Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in Caulobacter crescentus

Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellu...

Full description

Saved in:
Bibliographic Details
Published inmBio Vol. 12; no. 1
Main Authors Hershey, David M., Fiebig, Aretha, Crosson, Sean
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 09.02.2021
Subjects
Online AccessGet full text
ISSN2161-2129
2150-7511
2150-7511
DOI10.1128/mBio.03266-20

Cover

Loading…
Abstract Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus . We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor ( fss ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion. IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.
AbstractList Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus . We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor ( fss ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion. IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the ( ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the genes to either the stator- or -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the developmental program to coordinate adhesion. Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus . We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor ( fss ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus. We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion. IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus
Author Crosson, Sean
Hershey, David M.
Fiebig, Aretha
Author_xml – sequence: 1
  givenname: David M.
  surname: Hershey
  fullname: Hershey, David M.
  organization: Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
– sequence: 2
  givenname: Aretha
  orcidid: 0000-0002-0612-5029
  surname: Fiebig
  fullname: Fiebig, Aretha
  organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
– sequence: 3
  givenname: Sean
  orcidid: 0000-0002-1727-322X
  surname: Crosson
  fullname: Crosson, Sean
  organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33563824$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1P3DAQxa0KVD7KsdfKx6pSwB-J41wqLdtCkZDgQM_W2HE2XiUxtR0Q_329u1CVqvhia-b5p5n3jtDe5CeL0EdKTill8mw8d_6UcCZEwcg7dMhoRYq6onRv8xa0YJQ1B-gkxjXJh3MqOXmPDjivBJesPERwMcDKDgMEfGtDmoOG5PwU8cIk9wDJ4kXb25hLOPXBz6se3z16_M3F5CaT8C2k_hGeInYTXsI8eA0m2YBNsNHYKc3xA9rvYIj25Pk-Rj8vvt8tfxTXN5dXy8V1AaWUqWCtaWUHVVc2mhrQ0MqGVoJ0VIpW10TUVEhTSm6rJi8IhNCq09qAFbYRVcOP0dWO23pYq_vgRghPyoNT24IPKwUhOTNYpUsGWhNOSWPKDG5aQ3krmOXZJClsZn3dse5nPdp2s0iA4RX0dWdyvVr5B1VLWVFSZ8DnZ0Dwv2Ybkxpd9iP7PFk_R8XyzlRKKUSWftlJIY5Mrf0cpmyTokRtIlabiNU2YsVIFn_6e7A_E70EmgV8JzDBxxhsp4xL20jznG54E1v88-sF_H_9b-Y5xOU
CitedBy_id crossref_primary_10_1128_JB_00199_21
crossref_primary_10_1016_j_mib_2021_02_004
crossref_primary_10_1371_journal_pone_0298028
crossref_primary_10_3389_fmicb_2023_1258415
crossref_primary_10_1371_journal_pgen_1010648
crossref_primary_10_1128_mbio_02125_23
crossref_primary_10_1126_sciadv_ade8971
crossref_primary_10_1038_s44318_024_00320_0
crossref_primary_10_1073_pnas_2024608118
crossref_primary_10_1128_mbio_00758_24
crossref_primary_10_1016_j_aquaculture_2023_739874
crossref_primary_10_1128_jb_00433_21
crossref_primary_10_1128_jb_00484_24
crossref_primary_10_1093_femsml_uqad014
crossref_primary_10_1128_mbio_01002_24
crossref_primary_10_1371_journal_pgen_1011048
crossref_primary_10_1007_s11274_022_03237_0
crossref_primary_10_1128_jb_00384_22
crossref_primary_10_1128_jb_00404_24
crossref_primary_10_1128_jb_00166_23
Cites_doi 10.1073/pnas.0705887104
10.1046/j.1365-2958.1998.01062.x
10.1128/MR.45.1.123-179.1981
10.1186/1471-2164-15-1039
10.1128/jb.177.21.6223-6229.1995
10.1016/0076-6879(91)04019-K
10.1128/JB.46.1.39-56.1943
10.1128/mBio.02456-14
10.1016/S0168-6445(99)00035-2
10.1111/mmi.13499
10.1101/gr.229202
10.1128/AEM.02710-12
10.1111/j.1365-2958.1996.tb02509.x
10.1073/pnas.1610723113
10.1038/s41467-020-14585-6
10.1128/mBio.00551-13
10.1128/JB.117.2.696-701.1974
10.1016/j.cell.2020.08.016
10.1128/mBio.02269-19
10.1128/JB.00741-18
10.1128/BR.28.3.231-295.1964
10.1093/nar/gki408
10.1016/0022-2836(88)90287-2
10.1128/jb.176.24.7587-7600.1994
10.1016/0092-8674(88)90197-3
10.1128/JB.180.19.5010-5019.1998
10.1016/j.chom.2018.11.008
10.1038/s41564-020-0788-8
10.1038/nmeth.1318
10.1111/j.1365-2958.2011.07909.x
10.1128/jb.186.5.1438-1447.2004
10.1111/j.1365-2958.2005.04970.x
10.1046/j.1365-2958.2003.03401.x
10.1128/JB.01418-07
10.1101/gad.502409
10.1016/0092-8674(90)90595-6
10.1128/mBio.00306-15
10.1046/j.1365-2958.1998.01061.x
10.3201/eid0809.020063
10.1128/mBio.02273-18
10.1073/pnas.1904577116
10.1007/BF00290715
10.1016/s0092-8674(00)80995-2
10.1016/s1369-5274(02)00302-8
10.1038/nprot.2015.053
10.1101/gad.289504
10.1101/gad.1601808
10.1371/journal.pgen.1008022
10.1371/journal.pgen.1008848
10.1128/jb.179.17.5355-5365.1997
10.1128/JB.00031-19
10.1073/pnas.1014395107
10.1128/MMBR.36.4.478-503.1972
10.1126/science.aaq0143
10.1371/journal.pgen.1004101
10.1111/mmi.14099
10.1128/JB.187.19.6789-6803.2005
10.1126/science.173.4000.884
10.1128/JB.187.2.771-777.2005
10.1128/JB.00305-11
10.1038/nature14473
10.1046/j.1365-2958.1999.01624.x
10.1128/mBio.00294-17
10.1371/journal.pgen.1008703
10.1073/pnas.72.8.3235
10.1128/mBio.01237-19
10.1016/j.jmb.2006.09.035
10.1128/mBio.02367-14
10.1128/JB.180.10.2729-2735.1998
10.1111/j.1365-2958.2007.06008.x
10.1146/annurev-fluid-122414-034606
10.1016/0022-2836(72)90090-3
10.1128/JB.01725-05
10.3390/biology2041242
10.1126/science.aan5706
10.1128/JB.01867-06
10.1046/j.1365-2958.1999.01358.x
10.1128/JB.00276-19
10.1038/s41579-018-0057-5
10.1126/science.aan5353
10.1016/j.mib.2016.01.010
10.1093/nar/gkm818
10.1016/j.tim.2014.05.002
10.1128/jb.172.10.6066-6076.1990
10.1128/jb.172.8.4322-4328.1990
10.1083/jcb.28.3.423
10.7554/eLife.18647
10.1016/0022-2836(85)90261-x
ContentType Journal Article
Copyright Copyright © 2021 Hershey et al.
