Origins of Enzyme Catalysis: Experimental Findings for C–H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs
The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insig...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 51; pp. 18409 - 18427 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C–H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor–acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement. |
---|---|
AbstractList | The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement.The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme's overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement. The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C–H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C–H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor–acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement. The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design of green catalysts and the pursuit of new drug regimens. Extensive investigations of C-H activating systems have provided considerable insight into the relationship between an enzyme’s overall structure and the catalytic chemistry at its active site. This Perspective highlights recent experimental data for two members of distinct, yet iconic C-H activation enzyme classes, lipoxygenases and prokaryotic alcohol dehydrogenases. The data necessitate a reformulation of the dominant textbook definition of biological catalysis. A multidimensional model emerges that incorporates a range of protein motions that can be parsed into a combination of global stochastic conformational thermal fluctuations and local donor-acceptor distance sampling. These motions are needed to achieve a high degree of precision with regard to internuclear distances, geometries, and charges within the active site. The available model also suggests a physical framework for understanding the empirical enthalpic barrier in enzyme-catalyzed processes. We conclude by addressing the often conflicting interface between computational and experimental chemists, emphasizing the need for computation to predict experimental results in advance of their measurement. |
Author | Offenbacher, Adam R Hu, Shenshen Klinman, Judith P |
AuthorAffiliation | Department of Chemistry California Institute for Quantitative Biosciences University of California Department of Molecular and Cell Biology |
AuthorAffiliation_xml | – name: California Institute for Quantitative Biosciences – name: University of California – name: Department of Chemistry – name: Department of Molecular and Cell Biology – name: Department of Chemistry, University of California, Berkeley, California 94720, United States – name: Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States – name: California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720, United States |
