Origins of Enzyme Catalysis: Experimental Findings for C–H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs

The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insig...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 51; pp. 18409 - 18427
Main Authors Klinman, Judith P, Offenbacher, Adam R, Hu, Shenshen
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C–H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor–acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
AbstractList The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C–H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor–acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.
Author Offenbacher, Adam R
Hu, Shenshen
Klinman, Judith P
AuthorAffiliation Department of Chemistry
California Institute for Quantitative Biosciences
University of California
Department of Molecular and Cell Biology
AuthorAffiliation_xml – name: California Institute for Quantitative Biosciences
– name: University of California
– name: Department of Chemistry
– name: Department of Molecular and Cell Biology
– name: Department of Chemistry, University of California, Berkeley, California 94720, United States
– name: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
– name: California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States
Author_xml – sequence: 1
  givenname: Judith P
  orcidid: 0000-0001-5734-2843
  surname: Klinman
  fullname: Klinman, Judith P
  email: klinman@berkeley.edu
  organization: University of California
– sequence: 2
  givenname: Adam R
  orcidid: 0000-0001-6990-7178
  surname: Offenbacher
  fullname: Offenbacher, Adam R
  organization: University of California
– sequence: 3
  givenname: Shenshen
  surname: Hu
  fullname: Hu, Shenshen
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29244501$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1vEzEQtVARTQs3zshHDtni8X7Y4YBUrVKKVChC5Wx5vbOpo40d7N2UcOIPcOIf8ktwaIoAgTh5PPPm6c3MOyIHzjsk5DGwE2Acni21iSeiYbIAeY9MoOQsK4FXB2TCGOOZkFV-SI5iXKZvwSU8IId8xouiZDAhXy6DXVgXqe_o3H3arpDWetD9Ntr4nM4_rjHYFbqUoWfWtdYtIu18oPW3z1_P6akZ7EYP1rspfYM39LVvsY9Tql1Lr67RBvoOe9xoZ5AOnr4NKbZ9ItlVfcDBmkRcexeHMJohPiT3O91HfLR_j8n7s_lVfZ5dXL58VZ9eZLqQYsi6FiWbQd6CFoCiEqzpGsSua3OQsik0Lzlgw0pT5bLhXdpNJ0FzURUIM4H5MXlxy7semxW2Jg0YdK_WaVYdtsprq36vOHutFn6jSglc5CwRPN0TBP9hxDiolY0G-1479GNUHKCSFQgG_4UmQULIdKkd9Mmvsn7quTtXAvBbgAk-xoCdMnb4sf-k0vYKmNp5Qu08ofaeSE3TP5rueP8B3-vdJZd-DC5d4u_Q71_1yPY
CitedBy_id crossref_primary_10_1021_acs_biochem_8b00217
crossref_primary_10_1021_acs_biochem_9b00467
crossref_primary_10_3390_ijms252212058
crossref_primary_10_1021_acs_biochem_9b00861
crossref_primary_10_1021_acs_jpca_2c05861
crossref_primary_10_1021_acs_jpca_2c01783
crossref_primary_10_1021_acs_jpclett_1c01453
crossref_primary_10_1021_jacs_0c09423
crossref_primary_10_1146_annurev_physchem_050317_014308
crossref_primary_10_1016_j_cbpa_2018_09_010
crossref_primary_10_1021_jacs_8b10461
crossref_primary_10_1021_acs_biochem_3c00119
crossref_primary_10_3390_molecules25153374