Copyright © 2021 Hershey et al. 2021 Hershey et al.
Copyright_xml – notice: Copyright © 2021 Hershey et al.
– notice: Copyright © 2021 Hershey et al. 2021 Hershey et al.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.1128/mBio.03266-20
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2150-7511
Editor Laub, Michael T
Editor_xml – sequence: 1
  givenname: Michael T
  surname: Laub
  fullname: Laub, Michael T
ExternalDocumentID oai_doaj_org_article_b42abb03109c46719dc13d62e300086e
PMC7885107
mBio03266-20
33563824
10_1128_mBio_03266_20
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R35 GM131762
– fundername: Helen Hay Whitney Foundation (HHWF)
  grantid: NA
  funderid: https://doi.org/10.13039/100005237
– fundername: HHS | National Institutes of Health (NIH)
  grantid: R35 GM131762
  funderid: https://doi.org/10.13039/100000002
– fundername: ;
  grantid: NA
– fundername: ;
  grantid: R35 GM131762
GroupedDBID ---
0R~
53G
5VS
AAFWJ
AAGFI
AAUOK
AAYXX
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
CITATION
DIK
E3Z
EBS
FRP
GROUPED_DOAJ
GX1
H13
HYE
HZ~
KQ8
M48
O5R
O5S
O9-
OK1
P2P
PGMZT
RHI
RNS
RPM
RSF
M~E
NPM
RHF
-
0R
ADACO
BXI
HZ
7X8
5PM
ID FETCH-LOGICAL-a488t-2dcd8fa5f49b1cabad891560f186db7067168c483e59511a0015fbbcae6e96593
IEDL.DBID M48
ISSN 2161-2129
2150-7511
IngestDate Wed Aug 27 01:29:40 EDT 2025
Thu Aug 21 13:57:29 EDT 2025
Thu Jul 10 19:24:26 EDT 2025
Tue Dec 28 13:58:54 EST 2021
Wed Feb 19 02:28:16 EST 2025
Tue Jul 01 01:52:46 EDT 2025
Thu Apr 24 22:51:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords holdfast
motility
adhesion
flagellum
biofilm
Language English
License Copyright © 2021 Hershey et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a488t-2dcd8fa5f49b1cabad891560f186db7067168c483e59511a0015fbbcae6e96593
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1727-322X
0000-0002-0612-5029
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.03266-20
PMID 33563824
PQID 2488188866
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_b42abb03109c46719dc13d62e300086e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7885107
proquest_miscellaneous_2488188866
asm2_journals_10_1128_mBio_03266_20
pubmed_primary_33563824
crossref_citationtrail_10_1128_mBio_03266_20
crossref_primary_10_1128_mBio_03266_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210209
PublicationDateYYYYMMDD 2021-02-09
PublicationDate_xml – month: 2
  year: 2021
  text: 20210209
  day: 9
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle mBio
PublicationTitleAbbrev mBio
PublicationTitleAlternate mBio
PublicationYear 2021
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_64_2
e_1_3_2_87_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_62_2
e_1_3_2_85_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_68_2
e_1_3_2_47_2
e_1_3_2_66_2
e_1_3_2_89_2
e_1_3_2_60_2
e_1_3_2_83_2
e_1_3_2_81_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_75_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_73_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_58_2
e_1_3_2_79_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_56_2
e_1_3_2_77_2
e_1_3_2_50_2
e_1_3_2_71_2
e_1_3_2_90_2
e_1_3_2_27_2
e_1_3_2_48_2
Wadhwa N (e_1_3_2_24_2) 2019; 116
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_65_2
e_1_3_2_86_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_63_2
e_1_3_2_84_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_69_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_67_2
e_1_3_2_88_2
e_1_3_2_61_2
e_1_3_2_82_2
e_1_3_2_80_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_59_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_76_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_74_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_57_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_78_2
e_1_3_2_2_2
e_1_3_2_72_2
e_1_3_2_70_2
Alberti, L, Harshey, RM (B60) 1990; 172
Chavez-Dozal, A, Gorman, C, Erken, M, Steinberg, PD, McDougald, D, Nishiguchi, MK (B3) 2013; 79
Donlan, RM (B2) 2002; 8
Ellison, CK, Rusch, DB, Brun, YV (B46) 2019; 201
Hosking, ER, Vogt, C, Bakker, EP, Manson, MD (B50) 2006; 364
Barrick, JE, Colburn, G, Deatherage, DE, Traverse, CC, Strand, MD, Borges, JJ, Knoester, DB, Reba, A, Meyer, AG (B87) 2014; 15
Soding, J, Biegert, A, Lupas, AN (B88) 2005; 33
Schmidt, JM, Stanier, RY (B31) 1966; 28
Reyes Ruiz, LM, Fiebig, A, Crosson, S (B37) 2019; 15
Pratt, LA, Kolter, R (B24) 1998; 30
Janakiraman, B, Mignolet, J, Narayanan, S, Viollier, PH, Radhakrishnan, SK (B73) 2016; 113
Radhakrishnan, SK, Thanbichler, M, Viollier, PH (B72) 2008; 22
Wolfe, AJ, Visick, KL (B52) 2008; 190
Gibson, DG, Young, L, Chuang, R-Y, Venter, JC, Hutchison, CA, Smith, HO (B82) 2009; 6
Mignolet, J, Holden, S, Bergé, M, Panis, G, Eroglu, E, Théraulaz, L, Manley, S, Viollier, PH (B74) 2016; 5
Berg, HC, Tedesco, PM (B22) 1975; 72
Poindexter, JS (B32) 1981; 45
Shapiro, L, Agabian-Keshishian, N, Bendis, I (B28) 1971; 173
Ramakrishnan, G, Zhao, JL, Newton, A (B14) 1994; 176
Poindexter, JS (B29) 1964; 28
Luo, Y, Zhao, K, Baker, AE, Kuchma, SL, Coggan, KA, Wolfgang, MC, Wong, GCL, O’Toole, GA (B65) 2015; 6
Laganenka, L, López, ME, Colin, R, Sourjik, V (B63) 2020; 11
Zobell, CE (B1) 1943; 46
Degnen, ST, Newton, A (B30) 1972; 64
Wetmore, KM, Price, MN, Waters, RJ, Lamson, JS, He, J, Hoover, CA, Blow, MJ, Bristow, J, Butland, G, Arkin, AP, Deutschbauer, A (B85) 2015; 6
Ohta, N, Chen, L-S, Swanson, E, Newton, A (B16) 1985; 186
Mueller, RS, McDougald, D, Cusumano, D, Sodhi, N, Kjelleberg, S, Azam, F, Bartlett, DH (B8) 2007; 189
Toutain, CM, Zegans, ME, O’Toole, GA (B79) 2005; 187
O’Toole, GA, Kolter, R (B25) 1998; 30
Schneider, WR, Doetsch, RN (B21) 1974; 117
Fiebig, A, Herrou, J, Fumeaux, C, Radhakrishnan, SK, Viollier, PH, Crosson, S (B35) 2014; 10
Wu, DC, Zamorano-Sánchez, D, Pagliai, FA, Park, JH, Floyd, KA, Lee, CK, Kitts, G, Rose, CB, Bilotta, EM, Wong, GCL, Yildiz, FH (B70) 2020; 16
Kelley, LA, Mezulis, S, Yates, CM, Wass, MN, Sternberg, MJE (B89) 2015; 10
Berne, C, Ellison, CK, Agarwal, R, Severin, GB, Fiebig, A, Morton, IIRI, Waters, CM, Brun, YV (B34) 2018; 110
Kawagishi, I, Imagawa, M, Imae, Y, McCarter, L, Homma, M (B61) 1996; 20
Aldridge, P, Hughes, KT (B13) 2002; 5
Hecht, GB, Newton, A (B58) 1995; 177
Jenal, U (B17) 2000; 24
Leclerc, G, Wang, SP, Ely, B (B45) 1998; 180
Kent, WJ (B86) 2002; 12
Anderson, DK, Ohta, N, Wu, J, Newton, A (B76) 1995; 246
Zhou, J, Sharp, LL, Tang, HL, Lloyd, SA, Billings, S, Braun, TF, Blair, DF (B59) 1998; 180
Wadhwa, N, Phillips, R, Berg, HC (B23) 2019; 116
Hughes, KT, Berg, HC (B69) 2017; 358
Lori, C, Ozaki, S, Steiner, S, Böhm, R, Abel, S, Dubey, BN, Schirmer, T, Hiller, S, Jenal, U (B55) 2015; 523
Harrison, JJ, Almblad, H, Irie, Y, Wolter, DJ, Eggleston, HC, Randall, TE, Kitzman, JO, Stackhouse, B, Emerson, JC, Mcnamara, S, Larsen, TJ, Shendure, J, Hoffman, LR, Wozniak, DJ, Parsek, MR (B71) 2020; 16
Bodenmiller, D, Toh, E, Brun, YV (B26) 2004; 186
Kaczmarczyk, A, Hempel, AM, Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B53) 2020; 11
Aldridge, P, Paul, R, Goymer, P, Rainey, P, Jenal, U (B57) 2003; 47
Thanbichler, M, Iniesta, AA, Shapiro, L (B84) 2007; 35
Biondi, EG, Skerker, JM, Arif, M, Prasol, MS, Perchuk, BS, Laub, MT (B47) 2006; 59
Güvener, ZT, Harwood, CS (B64) 2007; 66
Hershey, DM, Fiebig, A, Crosson, S (B33) 2019; 10
Berne, C, Ellison, CK, Ducret, A, Brun, YV (B4) 2018; 16
Tipping, MJ, Delalez, NJ, Lim, R, Berry, RM, Armitage, JP (B67) 2013; 4
Sprecher, KS, Hug, I, Nesper, J, Potthoff, E, Mahi, M-A, Sangermani, M, Kaever, V, Schwede, T, Vorholt, J, Jenal, U (B56) 2017; 8
Partridge, JD, Nieto, V, Harshey, RM (B68) 2015; 6
Deme, JC, Johnson, S, Vickery, O, Aron, A, Monkhouse, H, Griffiths, T, James, RH, Berks, BC, Coulton, JW, Stansfeld, PJ, Lea, SM (B49) 2020; 5
Collier, J (B10) 2016; 30
Lauga, E (B27) 2016; 48
Ely, B (B83) 1991; 204
Purcell, EB, Siegal-Gaskins, D, Rawling, DC, Fiebig, A, Crosson, S (B36) 2007; 104
Baker, AE, Webster, SS, Diepold, A, Kuchma, SL, Bordeleau, E, Armitage, JP, O’Toole, GA (B78) 2019; 201
Paul, R, Weiser, S, Amiot, NC, Chan, C, Schirmer, T, Giese, B, Jenal, U (B44) 2004; 18
Belas, R (B12) 2014; 22
Hershey, DM, Porfírio, S, Black, I, Jaehrig, B, Heiss, C, Azadi, P, Fiebig, A, Crosson, S (B43) 2019; 201
Sangermani, M, Hug, I, Sauter, N, Pfohl, T, Jenal, U (B41) 2019; 10
Blair, DF, Berg, HC (B19) 1990; 60
Hug, I, Deshpande, S, Sprecher, KS, Pfohl, T, Jenal, U (B40) 2017; 358
Dingwall, A, Gober, JW, Shapiro, L (B42) 1990; 172
Stephens, C, Mohr, C, Boyd, C, Maddock, J, Gober, J, Shapiro, L (B15) 1997; 179
Petrova, OE, Sauer, K (B9) 2011; 193
Levi, A, Jenal, U (B7) 2006; 188
Santiveri, M, Roa-Eguiara, A, Kühne, C, Wadhwa, N, Hu, H, Berg, HC, Erhardt, M, Taylor, NMI (B48) 2020; 183
Tan, MH, Kozdon, JB, Shen, X, Shapiro, L, McAdams, HH (B75) 2010; 107
Henrichsen, J (B20) 1972; 36
Li, G, Brown, PJB, Tang, JX, Xu, J, Quardokus, EM, Fuqua, C, Brun, YV (B38) 2012; 83
Khan, S, Dapice, M, Reese, TS (B18) 1988; 202
Duerig, A, Abel, S, Folcher, M, Nicollier, M, Schwede, T, Amiot, N, Giese, B, Jenal, U (B54) 2009; 23
Watnick, PI, Kolter, R (B6) 1999; 34
Quon, KC, Marczynski, GT, Shapiro, L (B80) 1996; 84
Belas, R, Suvanasuthi, R (B66) 2005; 187
Aldridge, P, Jenal, U (B77) 1999; 32
Haiko, J, Westerlund-Wikström, B (B11) 2013; 2
Ellison, CK, Kan, J, Dillard, RS, Kysela, DT, Ducret, A, Berne, C, Hampton, CM, Ke, Z, Wright, ER, Biais, N, Dalia, AB, Brun, YV (B39) 2017; 358
Kaczmarczyk, A, Hempel, AM, von Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B81) 2020; 11
Brenzinger, S, Dewenter, L, Delalez, NJ, Leicht, O, Berndt, V, Paulick, A, Berry, RM, Thanbichler, M, Armitage, JP, Maier, B, Thormann, KM (B51) 2016; 102
McCarter, L, Hilmen, M, Silverman, M (B5) 1988; 54
Laventie, B-J, Sangermani, M, Estermann, F, Manfredi, P, Planes, R, Hug, I, Jaeger, T, Meunier, E, Broz, P, Jenal, U (B62) 2019; 25
References_xml – ident: e_1_3_2_37_2
  doi: 10.1073/pnas.0705887104
– ident: e_1_3_2_26_2
  doi: 10.1046/j.1365-2958.1998.01062.x
– ident: e_1_3_2_33_2
  doi: 10.1128/MR.45.1.123-179.1981
– ident: e_1_3_2_88_2
  doi: 10.1186/1471-2164-15-1039
– ident: e_1_3_2_59_2
  doi: 10.1128/jb.177.21.6223-6229.1995
– ident: e_1_3_2_84_2
  doi: 10.1016/0076-6879(91)04019-K
– ident: e_1_3_2_2_2
  doi: 10.1128/JB.46.1.39-56.1943
– ident: e_1_3_2_66_2
  doi: 10.1128/mBio.02456-14
– ident: e_1_3_2_18_2
  doi: 10.1016/S0168-6445(99)00035-2
– ident: e_1_3_2_52_2
  doi: 10.1111/mmi.13499
– ident: e_1_3_2_87_2
  doi: 10.1101/gr.229202
– ident: e_1_3_2_4_2
  doi: 10.1128/AEM.02710-12
– ident: e_1_3_2_62_2
  doi: 10.1111/j.1365-2958.1996.tb02509.x
– ident: e_1_3_2_74_2
  doi: 10.1073/pnas.1610723113
– ident: e_1_3_2_82_2
  doi: 10.1038/s41467-020-14585-6
– ident: e_1_3_2_68_2
  doi: 10.1128/mBio.00551-13
– ident: e_1_3_2_22_2
  doi: 10.1128/JB.117.2.696-701.1974