Author_xml | – sequence: 1 givenname: Judith P orcidid: 0000-0001-5734-2843 surname: Klinman fullname: Klinman, Judith P email: klinman@berkeley.edu organization: University of California – sequence: 2 givenname: Adam R orcidid: 0000-0001-6990-7178 surname: Offenbacher fullname: Offenbacher, Adam R organization: University of California – sequence: 3 givenname: Shenshen surname: Hu fullname: Hu, Shenshen organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29244501$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQtVARTQs3zshHDtni8X7Y4YBUrVKKVChC5Wx5vbOpo40d7N2UcOIPcOIf8ktwaIoAgTh5PPPm6c3MOyIHzjsk5DGwE2Acni21iSeiYbIAeY9MoOQsK4FXB2TCGOOZkFV-SI5iXKZvwSU8IId8xouiZDAhXy6DXVgXqe_o3H3arpDWetD9Ntr4nM4_rjHYFbqUoWfWtdYtIu18oPW3z1_P6akZ7EYP1rspfYM39LVvsY9Tql1Lr67RBvoOe9xoZ5AOnr4NKbZ9ItlVfcDBmkRcexeHMJohPiT3O91HfLR_j8n7s_lVfZ5dXL58VZ9eZLqQYsi6FiWbQd6CFoCiEqzpGsSua3OQsik0Lzlgw0pT5bLhXdpNJ0FzURUIM4H5MXlxy7semxW2Jg0YdK_WaVYdtsprq36vOHutFn6jSglc5CwRPN0TBP9hxDiolY0G-1479GNUHKCSFQgG_4UmQULIdKkd9Mmvsn7quTtXAvBbgAk-xoCdMnb4sf-k0vYKmNp5Qu08ofaeSE3TP5rueP8B3-vdJZd-DC5d4u_Q71_1yPY |
CitedBy_id | crossref_primary_10_1021_acs_biochem_8b00217 crossref_primary_10_1021_acs_biochem_9b00467 crossref_primary_10_3390_ijms252212058 crossref_primary_10_1021_acs_biochem_9b00861 crossref_primary_10_1021_acs_jpca_2c05861 crossref_primary_10_1021_acs_jpca_2c01783 crossref_primary_10_1021_acs_jpclett_1c01453 crossref_primary_10_1021_jacs_0c09423 crossref_primary_10_1146_annurev_physchem_050317_014308 crossref_primary_10_1016_j_cbpa_2018_09_010 crossref_primary_10_1021_jacs_8b10461 crossref_primary_10_1021_acs_biochem_3c00119 crossref_primary_10_3390_molecules25153374 crossref_primary_10_1021_acs_jpcb_3c00477 crossref_primary_10_1021_acs_biochem_4c00109 crossref_primary_10_1074_jbc_RA119_010826 crossref_primary_10_1021_jacs_8b10992 crossref_primary_10_1002_chem_202102189 crossref_primary_10_1073_pnas_1917219117 crossref_primary_10_1007_s10930_021_10012_x crossref_primary_10_1016_j_molliq_2018_06_087 crossref_primary_10_1038_s41467_024_53048_0 crossref_primary_10_1021_acs_accounts_8b00226 crossref_primary_10_1021_acs_jpcb_2c00338 crossref_primary_10_1021_acs_jpcb_9b07228 crossref_primary_10_1021_acscatal_4c00439 crossref_primary_10_1016_j_abb_2019_108082 crossref_primary_10_1007_s12033_018_0122_3 crossref_primary_10_1021_acscatal_2c00257 crossref_primary_10_1021_jacs_8b00350 crossref_primary_10_1021_acs_biochem_8b01004 crossref_primary_10_1021_acs_joc_4c02246 crossref_primary_10_1016_j_abb_2023_109740 crossref_primary_10_1021_jacs_0c07866 crossref_primary_10_1002_1873_3468_14275 crossref_primary_10_1039_C9FD00071B crossref_primary_10_1002_cssc_202201045 crossref_primary_10_1021_acs_jpclett_8b02945 crossref_primary_10_1016_j_jinorgbio_2022_111914 crossref_primary_10_1021_acs_biochem_9b00732 crossref_primary_10_1021_acsami_9b15311 crossref_primary_10_1038_s41467_024_48281_6 crossref_primary_10_1016_j_bioorg_2018_03_010 crossref_primary_10_1021_jacs_8b07772 crossref_primary_10_1021_acscatal_9b00174 crossref_primary_10_1021_acscentsci_3c00926 crossref_primary_10_1021_acs_jpcb_1c10280 crossref_primary_10_1021_acs_jpcb_8b08865 crossref_primary_10_1146_annurev_biochem_013118_111217 crossref_primary_10_1073_pnas_2011350117 crossref_primary_10_1073_pnas_2211630120 crossref_primary_10_1021_acscatal_3c04543 crossref_primary_10_1038_s41467_024_54912_9 crossref_primary_10_1039_D0CP05265E |