crossref_primary_10_1021_acs_jpcb_3c00477
crossref_primary_10_1021_acs_biochem_4c00109
crossref_primary_10_1074_jbc_RA119_010826
crossref_primary_10_1021_jacs_8b10992
crossref_primary_10_1002_chem_202102189
crossref_primary_10_1073_pnas_1917219117
crossref_primary_10_1007_s10930_021_10012_x
crossref_primary_10_1016_j_molliq_2018_06_087
crossref_primary_10_1038_s41467_024_53048_0
crossref_primary_10_1021_acs_accounts_8b00226
crossref_primary_10_1021_acs_jpcb_2c00338
crossref_primary_10_1021_acs_jpcb_9b07228
crossref_primary_10_1021_acscatal_4c00439
crossref_primary_10_1016_j_abb_2019_108082
crossref_primary_10_1007_s12033_018_0122_3
crossref_primary_10_1021_acscatal_2c00257
crossref_primary_10_1021_jacs_8b00350
crossref_primary_10_1021_acs_biochem_8b01004
crossref_primary_10_1021_acs_joc_4c02246
crossref_primary_10_1016_j_abb_2023_109740
crossref_primary_10_1021_jacs_0c07866
crossref_primary_10_1002_1873_3468_14275
crossref_primary_10_1039_C9FD00071B
crossref_primary_10_1002_cssc_202201045
crossref_primary_10_1021_acs_jpclett_8b02945
crossref_primary_10_1016_j_jinorgbio_2022_111914
crossref_primary_10_1021_acs_biochem_9b00732
crossref_primary_10_1021_acsami_9b15311
crossref_primary_10_1038_s41467_024_48281_6
crossref_primary_10_1016_j_bioorg_2018_03_010
crossref_primary_10_1021_jacs_8b07772
crossref_primary_10_1021_acscatal_9b00174
crossref_primary_10_1021_acscentsci_3c00926
crossref_primary_10_1021_acs_jpcb_1c10280
crossref_primary_10_1021_acs_jpcb_8b08865
crossref_primary_10_1146_annurev_biochem_013118_111217
crossref_primary_10_1073_pnas_2011350117
crossref_primary_10_1073_pnas_2211630120
crossref_primary_10_1021_acscatal_3c04543
crossref_primary_10_1038_s41467_024_54912_9
crossref_primary_10_1039_D0CP05265E
Cites_doi 10.1126/science.1168243
10.1021/ja207467d
10.1126/science.1086911
10.1021/acs.jpcb.6b07814
10.1002/anie.201603592
10.1021/jp500825x
10.1021/jp100133p
10.1146/annurev.physchem.55.091602.094410
10.1146/annurev-biochem-061809-100742
10.1016/j.cbpa.2013.02.012
10.1021/bi960985q
10.1039/9781847559975-00132
10.1002/9780470122884.ch4
10.1021/jp805876e
10.1038/nature20571
10.1038/nature06522
10.1007/s00214-006-0143-z
10.1021/cb300631k
10.1016/j.drudis.2006.05.012
10.1038/223704a0
10.1021/ja800471f
10.1021/ar0202565
10.1021/bi049004x
10.1002/prot.22654
10.1038/161707a0
10.1073/pnas.1104989108
10.1021/ar5003158
10.1021/bi991941v
10.1021/acs.jpcb.7b05570
10.1016/j.chemphys.2005.05.017
10.1073/pnas.0403337101
10.1074/jbc.273.40.25529
10.1021/acs.jctc.6b01032
10.1021/acscentsci.7b00142
10.1126/science.7809611
10.1021/ar500322s
10.1021/acs.biochem.5b00374
10.1073/pnas.1111325108
10.1021/acscentsci.5b00160
10.1021/acs.biochem.5b01241
10.1002/pro.2626
10.1021/bi982719d
10.1074/jbc.273.42.27035
10.1038/nchembio.204
10.1002/1521-3773(20021202)41:23<4427::AID-ANIE4427>3.0.CO;2-K
10.1002/rmv.624
10.1039/B907354J
10.1038/nrd2400
10.1139/v99-099
10.1021/jacs.6b11856
10.1016/j.jasms.2006.06.006
10.1016/S0167-4838(01)00347-8
10.1146/annurev.biophys.32.110601.142417
10.1021/ar500390e
10.1002/mas.20064
10.1021/ja0214126
10.1038/nature11500
10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G
10.1021/bi400215w
10.1021/ja044541q
10.1021/ja502726s
10.1002/anie.200802019
10.1021/cr0503106
10.1146/annurev-biochem-072611-101825
10.1021/ar5003347
10.1021/acs.jpclett.5b00346
10.1093/oso/9780195122589.001.0001
10.1021/ar040199a
10.1021/bi0273462
10.1039/C6FD00122J
10.1371/journal.pcbi.1004507
10.1126/science.2646716
10.1021/jacs.6b03462
10.1074/jbc.M008141200
10.1021/ja01457a008
10.1016/S0021-9258(18)66181-2
10.1021/ed055p309
10.1021/acs.chemrev.5b00623
10.1038/nchem.2555
10.1021/ja002229k
10.1146/annurev-biochem-051710-133623
10.1007/978-1-4899-2891-7
10.1021/bi020054g
10.1038/20981
10.1074/jbc.M113.453951
10.1021/acscatal.5b00331
10.1126/science.180.4082.149
10.1021/ja961827p
10.1021/jp051184c
10.1016/j.abb.2010.08.016
10.1021/ja506667k
10.1063/1.4947037
10.1021/bi3001352
10.1073/pnas.94.24.12797
10.1021/jacs.5b04413
10.7554/eLife.07574
10.1021/ja208827q
10.1021/j100464a026
10.1021/ja031683w
10.1038/nrd1063
10.1016/j.bbapap.2010.12.002
10.1146/annurev.pc.15.100164.001103
10.1073/pnas.68.8.1678
10.1038/nchembio.2175
10.1021/ja012205t
10.1021/ja047087z
10.1021/ja025758s
10.1073/pnas.0608849103
10.1021/bi500070q
10.1021/ja103010b
10.1038/nchembio.155
10.1021/bi050630j
10.1126/science.6359416
10.1038/nchembio.202
10.1073/pnas.0636464100
10.1002/1521-3773(20000915)39:18<3279::AID-ANIE3279>3.0.CO;2-G
10.1021/jacs.5b12551
10.1021/ja039606o
10.1073/pnas.0710643105
10.1038/nchem.2596
10.1021/cr1001436
10.1021/acscatal.7b00688
10.1073/pnas.1704786114
10.1021/ja806354w
10.1126/science.1085515
10.1021/ja00081a060
10.1021/cr050301x
10.1021/ja061585l
10.1016/j.cbpa.2014.03.022
10.1073/pnas.1506792112
10.1021/ar040257s
10.1021/cr040427e
10.1038/nchem.1223
10.1038/nchem.1244
10.1038/nchem.2527
10.1126/science.7569920
10.1016/S0009-2797(02)00222-3
10.1021/bi00551a001
10.1073/pnas.1523573113
10.1021/cs500325p
10.1021/ar0001665
10.1021/ja0667211
10.1038/nature08615
10.1073/pnas.1417923111
10.1074/jbc.273.21.13072
10.1021/bi00043a013
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/jacs.7b08418
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 18427
ExternalDocumentID PMC5812730
29244501
10_1021_jacs_7b08418
a028398206
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: F32 GM113432
– fundername: NIGMS NIH HHS
  grantid: R35 GM118117
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
AAYWT
ID FETCH-LOGICAL-a487t-fde80913d1a71e7670bfbeeffd3188b4a2521eb05c638b2f084f81a2764e197e3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu Aug 21 18:24:47 EDT 2025
Fri Jul 11 06:28:40 EDT 2025
Fri Jul 11 04:07:23 EDT 2025
Thu Apr 03 07:07:49 EDT 2025
Tue Jul 01 03:21:25 EDT 2025
Thu Apr 24 22:55:50 EDT 2025
Thu Aug 27 13:41:59 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-fde80913d1a71e7670bfbeeffd3188b4a2521eb05c638b2f084f81a2764e197e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally.
Current address: Department of Chemistry, East Carolina University, Greenville, NC 27858
AUTHOR CONTRIBUTATION
ORCID 0000-0001-5734-2843
0000-0001-6990-7178
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5812730
PMID 29244501
PQID 1977780021
PQPubID 23479
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5812730
proquest_miscellaneous_2116861701
proquest_miscellaneous_1977780021
pubmed_primary_29244501
crossref_citationtrail_10_1021_jacs_7b08418
crossref_primary_10_1021_jacs_7b08418
acs_journals_10_1021_jacs_7b08418
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-27
PublicationDateYYYYMMDD 2017-12-27
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref45/cit45
ref99/cit99
ref81/cit81
ref16/cit16
Bell R. P. (ref120/cit120) 1980
ref52/cit52
ref114/cit114
ref23/cit23
ref115/cit115
ref116/cit116
ref110/cit110
ref111/cit111
ref2/cit2
ref112/cit112
ref77/cit77
ref113/cit113
ref71/cit71
Frey P. A. (ref4/cit4) 2007
ref117/cit117
ref20/cit20
ref48/cit48
ref118/cit118
ref74/cit74
ref119/cit119
ref10/cit10
ref35/cit35
ref89/cit89
ref19/cit19
ref93/cit93
ref42/cit42
ref96/cit96
ref107/cit107
ref109/cit109
ref13/cit13
ref122/cit122
ref105/cit105
ref61/cit61
ref67/cit67
ref38/cit38
ref128/cit128
ref90/cit90
ref124/cit124
ref64/cit64
ref126/cit126
ref54/cit54
ref6/cit6
ref18/cit18
ref136/cit136
ref137/cit137
ref65/cit65
ref97/cit97
ref101/cit101
ref11/cit11
ref29/cit29
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref5/cit5
Walsh C. (ref3/cit3) 1979
ref43/cit43
ref80/cit80
ref133/cit133
ref28/cit28
Allemann R. K. (ref24/cit24) 2009; 18
ref132/cit132
ref91/cit91
ref148/cit148
ref55/cit55
ref144/cit144
ref12/cit12
ref66/cit66
ref22/cit22
ref121/cit121
ref33/cit33
ref87/cit87
ref106/cit106
ref140/cit140
ref129/cit129
ref44/cit44
ref70/cit70
ref98/cit98
ref125/cit125
ref9/cit9
ref27/cit27
ref150/cit150
ref63/cit63
ref151/cit151
ref56/cit56
ref92/cit92
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref34/cit34
Jencks W. P. (ref102/cit102) 1969
ref37/cit37
ref60/cit60
ref88/cit88
ref17/cit17
ref82/cit82
ref147/cit147
ref143/cit143
ref53/cit53
ref145/cit145
ref149/cit149
ref46/cit46
ref49/cit49
ref75/cit75
ref141/cit141
ref50/cit50
ref78/cit78
ref36/cit36
ref83/cit83
ref138/cit138
ref79/cit79
ref139/cit139
ref100/cit100
ref25/cit25
ref103/cit103
ref72/cit72
ref14/cit14
Fisher H. F. (ref21/cit21) 1953; 202
ref57/cit57
ref51/cit51
ref134/cit134
ref135/cit135
ref40/cit40
ref68/cit68
ref94/cit94
ref130/cit130
ref131/cit131
ref146/cit146
ref26/cit26
ref142/cit142
ref73/cit73
ref69/cit69
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref95/cit95
ref108/cit108
ref104/cit104
ref30/cit30
ref47/cit47
ref84/cit84
ref127/cit127
ref1/cit1
ref123/cit123
ref7/cit7
References_xml – ident: ref11/cit11
  doi: 10.1126/science.1168243
– ident: ref97/cit97
  doi: 10.1021/ja207467d
– ident: ref140/cit140
  doi: 10.1126/science.1086911
– ident: ref99/cit99
  doi: 10.1021/acs.jpcb.6b07814
– ident: ref79/cit79
  doi: 10.1002/anie.201603592
– ident: ref76/cit76
  doi: 10.1021/jp500825x
– ident: ref48/cit48
  doi: 10.1021/jp100133p
– ident: ref107/cit107
  doi: 10.1146/annurev.physchem.55.091602.094410
– volume-title: Enzymatic Reaction Mechanisms
  year: 1979
  ident: ref3/cit3
– ident: ref138/cit138
  doi: 10.1146/annurev-biochem-061809-100742
– ident: ref17/cit17
  doi: 10.1016/j.cbpa.2013.02.012
– ident: ref40/cit40
  doi: 10.1021/bi960985q
– ident: ref121/cit121
  doi: 10.1039/9781847559975-00132
– ident: ref1/cit1
  doi: 10.1002/9780470122884.ch4
– ident: ref113/cit113
  doi: 10.1021/jp805876e
– ident: ref38/cit38
  doi: 10.1038/nature20571
– ident: ref35/cit35
  doi: 10.1038/nature06522
– ident: ref108/cit108
  doi: 10.1007/s00214-006-0143-z
– ident: ref6/cit6
  doi: 10.1021/cb300631k
– ident: ref9/cit9
  doi: 10.1016/j.drudis.2006.05.012
– ident: ref136/cit136
  doi: 10.1038/223704a0
– ident: ref52/cit52
  doi: 10.1021/ja800471f
– ident: ref58/cit58
  doi: 10.1021/ar0202565
– ident: ref89/cit89
  doi: 10.1021/bi049004x
– ident: ref111/cit111
  doi: 10.1002/prot.22654
– ident: ref101/cit101
  doi: 10.1038/161707a0
– ident: ref73/cit73
  doi: 10.1073/pnas.1104989108
– ident: ref146/cit146
  doi: 10.1021/ar5003158
– ident: ref123/cit123
  doi: 10.1021/bi991941v
– ident: ref151/cit151
  doi: 10.1021/acs.jpcb.7b05570
– ident: ref43/cit43
  doi: 10.1016/j.chemphys.2005.05.017
– ident: ref71/cit71
  doi: 10.1073/pnas.0403337101
– ident: ref131/cit131
  doi: 10.1074/jbc.273.40.25529
– ident: ref130/cit130
  doi: 10.1021/acs.jctc.6b01032
– ident: ref81/cit81
  doi: 10.1021/acscentsci.7b00142
– ident: ref19/cit19
  doi: 10.1126/science.7809611
– ident: ref115/cit115
  doi: 10.1021/ar500322s
– ident: ref55/cit55
  doi: 10.1021/acs.biochem.5b00374
– ident: ref82/cit82
  doi: 10.1073/pnas.1111325108
– volume-title: Catalysis in Chemistry and Enzymology
  year: 1969
  ident: ref102/cit102
– ident: ref133/cit133
  doi: 10.1021/acscentsci.5b00160
– ident: ref116/cit116
  doi: 10.1021/acs.biochem.5b01241
– ident: ref62/cit62
  doi: 10.1002/pro.2626
– ident: ref122/cit122
  doi: 10.1021/bi982719d
– ident: ref105/cit105
  doi: 10.1074/jbc.273.42.27035
– ident: ref31/cit31
  doi: 10.1038/nchembio.204
– ident: ref13/cit13
  doi: 10.1002/1521-3773(20021202)41:23<4427::AID-ANIE4427>3.0.CO;2-K
– ident: ref5/cit5
  doi: 10.1002/rmv.624
– ident: ref110/cit110
  doi: 10.1039/B907354J
– ident: ref7/cit7
  doi: 10.1038/nrd2400
– ident: ref45/cit45
  doi: 10.1139/v99-099
– ident: ref57/cit57
  doi: 10.1021/jacs.6b11856
– ident: ref86/cit86
  doi: 10.1016/j.jasms.2006.06.006
– ident: ref80/cit80
  doi: 10.1016/S0167-4838(01)00347-8
– ident: ref85/cit85
  doi: 10.1146/annurev.biophys.32.110601.142417
– ident: ref37/cit37
  doi: 10.1021/ar500390e
– ident: ref87/cit87
  doi: 10.1002/mas.20064
– ident: ref60/cit60
  doi: 10.1021/ja0214126
– ident: ref145/cit145
  doi: 10.1038/nature11500
– ident: ref63/cit63
  doi: 10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G
– ident: ref27/cit27
  doi: 10.1021/bi400215w
– ident: ref127/cit127
  doi: 10.1021/ja044541q
– ident: ref53/cit53
  doi: 10.1021/ja502726s
– ident: ref109/cit109
  doi: 10.1002/anie.200802019
– ident: ref139/cit139
  doi: 10.1021/cr0503106
– ident: ref14/cit14
  doi: 10.1146/annurev-biochem-072611-101825
– ident: ref141/cit141
  doi: 10.1021/ar5003347
– ident: ref135/cit135
  doi: 10.1021/acs.jpclett.5b00346
– volume-title: Enzymatic Reaction Mechanisms
  year: 2007
  ident: ref4/cit4
  doi: 10.1093/oso/9780195122589.001.0001
– ident: ref50/cit50
  doi: 10.1021/ar040199a
– ident: ref65/cit65
  doi: 10.1021/bi0273462
– ident: ref49/cit49
  doi: 10.1039/C6FD00122J
– ident: ref83/cit83
  doi: 10.1371/journal.pcbi.1004507
– ident: ref22/cit22
  doi: 10.1126/science.2646716
– ident: ref100/cit100
  doi: 10.1021/jacs.6b03462
– ident: ref125/cit125
  doi: 10.1074/jbc.M008141200
– ident: ref142/cit142
  doi: 10.1021/ja01457a008
– volume: 202
  start-page: 687
  year: 1953
  ident: ref21/cit21
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)66181-2
– ident: ref143/cit143
  doi: 10.1021/ed055p309
– ident: ref68/cit68
  doi: 10.1021/acs.chemrev.5b00623
– ident: ref15/cit15
  doi: 10.1038/nchem.2555
– ident: ref70/cit70
  doi: 10.1021/ja002229k
– volume: 18
  volume-title: RSC Biomolecular Sciences
  year: 2009
  ident: ref24/cit24
– ident: ref36/cit36
  doi: 10.1146/annurev-biochem-051710-133623
– volume-title: the Tunnel Effect in Chemistry
  year: 1980
  ident: ref120/cit120
  doi: 10.1007/978-1-4899-2891-7
– ident: ref93/cit93
  doi: 10.1021/bi020054g
– ident: ref69/cit69
  doi: 10.1038/20981
– ident: ref75/cit75
  doi: 10.1074/jbc.M113.453951
– ident: ref148/cit148
  doi: 10.1021/acscatal.5b00331
– ident: ref137/cit137
  doi: 10.1126/science.180.4082.149
– ident: ref23/cit23
  doi: 10.1021/ja961827p
– ident: ref128/cit128
  doi: 10.1021/jp051184c
– ident: ref61/cit61
  doi: 10.1016/j.abb.2010.08.016
– ident: ref77/cit77
  doi: 10.1021/ja506667k
– ident: ref112/cit112
  doi: 10.1063/1.4947037
– ident: ref74/cit74
  doi: 10.1021/bi3001352
– ident: ref92/cit92
  doi: 10.1073/pnas.94.24.12797
– ident: ref78/cit78
  doi: 10.1021/jacs.5b04413
– ident: ref147/cit147
  doi: 10.7554/eLife.07574
– ident: ref18/cit18
  doi: 10.1021/ja208827q
– ident: ref119/cit119
  doi: 10.1021/j100464a026
– ident: ref94/cit94
  doi: 10.1021/ja031683w
– ident: ref8/cit8
  doi: 10.1038/nrd1063
– ident: ref26/cit26
  doi: 10.1016/j.bbapap.2010.12.002
– ident: ref106/cit106
  doi: 10.1146/annurev.pc.15.100164.001103
– ident: ref103/cit103
  doi: 10.1073/pnas.68.8.1678
– ident: ref149/cit149
  doi: 10.1038/nchembio.2175
– ident: ref42/cit42
  doi: 10.1021/ja012205t
– ident: ref88/cit88
  doi: 10.1021/ja047087z
– ident: ref126/cit126
  doi: 10.1021/ja025758s
– ident: ref144/cit144
  doi: 10.1073/pnas.0608849103
– ident: ref64/cit64
  doi: 10.1021/bi500070q
– ident: ref95/cit95
  doi: 10.1021/ja103010b
– ident: ref10/cit10
  doi: 10.1038/nchembio.155
– ident: ref90/cit90
  doi: 10.1021/bi050630j
– ident: ref104/cit104
  doi: 10.1126/science.6359416
– ident: ref32/cit32
  doi: 10.1038/nchembio.202
– ident: ref59/cit59
  doi: 10.1073/pnas.0636464100
– ident: ref124/cit124
  doi: 10.1002/1521-3773(20000915)39:18<3279::AID-ANIE3279>3.0.CO;2-G
– ident: ref117/cit117
  doi: 10.1021/jacs.5b12551
– ident: ref46/cit46
  doi: 10.1021/ja039606o
– ident: ref44/cit44
  doi: 10.1073/pnas.0710643105
– ident: ref56/cit56
– ident: ref16/cit16
  doi: 10.1038/nchem.2596
– ident: ref114/cit114
  doi: 10.1021/cr1001436
– ident: ref51/cit51
  doi: 10.1021/acscatal.7b00688
– ident: ref118/cit118
  doi: 10.1073/pnas.1704786114
– ident: ref54/cit54
  doi: 10.1021/ja806354w
– ident: ref30/cit30
  doi: 10.1126/science.1085515
– ident: ref41/cit41
  doi: 10.1021/ja00081a060
– ident: ref72/cit72
  doi: 10.1021/cr050301x
– ident: ref129/cit129
  doi: 10.1021/ja061585l
– ident: ref28/cit28
  doi: 10.1016/j.cbpa.2014.03.022
– ident: ref96/cit96
– ident: ref98/cit98
  doi: 10.1073/pnas.1506792112
– ident: ref2/cit2
  doi: 10.1021/ar040257s
– ident: ref25/cit25
  doi: 10.1021/cr040427e
– ident: ref34/cit34
  doi: 10.1038/nchem.1223
– ident: ref33/cit33
  doi: 10.1038/nchem.1244
– ident: ref134/cit134
  doi: 10.1038/nchem.2527
– ident: ref12/cit12
  doi: 10.1126/science.7569920
– ident: ref91/cit91
  doi: 10.1016/S0009-2797(02)00222-3
– ident: ref20/cit20
  doi: 10.1021/bi00551a001
– ident: ref150/cit150
  doi: 10.1073/pnas.1523573113
– ident: ref67/cit67
  doi: 10.1021/cs500325p
– ident: ref29/cit29
  doi: 10.1021/ar0001665
– ident: ref47/cit47
  doi: 10.1021/ja0667211
– ident: ref84/cit84
  doi: 10.1038/nature08615
– ident: ref132/cit132
  doi: 10.1073/pnas.1417923111
– ident: ref66/cit66
  doi: 10.1074/jbc.273.21.13072
– ident: ref39/cit39
  doi: 10.1021/bi00043a013
SSID ssj0004281
Score 2.4879062
SecondaryResourceType review_article
Snippet The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design...
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 18409
SubjectTerms active sites
alcohol dehydrogenase
Alcohol Dehydrogenase - chemistry
Alcohol Dehydrogenase - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Biocatalysis
carbon-hydrogen bond activation
catalysts
catalytic activity
Catalytic Domain
geometry
Lipoxygenases - chemistry
Lipoxygenases - metabolism
Thermodynamics
Title Origins of Enzyme Catalysis: Experimental Findings for C–H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs
URI http://dx.doi.org/10.1021/jacs.7b08418
https://www.ncbi.nlm.nih.gov/pubmed/29244501
https://www.proquest.com/docview/1977780021
https://www.proquest.com/docview/2116861701
https://pubmed.ncbi.nlm.nih.gov/PMC5812730
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbhMxELWgHOBSoEAJBTSVyoluFDte2-mtWiVESFCppFJvke211ahlU2nTAz3xA5z4Q76Emc1u0qSK4Lqe1a7HY_uNx_OGsYM85FHFrk_Q91CJ5LGXWMl5kmovrfQq954O9L98VcMz-fk8PV9ekF2P4AviB_JlW7uOkdw8ZI-EwvlLECj7tsx_FIY3MFcb1a0vuK-_TRuQL1c3oHuocv1y5J3dZvCUfWpyduaXTC7bNzPX9rf3KRz_0ZFnbLsGnHA8t5Dn7EEodtjjrKnz9oL9OqlqY5UwjdAvbn98D5DRmQ5RlRxB_04FABhMqhyYEhDpQvbn5-8hHPumPtoh4IIJVFvtqjwEW-QwoiAEnFIGO9kWzKZAjFF2QinwMFqmUAKVDa2IbMuX7GzQH2XDpC7SgGNq9CyJeTDELZpzq3nQSndcdCHEmONqYZy0AgFCcJ3U40x3ImL3o-FWaCUD7-nQfcW2imkRXjOQaY-inOjyONQRrRwoKnVQTqQutaHF9lGF43qSleMqfi7Qf6GntWJb7GMzumNfs5xTsY2rDdIfFtLXc3aPDXL7jaGMcXQopmKLML3Bf0D8rAl0880y6GMrUxHft9ju3LgWXxPo_8qUWvSK2S0EiP57taWYXFQ04CliM1yf3_yHVvbYE0FwhFMq1lu2hSMa3iGYmrn31Uz6C0taHGs
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHMqFV6GkvKZSOdGt4o3XdrhFq0ShjyBBKvW2WnttEVE2SJse2hN_gBP_kF_CjLObNEGRel3P7voxtr_xeL5h7KBwhZe-YyO0PWQkuO9GueA8SpQVubCysJYO9M9Gcnguji-SizpYnWJhsBIVfqkKTvwluwDRBOFDZdpacH2fPUAcEpNC99KvyzDIWPMG7SotO_U99_W3aR-y1eo-9B-4XL8jeWvTGTxmo0V1w12T70dXM3Nkb9aYHO_cnifsUQ0_oTfXl6fsniufse20yfq2w35_DpmyKph66Jc31z8cpHTCQ8QlH6F_Kx8ADCYhIqYCxL2Q_v31Zwg922RLOwRcPoEyrV1Wh5CXBYzJJQFfKJ6dNA1mUyD-qHxCAfEwXgZUAiURDbS21XN2PuiP02FUp2zAEdZqFvnCaWIaLXiuuFNStY03znlf4NqhjchjhAvOtBOL897EHpvvNc9jJYXjXeU6L9hWOS3dSwYi6ZLPEw0gg31E6wiKCuWkiROT5K7F9rELs3rKVVnwpsdozdDTumNb7EMzyJmtOc8p9cblBun3C-mfc66PDXL7jb5kODrkYclLN73COiCaVgTB-WYZtLilDjT4LbY717HF32K0hkVCJWpF-xYCRAa-WlJOvgVS8ASRGq7We3folXdsezg-O81OP41OXrGHMQEVTkFar9kWjq57gzBrZt6GyfUPQbEkzA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKkYAL70d4TiU40a3ijdd2uEVLovAqqKRSbyvba4uIsqm06YGe-AOc-If8Emac3bQJigTX9eyuH2P7G4_nG8ael74MMvRcgraHTAQP_cQIzpNMOWGEk6VzdKD_YV-OD8Xbo-xoi_E2FgYrUeOX6ujEp1l9UoaGYYCogrBA2a4WXF9il8ljR0o9yD-fh0KmmreIV2nZa-66r79Ne5GrV_eivwDm-j3JCxvP6AY7WFY53jf5unc6t3vubI3N8b_adJNdb2AoDBZ6c4tt-eo2u5q32d_usJ8fY8asGmYBhtXZ928ecjrpIQKTVzC8kBcARtMYGVMD4l_If__4NYaBa7Om7QIuo0AZ147rXTBVCRNyTcABxbWTxsF8BsQjZaYUGA-T88BKoGSikd62vssOR8NJPk6a1A040lrNk1B6TYyjJTeKeyVV1wbrfQglriHaCpMibPC2mzmc_zYN2PyguUmVFJ73le_dY9vVrPIPGIisT75PNIQs9hGtJygqlJc2zWxmfIftYBcWzdSri-hVT9GqoadNx3bYy3agC9dwn1MKjuMN0i-W0icLzo8NcjutzhQ4OuRpMZWfnWIdEFUrguJ8swxa3lJHOvwOu7_Qs-XfUrSKRUYlakUDlwJECr5aUk2_RHLwDBEbrtoP_6FXnrErn16Pivdv9t89YtdSwiucYrUes20cXP8E0dbcPo3z6w-R9ydP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origins+of+Enzyme+Catalysis%3A+Experimental+Findings+for+C%E2%80%93H+Activation%2C+New+Models%2C+and+Their+Relevance+to+Prevailing+Theoretical+Constructs&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Klinman%2C+Judith+P&rft.au=Offenbacher%2C+Adam+R&rft.au=Hu%2C+Shenshen&rft.date=2017-12-27&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=51&rft.spage=18409&rft.epage=18427&rft_id=info:doi/10.1021%2Fjacs.7b08418&rft.externalDocID=a028398206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon