CT, Poyet, M, Crothers, J, Moses, PL, Tolonen, AC, Vlamakis, H, Alm, EJ, Xavier, RJ (B45) 2019; 363 Garrett, EM, Sekulovic, O, Wetzel, D, Jones, JB, Edwards, AN, Vargas-Cuebas, G, McBride, SM, Tamayo, R (B34) 2019; 17 Bourret, RB, Silversmith, RE (B5) 2010; 13 Casadesus, J, Low, DA (B3) 2013; 288 Sekulovic, O, Ospina Bedoya, M, Fivian-Hughes, AS, Fairweather, NF, Fortier, LC (B30) 2015; 98 B33 Snyder, JA, Lloyd, AL, Lockatell, CV, Johnson, DE, Mobley, HL (B37) 2006; 74 Purcell, EB, Tamayo, R (B8) 2016; 40 van der Woude, MW, Baumler, AJ (B15) 2004; 17 Abraham, JM, Freitag, CS, Clements, JR, Eisenstein, BI (B18) 1985; 82 B39 Sekulovic, O, Fortier, LC (B31) 2015; 81 Dhungel, BA, Govind, R (B32) 2021; 116 Soutourina, OA, Monot, M, Boudry, P, Saujet, L, Pichon, C, Sismeiro, O, Semenova, E, Severinov, K, Le Bouguenec, C, Coppee, JY, Dupuy, B, Martin-Verstraete, I (B35) 2013; 9 Trzilova, D, Anjuwon-Foster, BR, Rivera, DT, Tamayo, R (B44) 2020; 16 Fang, FC, Frawley, ER, Tapscott, T, Vazquez-Torres, A (B4) 2016; 20 Purcell, EB, McKee, RW, McBride, SM, Waters, CM, Tamayo, R (B40) 2012; 194 Trzilova, D, Tamayo, R (B17) 2021; 37 Blomfield, I, van der Woude, M (B20) 2007; 2 Grindley, NDF, Whiteson, KL, Rice, PA (B38) 2006; 75 Trastoy, R, Manso, T, Fernandez-Garcia, L, Blasco, L, Ambroa, A, Perez Del Molino, ML, Bou, G, Garcia-Contreras, R, Wood, TK, Tomas, M (B1) 2018; 31 Reynolds, CB, Emerson, JE, de la Riva, L, Fagan, RP, Fairweather, NF (B29) 2011; 7 Klemm, P (B19) 1986; 5 McKee, RW, Harvest, CK, Tamayo, R (B36) 2018; 3 Anjuwon-Foster, BR, Tamayo, R (B23) 2017; 13 |
References_xml | – ident: e_1_3_2_41_2 doi: 10.1128/JB.00100-12 – ident: e_1_3_2_26_2 doi: 10.1128/JB.00501-13 – ident: e_1_3_2_5_2 doi: 10.1016/j.chom.2016.07.010 – ident: e_1_3_2_20_2 doi: 10.1002/j.1460-2075.1986.tb04372.x – ident: e_1_3_2_40_2 doi: 10.1101/2021.09.29.462200 – ident: e_1_3_2_23_2 doi: 10.1016/j.anaerobe.2019.102073 – ident: e_1_3_2_31_2 doi: 10.1111/mmi.13121 – ident: e_1_3_2_12_2 doi: 10.1126/science.1159519 – ident: e_1_3_2_30_2 doi: 10.1371/journal.ppat.1002024 – ident: e_1_3_2_46_2 doi: 10.1126/science.aau5238 – ident: e_1_3_2_17_2 doi: 10.1016/j.mib.2011.01.002 – ident: e_1_3_2_14_2 doi: 10.1128/JB.00333-15 – ident: e_1_3_2_16_2 doi: 10.1128/CMR.17.3.581-611.2004 – ident: e_1_3_2_38_2 doi: 10.1128/IAI.74.2.1387-1393.2006 – ident: e_1_3_2_24_2 doi: 10.1371/journal.pgen.1006701 – ident: e_1_3_2_33_2 doi: 10.1111/mmi.14828 – ident: e_1_3_2_3_2 doi: 10.1134/S0026261713010074 – ident: e_1_3_2_4_2 doi: 10.1074/jbc.R113.472274 – ident: e_1_3_2_10_2 doi: 10.1038/nrmicro2109 – ident: e_1_3_2_6_2 doi: 10.1016/j.mib.2010.02.003 – ident: e_1_3_2_39_2 doi: 10.1146/annurev.biochem.73.011303.073908 – ident: e_1_3_2_43_2 doi: 10.1016/j.anaerobe.2015.01.002 – ident: e_1_3_2_32_2 doi: 10.1128/AEM.03656-14 – ident: e_1_3_2_34_2 doi: 10.1101/2021.10.30.466581 – ident: e_1_3_2_37_2 doi: 10.1128/mSphere.00423-18 – ident: e_1_3_2_35_2 doi: 10.1371/journal.pbio.3000379 – ident: e_1_3_2_44_2 doi: 10.1146/annurev-micro-102215-095331 – ident: e_1_3_2_18_2 doi: 10.1016/j.tig.2020.09.004 – ident: e_1_3_2_28_2 doi: 10.1080/19490976.2017.1362526 – ident: e_1_3_2_2_2 doi: 10.1128/CMR.00023-18 – ident: e_1_3_2_29_2 doi: 10.1111/j.1365-2958.2009.06812.x – ident: e_1_3_2_42_2 doi: 10.1128/JB.00816-15 – ident: e_1_3_2_45_2 doi: 10.1371/journal.ppat.1008708 – ident: e_1_3_2_22_2 doi: 10.1371/journal.pgen.1007332 – ident: e_1_3_2_15_2 doi: 10.1128/MMBR.05028-11 – ident: e_1_3_2_7_2 doi: 10.1146/annurev.micro.112408.134054 – ident: e_1_3_2_19_2 doi: 10.1073/pnas.82.17.5724 – ident: e_1_3_2_21_2 doi: 10.1128/ecosal.2.4.2.2 – ident: e_1_3_2_27_2 doi: 10.1371/journal.pone.0083748 – ident: e_1_3_2_9_2 doi: 10.1093/femsre/fuw013 – ident: e_1_3_2_11_2 doi: 10.1128/IAI.00347-17 – ident: e_1_3_2_8_2 doi: 10.1128/JB.00331-15 – ident: e_1_3_2_13_2 doi: 10.1038/nsmb.1702 – ident: e_1_3_2_36_2 doi: 10.1371/journal.pgen.1003493 – ident: e_1_3_2_47_2 doi: 10.1002/9780471729259.mc09a02s20 – ident: e_1_3_2_25_2 doi: 10.1128/JB.00056-18 – volume: 194 start-page: 3307 year: 2012 end-page: 3316 ident: B40 article-title: Cyclic diguanylate inversely regulates motility and aggregation in Clostridium difficile publication-title: J Bacteriol doi: 10.1128/JB.00100-12 – volume: 200 year: 2018 ident: B24 article-title: Characterization of flagellum and toxin phase variation in Clostridioides difficile ribotype 012 isolates publication-title: J Bacteriol doi: 10.1128/JB.00056-18 – volume: 198 start-page: 565 year: 2016 end-page: 577 ident: B41 article-title: Regulation of type IV pili contributes to surface behaviors of historical and epidemic strains of Clostridium difficile publication-title: J Bacteriol doi: 10.1128/JB.00816-15 – volume: 14 year: 2018 ident: B21 article-title: Genome-wide detection of conservative site-specific recombination in bacteria publication-title: PLoS Genet doi: 10.1371/journal.pgen.1007332 – volume: 288 start-page: 13929 year: 2013 end-page: 13935 ident: B3 article-title: Programmed heterogeneity: epigenetic mechanisms in bacteria publication-title: J Biol Chem doi: 10.1074/jbc.R113.472274 – volume: 74 start-page: 1387 year: 2006 end-page: 1393 ident: B37 article-title: Role of phase variation of type 1 fimbriae in a uropathogenic Escherichia coli cystitis isolate during urinary tract infection publication-title: Infect Immun doi: 10.1128/IAI.74.2.1387-1393.2006 – volume: 321 start-page: 411 year: 2008 end-page: 413 ident: B11 article-title: Riboswitches in eubacteria sense the second messenger cyclic di-GMP publication-title: Science doi: 10.1126/science.1159519 – volume: 64 start-page: 539 year: 2010 end-page: 559 ident: B6 article-title: Bacterial sensor kinases: diversity in the recognition of environmental signals publication-title: Annu Rev Microbiol doi: 10.1146/annurev.micro.112408.134054 – volume: Unit 9A.2 start-page: 1 year: 2011 end-page: 17 ident: B46 article-title: Genetic manipulation of Clostridium difficile publication-title: Curr Protoc Microbiol doi: 10.1002/9780471729259.mc09a02s20 – volume: 8 year: 2013 ident: B26 article-title: Characterization of the SigD regulon of C. difficile and its positive control of toxin production through the regulation of tcdR publication-title: PLoS One doi: 10.1371/journal.pone.0083748 – volume: 7 year: 2011 ident: B29 article-title: The Clostridium difficile cell wall protein CwpV is antigenically variable between strains, but exhibits conserved aggregation-promoting function publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1002024 – volume: 85 year: 2017 ident: B10 article-title: A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase publication-title: Infect Immun doi: 10.1128/IAI.00347-17 – volume: 9 year: 2013 ident: B35 article-title: Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile publication-title: PLoS Genet doi: 10.1371/journal.pgen.1003493 – volume: 20 start-page: 144 year: 2016 end-page: 153 ident: B4 article-title: Discrimination and integration of stress signals by pathogenic bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.07.010 – volume: 9 start-page: 76 year: 2018 end-page: 83 ident: B27 article-title: Phase variation of Clostridium difficile virulence factors publication-title: Gut Microbes doi: 10.1080/19490976.2017.1362526 – volume: 2 year: 2007 ident: B20 article-title: Regulation of fimbrial expression publication-title: EcoSal Plus doi: 10.1128/ecosal.2.4.2.2 – volume: 195 start-page: 5174 year: 2013 end-page: 5185 ident: B25 article-title: The second messenger cyclic di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD publication-title: J Bacteriol doi: 10.1128/JB.00501-13 – volume: 7 start-page: 263 year: 2009 end-page: 273 ident: B9 article-title: Principles of c-di-GMP signalling in bacteria publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro2109 – volume: 14 start-page: 205 year: 2011 end-page: 211 ident: B16 article-title: Phase variation: how to create and coordinate population diversity publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2011.01.002 – volume: 37 start-page: 59 year: 2021 end-page: 72 ident: B17 article-title: Site-specific recombination: how simple DNA inversions produce complex phenotypic heterogeneity in bacterial populations publication-title: Trends Genet doi: 10.1016/j.tig.2020.09.004 – volume: 116 start-page: 1347 year: 2021 end-page: 1360 ident: B32 article-title: Phase-variable expression of pdcB, a phosphodiesterase, influences sporulation in Clostridioides difficile publication-title: Mol Microbiol doi: 10.1111/mmi.14828 – volume: 3 year: 2018 ident: B36 article-title: Cyclic diguanylate regulates virulence factor genes via multiple riboswitches in Clostridium difficile publication-title: mSphere doi: 10.1128/mSphere.00423-18 – volume: 76 start-page: 597 year: 2012 end-page: 625 ident: B14 article-title: Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition publication-title: Microbiol Mol Biol Rev doi: 10.1128/MMBR.05028-11 – volume: 81 start-page: 1364 year: 2015 end-page: 1374 ident: B31 article-title: Global transcriptional response of Clostridium difficile carrying the CD38 prophage publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03656-14 – volume: 70 start-page: 103 year: 2016 end-page: 124 ident: B43 article-title: Feedback control of two-component regulatory systems publication-title: Annu Rev Microbiol doi: 10.1146/annurev-micro-102215-095331 – volume: 13 start-page: 113 year: 2010 end-page: 115 ident: B5 article-title: Two-component signal transduction publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2010.02.003 – ident: B33 article-title: Reyes Ruiz LM , King KA , Garrett EM , Tamayo R . 2021 . Coordinated modulation of multiple processes through phase variation of a c-di-GMP phosphodiesterase in Clostridioides difficile . bioRxiv doi: 10.1101/2021.10.30.466581 . – volume: 5 start-page: 1389 year: 1986 end-page: 1393 ident: B19 article-title: Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli publication-title: EMBO J doi: 10.1002/j.1460-2075.1986.tb04372.x – volume: 40 start-page: 753 year: 2016 end-page: 773 ident: B8 article-title: Cyclic diguanylate signaling in Gram-positive bacteria publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuw013 – volume: 13 year: 2017 ident: B23 article-title: A genetic switch controls the production of flagella and toxins in Clostridium difficile publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006701 – volume: 198 start-page: 15 year: 2016 end-page: 26 ident: B7 article-title: Bacterial signal transduction by cyclic Di-GMP and other nucleotide second messengers publication-title: J Bacteriol doi: 10.1128/JB.00331-15 – volume: 16 start-page: 1218 year: 2009 end-page: 1223 ident: B12 article-title: Structural basis of ligand binding by a c-di-GMP riboswitch publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1702 – volume: 98 start-page: 329 year: 2015 end-page: 342 ident: B30 article-title: The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance publication-title: Mol Microbiol doi: 10.1111/mmi.13121 – volume: 363 start-page: 181 year: 2019 end-page: 187 ident: B45 article-title: Invertible promoters mediate bacterial phase variation, antibiotic resistance, and host adaptation in the gut publication-title: Science doi: 10.1126/science.aau5238 – volume: 17 year: 2019 ident: B34 article-title: Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence publication-title: PLoS Biol doi: 10.1371/journal.pbio.3000379 – ident: B39 article-title: Trzilova D , Warren MAH , Gadda NC , Williams CL , Tamayo R . 2021 . Flagellum and toxin phase variation impacts colonization and disease development in a mouse model of Clostridioides difficile infection . bioRxiv doi: 10.1101/2021.09.29.462200 . – volume: 31 year: 2018 ident: B1 article-title: Mechanisms of bacterial tolerance and persistence in the gastrointestinal and respiratory environments publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00023-18 – volume: 74 start-page: 541 year: 2009 end-page: 556 ident: B28 article-title: A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2009.06812.x – volume: 32 start-page: 98 year: 2015 end-page: 104 ident: B42 article-title: An alkaline phosphatase reporter for use in Clostridium difficile publication-title: Anaerobe doi: 10.1016/j.anaerobe.2015.01.002 – volume: 82 start-page: 1 year: 2013 end-page: 10 ident: B2 article-title: Heterogeneity as an adaptive trait of microbial populations publication-title: Microbiology doi: 10.1134/S0026261713010074 – volume: 16 year: 2020 ident: B44 article-title: Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1008708 – volume: 198 start-page: 32 year: 2016 end-page: 46 ident: B13 article-title: Diversity of cyclic di-GMP-binding proteins and mechanisms publication-title: J Bacteriol doi: 10.1128/JB.00333-15 – volume: 17 start-page: 581 year: 2004 end-page: 611 ident: B15 article-title: Phase and antigenic variation in bacteria publication-title: Clin Microbiol Rev doi: 10.1128/CMR.17.3.581-611.2004 – volume: 82 start-page: 5724 year: 1985 end-page: 5727 ident: B18 article-title: An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.82.17.5724 – volume: 60 start-page: 102073 year: 2019 ident: B22 article-title: Expanding the repertoire of conservative site-specific recombination in Clostridioides difficile publication-title: Anaerobe doi: 10.1016/j.anaerobe.2019.102073 – volume: 75 start-page: 567 year: 2006 end-page: 605 ident: B38 article-title: Mechanisms of site-specific recombination publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073908 |
SSID | ssj0000331830 |
Score | 2.330155 |
Snippet | Clostridioides difficile
is a leading cause of hospital-acquired intestinal infections in the United States. The CmrRST signal transduction system controls... Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase... Clostridioides difficile , an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase... ABSTRACT Clostridioides difficile, an intestinal pathogen and leading cause of nosocomial infection, exhibits extensive phenotypic heterogeneity through phase... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0296921 |
SubjectTerms | Animals Bacterial Proteins - metabolism Bacteriology bet-hedging Biofilms c-di-GMP Clostridioides - metabolism Clostridioides difficile - genetics cyclic diguanylate Cyclic GMP - metabolism Gene Expression Regulation, Bacterial motility phase variation phenotypic heterogeneity Research Article Second Messenger Systems Signal Transduction - genetics |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access - NZ dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZhQ6GX0qYvt01RaekpTi1ZtqXjZkkILduWJAu5CcmSU0PWDuvNYc_545nxi25ooDdjj1_zzVjfWKMZQr7Euc1MmpkwzwxOM0YutMwyTBrPoqxIVFzgD_35z_R0Ib5fJpc7hA9rYXoNNoemWbYT-aNnc_ltacv6MOIqVSGuHd9NuBLRhOxOp4tfP8Y_K1GMdhoNBTUfngffXrg23xqH2nL9_-KYD1Ml_xp7Tp6TZz1ppNMO5Rdkx1d75EnXRnLzktzN-6xAetZ1lq9XGzr3uKa3bJYNnXXp6BS4Hv3dVXgFNGhd0NlydXZ-cUBNRafrzQ0CRs_LK7xZO4gNol1dc1pWdHZdY6cPV9al8w3F_iplDl-WV2RxcnwxOw375gqhAZ9dh9xbB6GXkg4IY2IFxCEqki4G8KwwqY24h8FdeNCxLRyGTSpTjHtmjFMytvFrMqnqyr8lNAXWBzQLgg-fCGGsTQxsFVLlhRKi4AH5jBrXA7a6DTy41IiLbnHRnAXkYABE5319cmyTcf2Y-NdR_KYrzPGY4BGiOwphPe12B1iX7t1TM8dikznDihw4Sy4ssCCwVgbvqUQmXUA-Dbahwf9wUsVUvr5tNE9Bbzh3nAbkTWcr463gEqlIEhmQbMuKtp5l-0hV_mlrfEsphGLJu_9S3XvylGOqDa605x_IZL269fvAldb2Y-8c9wpYEdM priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBLaZs-nD5QaOkpbixZtqRjujSEwpaSB-QmJEtuDVk7rDeHPfePd8byLrulIZfcjD1IQt9IM2ONviHkU145aUtp00paPGbMfOqYY5g0LjNZFzqv8Yf-7Ed5eim-XxVXW6W-MCcs0gPHiTtinuVWesvqCqxJJRzYJ2iH5S7XQiqPuy_YvK1gatiDc9TVbE2qydXR3DXdl4zrUqfICzqx_Zzv2KKBsv9_fua_6ZJb9ufkGXk6Oo70OA74OXkU2hfkcSwludojf2ZjZiA9i9Xlu8WKzgLe6236eU-nMSWdgr9Hf0aWV0CEdjWdzhdn5xeH1Lb0eLm6QdDoefMLOxsM2Vo0cpvTpqXT6w6rffima3zoKdZYaSrYXV6Sy5NvF9PTdCywkFpYt8uUB-ch_NLKg9NYOAGxiM6UzwFAJ2zpMh7AwItQcO1qj6GTlprxwKz1WgECr8ik7drwhtASPD9wtSAACYUQ1rnCwlOtdFVrIWqekI8442ZcIb0Zgg-uDOJiBlwMZwk5XANiqpGjHEtlXN8l_nkjfhPJOe4S_IroboSQU3t4AZpmRk0z92laQg7WumFgDeLBim1Dd9sbXsK84flxmZDXUVc2XUETpSgKlRC5o0U7Y9n90ja_B55vpYTQrNh_iMG_JU84ZuPgZXz-jkyWi9vwHtyppfswrJy_NW0dHw priority: 102 providerName: Directory of Open Access Journals |
Title | Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35164558 https://journals.asm.org/doi/10.1128/mbio.02969-21 https://www.proquest.com/docview/2629056576 https://pubmed.ncbi.nlm.nih.gov/PMC8844915 https://doaj.org/article/1d13a7da1fc242c4b29351713b39478d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQJiReEOMzMCojEE_LiB0njh8QKhVjAhXQtkp9i-zY2SK1yUg6iT7zj3OXj0KnTeKlqtpT3PrufL-zz78j5E2YGaljqf1MajxmDKxvmGFYNC4DmUcqzHFDf_otPp6JL_No_pdSqJ_A5sbUDvtJzerF4a-f6w_g8O-7CzDJu6UpqsOAq1j5eKV8F4KSRB-d9ki_XZRDNF7ccYEYF_gScMbAuHn9CbA462bJtwJVy-d_Ewi9Xkv5T3A6ekDu96iSjjsz2CN3XPmQ3O36TK4fkd_TvmyQnnSt56t6TacOL_0WzbKhk65enQIYpD86ClhQF61yOlnWJ6dnB1SXdLxaX6JG6WlxjoO1UW4Q7YjPaVHSyaLCViC2qArrGooNWIoMlp7HZHb06Wxy7PfdF3wNTr3yuTMWcjOVWECUkRGQqKggsSFo1wgdm4A7mGjhIq5MbjGvUlIx7pjWViWhCZ-QnbIq3TNCY4CFgMMgO3GRENqYSMO7PFFZroTIuUde44yng_bTNjPhSYp6SVu9pJx55GBQSJr1BObYR2Nxm_jbjfhlx9xxm-BH1O5GCAm32w-q-jzt_TdlloVaWs3yDEBNJgzAJDBnBv9TCZlYj7wabCMFB8VTF1266qpJeQzzhofLsUeedrayGQoeEYsoSjwit6xo67dsf1MWFy0JeJIIoVj0_D_GfUHucazEwYv4fJ_srOor9xKg1MqMyO54PPv-ddRuRcDr5zkbtY7zB5AbH4c |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db5swELeqVtP2Mu17dF-eNu2ptNgYsB-zaFW2Nt3UJlLfLBubjSqBKqQPed4_vjsg0VKt0t4QHBh8d_h3vi9CPsa5zUyamTDPDLoZIxdaZhkGjWdRViQqLnBDf3yWjqbi22VyuUPSdS7MFfblnTWHppm3fnxUbNyI7vsRyqO5LevDiKtUhZg_vod-Q5DsvcFg-v1ks7sSxSir0bqo5u374P8LA_Cttagt2f8vnHk7XPKv9ef4EXnYA0c66Dj9mOz46gm517WSXD0lv8d9ZCA977rL14sVHXvM6y2beUOHXUg6BbxHf3RVXoEjtC7ocL44v5gcUFPRwXJ1jUyjF-VPHKxdyNakXW1zWlZ0OKux24cr69L5hmKPlTKHv8szMj3-MhmOwr7BQmhAb5ch99aB-aWkA9CYWAG2iIqki4GBVpjURtzDAi88zLEtHJpOKlOMe2aMUzK28XOyW9WVf0loCsgPoBYYID4RwlibGDgqpMoLJUTBA_IBZ1z3GtLo1vjgUiNfdMsXzVlADtYM0XlfoxxbZczuIv-0Ib_uinPcRfgZubshwpra7QkQMd2rqGaOxSZzhhU54JZcWEBCILEMvlOJTLqAvF_LhgYdRMeKqXx902iewryh_zgNyItOVjZDwSNSkSQyINmWFG29y_aVqvzV1vmWUgjFkv3_mrp35P5oMj7Vp1_PTl6RBxxDbzDznr8mu8vFjX8D2Glp3_aK8gc8xRY2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELemTSBeEN-ETyMQT8sWO05iP5ZCNRgd07ZKe7Ps2IFIa1I13UOf-ce5y0dFJybxVqWXpL3fXfy73PmOkA9xbjOTZibMM4NpxsiFllmGReNZlBWJigt8oT89SY9m4ttlcrlD0mEvTK_B5sA08zaRj569cEU_j1Aezm1ZH0RcpSrE_eN7mKgC-94bjWY_jjdvV6IYbTUammrePA-ev3B9vrUWtS37_8Uzb5ZL_rX-TB6Q-z1xpKMO6Ydkx1ePyJ1ulOT6Mfk97SsD6Vk3Xb5erunU477espk3dNyVpFPge_S06_IKiNC6oOP58uz8Yp-aio5W6wWCRs_Ln3izdiEbRLve5rSs6PiqxmkfrqxL5xuKM1bKHJ4uT8hs8uVifBT2AxZCA367Crm3DsIvJR2QxsQKiEVUJF0MAFphUhtxDwu88KBjWzgMnVSmGPfMGKdkbOOnZLeqK_-c0BSYH1AtCEB8IoSxNjHwqZAqL5QQBQ_Ie9S4HvDVbfDBpUZcdIuL5iwg-wMgOu97lOOojKvbxD9uxBddc47bBD8huhsh7KndHgAL072LauZYbDJnWJEDb8mFBSYEFsvgfyqRSReQd4NtaPBBTKyYytfXjeYp6A3zx2lAnnW2srkVXCIVSSIDkm1Z0dZv2f6mKn-1fb6lFEKx5MV_qe4tuXv6eaK_fz05fknucay8wY33_BXZXS2v_WugTiv7pveTPwijFdI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiple+Regulatory+Mechanisms+Control+the+Production+of+CmrRST%2C+an+Atypical+Signal+Transduction+System+in+Clostridioides+difficile&rft.jtitle=mBio&rft.au=Garrett%2C+Elizabeth+M&rft.au=Mehra%2C+Anchal&rft.au=Sekulovic%2C+Ognjen&rft.au=Tamayo%2C+Rita&rft.date=2021-02-22&rft.issn=2150-7511&rft.eissn=2150-7511&rft.volume=13&rft.issue=1&rft.spage=e0296921&rft_id=info:doi/10.1128%2Fmbio.02969-21&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2150-7511&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2150-7511&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2150-7511&client=summon |