Cites_doi | 10.1126/science.1168243 10.1021/ja207467d 10.1126/science.1086911 10.1021/acs.jpcb.6b07814 10.1002/anie.201603592 10.1021/jp500825x 10.1021/jp100133p 10.1146/annurev.physchem.55.091602.094410 10.1146/annurev-biochem-061809-100742 10.1016/j.cbpa.2013.02.012 10.1021/bi960985q 10.1039/9781847559975-00132 10.1002/9780470122884.ch4 10.1021/jp805876e 10.1038/nature20571 10.1038/nature06522 10.1007/s00214-006-0143-z 10.1021/cb300631k 10.1016/j.drudis.2006.05.012 10.1038/223704a0 10.1021/ja800471f 10.1021/ar0202565 10.1021/bi049004x 10.1002/prot.22654 10.1038/161707a0 10.1073/pnas.1104989108 10.1021/ar5003158 10.1021/bi991941v 10.1021/acs.jpcb.7b05570 10.1016/j.chemphys.2005.05.017 10.1073/pnas.0403337101 10.1074/jbc.273.40.25529 10.1021/acs.jctc.6b01032 10.1021/acscentsci.7b00142 10.1126/science.7809611 10.1021/ar500322s 10.1021/acs.biochem.5b00374 10.1073/pnas.1111325108 10.1021/acscentsci.5b00160 10.1021/acs.biochem.5b01241 10.1002/pro.2626 10.1021/bi982719d 10.1074/jbc.273.42.27035 10.1038/nchembio.204 10.1002/1521-3773(20021202)41:23<4427::AID-ANIE4427>3.0.CO;2-K 10.1002/rmv.624 10.1039/B907354J 10.1038/nrd2400 10.1139/v99-099 10.1021/jacs.6b11856 10.1016/j.jasms.2006.06.006 10.1016/S0167-4838(01)00347-8 10.1146/annurev.biophys.32.110601.142417 10.1021/ar500390e 10.1002/mas.20064 10.1021/ja0214126 10.1038/nature11500 10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G 10.1021/bi400215w 10.1021/ja044541q 10.1021/ja502726s 10.1002/anie.200802019 10.1021/cr0503106 10.1146/annurev-biochem-072611-101825 10.1021/ar5003347 10.1021/acs.jpclett.5b00346 10.1093/oso/9780195122589.001.0001 10.1021/ar040199a 10.1021/bi0273462 10.1039/C6FD00122J 10.1371/journal.pcbi.1004507 10.1126/science.2646716 10.1021/jacs.6b03462 10.1074/jbc.M008141200 10.1021/ja01457a008 10.1016/S0021-9258(18)66181-2 10.1021/ed055p309 10.1021/acs.chemrev.5b00623 10.1038/nchem.2555 10.1021/ja002229k 10.1146/annurev-biochem-051710-133623 10.1007/978-1-4899-2891-7 10.1021/bi020054g 10.1038/20981 10.1074/jbc.M113.453951 10.1021/acscatal.5b00331 10.1126/science.180.4082.149 10.1021/ja961827p 10.1021/jp051184c 10.1016/j.abb.2010.08.016 10.1021/ja506667k 10.1063/1.4947037 10.1021/bi3001352 10.1073/pnas.94.24.12797 10.1021/jacs.5b04413 10.7554/eLife.07574 10.1021/ja208827q 10.1021/j100464a026 10.1021/ja031683w 10.1038/nrd1063 10.1016/j.bbapap.2010.12.002 10.1146/annurev.pc.15.100164.001103 10.1073/pnas.68.8.1678 10.1038/nchembio.2175 10.1021/ja012205t 10.1021/ja047087z 10.1021/ja025758s 10.1073/pnas.0608849103 10.1021/bi500070q 10.1021/ja103010b 10.1038/nchembio.155 10.1021/bi050630j 10.1126/science.6359416 10.1038/nchembio.202 10.1073/pnas.0636464100 10.1002/1521-3773(20000915)39:18<3279::AID-ANIE3279>3.0.CO;2-G 10.1021/jacs.5b12551 10.1021/ja039606o 10.1073/pnas.0710643105 10.1038/nchem.2596 10.1021/cr1001436 10.1021/acscatal.7b00688 10.1073/pnas.1704786114 10.1021/ja806354w 10.1126/science.1085515 10.1021/ja00081a060 10.1021/cr050301x 10.1021/ja061585l 10.1016/j.cbpa.2014.03.022 10.1073/pnas.1506792112 10.1021/ar040257s 10.1021/cr040427e 10.1038/nchem.1223 10.1038/nchem.1244 10.1038/nchem.2527 10.1126/science.7569920 10.1016/S0009-2797(02)00222-3 10.1021/bi00551a001 10.1073/pnas.1523573113 10.1021/cs500325p 10.1021/ar0001665 10.1021/ja0667211 10.1038/nature08615 10.1073/pnas.1417923111 10.1074/jbc.273.21.13072 10.1021/bi00043a013 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/jacs.7b08418 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 18427 |
ExternalDocumentID | PMC5812730 29244501 10_1021_jacs_7b08418 a028398206 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: F32 GM113432 – fundername: NIGMS NIH HHS grantid: R35 GM118117 |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 5PM AAYWT |
ID | FETCH-LOGICAL-a487t-fde80913d1a71e7670bfbeeffd3188b4a2521eb05c638b2f084f81a2764e197e3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu Aug 21 18:24:47 EDT 2025 Fri Jul 11 06:28:40 EDT 2025 Fri Jul 11 04:07:23 EDT 2025 Thu Apr 03 07:07:49 EDT 2025 Tue Jul 01 03:21:25 EDT 2025 Thu Apr 24 22:55:50 EDT 2025 Thu Aug 27 13:41:59 EDT 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-fde80913d1a71e7670bfbeeffd3188b4a2521eb05c638b2f084f81a2764e197e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally. Current address: Department of Chemistry, East Carolina University, Greenville, NC 27858 AUTHOR CONTRIBUTATION |
ORCID | 0000-0001-5734-2843 0000-0001-6990-7178 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/5812730 |
PMID | 29244501 |
PQID | 1977780021 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5812730 proquest_miscellaneous_2116861701 proquest_miscellaneous_1977780021 pubmed_primary_29244501 crossref_citationtrail_10_1021_jacs_7b08418 crossref_primary_10_1021_jacs_7b08418 acs_journals_10_1021_jacs_7b08418 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-12-27 |
PublicationDateYYYYMMDD | 2017-12-27 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref45/cit45 ref99/cit99 ref81/cit81 ref16/cit16 Bell R. P. (ref120/cit120) 1980 ref52/cit52 ref114/cit114 ref23/cit23 ref115/cit115 ref116/cit116 ref110/cit110 ref111/cit111 ref2/cit2 ref112/cit112 ref77/cit77 ref113/cit113 ref71/cit71 Frey P. A. (ref4/cit4) 2007 ref117/cit117 ref20/cit20 ref48/cit48 ref118/cit118 ref74/cit74 ref119/cit119 ref10/cit10 ref35/cit35 ref89/cit89 ref19/cit19 ref93/cit93 ref42/cit42 ref96/cit96 ref107/cit107 ref109/cit109 ref13/cit13 ref122/cit122 ref105/cit105 ref61/cit61 ref67/cit67 ref38/cit38 ref128/cit128 ref90/cit90 ref124/cit124 ref64/cit64 ref126/cit126 ref54/cit54 ref6/cit6 ref18/cit18 ref136/cit136 ref137/cit137 ref65/cit65 ref97/cit97 ref101/cit101 ref11/cit11 ref29/cit29 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref5/cit5 Walsh C. (ref3/cit3) 1979 ref43/cit43 ref80/cit80 ref133/cit133 ref28/cit28 Allemann R. K. (ref24/cit24) 2009; 18 ref132/cit132 ref91/cit91 ref148/cit148 ref55/cit55 ref144/cit144 ref12/cit12 ref66/cit66 ref22/cit22 ref121/cit121 ref33/cit33 ref87/cit87 ref106/cit106 ref140/cit140 ref129/cit129 ref44/cit44 ref70/cit70 ref98/cit98 ref125/cit125 ref9/cit9 ref27/cit27 ref150/cit150 ref63/cit63 ref151/cit151 ref56/cit56 ref92/cit92 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref34/cit34 Jencks W. P. (ref102/cit102) 1969 ref37/cit37 ref60/cit60 ref88/cit88 ref17/cit17 ref82/cit82 ref147/cit147 ref143/cit143 ref53/cit53 ref145/cit145 ref149/cit149 ref46/cit46 ref49/cit49 ref75/cit75 ref141/cit141 ref50/cit50 ref78/cit78 ref36/cit36 ref83/cit83 ref138/cit138 ref79/cit79 ref139/cit139 ref100/cit100 ref25/cit25 ref103/cit103 ref72/cit72 ref14/cit14 Fisher H. F. (ref21/cit21) 1953; 202 ref57/cit57 ref51/cit51 ref134/cit134 ref135/cit135 ref40/cit40 ref68/cit68 ref94/cit94 ref130/cit130 ref131/cit131 ref146/cit146 ref26/cit26 ref142/cit142 ref73/cit73 ref69/cit69 ref15/cit15 ref62/cit62 ref41/cit41 ref58/cit58 ref95/cit95 ref108/cit108 ref104/cit104 ref30/cit30 ref47/cit47 ref84/cit84 ref127/cit127 ref1/cit1 ref123/cit123 ref7/cit7 |
References_xml | – ident: ref11/cit11 doi: 10.1126/science.1168243 – ident: ref97/cit97 doi: 10.1021/ja207467d – ident: ref140/cit140 doi: 10.1126/science.1086911 – ident: ref99/cit99 doi: 10.1021/acs.jpcb.6b07814 – ident: ref79/cit79 doi: 10.1002/anie.201603592 – ident: ref76/cit76 doi: 10.1021/jp500825x – ident: ref48/cit48 doi: 10.1021/jp100133p – ident: ref107/cit107 doi: 10.1146/annurev.physchem.55.091602.094410 – volume-title: Enzymatic Reaction Mechanisms year: 1979 ident: ref3/cit3 – ident: ref138/cit138 doi: 10.1146/annurev-biochem-061809-100742 – ident: ref17/cit17 doi: 10.1016/j.cbpa.2013.02.012 – ident: ref40/cit40 doi: 10.1021/bi960985q – ident: ref121/cit121 doi: 10.1039/9781847559975-00132 – ident: ref1/cit1 doi: 10.1002/9780470122884.ch4 – ident: ref113/cit113 doi: 10.1021/jp805876e – ident: ref38/cit38 doi: 10.1038/nature20571 – ident: ref35/cit35 doi: 10.1038/nature06522 – ident: ref108/cit108 doi: 10.1007/s00214-006-0143-z – ident: ref6/cit6 doi: 10.1021/cb300631k – ident: ref9/cit9 doi: 10.1016/j.drudis.2006.05.012 – ident: ref136/cit136 doi: 10.1038/223704a0 – ident: ref52/cit52 doi: 10.1021/ja800471f – ident: ref58/cit58 doi: 10.1021/ar0202565 – ident: ref89/cit89 doi: 10.1021/bi049004x – ident: ref111/cit111 doi: 10.1002/prot.22654 – ident: ref101/cit101 doi: 10.1038/161707a0 – ident: ref73/cit73 doi: 10.1073/pnas.1104989108 – ident: ref146/cit146 doi: 10.1021/ar5003158 – ident: ref123/cit123 doi: 10.1021/bi991941v – ident: ref151/cit151 doi: 10.1021/acs.jpcb.7b05570 – ident: ref43/cit43 doi: 10.1016/j.chemphys.2005.05.017 – ident: ref71/cit71 doi: 10.1073/pnas.0403337101 – ident: ref131/cit131 doi: 10.1074/jbc.273.40.25529 – ident: ref130/cit130 doi: 10.1021/acs.jctc.6b01032 – ident: ref81/cit81 doi: 10.1021/acscentsci.7b00142 – ident: ref19/cit19 doi: 10.1126/science.7809611 – ident: ref115/cit115 doi: 10.1021/ar500322s – ident: ref55/cit55 doi: 10.1021/acs.biochem.5b00374 – ident: ref82/cit82 doi: 10.1073/pnas.1111325108 – volume-title: Catalysis in Chemistry and Enzymology year: 1969 ident: ref102/cit102 – ident: ref133/cit133 doi: 10.1021/acscentsci.5b00160 – ident: ref116/cit116 doi: 10.1021/acs.biochem.5b01241 – ident: ref62/cit62 doi: 10.1002/pro.2626 – ident: ref122/cit122 doi: 10.1021/bi982719d – ident: ref105/cit105 doi: 10.1074/jbc.273.42.27035 – ident: ref31/cit31 doi: 10.1038/nchembio.204 – ident: ref13/cit13 doi: 10.1002/1521-3773(20021202)41:23<4427::AID-ANIE4427>3.0.CO;2-K – ident: ref5/cit5 doi: 10.1002/rmv.624 – ident: ref110/cit110 doi: 10.1039/B907354J – ident: ref7/cit7 doi: 10.1038/nrd2400 – ident: ref45/cit45 doi: 10.1139/v99-099 – ident: ref57/cit57 doi: 10.1021/jacs.6b11856 – ident: ref86/cit86 doi: 10.1016/j.jasms.2006.06.006 – ident: ref80/cit80 doi: 10.1016/S0167-4838(01)00347-8 – ident: ref85/cit85 doi: 10.1146/annurev.biophys.32.110601.142417 – ident: ref37/cit37 doi: 10.1021/ar500390e – ident: ref87/cit87 doi: 10.1002/mas.20064 – ident: ref60/cit60 doi: 10.1021/ja0214126 – ident: ref145/cit145 doi: 10.1038/nature11500 – ident: ref63/cit63 doi: 10.1002/(SICI)1097-0134(199603)24:3<275::AID-PROT1>3.0.CO;2-G – ident: ref27/cit27 doi: 10.1021/bi400215w – ident: ref127/cit127 doi: 10.1021/ja044541q – ident: ref53/cit53 doi: 10.1021/ja502726s – ident: ref109/cit109 doi: 10.1002/anie.200802019 – ident: ref139/cit139 doi: 10.1021/cr0503106 – ident: ref14/cit14 doi: 10.1146/annurev-biochem-072611-101825 – ident: ref141/cit141 doi: 10.1021/ar5003347 – ident: ref135/cit135 doi: 10.1021/acs.jpclett.5b00346 – volume-title: Enzymatic Reaction Mechanisms year: 2007 ident: ref4/cit4 doi: 10.1093/oso/9780195122589.001.0001 – ident: ref50/cit50 doi: 10.1021/ar040199a – ident: ref65/cit65 doi: 10.1021/bi0273462 – ident: ref49/cit49 doi: 10.1039/C6FD00122J – ident: ref83/cit83 doi: 10.1371/journal.pcbi.1004507 – ident: ref22/cit22 doi: 10.1126/science.2646716 – ident: ref100/cit100 doi: 10.1021/jacs.6b03462 – ident: ref125/cit125 doi: 10.1074/jbc.M008141200 – ident: ref142/cit142 doi: 10.1021/ja01457a008 – volume: 202 start-page: 687 year: 1953 ident: ref21/cit21 publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)66181-2 – ident: ref143/cit143 doi: 10.1021/ed055p309 – ident: ref68/cit68 doi: 10.1021/acs.chemrev.5b00623 – ident: ref15/cit15 doi: 10.1038/nchem.2555 – ident: ref70/cit70 doi: 10.1021/ja002229k – volume: 18 volume-title: RSC Biomolecular Sciences year: 2009 ident: ref24/cit24 – ident: ref36/cit36 doi: 10.1146/annurev-biochem-051710-133623 – volume-title: the Tunnel Effect in Chemistry year: 1980 ident: ref120/cit120 doi: 10.1007/978-1-4899-2891-7 – ident: ref93/cit93 doi: 10.1021/bi020054g – ident: ref69/cit69 doi: 10.1038/20981 – ident: ref75/cit75 doi: 10.1074/jbc.M113.453951 – ident: ref148/cit148 doi: 10.1021/acscatal.5b00331 – ident: ref137/cit137 doi: 10.1126/science.180.4082.149 – ident: ref23/cit23 doi: 10.1021/ja961827p – ident: ref128/cit128 doi: 10.1021/jp051184c – ident: ref61/cit61 doi: 10.1016/j.abb.2010.08.016 – ident: ref77/cit77 doi: 10.1021/ja506667k – ident: ref112/cit112 doi: 10.1063/1.4947037 – ident: ref74/cit74 doi: 10.1021/bi3001352 – ident: ref92/cit92 doi: 10.1073/pnas.94.24.12797 – ident: ref78/cit78 doi: 10.1021/jacs.5b04413 – ident: ref147/cit147 doi: 10.7554/eLife.07574 – ident: ref18/cit18 doi: 10.1021/ja208827q – ident: ref119/cit119 doi: 10.1021/j100464a026 – ident: ref94/cit94 doi: 10.1021/ja031683w – ident: ref8/cit8 doi: 10.1038/nrd1063 – ident: ref26/cit26 doi: 10.1016/j.bbapap.2010.12.002 – ident: ref106/cit106 doi: 10.1146/annurev.pc.15.100164.001103 – ident: ref103/cit103 doi: 10.1073/pnas.68.8.1678 – ident: ref149/cit149 doi: 10.1038/nchembio.2175 – ident: ref42/cit42 doi: 10.1021/ja012205t – ident: ref88/cit88 doi: 10.1021/ja047087z – ident: ref126/cit126 doi: 10.1021/ja025758s – ident: ref144/cit144 doi: 10.1073/pnas.0608849103 – ident: ref64/cit64 doi: 10.1021/bi500070q – ident: ref95/cit95 doi: 10.1021/ja103010b – ident: ref10/cit10 doi: 10.1038/nchembio.155 – ident: ref90/cit90 doi: 10.1021/bi050630j – ident: ref104/cit104 doi: 10.1126/science.6359416 – ident: ref32/cit32 doi: 10.1038/nchembio.202 – ident: ref59/cit59 doi: 10.1073/pnas.0636464100 – ident: ref124/cit124 doi: 10.1002/1521-3773(20000915)39:18<3279::AID-ANIE3279>3.0.CO;2-G – ident: ref117/cit117 doi: 10.1021/jacs.5b12551 – ident: ref46/cit46 doi: 10.1021/ja039606o – ident: ref44/cit44 doi: 10.1073/pnas.0710643105 – ident: ref56/cit56 – ident: ref16/cit16 doi: 10.1038/nchem.2596 – ident: ref114/cit114 doi: 10.1021/cr1001436 – ident: ref51/cit51 doi: 10.1021/acscatal.7b00688 – ident: ref118/cit118 doi: 10.1073/pnas.1704786114 – ident: ref54/cit54 doi: 10.1021/ja806354w – ident: ref30/cit30 doi: 10.1126/science.1085515 – ident: ref41/cit41 doi: 10.1021/ja00081a060 – ident: ref72/cit72 doi: 10.1021/cr050301x – ident: ref129/cit129 doi: 10.1021/ja061585l – ident: ref28/cit28 doi: 10.1016/j.cbpa.2014.03.022 – ident: ref96/cit96 – ident: ref98/cit98 doi: 10.1073/pnas.1506792112 – ident: ref2/cit2 doi: 10.1021/ar040257s – ident: ref25/cit25 doi: 10.1021/cr040427e – ident: ref34/cit34 doi: 10.1038/nchem.1223 – ident: ref33/cit33 doi: 10.1038/nchem.1244 – ident: ref134/cit134 doi: 10.1038/nchem.2527 – ident: ref12/cit12 doi: 10.1126/science.7569920 – ident: ref91/cit91 doi: 10.1016/S0009-2797(02)00222-3 – ident: ref20/cit20 doi: 10.1021/bi00551a001 – ident: ref150/cit150 doi: 10.1073/pnas.1523573113 – ident: ref67/cit67 doi: 10.1021/cs500325p – ident: ref29/cit29 doi: 10.1021/ar0001665 – ident: ref47/cit47 doi: 10.1021/ja0667211 – ident: ref84/cit84 doi: 10.1038/nature08615 – ident: ref132/cit132 doi: 10.1073/pnas.1417923111 – ident: ref66/cit66 doi: 10.1074/jbc.273.21.13072 – ident: ref39/cit39 doi: 10.1021/bi00043a013 |
SSID | ssj0004281 |
Score | 2.4879062 |
SecondaryResourceType | review_article |
Snippet | The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design... The physical basis for enzymatic rate accelerations is a subject of great fundamental interest and of direct relevance to areas that include the de novo design... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 18409 |
SubjectTerms | active sites alcohol dehydrogenase Alcohol Dehydrogenase - chemistry Alcohol Dehydrogenase - metabolism Bacterial Proteins - chemistry Bacterial Proteins - metabolism Biocatalysis carbon-hydrogen bond activation catalysts catalytic activity Catalytic Domain geometry Lipoxygenases - chemistry Lipoxygenases - metabolism Thermodynamics |
Title | Origins of Enzyme Catalysis: Experimental Findings for C–H Activation, New Models, and Their Relevance to Prevailing Theoretical Constructs |
URI | http://dx.doi.org/10.1021/jacs.7b08418 https://www.ncbi.nlm.nih.gov/pubmed/29244501 https://www.proquest.com/docview/1977780021 https://www.proquest.com/docview/2116861701 https://pubmed.ncbi.nlm.nih.gov/PMC5812730 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbhMxELWgHOBSoEAJBTSVyoluFDte2-mtWiVESFCppFJvke211ahlU2nTAz3xA5z4Q76Emc1u0qSK4Lqe1a7HY_uNx_OGsYM85FHFrk_Q91CJ5LGXWMl5kmovrfQq954O9L98VcMz-fk8PV9ekF2P4AviB_JlW7uOkdw8ZI-EwvlLECj7tsx_FIY3MFcb1a0vuK-_TRuQL1c3oHuocv1y5J3dZvCUfWpyduaXTC7bNzPX9rf3KRz_0ZFnbLsGnHA8t5Dn7EEodtjjrKnz9oL9OqlqY5UwjdAvbn98D5DRmQ5RlRxB_04FABhMqhyYEhDpQvbn5-8hHPumPtoh4IIJVFvtqjwEW-QwoiAEnFIGO9kWzKZAjFF2QinwMFqmUAKVDa2IbMuX7GzQH2XDpC7SgGNq9CyJeTDELZpzq3nQSndcdCHEmONqYZy0AgFCcJ3U40x3ImL3o-FWaCUD7-nQfcW2imkRXjOQaY-inOjyONQRrRwoKnVQTqQutaHF9lGF43qSleMqfi7Qf6GntWJb7GMzumNfs5xTsY2rDdIfFtLXc3aPDXL7jaGMcXQopmKLML3Bf0D8rAl0880y6GMrUxHft9ju3LgWXxPo_8qUWvSK2S0EiP57taWYXFQ04CliM1yf3_yHVvbYE0FwhFMq1lu2hSMa3iGYmrn31Uz6C0taHGs |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHMqFV6GkvKZSOdGt4o3XdrhFq0ShjyBBKvW2WnttEVE2SJse2hN_gBP_kF_CjLObNEGRel3P7voxtr_xeL5h7KBwhZe-YyO0PWQkuO9GueA8SpQVubCysJYO9M9Gcnguji-SizpYnWJhsBIVfqkKTvwluwDRBOFDZdpacH2fPUAcEpNC99KvyzDIWPMG7SotO_U99_W3aR-y1eo-9B-4XL8jeWvTGTxmo0V1w12T70dXM3Nkb9aYHO_cnifsUQ0_oTfXl6fsniufse20yfq2w35_DpmyKph66Jc31z8cpHTCQ8QlH6F_Kx8ADCYhIqYCxL2Q_v31Zwg922RLOwRcPoEyrV1Wh5CXBYzJJQFfKJ6dNA1mUyD-qHxCAfEwXgZUAiURDbS21XN2PuiP02FUp2zAEdZqFvnCaWIaLXiuuFNStY03znlf4NqhjchjhAvOtBOL897EHpvvNc9jJYXjXeU6L9hWOS3dSwYi6ZLPEw0gg31E6wiKCuWkiROT5K7F9rELs3rKVVnwpsdozdDTumNb7EMzyJmtOc8p9cblBun3C-mfc66PDXL7jb5kODrkYclLN73COiCaVgTB-WYZtLilDjT4LbY717HF32K0hkVCJWpF-xYCRAa-WlJOvgVS8ASRGq7We3folXdsezg-O81OP41OXrGHMQEVTkFar9kWjq57gzBrZt6GyfUPQbEkzA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKkYAL70d4TiU40a3ijdd2uEVLovAqqKRSbyvba4uIsqm06YGe-AOc-If8Emac3bQJigTX9eyuH2P7G4_nG8ael74MMvRcgraHTAQP_cQIzpNMOWGEk6VzdKD_YV-OD8Xbo-xoi_E2FgYrUeOX6ujEp1l9UoaGYYCogrBA2a4WXF9il8ljR0o9yD-fh0KmmreIV2nZa-66r79Ne5GrV_eivwDm-j3JCxvP6AY7WFY53jf5unc6t3vubI3N8b_adJNdb2AoDBZ6c4tt-eo2u5q32d_usJ8fY8asGmYBhtXZ928ecjrpIQKTVzC8kBcARtMYGVMD4l_If__4NYaBa7Om7QIuo0AZ147rXTBVCRNyTcABxbWTxsF8BsQjZaYUGA-T88BKoGSikd62vssOR8NJPk6a1A040lrNk1B6TYyjJTeKeyVV1wbrfQglriHaCpMibPC2mzmc_zYN2PyguUmVFJ73le_dY9vVrPIPGIisT75PNIQs9hGtJygqlJc2zWxmfIftYBcWzdSri-hVT9GqoadNx3bYy3agC9dwn1MKjuMN0i-W0icLzo8NcjutzhQ4OuRpMZWfnWIdEFUrguJ8swxa3lJHOvwOu7_Qs-XfUrSKRUYlakUDlwJECr5aUk2_RHLwDBEbrtoP_6FXnrErn16Pivdv9t89YtdSwiucYrUes20cXP8E0dbcPo3z6w-R9ydP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Origins+of+Enzyme+Catalysis%3A+Experimental+Findings+for+C%E2%80%93H+Activation%2C+New+Models%2C+and+Their+Relevance+to+Prevailing+Theoretical+Constructs&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Klinman%2C+Judith+P&rft.au=Offenbacher%2C+Adam+R&rft.au=Hu%2C+Shenshen&rft.date=2017-12-27&rft.pub=American+Chemical+Society&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=51&rft.spage=18409&rft.epage=18427&rft_id=info:doi/10.1021%2Fjacs.7b08418&rft.externalDocID=a028398206 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |