Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in Caulobacter crescentus
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellu...
Saved in:
Published in | mBio Vol. 12; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
09.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2161-2129 2150-7511 2150-7511 |
DOI | 10.1128/mBio.03266-20 |
Cover
Loading…
Abstract | Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for
Caulobacter crescentus
to activate surface attachment in response to signals from a macromolecular machine called the flagellum.
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium
Caulobacter crescentus
stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of
C. crescentus
. We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the
flagellar signaling suppressor
(
fss
) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the
fss
genes to either the stator- or
pleD
-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the
C. crescentus
developmental program to coordinate adhesion.
IMPORTANCE
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for
Caulobacter crescentus
to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the
C. crescentus
morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors. |
---|---|
AbstractList | Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for
Caulobacter crescentus
to activate surface attachment in response to signals from a macromolecular machine called the flagellum.
Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium
Caulobacter crescentus
stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of
C. crescentus
. We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the
flagellar signaling suppressor
(
fss
) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the
fss
genes to either the stator- or
pleD
-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the
C. crescentus
developmental program to coordinate adhesion.
IMPORTANCE
Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for
Caulobacter crescentus
to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the
C. crescentus
morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the ( ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the genes to either the stator- or -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the developmental program to coordinate adhesion. Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors.Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion.IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors. Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus . We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor ( fss ) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD -dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion. Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key regulator of surface colonization. The specific signals recognized by flagella and the pathways by which those signals are transduced to coordinate adhesion remain subjects of debate. Mutations that disrupt flagellar assembly in the dimorphic bacterium Caulobacter crescentus stimulate the production of a polysaccharide adhesin called the holdfast. Using a genomewide phenotyping approach, we compared surface adhesion profiles in wild-type and flagellar mutant backgrounds of C. crescentus. We identified a diverse set of flagellar mutations that enhance adhesion by inducing a hyperholdfast phenotype and discovered a second set of mutations that suppress this phenotype. Epistasis analysis of the flagellar signaling suppressor (fss) mutations demonstrated that the flagellum stimulates holdfast production via two genetically distinct pathways. The developmental regulator PleD contributes to holdfast induction in mutants disrupted at both early and late stages of flagellar assembly. Mutants disrupted at late stages of flagellar assembly, which assemble an intact rotor complex, induce holdfast production through an additional process that requires the MotAB stator and its associated diguanylate cyclase, DgcB. We have assigned a subset of the fss genes to either the stator- or pleD-dependent networks and characterized two previously unidentified motility genes that regulate holdfast production via the stator complex. We propose a model through which the flagellum integrates mechanical stimuli into the C. crescentus developmental program to coordinate adhesion. IMPORTANCE Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus to activate surface attachment in response to signals from a macromolecular machine called the flagellum. Genes involved in transmitting information from the flagellum can be grouped into separate pathways, those that control the C. crescentus morphogenic program and those that are required for flagellar motility. Our results support a model in which a developmental and a mechanical signaling pathway operate in parallel downstream of the flagellum and converge to regulate adhesion. We conclude that the flagellum serves as a signaling hub by integrating internal and external cues to coordinate surface colonization and emphasize the role of signal integration in linking complex sets of environmental stimuli to individual behaviors. Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that are required for Caulobacter crescentus |
Author | Crosson, Sean Hershey, David M. Fiebig, Aretha |
Author_xml | – sequence: 1 givenname: David M. surname: Hershey fullname: Hershey, David M. organization: Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA – sequence: 2 givenname: Aretha orcidid: 0000-0002-0612-5029 surname: Fiebig fullname: Fiebig, Aretha organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA – sequence: 3 givenname: Sean orcidid: 0000-0002-1727-322X surname: Crosson fullname: Crosson, Sean organization: Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33563824$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1P3DAQxa0KVD7KsdfKx6pSwB-J41wqLdtCkZDgQM_W2HE2XiUxtR0Q_329u1CVqvhia-b5p5n3jtDe5CeL0EdKTill8mw8d_6UcCZEwcg7dMhoRYq6onRv8xa0YJQ1B-gkxjXJh3MqOXmPDjivBJesPERwMcDKDgMEfGtDmoOG5PwU8cIk9wDJ4kXb25hLOPXBz6se3z16_M3F5CaT8C2k_hGeInYTXsI8eA0m2YBNsNHYKc3xA9rvYIj25Pk-Rj8vvt8tfxTXN5dXy8V1AaWUqWCtaWUHVVc2mhrQ0MqGVoJ0VIpW10TUVEhTSm6rJi8IhNCq09qAFbYRVcOP0dWO23pYq_vgRghPyoNT24IPKwUhOTNYpUsGWhNOSWPKDG5aQ3krmOXZJClsZn3dse5nPdp2s0iA4RX0dWdyvVr5B1VLWVFSZ8DnZ0Dwv2Ybkxpd9iP7PFk_R8XyzlRKKUSWftlJIY5Mrf0cpmyTokRtIlabiNU2YsVIFn_6e7A_E70EmgV8JzDBxxhsp4xL20jznG54E1v88-sF_H_9b-Y5xOU |
CitedBy_id | crossref_primary_10_1128_JB_00199_21 crossref_primary_10_1016_j_mib_2021_02_004 crossref_primary_10_1371_journal_pone_0298028 crossref_primary_10_3389_fmicb_2023_1258415 crossref_primary_10_1371_journal_pgen_1010648 crossref_primary_10_1128_mbio_02125_23 crossref_primary_10_1126_sciadv_ade8971 crossref_primary_10_1038_s44318_024_00320_0 crossref_primary_10_1073_pnas_2024608118 crossref_primary_10_1128_mbio_00758_24 crossref_primary_10_1016_j_aquaculture_2023_739874 crossref_primary_10_1128_jb_00433_21 crossref_primary_10_1128_jb_00484_24 crossref_primary_10_1093_femsml_uqad014 crossref_primary_10_1128_mbio_01002_24 crossref_primary_10_1371_journal_pgen_1011048 crossref_primary_10_1007_s11274_022_03237_0 crossref_primary_10_1128_jb_00384_22 crossref_primary_10_1128_jb_00404_24 crossref_primary_10_1128_jb_00166_23 |
Cites_doi | 10.1073/pnas.0705887104 10.1046/j.1365-2958.1998.01062.x 10.1128/MR.45.1.123-179.1981 10.1186/1471-2164-15-1039 10.1128/jb.177.21.6223-6229.1995 10.1016/0076-6879(91)04019-K 10.1128/JB.46.1.39-56.1943 10.1128/mBio.02456-14 10.1016/S0168-6445(99)00035-2 10.1111/mmi.13499 10.1101/gr.229202 10.1128/AEM.02710-12 10.1111/j.1365-2958.1996.tb02509.x 10.1073/pnas.1610723113 10.1038/s41467-020-14585-6 10.1128/mBio.00551-13 10.1128/JB.117.2.696-701.1974 10.1016/j.cell.2020.08.016 10.1128/mBio.02269-19 10.1128/JB.00741-18 10.1128/BR.28.3.231-295.1964 10.1093/nar/gki408 10.1016/0022-2836(88)90287-2 10.1128/jb.176.24.7587-7600.1994 10.1016/0092-8674(88)90197-3 10.1128/JB.180.19.5010-5019.1998 10.1016/j.chom.2018.11.008 10.1038/s41564-020-0788-8 10.1038/nmeth.1318 10.1111/j.1365-2958.2011.07909.x 10.1128/jb.186.5.1438-1447.2004 10.1111/j.1365-2958.2005.04970.x 10.1046/j.1365-2958.2003.03401.x 10.1128/JB.01418-07 10.1101/gad.502409 10.1016/0092-8674(90)90595-6 10.1128/mBio.00306-15 10.1046/j.1365-2958.1998.01061.x 10.3201/eid0809.020063 10.1128/mBio.02273-18 10.1073/pnas.1904577116 10.1007/BF00290715 10.1016/s0092-8674(00)80995-2 10.1016/s1369-5274(02)00302-8 10.1038/nprot.2015.053 10.1101/gad.289504 10.1101/gad.1601808 10.1371/journal.pgen.1008022 10.1371/journal.pgen.1008848 10.1128/jb.179.17.5355-5365.1997 10.1128/JB.00031-19 10.1073/pnas.1014395107 10.1128/MMBR.36.4.478-503.1972 10.1126/science.aaq0143 10.1371/journal.pgen.1004101 10.1111/mmi.14099 10.1128/JB.187.19.6789-6803.2005 10.1126/science.173.4000.884 10.1128/JB.187.2.771-777.2005 10.1128/JB.00305-11 10.1038/nature14473 10.1046/j.1365-2958.1999.01624.x 10.1128/mBio.00294-17 10.1371/journal.pgen.1008703 10.1073/pnas.72.8.3235 10.1128/mBio.01237-19 10.1016/j.jmb.2006.09.035 10.1128/mBio.02367-14 10.1128/JB.180.10.2729-2735.1998 10.1111/j.1365-2958.2007.06008.x 10.1146/annurev-fluid-122414-034606 10.1016/0022-2836(72)90090-3 10.1128/JB.01725-05 10.3390/biology2041242 10.1126/science.aan5706 10.1128/JB.01867-06 10.1046/j.1365-2958.1999.01358.x 10.1128/JB.00276-19 10.1038/s41579-018-0057-5 10.1126/science.aan5353 10.1016/j.mib.2016.01.010 10.1093/nar/gkm818 10.1016/j.tim.2014.05.002 10.1128/jb.172.10.6066-6076.1990 10.1128/jb.172.8.4322-4328.1990 10.1083/jcb.28.3.423 10.7554/eLife.18647 10.1016/0022-2836(85)90261-x |
ContentType | Journal Article |
Copyright | Copyright © 2021 Hershey et al. Copyright © 2021 Hershey et al. 2021 Hershey et al. |
Copyright_xml | – notice: Copyright © 2021 Hershey et al. – notice: Copyright © 2021 Hershey et al. 2021 Hershey et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.1128/mBio.03266-20 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2150-7511 |
Editor | Laub, Michael T |
Editor_xml | – sequence: 1 givenname: Michael T surname: Laub fullname: Laub, Michael T |
ExternalDocumentID | oai_doaj_org_article_b42abb03109c46719dc13d62e300086e PMC7885107 mBio03266-20 33563824 10_1128_mBio_03266_20 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R35 GM131762 – fundername: Helen Hay Whitney Foundation (HHWF) grantid: NA funderid: https://doi.org/10.13039/100005237 – fundername: HHS | National Institutes of Health (NIH) grantid: R35 GM131762 funderid: https://doi.org/10.13039/100000002 – fundername: ; grantid: NA – fundername: ; grantid: R35 GM131762 |
GroupedDBID | --- 0R~ 53G 5VS AAFWJ AAGFI AAUOK AAYXX ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV BTFSW CITATION DIK E3Z EBS FRP GROUPED_DOAJ GX1 H13 HYE HZ~ KQ8 M48 O5R O5S O9- OK1 P2P PGMZT RHI RNS RPM RSF M~E NPM RHF - 0R ADACO BXI HZ 7X8 5PM |
ID | FETCH-LOGICAL-a488t-2dcd8fa5f49b1cabad891560f186db7067168c483e59511a0015fbbcae6e96593 |
IEDL.DBID | M48 |
ISSN | 2161-2129 2150-7511 |
IngestDate | Wed Aug 27 01:29:40 EDT 2025 Thu Aug 21 13:57:29 EDT 2025 Thu Jul 10 19:24:26 EDT 2025 Tue Dec 28 13:58:54 EST 2021 Wed Feb 19 02:28:16 EST 2025 Tue Jul 01 01:52:46 EDT 2025 Thu Apr 24 22:51:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | holdfast motility adhesion flagellum biofilm |
Language | English |
License | Copyright © 2021 Hershey et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a488t-2dcd8fa5f49b1cabad891560f186db7067168c483e59511a0015fbbcae6e96593 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-1727-322X 0000-0002-0612-5029 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1128/mBio.03266-20 |
PMID | 33563824 |
PQID | 2488188866 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b42abb03109c46719dc13d62e300086e pubmedcentral_primary_oai_pubmedcentral_nih_gov_7885107 proquest_miscellaneous_2488188866 asm2_journals_10_1128_mBio_03266_20 pubmed_primary_33563824 crossref_citationtrail_10_1128_mBio_03266_20 crossref_primary_10_1128_mBio_03266_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210209 |
PublicationDateYYYYMMDD | 2021-02-09 |
PublicationDate_xml | – month: 2 year: 2021 text: 20210209 day: 9 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | mBio |
PublicationTitleAbbrev | mBio |
PublicationTitleAlternate | mBio |
PublicationYear | 2021 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_64_2 e_1_3_2_87_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_85_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_47_2 e_1_3_2_66_2 e_1_3_2_89_2 e_1_3_2_60_2 e_1_3_2_83_2 e_1_3_2_81_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_75_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_79_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 e_1_3_2_90_2 e_1_3_2_27_2 e_1_3_2_48_2 Wadhwa N (e_1_3_2_24_2) 2019; 116 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_65_2 e_1_3_2_86_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_84_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_88_2 e_1_3_2_61_2 e_1_3_2_82_2 e_1_3_2_80_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_76_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 Alberti, L, Harshey, RM (B60) 1990; 172 Chavez-Dozal, A, Gorman, C, Erken, M, Steinberg, PD, McDougald, D, Nishiguchi, MK (B3) 2013; 79 Donlan, RM (B2) 2002; 8 Ellison, CK, Rusch, DB, Brun, YV (B46) 2019; 201 Hosking, ER, Vogt, C, Bakker, EP, Manson, MD (B50) 2006; 364 Barrick, JE, Colburn, G, Deatherage, DE, Traverse, CC, Strand, MD, Borges, JJ, Knoester, DB, Reba, A, Meyer, AG (B87) 2014; 15 Soding, J, Biegert, A, Lupas, AN (B88) 2005; 33 Schmidt, JM, Stanier, RY (B31) 1966; 28 Reyes Ruiz, LM, Fiebig, A, Crosson, S (B37) 2019; 15 Pratt, LA, Kolter, R (B24) 1998; 30 Janakiraman, B, Mignolet, J, Narayanan, S, Viollier, PH, Radhakrishnan, SK (B73) 2016; 113 Radhakrishnan, SK, Thanbichler, M, Viollier, PH (B72) 2008; 22 Wolfe, AJ, Visick, KL (B52) 2008; 190 Gibson, DG, Young, L, Chuang, R-Y, Venter, JC, Hutchison, CA, Smith, HO (B82) 2009; 6 Mignolet, J, Holden, S, Bergé, M, Panis, G, Eroglu, E, Théraulaz, L, Manley, S, Viollier, PH (B74) 2016; 5 Berg, HC, Tedesco, PM (B22) 1975; 72 Poindexter, JS (B32) 1981; 45 Shapiro, L, Agabian-Keshishian, N, Bendis, I (B28) 1971; 173 Ramakrishnan, G, Zhao, JL, Newton, A (B14) 1994; 176 Poindexter, JS (B29) 1964; 28 Luo, Y, Zhao, K, Baker, AE, Kuchma, SL, Coggan, KA, Wolfgang, MC, Wong, GCL, O’Toole, GA (B65) 2015; 6 Laganenka, L, López, ME, Colin, R, Sourjik, V (B63) 2020; 11 Zobell, CE (B1) 1943; 46 Degnen, ST, Newton, A (B30) 1972; 64 Wetmore, KM, Price, MN, Waters, RJ, Lamson, JS, He, J, Hoover, CA, Blow, MJ, Bristow, J, Butland, G, Arkin, AP, Deutschbauer, A (B85) 2015; 6 Ohta, N, Chen, L-S, Swanson, E, Newton, A (B16) 1985; 186 Mueller, RS, McDougald, D, Cusumano, D, Sodhi, N, Kjelleberg, S, Azam, F, Bartlett, DH (B8) 2007; 189 Toutain, CM, Zegans, ME, O’Toole, GA (B79) 2005; 187 O’Toole, GA, Kolter, R (B25) 1998; 30 Schneider, WR, Doetsch, RN (B21) 1974; 117 Fiebig, A, Herrou, J, Fumeaux, C, Radhakrishnan, SK, Viollier, PH, Crosson, S (B35) 2014; 10 Wu, DC, Zamorano-Sánchez, D, Pagliai, FA, Park, JH, Floyd, KA, Lee, CK, Kitts, G, Rose, CB, Bilotta, EM, Wong, GCL, Yildiz, FH (B70) 2020; 16 Kelley, LA, Mezulis, S, Yates, CM, Wass, MN, Sternberg, MJE (B89) 2015; 10 Berne, C, Ellison, CK, Agarwal, R, Severin, GB, Fiebig, A, Morton, IIRI, Waters, CM, Brun, YV (B34) 2018; 110 Kawagishi, I, Imagawa, M, Imae, Y, McCarter, L, Homma, M (B61) 1996; 20 Aldridge, P, Hughes, KT (B13) 2002; 5 Hecht, GB, Newton, A (B58) 1995; 177 Jenal, U (B17) 2000; 24 Leclerc, G, Wang, SP, Ely, B (B45) 1998; 180 Kent, WJ (B86) 2002; 12 Anderson, DK, Ohta, N, Wu, J, Newton, A (B76) 1995; 246 Zhou, J, Sharp, LL, Tang, HL, Lloyd, SA, Billings, S, Braun, TF, Blair, DF (B59) 1998; 180 Wadhwa, N, Phillips, R, Berg, HC (B23) 2019; 116 Hughes, KT, Berg, HC (B69) 2017; 358 Lori, C, Ozaki, S, Steiner, S, Böhm, R, Abel, S, Dubey, BN, Schirmer, T, Hiller, S, Jenal, U (B55) 2015; 523 Harrison, JJ, Almblad, H, Irie, Y, Wolter, DJ, Eggleston, HC, Randall, TE, Kitzman, JO, Stackhouse, B, Emerson, JC, Mcnamara, S, Larsen, TJ, Shendure, J, Hoffman, LR, Wozniak, DJ, Parsek, MR (B71) 2020; 16 Bodenmiller, D, Toh, E, Brun, YV (B26) 2004; 186 Kaczmarczyk, A, Hempel, AM, Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B53) 2020; 11 Aldridge, P, Paul, R, Goymer, P, Rainey, P, Jenal, U (B57) 2003; 47 Thanbichler, M, Iniesta, AA, Shapiro, L (B84) 2007; 35 Biondi, EG, Skerker, JM, Arif, M, Prasol, MS, Perchuk, BS, Laub, MT (B47) 2006; 59 Güvener, ZT, Harwood, CS (B64) 2007; 66 Hershey, DM, Fiebig, A, Crosson, S (B33) 2019; 10 Berne, C, Ellison, CK, Ducret, A, Brun, YV (B4) 2018; 16 Tipping, MJ, Delalez, NJ, Lim, R, Berry, RM, Armitage, JP (B67) 2013; 4 Sprecher, KS, Hug, I, Nesper, J, Potthoff, E, Mahi, M-A, Sangermani, M, Kaever, V, Schwede, T, Vorholt, J, Jenal, U (B56) 2017; 8 Partridge, JD, Nieto, V, Harshey, RM (B68) 2015; 6 Deme, JC, Johnson, S, Vickery, O, Aron, A, Monkhouse, H, Griffiths, T, James, RH, Berks, BC, Coulton, JW, Stansfeld, PJ, Lea, SM (B49) 2020; 5 Collier, J (B10) 2016; 30 Lauga, E (B27) 2016; 48 Ely, B (B83) 1991; 204 Purcell, EB, Siegal-Gaskins, D, Rawling, DC, Fiebig, A, Crosson, S (B36) 2007; 104 Baker, AE, Webster, SS, Diepold, A, Kuchma, SL, Bordeleau, E, Armitage, JP, O’Toole, GA (B78) 2019; 201 Paul, R, Weiser, S, Amiot, NC, Chan, C, Schirmer, T, Giese, B, Jenal, U (B44) 2004; 18 Belas, R (B12) 2014; 22 Hershey, DM, Porfírio, S, Black, I, Jaehrig, B, Heiss, C, Azadi, P, Fiebig, A, Crosson, S (B43) 2019; 201 Sangermani, M, Hug, I, Sauter, N, Pfohl, T, Jenal, U (B41) 2019; 10 Blair, DF, Berg, HC (B19) 1990; 60 Hug, I, Deshpande, S, Sprecher, KS, Pfohl, T, Jenal, U (B40) 2017; 358 Dingwall, A, Gober, JW, Shapiro, L (B42) 1990; 172 Stephens, C, Mohr, C, Boyd, C, Maddock, J, Gober, J, Shapiro, L (B15) 1997; 179 Petrova, OE, Sauer, K (B9) 2011; 193 Levi, A, Jenal, U (B7) 2006; 188 Santiveri, M, Roa-Eguiara, A, Kühne, C, Wadhwa, N, Hu, H, Berg, HC, Erhardt, M, Taylor, NMI (B48) 2020; 183 Tan, MH, Kozdon, JB, Shen, X, Shapiro, L, McAdams, HH (B75) 2010; 107 Henrichsen, J (B20) 1972; 36 Li, G, Brown, PJB, Tang, JX, Xu, J, Quardokus, EM, Fuqua, C, Brun, YV (B38) 2012; 83 Khan, S, Dapice, M, Reese, TS (B18) 1988; 202 Duerig, A, Abel, S, Folcher, M, Nicollier, M, Schwede, T, Amiot, N, Giese, B, Jenal, U (B54) 2009; 23 Watnick, PI, Kolter, R (B6) 1999; 34 Quon, KC, Marczynski, GT, Shapiro, L (B80) 1996; 84 Belas, R, Suvanasuthi, R (B66) 2005; 187 Aldridge, P, Jenal, U (B77) 1999; 32 Haiko, J, Westerlund-Wikström, B (B11) 2013; 2 Ellison, CK, Kan, J, Dillard, RS, Kysela, DT, Ducret, A, Berne, C, Hampton, CM, Ke, Z, Wright, ER, Biais, N, Dalia, AB, Brun, YV (B39) 2017; 358 Kaczmarczyk, A, Hempel, AM, von Arx, C, Böhm, R, Dubey, BN, Nesper, J, Schirmer, T, Hiller, S, Jenal, U (B81) 2020; 11 Brenzinger, S, Dewenter, L, Delalez, NJ, Leicht, O, Berndt, V, Paulick, A, Berry, RM, Thanbichler, M, Armitage, JP, Maier, B, Thormann, KM (B51) 2016; 102 McCarter, L, Hilmen, M, Silverman, M (B5) 1988; 54 Laventie, B-J, Sangermani, M, Estermann, F, Manfredi, P, Planes, R, Hug, I, Jaeger, T, Meunier, E, Broz, P, Jenal, U (B62) 2019; 25 |
References_xml | – ident: e_1_3_2_37_2 doi: 10.1073/pnas.0705887104 – ident: e_1_3_2_26_2 doi: 10.1046/j.1365-2958.1998.01062.x – ident: e_1_3_2_33_2 doi: 10.1128/MR.45.1.123-179.1981 – ident: e_1_3_2_88_2 doi: 10.1186/1471-2164-15-1039 – ident: e_1_3_2_59_2 doi: 10.1128/jb.177.21.6223-6229.1995 – ident: e_1_3_2_84_2 doi: 10.1016/0076-6879(91)04019-K – ident: e_1_3_2_2_2 doi: 10.1128/JB.46.1.39-56.1943 – ident: e_1_3_2_66_2 doi: 10.1128/mBio.02456-14 – ident: e_1_3_2_18_2 doi: 10.1016/S0168-6445(99)00035-2 – ident: e_1_3_2_52_2 doi: 10.1111/mmi.13499 – ident: e_1_3_2_87_2 doi: 10.1101/gr.229202 – ident: e_1_3_2_4_2 doi: 10.1128/AEM.02710-12 – ident: e_1_3_2_62_2 doi: 10.1111/j.1365-2958.1996.tb02509.x – ident: e_1_3_2_74_2 doi: 10.1073/pnas.1610723113 – ident: e_1_3_2_82_2 doi: 10.1038/s41467-020-14585-6 – ident: e_1_3_2_68_2 doi: 10.1128/mBio.00551-13 – ident: e_1_3_2_22_2 doi: 10.1128/JB.117.2.696-701.1974 – ident: e_1_3_2_49_2 doi: 10.1016/j.cell.2020.08.016 – ident: e_1_3_2_64_2 doi: 10.1128/mBio.02269-19 – ident: e_1_3_2_79_2 doi: 10.1128/JB.00741-18 – ident: e_1_3_2_30_2 doi: 10.1128/BR.28.3.231-295.1964 – ident: e_1_3_2_89_2 doi: 10.1093/nar/gki408 – ident: e_1_3_2_19_2 doi: 10.1016/0022-2836(88)90287-2 – ident: e_1_3_2_15_2 doi: 10.1128/jb.176.24.7587-7600.1994 – ident: e_1_3_2_6_2 doi: 10.1016/0092-8674(88)90197-3 – ident: e_1_3_2_46_2 doi: 10.1128/JB.180.19.5010-5019.1998 – ident: e_1_3_2_63_2 doi: 10.1016/j.chom.2018.11.008 – ident: e_1_3_2_50_2 doi: 10.1038/s41564-020-0788-8 – ident: e_1_3_2_83_2 doi: 10.1038/nmeth.1318 – ident: e_1_3_2_39_2 doi: 10.1111/j.1365-2958.2011.07909.x – ident: e_1_3_2_27_2 doi: 10.1128/jb.186.5.1438-1447.2004 – ident: e_1_3_2_48_2 doi: 10.1111/j.1365-2958.2005.04970.x – ident: e_1_3_2_58_2 doi: 10.1046/j.1365-2958.2003.03401.x – ident: e_1_3_2_53_2 doi: 10.1128/JB.01418-07 – ident: e_1_3_2_55_2 doi: 10.1101/gad.502409 – ident: e_1_3_2_20_2 doi: 10.1016/0092-8674(90)90595-6 – ident: e_1_3_2_86_2 doi: 10.1128/mBio.00306-15 – ident: e_1_3_2_25_2 doi: 10.1046/j.1365-2958.1998.01061.x – ident: e_1_3_2_3_2 doi: 10.3201/eid0809.020063 – ident: e_1_3_2_34_2 doi: 10.1128/mBio.02273-18 – volume: 116 start-page: 11764 year: 2019 ident: e_1_3_2_24_2 article-title: Torque-dependent remodeling of the bacterial flagellar motor publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1904577116 – ident: e_1_3_2_77_2 doi: 10.1007/BF00290715 – ident: e_1_3_2_81_2 doi: 10.1016/s0092-8674(00)80995-2 – ident: e_1_3_2_14_2 doi: 10.1016/s1369-5274(02)00302-8 – ident: e_1_3_2_90_2 doi: 10.1038/nprot.2015.053 – ident: e_1_3_2_45_2 doi: 10.1101/gad.289504 – ident: e_1_3_2_73_2 doi: 10.1101/gad.1601808 – ident: e_1_3_2_38_2 doi: 10.1371/journal.pgen.1008022 – ident: e_1_3_2_72_2 doi: 10.1371/journal.pgen.1008848 – ident: e_1_3_2_16_2 doi: 10.1128/jb.179.17.5355-5365.1997 – ident: e_1_3_2_47_2 doi: 10.1128/JB.00031-19 – ident: e_1_3_2_76_2 doi: 10.1073/pnas.1014395107 – ident: e_1_3_2_21_2 doi: 10.1128/MMBR.36.4.478-503.1972 – ident: e_1_3_2_70_2 doi: 10.1126/science.aaq0143 – ident: e_1_3_2_36_2 doi: 10.1371/journal.pgen.1004101 – ident: e_1_3_2_35_2 doi: 10.1111/mmi.14099 – ident: e_1_3_2_67_2 doi: 10.1128/JB.187.19.6789-6803.2005 – ident: e_1_3_2_29_2 doi: 10.1126/science.173.4000.884 – ident: e_1_3_2_80_2 doi: 10.1128/JB.187.2.771-777.2005 – ident: e_1_3_2_10_2 doi: 10.1128/JB.00305-11 – ident: e_1_3_2_56_2 doi: 10.1038/nature14473 – ident: e_1_3_2_7_2 doi: 10.1046/j.1365-2958.1999.01624.x – ident: e_1_3_2_57_2 doi: 10.1128/mBio.00294-17 – ident: e_1_3_2_71_2 doi: 10.1371/journal.pgen.1008703 – ident: e_1_3_2_23_2 doi: 10.1073/pnas.72.8.3235 – ident: e_1_3_2_42_2 doi: 10.1128/mBio.01237-19 – ident: e_1_3_2_51_2 doi: 10.1016/j.jmb.2006.09.035 – ident: e_1_3_2_69_2 doi: 10.1128/mBio.02367-14 – ident: e_1_3_2_60_2 doi: 10.1128/JB.180.10.2729-2735.1998 – ident: e_1_3_2_65_2 doi: 10.1111/j.1365-2958.2007.06008.x – ident: e_1_3_2_28_2 doi: 10.1146/annurev-fluid-122414-034606 – ident: e_1_3_2_31_2 doi: 10.1016/0022-2836(72)90090-3 – ident: e_1_3_2_8_2 doi: 10.1128/JB.01725-05 – ident: e_1_3_2_12_2 doi: 10.3390/biology2041242 – ident: e_1_3_2_40_2 doi: 10.1126/science.aan5706 – ident: e_1_3_2_9_2 doi: 10.1128/JB.01867-06 – ident: e_1_3_2_78_2 doi: 10.1046/j.1365-2958.1999.01358.x – ident: e_1_3_2_44_2 doi: 10.1128/JB.00276-19 – ident: e_1_3_2_54_2 doi: 10.1038/s41467-020-14585-6 – ident: e_1_3_2_5_2 doi: 10.1038/s41579-018-0057-5 – ident: e_1_3_2_41_2 doi: 10.1126/science.aan5353 – ident: e_1_3_2_11_2 doi: 10.1016/j.mib.2016.01.010 – ident: e_1_3_2_85_2 doi: 10.1093/nar/gkm818 – ident: e_1_3_2_13_2 doi: 10.1016/j.tim.2014.05.002 – ident: e_1_3_2_43_2 doi: 10.1128/jb.172.10.6066-6076.1990 – ident: e_1_3_2_61_2 doi: 10.1128/jb.172.8.4322-4328.1990 – ident: e_1_3_2_32_2 doi: 10.1083/jcb.28.3.423 – ident: e_1_3_2_75_2 doi: 10.7554/eLife.18647 – ident: e_1_3_2_17_2 doi: 10.1016/0022-2836(85)90261-x – volume: 16 start-page: 616 year: 2018 end-page: 627 ident: B4 article-title: Bacterial adhesion at the single-cell level publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0057-5 – volume: 64 start-page: 671 year: 1972 end-page: 680 ident: B30 article-title: Chromosome replication during development in Caulobacter crescentus publication-title: J Mol Biol doi: 10.1016/0022-2836(72)90090-3 – volume: 180 start-page: 2729 year: 1998 end-page: 2735 ident: B59 article-title: Function of protonatable residues in the flagellar motor of Escherichia coli: a critical role for Asp32 of MotB publication-title: J Bacteriol doi: 10.1128/JB.180.10.2729-2735.1998 – volume: 358 start-page: 446 year: 2017 end-page: 447 ident: B69 article-title: The bacterium has landed publication-title: Science doi: 10.1126/science.aaq0143 – volume: 358 start-page: 535 year: 2017 end-page: 538 ident: B39 article-title: Obstruction of pilus retraction stimulates bacterial surface sensing publication-title: Science doi: 10.1126/science.aan5706 – volume: 110 start-page: 219 year: 2018 end-page: 238 ident: B34 article-title: Feedback regulation of Caulobacter crescentus holdfast synthesis by flagellum assembly via the holdfast inhibitor HfiA publication-title: Mol Microbiol doi: 10.1111/mmi.14099 – volume: 104 start-page: 18241 year: 2007 end-page: 18246 ident: B36 article-title: A photosensory two-component system regulates bacterial cell attachment publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0705887104 – volume: 35 year: 2007 ident: B84 article-title: A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus publication-title: Nucleic Acids Res doi: 10.1093/nar/gkm818 – volume: 6 start-page: 343 year: 2009 end-page: 345 ident: B82 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat Methods doi: 10.1038/nmeth.1318 – volume: 107 start-page: 18985 year: 2010 end-page: 18990 ident: B75 article-title: An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1014395107 – volume: 204 start-page: 372 year: 1991 end-page: 384 ident: B83 article-title: Genetics of Caulobacter crescentus publication-title: Methods Enzymol doi: 10.1016/0076-6879(91)04019-K – volume: 15 start-page: 1039 year: 2014 ident: B87 article-title: Identifying structural variation in haploid microbial genomes from short-read resequencing data using breseq publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1039 – volume: 202 start-page: 575 year: 1988 end-page: 584 ident: B18 article-title: Effects of mot gene expression on the structure of the flagellar motor publication-title: J Mol Biol doi: 10.1016/0022-2836(88)90287-2 – volume: 117 start-page: 696 year: 1974 end-page: 701 ident: B21 article-title: Effect of viscosity on bacterial motility publication-title: J Bacteriol doi: 10.1128/JB.117.2.696-701.1974 – volume: 187 start-page: 6789 year: 2005 end-page: 6803 ident: B66 article-title: The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein publication-title: J Bacteriol doi: 10.1128/JB.187.19.6789-6803.2005 – volume: 10 start-page: 845 year: 2015 end-page: 858 ident: B89 article-title: The Phyre2 web portal for protein modeling, prediction, and analysis publication-title: Nat Protoc doi: 10.1038/nprot.2015.053 – volume: 48 start-page: 105 year: 2016 end-page: 130 ident: B27 article-title: Bacterial hydrodynamics publication-title: Annu Rev Fluid Mech doi: 10.1146/annurev-fluid-122414-034606 – volume: 83 start-page: 41 year: 2012 end-page: 51 ident: B38 article-title: Surface contact stimulates the just-in-time deployment of bacterial adhesins publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2011.07909.x – volume: 32 start-page: 379 year: 1999 end-page: 391 ident: B77 article-title: Cell cycle-dependent degradation of a flagellar motor component requires a novel-type response regulator publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1999.01358.x – volume: 22 start-page: 212 year: 2008 end-page: 225 ident: B72 article-title: The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus publication-title: Genes Dev doi: 10.1101/gad.1601808 – volume: 28 start-page: 423 year: 1966 end-page: 436 ident: B31 article-title: The development of cellular stalks in bacteria publication-title: J Cell Biol doi: 10.1083/jcb.28.3.423 – volume: 201 year: 2019 ident: B46 article-title: Flagellar mutants have reduced pilus synthesis in Caulobacter crescentus publication-title: J Bacteriol doi: 10.1128/JB.00031-19 – volume: 6 year: 2015 ident: B65 article-title: A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors publication-title: mBio doi: 10.1128/mBio.02456-14 – volume: 5 start-page: 1553 year: 2020 end-page: 1564 ident: B49 article-title: Structures of the stator complex that drives rotation of the bacterial flagellum publication-title: Nat Microbiol doi: 10.1038/s41564-020-0788-8 – volume: 246 start-page: 697 year: 1995 end-page: 706 ident: B76 article-title: Regulation of the Caulobacter crescentus rpoN gene and function of the purified σ54 in flagellar gene transcription publication-title: Mol Gen Genet doi: 10.1007/BF00290715 – volume: 20 start-page: 693 year: 1996 end-page: 699 ident: B61 article-title: The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.1996.tb02509.x – volume: 66 start-page: 1459 year: 2007 end-page: 1473 ident: B64 article-title: Subcellular location characteristics of the Pseudomonas aeruginosa GGDEF protein, WspR, indicate that it produces cyclic-di-GMP in response to growth on surfaces publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2007.06008.x – volume: 24 start-page: 177 year: 2000 end-page: 191 ident: B17 article-title: Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control publication-title: FEMS Microbiol Rev doi: 10.1016/S0168-6445(99)00035-2 – volume: 113 start-page: 12550 year: 2016 end-page: 12555 ident: B73 article-title: In-phase oscillation of global regulons is orchestrated by a pole-specific organizer publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1610723113 – volume: 8 start-page: 881 year: 2002 end-page: 890 ident: B2 article-title: Biofilms: microbial life on surfaces publication-title: Emerg Infect Dis doi: 10.3201/eid0809.020063 – volume: 30 start-page: 285 year: 1998 end-page: 293 ident: B24 article-title: Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis, and type I pili publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.01061.x – volume: 34 start-page: 586 year: 1999 end-page: 595 ident: B6 article-title: Steps in the development of a Vibrio cholerae El Tor biofilm publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1999.01624.x – volume: 22 start-page: 517 year: 2014 end-page: 527 ident: B12 article-title: Biofilms, flagella, and mechanosensing of surfaces by bacteria publication-title: Trends Microbiol doi: 10.1016/j.tim.2014.05.002 – volume: 189 start-page: 5348 year: 2007 end-page: 5360 ident: B8 article-title: Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization publication-title: J Bacteriol doi: 10.1128/JB.01867-06 – volume: 18 start-page: 715 year: 2004 end-page: 727 ident: B44 article-title: Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain publication-title: Genes Dev doi: 10.1101/gad.289504 – volume: 523 start-page: 236 year: 2015 end-page: 239 ident: B55 article-title: Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication publication-title: Nature doi: 10.1038/nature14473 – volume: 4 year: 2013 ident: B67 article-title: Load-dependent assembly of the bacterial flagellar motor publication-title: mBio doi: 10.1128/mBio.00551-13 – volume: 102 start-page: 925 year: 2016 end-page: 938 ident: B51 article-title: Mutations targeting the plug-domain of the S hewanella oneidensis proton-driven stator allow swimming at increased viscosity and under anaerobic conditions: MotB plug-domain mutants publication-title: Mol Microbiol doi: 10.1111/mmi.13499 – volume: 30 start-page: 107 year: 2016 end-page: 113 ident: B10 article-title: Cell cycle control in Alphaproteobacteria publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.01.010 – volume: 79 start-page: 553 year: 2013 end-page: 558 ident: B3 article-title: Predation response of Vibrio fischeri biofilms to bacterivorus protists publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02710-12 – volume: 364 start-page: 921 year: 2006 end-page: 937 ident: B50 article-title: The Escherichia coli MotAB proton channel unplugged publication-title: J Mol Biol doi: 10.1016/j.jmb.2006.09.035 – volume: 2 start-page: 1242 year: 2013 end-page: 1267 ident: B11 article-title: The role of the bacterial flagellum in adhesion and virulence publication-title: Biology (Basel) doi: 10.3390/biology2041242 – volume: 11 year: 2020 ident: B63 article-title: Flagellum-mediated mechanosensing and RflP control motility state of pathogenic Escherichia coli publication-title: mBio doi: 10.1128/mBio.02269-19 – volume: 23 start-page: 93 year: 2009 end-page: 104 ident: B54 article-title: Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression publication-title: Genes Dev doi: 10.1101/gad.502409 – volume: 183 start-page: 244 year: 2020 end-page: 257 ident: B48 article-title: Structure and function of stator units of the bacterial flagellar motor publication-title: Cell doi: 10.1016/j.cell.2020.08.016 – volume: 12 start-page: 656 year: 2002 end-page: 664 ident: B86 article-title: BLAT: the BLAST-like alignment tool publication-title: Genome Res doi: 10.1101/gr.229202 – volume: 172 start-page: 6066 year: 1990 end-page: 6076 ident: B42 article-title: Identification of a Caulobacter basal body structural gene and a cis-acting site required for activation of transcription publication-title: J Bacteriol doi: 10.1128/jb.172.10.6066-6076.1990 – volume: 11 start-page: 816 year: 2020 ident: B81 article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter publication-title: Nat Commun doi: 10.1038/s41467-020-14585-6 – volume: 186 start-page: 107 year: 1985 end-page: 115 ident: B16 article-title: Transcriptional regulation of a periodically controlled flagellar gene operon in Caulobacter crescentus publication-title: J Mol Biol doi: 10.1016/0022-2836(85)90261-x – volume: 60 start-page: 439 year: 1990 end-page: 449 ident: B19 article-title: The MotA protein of Escherichia coli is a proton-conducting component of the flagellar motor publication-title: Cell doi: 10.1016/0092-8674(90)90595-6 – volume: 116 start-page: 11764 year: 2019 end-page: 11769 ident: B23 article-title: Torque-dependent remodeling of the bacterial flagellar motor publication-title: Proc Natl Acad Sci U S A – volume: 8 year: 2017 ident: B56 article-title: Cohesive properties of the Caulobacter crescentus holdfast adhesin are regulated by a novel c-di-GMP effector protein publication-title: mBio doi: 10.1128/mBio.00294-17 – volume: 6 year: 2015 ident: B85 article-title: Rapid quantification of mutant fitness in diverse bacteria by sequencing randomly bar-coded transposons publication-title: mBio doi: 10.1128/mBio.00306-15 – volume: 5 start-page: 160 year: 2002 end-page: 165 ident: B13 article-title: Regulation of flagellar assembly publication-title: Curr Opin Microbiol doi: 10.1016/s1369-5274(02)00302-8 – volume: 10 year: 2019 ident: B41 article-title: Tad pili play a dynamic role in Caulobacter crescentus surface colonization publication-title: mBio doi: 10.1128/mBio.01237-19 – volume: 190 start-page: 463 year: 2008 end-page: 475 ident: B52 article-title: Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility publication-title: J Bacteriol doi: 10.1128/JB.01418-07 – volume: 358 start-page: 531 year: 2017 end-page: 534 ident: B40 article-title: Second messenger–mediated tactile response by a bacterial rotary motor publication-title: Science doi: 10.1126/science.aan5353 – volume: 193 start-page: 6614 year: 2011 end-page: 6628 ident: B9 article-title: SagS contributes to the motile-sessile switch and acts in concert with BfiSR to enable Pseudomonas aeruginosa biofilm formation publication-title: J Bacteriol doi: 10.1128/JB.00305-11 – volume: 28 start-page: 231 year: 1964 end-page: 295 ident: B29 article-title: Biological properties and classification of the Caulobacter group publication-title: Bacteriol Rev doi: 10.1128/BR.28.3.231-295.1964 – volume: 177 start-page: 6223 year: 1995 end-page: 6229 ident: B58 article-title: Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus publication-title: J Bacteriol doi: 10.1128/jb.177.21.6223-6229.1995 – volume: 84 start-page: 83 year: 1996 end-page: 93 ident: B80 article-title: Cell cycle control by an essential bacterial two-component signal transduction protein publication-title: Cell doi: 10.1016/s0092-8674(00)80995-2 – volume: 46 start-page: 39 year: 1943 end-page: 56 ident: B1 article-title: The effect of solid surfaces upon bacterial activity publication-title: J Bacteriol doi: 10.1128/JB.46.1.39-56.1943 – volume: 179 start-page: 5355 year: 1997 end-page: 5365 ident: B15 article-title: Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system publication-title: J Bacteriol doi: 10.1128/jb.179.17.5355-5365.1997 – volume: 10 year: 2019 ident: B33 article-title: A genome-wide analysis of adhesion in Caulobacter crescentus identifies new regulatory and biosynthetic components for holdfast assembly publication-title: mBio doi: 10.1128/mBio.02273-18 – volume: 201 start-page: 277 year: 2019 end-page: 283 ident: B43 article-title: Composition of the holdfast polysaccharide from Caulobacter crescentus publication-title: J Bacteriol doi: 10.1128/JB.00276-19 – volume: 72 start-page: 3235 year: 1975 end-page: 3239 ident: B22 article-title: Transient response to chemotactic stimuli in Escherichia coli publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.72.8.3235 – volume: 187 start-page: 771 year: 2005 end-page: 777 ident: B79 article-title: Evidence for two flagellar stators and their role in the motility of Pseudomonas aeruginosa publication-title: J Bacteriol doi: 10.1128/JB.187.2.771-777.2005 – volume: 54 start-page: 345 year: 1988 end-page: 351 ident: B5 article-title: Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus publication-title: Cell doi: 10.1016/0092-8674(88)90197-3 – volume: 172 start-page: 4322 year: 1990 end-page: 4328 ident: B60 article-title: Differentiation of Serratia marcescens 274 into swimmer and swarmer cells publication-title: J Bacteriol doi: 10.1128/jb.172.8.4322-4328.1990 – volume: 33 start-page: W244 year: 2005 end-page: W248 ident: B88 article-title: The HHpred interactive server for protein homology detection and structure prediction publication-title: Nucleic Acids Res doi: 10.1093/nar/gki408 – volume: 45 start-page: 123 year: 1981 end-page: 179 ident: B32 article-title: The caulobacters: ubiquitous unusual bacteria publication-title: Microbiol Rev doi: 10.1128/MR.45.1.123-179.1981 – volume: 5 year: 2016 ident: B74 article-title: Functional dichotomy and distinct nanoscale assemblies of a cell cycle-controlled bipolar zinc-finger regulator publication-title: Elife doi: 10.7554/eLife.18647 – volume: 180 start-page: 5010 year: 1998 end-page: 5019 ident: B45 article-title: A new class of Caulobacter crescentus flagellar genes publication-title: J Bacteriol doi: 10.1128/JB.180.19.5010-5019.1998 – volume: 15 year: 2019 ident: B37 article-title: Regulation of bacterial surface attachment by a network of sensory transduction proteins publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008022 – volume: 186 start-page: 1438 year: 2004 end-page: 1447 ident: B26 article-title: Development of surface adhesion in Caulobacter crescentus publication-title: J Bacteriol doi: 10.1128/jb.186.5.1438-1447.2004 – volume: 16 year: 2020 ident: B71 article-title: Elevated exopolysaccharide levels in Pseudomonas aeruginosa flagellar mutants have implications for biofilm growth and chronic infections publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008848 – volume: 30 start-page: 295 year: 1998 end-page: 304 ident: B25 article-title: Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.1998.01062.x – volume: 201 start-page: 263 year: 2019 ident: B78 article-title: Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa publication-title: J Bacteriol doi: 10.1128/JB.00741-18 – volume: 188 start-page: 5315 year: 2006 end-page: 5318 ident: B7 article-title: Holdfast formation in motile swarmer cells optimizes surface attachment during Caulobacter crescentus development publication-title: J Bacteriol doi: 10.1128/JB.01725-05 – volume: 59 start-page: 386 year: 2006 end-page: 401 ident: B47 article-title: A phosphorelay system controls stalk biogenesis during cell cycle progression in Caulobacter crescentus publication-title: Mol Microbiol doi: 10.1111/j.1365-2958.2005.04970.x – volume: 11 start-page: 1 year: 2020 end-page: 16 ident: B53 article-title: Precise timing of transcription by c-di-GMP coordinates cell cycle and morphogenesis in Caulobacter publication-title: Nat Commun doi: 10.1038/s41467-020-14585-6 – volume: 176 start-page: 7587 year: 1994 end-page: 7600 ident: B14 article-title: Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes publication-title: J Bacteriol doi: 10.1128/jb.176.24.7587-7600.1994 – volume: 10 year: 2014 ident: B35 article-title: A cell cycle and nutritional checkpoint controlling bacterial surface adhesion publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004101 – volume: 25 start-page: 140 year: 2019 end-page: 152.e6 ident: B62 article-title: A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa publication-title: Cell Host Microbe doi: 10.1016/j.chom.2018.11.008 – volume: 16 year: 2020 ident: B70 article-title: Reciprocal c-di-GMP signaling: incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation publication-title: PLoS Genet doi: 10.1371/journal.pgen.1008703 – volume: 6 year: 2015 ident: B68 article-title: A new player at the flagellar motor: FliL Controls both motor output and bias publication-title: mBio doi: 10.1128/mBio.02367-14 – volume: 47 start-page: 1695 year: 2003 end-page: 1708 ident: B57 article-title: Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus publication-title: Mol Microbiol doi: 10.1046/j.1365-2958.2003.03401.x – volume: 36 start-page: 478 year: 1972 end-page: 503 ident: B20 article-title: Bacterial surface translocation: a survey and a classification publication-title: Bacteriol Rev doi: 10.1128/MMBR.36.4.478-503.1972 – volume: 173 start-page: 884 year: 1971 end-page: 892 ident: B28 article-title: Bacterial differentiation publication-title: Science doi: 10.1126/science.173.4000.884 |
SSID | ssj0000331830 |
Score | 2.391702 |
Snippet | Understanding how bacteria colonize solid surfaces is of significant clinical, industrial and ecological importance. In this study, we identified genes that... Bacteria carry out sophisticated developmental programs to colonize exogenous surfaces. The rotary flagellum, a dynamic machine that drives motility, is a key... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Molecular Biology and Physiology Research Article |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Ja9wwFBZZCORS2jRtp0tQaempTm1JluWjk2YIKbQ5ZCA3oc1kIPGU8Qwh_77vyQud0ECvtry99ZP0_D1CPgfOi8CMTXIwiETU0iVKuDIRXIJ7SYeM5Vht8VOez8TFdX69RdjwL0wvwfbYtHdxI3_0bKa-3Z3MF8cpAA4Jyt0muznkKrDk3aqa_foxrqykHO00HQg1H18HsRfuzTbyUKTr_xfGfFwq-VfumT4nz3rQSKtOyy_IVmgOyF7XRvLhJTHTW4gKoM8lvQxLyCG2W4ajlYvNywKt_E3AZTHat-WhV_cL-h3du3Eregko8N48tHTe0FOzRooQpHCmACgj19O6PSSz6dnV6XnSt05IDHjkKmHeeVWbvBalzZyxxqsS_5muMyW9LSBFZVI5oXjIAWJlBqFTba0zQQakGOSvyE6zaMIbQj1EQCMcTKFtED6VJctdplwZvBUuFHJCPqE89aA5HacVTGmUuo5S1yydkK-DuLXr2cexCcbtU8O_jMN_d7QbTw08Qd2Ng5AtOx4A29G982krwBptJEF1kBiy0ruMe8kCj1O6MCEfB81r8C7cMjFNWKxbzUCamVJKwme-7ixhfBTnOQQvJiak2LCRjXfZPNPMbyKDd6EA6KbF2_8S3Tuyz7CQBkvFy_dkZ7Vchw-AhFb2qDf9PxQ0BjM priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZlodBL6bvbJkWlpaeqWUuyLB83aZfQQ8khgdyEHmOykHjDepeQf98Z2bvsloZeerUHWx7N45M0_oaxz6BUBdIHUaJBCN2YKKyOtdDKoHuZSIzlVG3xy5xe6J-X5eVOqy-qCevpgXvFHQWNTwqZwDKiUxd1ioVKRoLKcBwo-mLO21lM5RisyFZpg0UipBEYn-sNwaa0RzfH88W3CQIXI6jP98h3N3IvL2X6_r9hzj9LJ3dy0ewZezqASD7tB_-cPYL2BXvct5W8f8n87BqjBM7vkp_BEnNK6Lfl-DTmZmbAp-kKaJuMD216-Pndgn8nd2_jip8hKrzz9x2ft_zEr4kyhCidOQLMzP207l6xi9mP85NTMbRSEB49dCVkisk2vmx0HYrog0-2pn-om8KaFCpMWYWxUVsFJUKuwhOUakKIHgwQ5aB6zUbtooW3jCeMiF5HXFIH0GlialnGwsYaUtARKjNmn0ifbvCFzuVlhrSOtO6y1p2cjNnXjbpdHNjIqSnG9UPiX7bitz0Nx0OCxzR3WyFiz84X0KbcYFPuXzY1Zh83M-_Q2-gIxbewWHdOojYLa63Bz3zTW8L2VUqVGMykHrNqz0b2xrJ_p51fZUbvyiLwnVTv_sfg37MnkupuqLK8PmCj1XINhwicVuFD9pHfTXMTiQ priority: 102 providerName: Directory of Open Access Journals |
Title | Flagellar Perturbations Activate Adhesion through Two Distinct Pathways in Caulobacter crescentus |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33563824 https://journals.asm.org/doi/10.1128/mBio.03266-20 https://www.proquest.com/docview/2488188866 https://pubmed.ncbi.nlm.nih.gov/PMC7885107 https://doaj.org/article/b42abb03109c46719dc13d62e300086e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BKlAviDcpEC0CccKt7V2v1weE3EKoQEAPjZSbtS_TSKlN40Ql_56ZtR1I1V64-GCPZXseO9-uZ78h5I1jLHWx0kECDhHwUphAcpMFnAkIL2GQsRyrLb6L4wn_Mk2mfymFOgU2107tsJ_UZDHf_32x_gAB_77dACMPzg9n9X4IOESAzW-THUhKKXZx-NYhfT8oM3TesGfZvHrXLrnLWAK-iDvfB6o5j7fylKfzvw6DXi2l_Cc3je-Tex2opHnrBQ_ILVc9JHfaNpPrR0SN5zBqgL0X9MQtIMfodpmO5sY3N3M0t2cOl81o17aHnl7W9COGf2WW9ARQ4qVaN3RW0SO1QgoRpHimADg9F9SqeUwm40-nR8dB11ohUBCxyyC2xspSJSXPdGSUVlZmuKe6jKSwOoUUFglpuGQuAQgWKYRWpdZGOeGQgpA9IYOqrtwzQi2MkIobmGJrx20osjgxkTSZs5obl4oheY36LHrTFn7aEcsCDVB4AxRxOCTvenUXpmMnxyYZ85vE327Ef7W0HDcJHqLtNkLIpu1P1IufRRechebgrdqTpBpIHFFmTcSsiB3zUz43JK96yxcQffhLRVWuXjVFDNqMpJQCPvNp6wmbR_UONSTplo9svcv2lWp25hm-UwlAOEz3_vvO52Q3xuIbLC_PXpDBcrFyLwE9LfWI7OT55MfXkV99gOPnaTTysfIHSU8dfQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9NAFB6VVAguiJ2UbRCIE27tmfF4fEwLUaCl9JBIvY1msxqUOlWcqOq_572xE5GKSlztZ9l-6zfb9wj5FDgvAjM2ycEhElFJlyjhykRwCeElHTKW426LUzmaiB_n-fkOkeuzML-xL--s2TfNZVzHx8DGieiuH6E6uDyczvdTAB0SDHyP7OK6Yd4ju4PB5NfxZnYl5eir6ZpU8_ZzkH_hBWyrFkXK_n_hzNvbJf-qP8PH5FEHHOmgtfQTshPqp-R-20ry5hkxwxlkBrDpgp6FBdQR207F0YGLDcwCHfiLgFNjtGvNQ8fXc_oVQ7x2S3oGSPDa3DR0WtMjs0KaEKRxpgAqI9_TqnlOJsNv46NR0rVPSAxE5TJh3nlVmbwSpc2cscarEs9NV5mS3hZQpjKpnFA85ACzMoPwqbLWmSAD0gzyF6RXz-vwilAPWdAIB8NoG4RPZclylylXBm-FC4Xsk4-oT935f6Pj0IIpjVrXUeuapX3yZa1u7ToGcmyEMbtL_PNG_Kql3rhL8BBttxFCxux4ARxIdwGorQCPtJEI1UFxyErvMu4lCzwO60KffFhbXkOE4bKJqcN81WgG2syUUhJ-82XrCZtXcZ5DAmOiT4otH9n6lu079fQisngXCsBuWuz9l-rekwej8c8TffL99Pg1echwYw1uHS_fkN5ysQpvARkt7bsuDP4Aa1kKjQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJxAviDvlagTiiYzEdhznMduoBkOjD6u0N8u3aJW2dGpaTfv3nOMkFZ2YxGvi3M71s33yHUI-B86LwIxNcjCIRNTSJUq4MhFcgntJh4zlWG1xIo9m4udZfrZD5PAvTC_Bds-0l3EjHz37ytd9P0L17XJ_vthLAXRIUPA9sosbVWxEdqtq9vt4s7qScrTVdCDVvH0dxF-4P9vKRZGy_18483a55F_5Z_KYPOqBI606TT8hO6F5Su53rSRvnhEzuYDIADpd0mlYQh6x3VIcrVxsYBZo5c8DLo3RvjUPPb1e0EN08cat6BSQ4LW5aem8oQdmjTQhSONMAVRGvqd1-5zMJt9PD46Svn1CYsArVwnzzqva5LUobeaMNV6V-N90nSnpbQFpKpPKCcVDDjArMwifamudCTIgzSB_QUbNogmvCPUQBY1wMI22QfhUlix3mXJl8Fa4UMgx-YTy1IP2dJxaMKVR6jpKXbN0TL4O4tauZyDHRhgXdw3_shl-1VFv3DVwH3W3GYSM2fEA2I_uHVBbARZpIxGqg-SQld5l3EsWeJzWhTH5OGheg4fhtolpwmLdagbSzJRSEj7zZWcJm0dxnkMAY2JMii0b2XqX7TPN_DyyeBcKwG5avP4v0X0gD6aHE_3rx8nxG_KQYV0NVo6Xb8lotVyHdwCMVvZ97wV_AEP1Cik |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flagellar+Perturbations+Activate+Adhesion+through+Two+Distinct+Pathways+in+Caulobacter+crescentus&rft.jtitle=mBio&rft.au=Hershey%2C+David+M.&rft.au=Fiebig%2C+Aretha&rft.au=Crosson%2C+Sean&rft.date=2021-02-09&rft.pub=American+Society+for+Microbiology&rft.eissn=2150-7511&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1128%2FmBio.03266-20&rft_id=info%3Apmid%2F33563824&rft.externalDocID=PMC7885107 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2161-2129&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2161-2129&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2161-2129&client=summon |