– ident: e_1_3_2_49_2
  doi: 10.1016/j.cell.2020.08.016
– ident: e_1_3_2_64_2
  doi: 10.1128/mBio.02269-19
– ident: e_1_3_2_79_2
  doi: 10.1128/JB.00741-18
– ident: e_1_3_2_30_2
  doi: 10.1128/BR.28.3.231-295.1964
– ident: e_1_3_2_89_2
  doi: 10.1093/nar/gki408
– ident: e_1_3_2_19_2
  doi: 10.1016/0022-2836(88)90287-2
– ident: e_1_3_2_15_2
  doi: 10.1128/jb.176.24.7587-7600.1994
– ident: e_1_3_2_6_2
  doi: 10.1016/0092-8674(88)90197-3
– ident: e_1_3_2_46_2
  doi: 10.1128/JB.180.19.5010-5019.1998
– ident: e_1_3_2_63_2
  doi: 10.1016/j.chom.2018.11.008
– ident: e_1_3_2_50_2
  doi: 10.1038/s41564-020-0788-8
– ident: e_1_3_2_83_2
  doi: 10.1038/nmeth.1318
– ident: e_1_3_2_39_2
  doi: 10.1111/j.1365-2958.2011.07909.x
– ident: e_1_3_2_27_2
  doi: 10.1128/jb.186.5.1438-1447.2004
– ident: e_1_3_2_48_2
  doi: 10.1111/j.1365-2958.2005.04970.x
– ident: e_1_3_2_58_2
  doi: 10.1046/j.1365-2958.2003.03401.x
– ident: e_1_3_2_53_2
  doi: 10.1128/JB.01418-07
– ident: e_1_3_2_55_2
  doi: 10.1101/gad.502409
– ident: e_1_3_2_20_2
  doi: 10.1016/0092-8674(90)90595-6
– ident: e_1_3_2_86_2
  doi: 10.1128/mBio.00306-15
– ident: e_1_3_2_25_2
  doi: 10.1046/j.1365-2958.1998.01061.x
– ident: e_1_3_2_3_2
  doi: 10.3201/eid0809.020063
– ident: e_1_3_2_34_2
  doi: 10.1128/mBio.02273-18
– volume: 116
  start-page: 11764
  year: 2019
  ident: e_1_3_2_24_2
  article-title: Torque-dependent remodeling of the bacterial flagellar motor
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1904577116
– ident: e_1_3_2_77_2
  doi: 10.1007/BF00290715
– ident: e_1_3_2_81_2
  doi: 10.1016/s0092-8674(00)80995-2
– ident: e_1_3_2_14_2
  doi: 10.1016/s1369-5274(02)00302-8
– ident: e_1_3_2_90_2
  doi: 10.1038/nprot.2015.053
– ident: e_1_3_2_45_2
  doi: 10.1101/gad.289504
– ident: e_1_3_2_73_2
  doi: 10.1101/gad.1601808
– ident: e_1_3_2_38_2
  doi: 10.1371/journal.pgen.1008022
– ident: e_1_3_2_72_2
  doi: 10.1371/journal.pgen.1008848
– ident: e_1_3_2_16_2
  doi: 10.1128/jb.179.17.5355-5365.1997
– ident: e_1_3_2_47_2
  doi: 10.1128/JB.00031-19
– ident: e_1_3_2_76_2
  doi: 10.1073/pnas.1014395107
– ident: e_1_3_2_21_2
  doi: 10.1128/MMBR.36.4.478-503.1972
– ident: e_1_3_2_70_2
  doi: 10.1126/science.aaq0143
– ident: e_1_3_2_36_2
  doi: 10.1371/journal.pgen.1004101
– ident: e_1_3_2_35_2
  doi: 10.1111/mmi.14099
– ident: e_1_3_2_67_2
  doi: 10.1128/JB.187.19.6789-6803.2005
– ident: e_1_3_2_29_2
  doi: 10.1126/science.173.4000.884
– ident: e_1_3_2_80_2
  doi: 10.1128/JB.187.2.771-777.2005
– ident: e_1_3_2_10_2
  doi: 10.1128/JB.00305-11
– ident: e_1_3_2_56_2
  doi: 10.1038/nature14473
– ident: e_1_3_2_7_2
  doi: 10.1046/j.1365-2958.1999.01624.x
– ident: e_1_3_2_57_2
  doi: 10.1128/mBio.00294-17
– ident: e_1_3_2_71_2
  doi: 10.1371/journal.pgen.1008703
– ident: e_1_3_2_23_2
  doi: 10.1073/pnas.72.8.3235
– ident: e_1_3_2_42_2
  doi: 10.1128/mBio.01237-19
– ident: e_1_3_2_51_2
  doi: 10.1016/j.jmb.2006.09.035
– ident: e_1_3_2_69_2
  doi: 10.1128/mBio.02367-14
– ident: e_1_3_2_60_2
  doi: 10.1128/JB.180.10.2729-2735.1998
– ident: e_1_3_2_65_2
  doi: 10.1111/j.1365-2958.2007.06008.x
– ident: e_1_3_2_28_2
  doi: 10.1146/annurev-fluid-122414-034606
– ident: e_1_3_2_31_2
  doi: 10.1016/0022-2836(72)90090-3
– ident: e_1_3_2_8_2
  doi: 10.1128/JB.01725-05
– ident: e_1_3_2_12_2
  doi: 10.3390/biology2041242
– ident: e_1_3_2_40_2
  doi: 10.1126/science.aan5706
– ident: e_1_3_2_9_2
  doi: 10.1128/JB.01867-06
– ident: e_1_3_2_78_2
  doi: 10.1046/j.1365-2958.1999.01358.x
– ident: e_1_3_2_44_2
  doi: 10.1128/JB.00276-19
– ident: e_1_3_2_54_2
  doi: 10.1038/s41467-020-14585-6
– ident: e_1_3_2_5_2
  doi: 10.1038/s41579-018-0057-5
– ident: e_1_3_2_41_2
  doi: 10.1126/science.aan5353
– ident: e_1_3_2_11_2
  doi: 10.1016/j.mib.2016.01.010
– ident: e_1_3_2_85_2
  doi: 10.1093/nar/gkm818
– ident: e_1_3_2_13_2
  doi: 10.1016/j.tim.2014.05.002
– ident: e_1_3_2_43_2
  doi: 10.1128/jb.172.10.6066-6076.1990
– ident: e_1_3_2_61_2
  doi: 10.1128/jb.172.8.4322-4328.1990
– ident: e_1_3_2_32_2
  doi: 10.1083/jcb.28.3.423
– ident: e_1_3_2_75_2
  doi: 10.7554/eLife.18647
– ident: e_1_3_2_17_2
  doi: 10.1016/0022-2836(85)90261-x
– volume: 16
  start-page: 616
  year: 2018
  end-page: 627
  ident: B4
  article-title: Bacterial adhesion at the single-cell level
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0057-5
– volume: 64
  start-page: 671
  year: 1972
  end-page: 680
  ident: B30
  article-title: Chromosome replication during development in Caulobacter crescentus
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(72)90090-3
– volume: 180
  start-page: 2729
  year: 1998
  end-page: 2735
  ident: B59
  article-title: Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp32 of MotB
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.10.2729-2735.1998
– volume: 358
  start-page: 446
  year: 2017
  end-page: 447
  ident: B69
  article-title: The bacterium has landed
  publication-title: Science
  doi: 10.1126/science.aaq0143
– volume: 358
  start-page: 535
  year: 2017
  end-page: 538
  ident: B39
  article-title: Obstruction of pilus retraction stimulates bacterial surface sensing
  publication-title: Science
  doi: 10.1126/science.aan5706
– volume: 110
  start-page: 219
  year: 2018
  end-page: 238
  ident: B34
  article-title: Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.14099
– volume: 104
  start-page: 18241
  year: 2007
  end-page: 18246
  ident: B36
  article-title: A photosensory two-component system regulates bacterial cell attachment
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0705887104
– volume: 35
  year: 2007
  ident: B84
  article-title: A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkm818
– volume: 6
  start-page: 343
  year: 2009
  end-page: 345
  ident: B82
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1318
– volume: 107
  start-page: 18985
  year: 2010
  end-page: 18990
  ident: B75
  article-title: An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1014395107
– volume: 204
  start-page: 372
  year: 1991
  end-page: 384
  ident: B83
  article-title: Genetics of Caulobacter crescentus
  publication-title: Methods Enzymol
  doi: 10.1016/0076-6879(91)04019-K
– volume: 15
  start-page: 1039
  year: 2014
  ident: B87
  article-title: Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-1039
– volume: 202
  start-page: 575
  year: 1988
  end-page: 584
  ident: B18
  article-title: Effects of mot gene expression on the structure of the flagellar motor
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(88)90287-2
– volume: 117
  start-page: 696
  year: 1974
  end-page: 701
  ident: B21
  article-title: Effect of viscosity on bacterial motility
  publication-title: J Bacteriol
  doi: 10.1128/JB.117.2.696-701.1974
– volume: 187
  start-page: 6789
  year: 2005
  end-page: 6803
  ident: B66
  article-title: The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.19.6789-6803.2005
– volume: 10
  start-page: 845
  year: 2015
  end-page: 858
  ident: B89
  article-title: The Phyre2 web portal for protein modeling, prediction, and analysis
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2015.053
– volume: 48
  start-page: 105
  year: 2016
  end-page: 130
  ident: B27
  article-title: Bacterial hydrodynamics
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev-fluid-122414-034606
– volume: 83
  start-page: 41
  year: 2012
  end-page: 51
  ident: B38
  article-title: Surface contact stimulates the just-in-time deployment of bacterial adhesins
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2011.07909.x
– volume: 32
  start-page: 379
  year: 1999
  end-page: 391
  ident: B77
  article-title: Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01358.x
– volume: 22
  start-page: 212
  year: 2008
  end-page: 225
  ident: B72
  article-title: The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus
  publication-title: Genes Dev
  doi: 10.1101/gad.1601808
– volume: 28
  start-page: 423
  year: 1966
  end-page: 436
  ident: B31
  article-title: The development of cellular stalks in bacteria
  publication-title: J Cell Biol
  doi: 10.1083/jcb.28.3.423
– volume: 201
  year: 2019
  ident: B46
  article-title: Flagellar mutants have reduced pilus synthesis in Caulobacter crescentus
  publication-title: J Bacteriol
  doi: 10.1128/JB.00031-19
– volume: 6
  year: 2015
  ident: B65
  article-title: A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors
  publication-title: mBio
  doi: 10.1128/mBio.02456-14
– volume: 5
  start-page: 1553
  year: 2020
  end-page: 1564
  ident: B49
  article-title: Structures of the stator complex that drives rotation of the bacterial flagellum
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-020-0788-8
– volume: 246
  start-page: 697
  year: 1995
  end-page: 706
  ident: B76
  article-title: Regulation of the Caulobacter crescentus rpoN gene and function of the purified σ54 in flagellar gene transcription
  publication-title: Mol Gen Genet
  doi: 10.1007/BF00290715
– volume: 20
  start-page: 693
  year: 1996
  end-page: 699
  ident: B61
  article-title: The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.1996.tb02509.x
– volume: 66
  start-page: 1459
  year: 2007
  end-page: 1473
  ident: B64
  article-title: Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2007.06008.x
– volume: 24
  start-page: 177
  year: 2000
  end-page: 191
  ident: B17
  article-title: Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control
  publication-title: FEMS Microbiol Rev
  doi: 10.1016/S0168-6445(99)00035-2
– volume: 113
  start-page: 12550
  year: 2016
  end-page: 12555
  ident: B73
  article-title: In-phase oscillation of global regulons is orchestrated by a pole-specific organizer
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1610723113
– volume: 8
  start-page: 881
  year: 2002
  end-page: 890
  ident: B2
  article-title: Biofilms: microbial life on surfaces
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid0809.020063
– volume: 30
  start-page: 285
  year: 1998
  end-page: 293
  ident: B24
  article-title: Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis, and type I pili
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.01061.x
– volume: 34
  start-page: 586
  year: 1999
  end-page: 595
  ident: B6
  article-title: Steps in the development of a Vibrio cholerae El Tor biofilm
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1999.01624.x
– volume: 22
  start-page: 517
  year: 2014
  end-page: 527
  ident: B12
  article-title: Biofilms, flagella, and mechanosensing of surfaces by bacteria
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2014.05.002
– volume: 189
  start-page: 5348
  year: 2007
  end-page: 5360
  ident: B8
  article-title: Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization
  publication-title: J Bacteriol
  doi: 10.1128/JB.01867-06
– volume: 18
  start-page: 715
  year: 2004
  end-page: 727
  ident: B44
  article-title: Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain
  publication-title: Genes Dev
  doi: 10.1101/gad.289504
– volume: 523
  start-page: 236
  year: 2015
  end-page: 239
  ident: B55
  article-title: Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication
  publication-title: Nature
  doi: 10.1038/nature14473
– volume: 4
  year: 2013
  ident: B67
  article-title: Load-dependent assembly of the bacterial flagellar motor
  publication-title: mBio
  doi: 10.1128/mBio.00551-13
– volume: 102
  start-page: 925
  year: 2016
  end-page: 938
  ident: B51
  article-title: Mutations targeting the plug-domain of the S hewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions: MotB plug-domain mutants
  publication-title: Mol Microbiol
  doi: 10.1111/mmi.13499
– volume: 30
  start-page: 107
  year: 2016
  end-page: 113
  ident: B10
  article-title: Cell cycle control in Alphaproteobacteria
  publication-title: Curr Opin Microbiol
  doi: 10.1016/j.mib.2016.01.010
– volume: 79
  start-page: 553
  year: 2013
  end-page: 558
  ident: B3
  article-title: Predation response of Vibrio fischeri biofilms to bacterivorus protists
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.02710-12
– volume: 364
  start-page: 921
  year: 2006
  end-page: 937
  ident: B50
  article-title: The Escherichia coli MotAB proton channel unplugged
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2006.09.035
– volume: 2
  start-page: 1242
  year: 2013
  end-page: 1267
  ident: B11
  article-title: The role of the bacterial flagellum in adhesion and virulence
  publication-title: Biology (Basel)
  doi: 10.3390/biology2041242
– volume: 11
  year: 2020
  ident: B63
  article-title: Flagellum-mediated mechanosensing and RflP control motility state of pathogenic Escherichia coli
  publication-title: mBio
  doi: 10.1128/mBio.02269-19
– volume: 23
  start-page: 93
  year: 2009
  end-page: 104
  ident: B54
  article-title: Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression
  publication-title: Genes Dev
  doi: 10.1101/gad.502409
– volume: 183
  start-page: 244
  year: 2020
  end-page: 257
  ident: B48
  article-title: Structure and function of stator units of the bacterial flagellar motor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.016
– volume: 12
  start-page: 656
  year: 2002
  end-page: 664
  ident: B86
  article-title: BLAT: the BLAST-like alignment tool
  publication-title: Genome Res
  doi: 10.1101/gr.229202
– volume: 172
  start-page: 6066
  year: 1990
  end-page: 6076
  ident: B42
  article-title: Identification of a Caulobacter basal body structural gene and a cis-acting site required for activation of transcription
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.10.6066-6076.1990
– volume: 11
  start-page: 816
  year: 2020
  ident: B81
  article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14585-6
– volume: 186
  start-page: 107
  year: 1985
  end-page: 115
  ident: B16
  article-title: Transcriptional regulation of a periodically controlled flagellar gene operon in Caulobacter crescentus
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(85)90261-x
– volume: 60
  start-page: 439
  year: 1990
  end-page: 449
  ident: B19
  article-title: The MotA protein of Escherichia coli is a proton-conducting component of the flagellar motor
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90595-6
– volume: 116
  start-page: 11764
  year: 2019
  end-page: 11769
  ident: B23
  article-title: Torque-dependent remodeling of the bacterial flagellar motor
  publication-title: Proc Natl Acad Sci U S A
– volume: 8
  year: 2017
  ident: B56
  article-title: Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein
  publication-title: mBio
  doi: 10.1128/mBio.00294-17
– volume: 6
  year: 2015
  ident: B85
  article-title: Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons
  publication-title: mBio
  doi: 10.1128/mBio.00306-15
– volume: 5
  start-page: 160
  year: 2002
  end-page: 165
  ident: B13
  article-title: Regulation of flagellar assembly
  publication-title: Curr Opin Microbiol
  doi: 10.1016/s1369-5274(02)00302-8
– volume: 10
  year: 2019
  ident: B41
  article-title: Tad pili play a dynamic role in Caulobacter crescentus surface colonization
  publication-title: mBio
  doi: 10.1128/mBio.01237-19
– volume: 190
  start-page: 463
  year: 2008
  end-page: 475
  ident: B52
  article-title: Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility
  publication-title: J Bacteriol
  doi: 10.1128/JB.01418-07
– volume: 358
  start-page: 531
  year: 2017
  end-page: 534
  ident: B40
  article-title: Second messenger–mediated tactile response by a bacterial rotary motor
  publication-title: Science
  doi: 10.1126/science.aan5353
– volume: 193
  start-page: 6614
  year: 2011
  end-page: 6628
  ident: B9
  article-title: SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation
  publication-title: J Bacteriol
  doi: 10.1128/JB.00305-11
– volume: 28
  start-page: 231
  year: 1964
  end-page: 295
  ident: B29
  article-title: Biological properties and classification of the Caulobacter group
  publication-title: Bacteriol Rev
  doi: 10.1128/BR.28.3.231-295.1964
– volume: 177
  start-page: 6223
  year: 1995
  end-page: 6229
  ident: B58
  article-title: Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus
  publication-title: J Bacteriol
  doi: 10.1128/jb.177.21.6223-6229.1995
– volume: 84
  start-page: 83
  year: 1996
  end-page: 93
  ident: B80
  article-title: Cell cycle control by an essential bacterial two-component signal transduction protein
  publication-title: Cell
  doi: 10.1016/s0092-8674(00)80995-2
– volume: 46
  start-page: 39
  year: 1943
  end-page: 56
  ident: B1
  article-title: The effect of solid surfaces upon bacterial activity
  publication-title: J Bacteriol
  doi: 10.1128/JB.46.1.39-56.1943
– volume: 179
  start-page: 5355
  year: 1997
  end-page: 5365
  ident: B15
  article-title: Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system
  publication-title: J Bacteriol
  doi: 10.1128/jb.179.17.5355-5365.1997
– volume: 10
  year: 2019
  ident: B33
  article-title: A genome-wide analysis of adhesion in Caulobacter crescentus identifies new regulatory and biosynthetic components for holdfast assembly
  publication-title: mBio
  doi: 10.1128/mBio.02273-18
– volume: 201
  start-page: 277
  year: 2019
  end-page: 283
  ident: B43
  article-title: Composition of the holdfast polysaccharide from Caulobacter crescentus
  publication-title: J Bacteriol
  doi: 10.1128/JB.00276-19
– volume: 72
  start-page: 3235
  year: 1975
  end-page: 3239
  ident: B22
  article-title: Transient response to chemotactic stimuli in Escherichia coli
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.72.8.3235
– volume: 187
  start-page: 771
  year: 2005
  end-page: 777
  ident: B79
  article-title: Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa
  publication-title: J Bacteriol
  doi: 10.1128/JB.187.2.771-777.2005
– volume: 54
  start-page: 345
  year: 1988
  end-page: 351
  ident: B5
  article-title: Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90197-3
– volume: 172
  start-page: 4322
  year: 1990
  end-page: 4328
  ident: B60
  article-title: Differentiation of Serratia marcescens 274 into swimmer and swarmer cells
  publication-title: J Bacteriol
  doi: 10.1128/jb.172.8.4322-4328.1990
– volume: 33
  start-page: W244
  year: 2005
  end-page: W248
  ident: B88
  article-title: The HHpred interactive server for protein homology detection and structure prediction
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki408
– volume: 45
  start-page: 123
  year: 1981
  end-page: 179
  ident: B32
  article-title: The caulobacters: ubiquitous unusual bacteria
  publication-title: Microbiol Rev
  doi: 10.1128/MR.45.1.123-179.1981
– volume: 5
  year: 2016
  ident: B74
  article-title: Functional dichotomy and distinct nanoscale assemblies of a cell cycle-controlled bipolar zinc-finger regulator
  publication-title: Elife
  doi: 10.7554/eLife.18647
– volume: 180
  start-page: 5010
  year: 1998
  end-page: 5019
  ident: B45
  article-title: A new class of Caulobacter crescentus flagellar genes
  publication-title: J Bacteriol
  doi: 10.1128/JB.180.19.5010-5019.1998
– volume: 15
  year: 2019
  ident: B37
  article-title: Regulation of bacterial surface attachment by a network of sensory transduction proteins
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008022
– volume: 186
  start-page: 1438
  year: 2004
  end-page: 1447
  ident: B26
  article-title: Development of surface adhesion in Caulobacter crescentus
  publication-title: J Bacteriol
  doi: 10.1128/jb.186.5.1438-1447.2004
– volume: 16
  year: 2020
  ident: B71
  article-title: Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008848
– volume: 30
  start-page: 295
  year: 1998
  end-page: 304
  ident: B25
  article-title: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.1998.01062.x
– volume: 201
  start-page: 263
  year: 2019
  ident: B78
  article-title: Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa
  publication-title: J Bacteriol
  doi: 10.1128/JB.00741-18
– volume: 188
  start-page: 5315
  year: 2006
  end-page: 5318
  ident: B7
  article-title: Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development
  publication-title: J Bacteriol
  doi: 10.1128/JB.01725-05
– volume: 59
  start-page: 386
  year: 2006
  end-page: 401
  ident: B47
  article-title: A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus
  publication-title: Mol Microbiol
  doi: 10.1111/j.1365-2958.2005.04970.x
– volume: 11
  start-page: 1
  year: 2020
  end-page: 16
  ident: B53
  article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-14585-6
– volume: 176
  start-page: 7587
  year: 1994
  end-page: 7600
  ident: B14
  article-title: Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes
  publication-title: J Bacteriol
  doi: 10.1128/jb.176.24.7587-7600.1994
– volume: 10
  year: 2014
  ident: B35
  article-title: A cell cycle and nutritional checkpoint controlling bacterial surface adhesion
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004101
– volume: 25
  start-page: 140
  year: 2019
  end-page: 152.e6
  ident: B62
  article-title: A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2018.11.008
– volume: 16
  year: 2020
  ident: B70
  article-title: Reciprocal c-di-GMP signaling: incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1008703
– volume: 6
  year: 2015
  ident: B68
  article-title: A new player at the flagellar motor: FliL Controls both motor output and bias
  publication-title: mBio
  doi: 10.1128/mBio.02367-14
– volume: 47
  start-page: 1695
  year: 2003
  end-page: 1708
  ident: B57
  article-title: Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus
  publication-title: Mol Microbiol
  doi: 10.1046/j.1365-2958.2003.03401.x
– volume: 36
  start-page: 478
  year: 1972
  end-page: 503
  ident: B20
  article-title: Bacterial surface translocation: a survey and a classification
  publication-title: Bacteriol Rev
  doi: 10.1128/MMBR.36.4.478-503.1972
– volume: 173
  start-page: 884
  year: 1971
  end-page: 892
  ident: B28
  article-title: Bacterial differentiation
  publication-title: Science
  doi: 10.1126/science.173.4000.884
SSID ssj0000331830
Score 2.391702
Snippet Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that...
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key...
SourceID doaj
pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Molecular Biology and Physiology
Research Article
SummonAdditionalLinks – databaseName: American Society for Microbiology Open Access
  dbid: AAUOK
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9wwFBZZCORS2jRtp0tQaempTm1JluWjk2YIKbQ5ZCA3oc1kIPGU8Qwh_77vyQud0ECvtry99ZP0_D1CPgfOi8CMTXIwiETU0iVKuDIRXIJ7SYeM5Vht8VOez8TFdX69RdjwL0wvwfbYtHdxI3_0bKa-3Z3MF8cpAA4Jyt0muznkKrDk3aqa_foxrqykHO00HQg1H18HsRfuzTbyUKTr_xfGfFwq-VfumT4nz3rQSKtOyy_IVmgOyF7XRvLhJTHTW4gKoM8lvQxLyCG2W4ajlYvNywKt_E3AZTHat-WhV_cL-h3du3Eregko8N48tHTe0FOzRooQpHCmACgj19O6PSSz6dnV6XnSt05IDHjkKmHeeVWbvBalzZyxxqsS_5muMyW9LSBFZVI5oXjIAWJlBqFTba0zQQakGOSvyE6zaMIbQj1EQCMcTKFtED6VJctdplwZvBUuFHJCPqE89aA5HacVTGmUuo5S1yydkK-DuLXr2cexCcbtU8O_jMN_d7QbTw08Qd2Ng5AtOx4A29G982krwBptJEF1kBiy0ruMe8kCj1O6MCEfB81r8C7cMjFNWKxbzUCamVJKwme-7ixhfBTnOQQvJiak2LCRjXfZPNPMbyKDd6EA6KbF2_8S3Tuyz7CQBkvFy_dkZ7Vchw-AhFb2qDf9PxQ0BjM
  priority: 102
  providerName: American Society for Microbiology
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6bvbJkWlpaeqWUuyLB83aZfQQ8khgdyEHmOykHjDepeQf98Z2bvsloZeerUHWx7N45M0_oaxz6BUBdIHUaJBCN2YKKyOtdDKoHuZSIzlVG3xy5xe6J-X5eVOqy-qCevpgXvFHQWNTwqZwDKiUxd1ioVKRoLKcBwo-mLO21lM5RisyFZpg0UipBEYn-sNwaa0RzfH88W3CQIXI6jP98h3N3IvL2X6_r9hzj9LJ3dy0ewZezqASD7tB_-cPYL2BXvct5W8f8n87BqjBM7vkp_BEnNK6Lfl-DTmZmbAp-kKaJuMD216-Pndgn8nd2_jip8hKrzz9x2ft_zEr4kyhCidOQLMzP207l6xi9mP85NTMbRSEB49dCVkisk2vmx0HYrog0-2pn-om8KaFCpMWYWxUVsFJUKuwhOUakKIHgwQ5aB6zUbtooW3jCeMiF5HXFIH0GlialnGwsYaUtARKjNmn0ifbvCFzuVlhrSOtO6y1p2cjNnXjbpdHNjIqSnG9UPiX7bitz0Nx0OCxzR3WyFiz84X0KbcYFPuXzY1Zh83M-_Q2-gIxbewWHdOojYLa63Bz3zTW8L2VUqVGMykHrNqz0b2xrJ_p51fZUbvyiLwnVTv_sfg37MnkupuqLK8PmCj1XINhwicVuFD9pHfTXMTiQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in Caulobacter crescentus
URI https://www.ncbi.nlm.nih.gov/pubmed/33563824
https://journals.asm.org/doi/10.1128/mBio.03266-20
https://www.proquest.com/docview/2488188866
https://pubmed.ncbi.nlm.nih.gov/PMC7885107
https://doaj.org/article/b42abb03109c46719dc13d62e300086e
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKlAviDcpEC0CccKt7V2v1weE3EKoQEAPjZSbtS_TSKlN40Ql_56ZtR1I1V64-GCPZXseO9-uZ78h5I1jLHWx0kECDhHwUphAcpMFnAkIL2GQsRyrLb6L4wn_Mk2mfymFOgU2107tsJ_UZDHf_32x_gAB_77dACMPzg9n9X4IOESAzW-THUhKKXZx-NYhfT8oM3TesGfZvHrXLrnLWAK-iDvfB6o5j7fylKfzvw6DXi2l_Cc3je-Tex2opHnrBQ_ILVc9JHfaNpPrR0SN5zBqgL0X9MQtIMfodpmO5sY3N3M0t2cOl81o17aHnl7W9COGf2WW9ARQ4qVaN3RW0SO1QgoRpHimADg9F9SqeUwm40-nR8dB11ohUBCxyyC2xspSJSXPdGSUVlZmuKe6jKSwOoUUFglpuGQuAQgWKYRWpdZGOeGQgpA9IYOqrtwzQi2MkIobmGJrx20osjgxkTSZs5obl4oheY36LHrTFn7aEcsCDVB4AxRxOCTvenUXpmMnxyYZ85vE327Ef7W0HDcJHqLtNkLIpu1P1IufRRechebgrdqTpBpIHFFmTcSsiB3zUz43JK96yxcQffhLRVWuXjVFDNqMpJQCPvNp6wmbR_UONSTplo9svcv2lWp25hm-UwlAOEz3_vvO52Q3xuIbLC_PXpDBcrFyLwE9LfWI7OT55MfXkV99gOPnaTTysfIHSU8dfQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB6VVAguiJ2UbRCIE27tmfF4fEwLUaCl9JBIvY1msxqUOlWcqOq_572xE5GKSlztZ9l-6zfb9wj5FDgvAjM2ycEhElFJlyjhykRwCeElHTKW426LUzmaiB_n-fkOkeuzML-xL--s2TfNZVzHx8DGieiuH6E6uDyczvdTAB0SDHyP7OK6Yd4ju4PB5NfxZnYl5eir6ZpU8_ZzkH_hBWyrFkXK_n_hzNvbJf-qP8PH5FEHHOmgtfQTshPqp-R-20ry5hkxwxlkBrDpgp6FBdQR207F0YGLDcwCHfiLgFNjtGvNQ8fXc_oVQ7x2S3oGSPDa3DR0WtMjs0KaEKRxpgAqI9_TqnlOJsNv46NR0rVPSAxE5TJh3nlVmbwSpc2cscarEs9NV5mS3hZQpjKpnFA85ACzMoPwqbLWmSAD0gzyF6RXz-vwilAPWdAIB8NoG4RPZclylylXBm-FC4Xsk4-oT935f6Pj0IIpjVrXUeuapX3yZa1u7ToGcmyEMbtL_PNG_Kql3rhL8BBttxFCxux4ARxIdwGorQCPtJEI1UFxyErvMu4lCzwO60KffFhbXkOE4bKJqcN81WgG2syUUhJ-82XrCZtXcZ5DAmOiT4otH9n6lu079fQisngXCsBuWuz9l-rekwej8c8TffL99Pg1echwYw1uHS_fkN5ysQpvARkt7bsuDP4Aa1kKjQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJxAviDvlagTiiYzEdhznMduoBkOjD6u0N8u3aJW2dGpaTfv3nOMkFZ2YxGvi3M71s33yHUI-B86LwIxNcjCIRNTSJUq4MhFcgntJh4zlWG1xIo9m4udZfrZD5PAvTC_Bds-0l3EjHz37ytd9P0L17XJ_vthLAXRIUPA9sosbVWxEdqtq9vt4s7qScrTVdCDVvH0dxF-4P9vKRZGy_18483a55F_5Z_KYPOqBI606TT8hO6F5Su53rSRvnhEzuYDIADpd0mlYQh6x3VIcrVxsYBZo5c8DLo3RvjUPPb1e0EN08cat6BSQ4LW5aem8oQdmjTQhSONMAVRGvqd1-5zMJt9PD46Svn1CYsArVwnzzqva5LUobeaMNV6V-N90nSnpbQFpKpPKCcVDDjArMwifamudCTIgzSB_QUbNogmvCPUQBY1wMI22QfhUlix3mXJl8Fa4UMgx-YTy1IP2dJxaMKVR6jpKXbN0TL4O4tauZyDHRhgXdw3_shl-1VFv3DVwH3W3GYSM2fEA2I_uHVBbARZpIxGqg-SQld5l3EsWeJzWhTH5OGheg4fhtolpwmLdagbSzJRSEj7zZWcJm0dxnkMAY2JMii0b2XqX7TPN_DyyeBcKwG5avP4v0X0gD6aHE_3rx8nxG_KQYV0NVo6Xb8lotVyHdwCMVvZ97wV_AEP1Cik
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flagellar+Perturbations+Activate+Adhesion+through+Two+Distinct+Pathways+in+Caulobacter+crescentus&rft.jtitle=mBio&rft.au=Hershey%2C+David+M.&rft.au=Fiebig%2C+Aretha&rft.au=Crosson%2C+Sean&rft.date=2021-02-09&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.03266-20&rft_id=info%3Apmid%2F33563824&rft.externalDocID=PMC7885107
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon