Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects

Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reactio...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 138; no. 13; pp. 4408 - 4415
Main Authors Prodinger, Sebastian, Derewinski, Miroslaw A, Vjunov, Aleksei, Burton, Sarah D, Arslan, Ilke, Lercher, Johannes A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.04.2016
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by 29Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.
AbstractList This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopy (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL.
Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.
Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by 29Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.
Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.
Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by ²⁹Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.
Author Lercher, Johannes A
Burton, Sarah D
Arslan, Ilke
Prodinger, Sebastian
Vjunov, Aleksei
Derewinski, Miroslaw A
AuthorAffiliation TU München
Institute for Integrated Catalysis
Department of Chemistry and Catalysis Research Institute
Pacific Northwest National Laboratory
AuthorAffiliation_xml – name: Institute for Integrated Catalysis
– name: Pacific Northwest National Laboratory
– name: TU München
– name: Department of Chemistry and Catalysis Research Institute
Author_xml – sequence: 1
  givenname: Sebastian
  surname: Prodinger
  fullname: Prodinger, Sebastian
– sequence: 2
  givenname: Miroslaw A
  surname: Derewinski
  fullname: Derewinski, Miroslaw A
  email: miroslaw.derewinski@pnnl.com
– sequence: 3
  givenname: Aleksei
  surname: Vjunov
  fullname: Vjunov, Aleksei
– sequence: 4
  givenname: Sarah D
  surname: Burton
  fullname: Burton, Sarah D
– sequence: 5
  givenname: Ilke
  surname: Arslan
  fullname: Arslan, Ilke
– sequence: 6
  givenname: Johannes A
  surname: Lercher
  fullname: Lercher, Johannes A
  email: Johannes.Lercher@pnnl.gov
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26972547$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1254581$$D View this record in Osti.gov
BookMark eNqFkUFv1DAQhS1URLeFG2dkceqBtLY3iZ1jVQpUqkTFwgUhWWPHoV4ldrGdlfrvmWi3FwTiZI_9zcx7MyfkKMTgCHnN2Tlngl9swebzxnAhVfOMrHgjWNVw0R6RFWNMVFK162NykvMWw1oo_oIci7aToqnlivy4mR5S3Pnwk24KGD_68kjjQL-7iFeXqQ_08tfs4pzp3T1kR3ce6MaNzha_c_SLm-IOxiVlU9Jsy5wweu8G_M8vyfMBxuxeHc5T8u3D9derT9Xt5483V5e3FdRKlqo3bA3G2E4NLZOiN30PUoI1XLVDC1aqGvjQWtsCw1hx54yVHcDQS2FYsz4lb_d1Yy5eZ4vC7b2NIaAIzdFoozhCZ3sI_aKhXPTks3XjCGFxpwWOZ42t6v-jXMpOKS5Yh-ibAzqbyfX6IfkJ0qN-mjACYg_YFHNObtAoD4qPoSTwo-ZML2vUyxr1YY2Y9O6PpKe6_8APepfHbZxTwGn_Hf0N6XysvA
CitedBy_id crossref_primary_10_1002_adma_202002565
crossref_primary_10_1002_ange_202116990
crossref_primary_10_1021_acs_chemmater_7b02133
crossref_primary_10_1021_acs_chemmater_7b04554
crossref_primary_10_1038_s41467_021_24403_2
crossref_primary_10_1016_j_cattod_2019_09_023
crossref_primary_10_1039_C9CY01886G
crossref_primary_10_1039_D2CY00829G
crossref_primary_10_1039_D1SC01179K
crossref_primary_10_1134_S0965544120040143
crossref_primary_10_1021_jacsau_3c00733
crossref_primary_10_1021_jacs_4c14741
crossref_primary_10_1039_C7CS00358G
crossref_primary_10_1016_j_cattod_2018_05_056
crossref_primary_10_1021_acs_chemmater_7b01847
crossref_primary_10_1039_D3CS00404J
crossref_primary_10_1002_ange_202009648
crossref_primary_10_1002_anie_201702672
crossref_primary_10_1002_cphc_201800333
crossref_primary_10_1002_ange_202210658
crossref_primary_10_1021_jacs_3c07873
crossref_primary_10_1016_j_fuel_2024_131881
crossref_primary_10_1016_j_energy_2025_134866
crossref_primary_10_1021_acssuschemeng_7b00659
crossref_primary_10_1039_D3TA03444E
crossref_primary_10_1063_1_5075519
crossref_primary_10_1246_cl_200201
crossref_primary_10_1021_acscatal_4c01914
crossref_primary_10_1016_j_micromeso_2024_113087
crossref_primary_10_1021_acs_jpcc_4c01659
crossref_primary_10_1016_j_trechm_2021_03_004
crossref_primary_10_1038_nmat4941
crossref_primary_10_1021_acscatal_1c00197
crossref_primary_10_1038_s41467_019_12752_y
crossref_primary_10_3389_fchem_2018_00143
crossref_primary_10_1002_cctc_202301681
crossref_primary_10_1021_acsmaterialsau_4c00030
crossref_primary_10_1002_ange_201702672
crossref_primary_10_1021_acscatal_0c04167
crossref_primary_10_1016_j_apcatb_2022_121368
crossref_primary_10_1016_j_micromeso_2019_02_014
crossref_primary_10_1002_cite_202000193
crossref_primary_10_1021_acs_jpcc_1c01475
crossref_primary_10_1021_jacs_2c13847
crossref_primary_10_1002_anie_202009648
crossref_primary_10_1016_j_apcatb_2018_06_065
crossref_primary_10_1021_jacsau_4c00730
crossref_primary_10_1016_j_seppur_2022_123030
crossref_primary_10_1021_acscatal_1c05896
crossref_primary_10_1021_acscatal_2c02074
crossref_primary_10_1080_01614940_2021_1948301
crossref_primary_10_1021_jacs_8b12861
crossref_primary_10_1021_acscatal_1c04518
crossref_primary_10_1039_D1CY01194D
crossref_primary_10_1021_acscatal_0c01722
crossref_primary_10_1016_j_micromeso_2023_112557
crossref_primary_10_1021_jacs_9b12709
crossref_primary_10_1002_anie_202116990
crossref_primary_10_1002_slct_202204764
crossref_primary_10_1016_j_ces_2023_118712
crossref_primary_10_1002_ange_202117394
crossref_primary_10_1016_j_fuel_2024_133683
crossref_primary_10_1016_j_surfin_2024_105360
crossref_primary_10_1039_D1CS00395J
crossref_primary_10_1007_s10450_020_00275_8
crossref_primary_10_1021_acs_iecr_9b01417
crossref_primary_10_1002_cctc_202401270
crossref_primary_10_1007_s13738_024_03157_w
crossref_primary_10_1002_adma_202003264
crossref_primary_10_1021_jacs_3c12437
crossref_primary_10_1021_acscatal_4c01976
crossref_primary_10_1021_acs_iecr_7b04985
crossref_primary_10_1016_j_apcatb_2017_06_013
crossref_primary_10_1016_j_jcat_2021_10_023
crossref_primary_10_1021_acs_jpcc_3c05405
crossref_primary_10_1021_acs_jpcc_6b04980
crossref_primary_10_2139_ssrn_3994505
crossref_primary_10_4164_sptj_60_485
crossref_primary_10_1039_C8CS00452H
crossref_primary_10_1016_j_fuel_2022_123696
crossref_primary_10_1016_j_micromeso_2023_112626
crossref_primary_10_1002_anie_202117394
crossref_primary_10_1016_j_micromeso_2024_113219
crossref_primary_10_1021_acscatal_4c06239
crossref_primary_10_1002_anie_202210658
crossref_primary_10_1021_acs_chemmater_0c02405
crossref_primary_10_1039_C9SC02634G
crossref_primary_10_1016_j_cattod_2019_08_006
crossref_primary_10_1016_S1872_2067_24_60160_9
Cites_doi 10.1016/j.jcat.2013.05.024
10.1039/ft9938904231
10.1021/cr020060i
10.1016/0144-2449(83)90077-5
10.1002/zaac.19885640109
10.1016/0144-2449(93)90132-M
10.1021/j100223a029
10.1021/j100842a056
10.1016/0144-2449(92)90011-D
10.1346/CCMN.1987.0350410
10.1252/jcej.16.470
10.1016/j.jcat.2012.01.005
10.1021/jacs.5b06169
10.1016/S0167-2991(08)61562-1
10.1016/S0927-7757(98)00813-9
10.1016/S0144-2449(88)80219-7
10.1021/jp108338g
10.1126/science.157.3793.1177
10.1021/j100248a020
10.1021/acs.chemmater.5b01238
10.1016/0144-2449(86)90005-9
10.1016/j.apcata.2008.11.033
10.1039/a809654f
10.1039/f19878303459
10.1098/rspa.1988.0131
10.1016/S0167-2991(09)60593-0
10.1016/S0920-5861(98)00050-9
10.1007/s11244-009-9226-0
10.1016/S0167-2991(08)61013-7
10.1002/jhrc.1240071102
10.1039/b002134m
10.1039/B916822B
10.1351/pac198557040603
10.1016/S0144-2449(82)80042-0
10.1021/jacs.5b07398
10.1007/BF00708767
10.1021/ja3015082
10.1021/jp104639e
10.1039/ft9908603039
10.1016/0144-2449(93)90072-B
10.1016/0144-2449(85)90092-2
ContentType Journal Article
Copyright Copyright © 2016 American Chemical Society
Copyright_xml – notice: Copyright © 2016 American Chemical Society
CorporateAuthor Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
CorporateAuthor_xml – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/jacs.5b12785
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 4415
ExternalDocumentID 1254581
26972547
10_1021_jacs_5b12785
a917261755
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
AAYWT
NPM
7X8
7S9
L.6
ABFRP
OTOTI
TAF
ID FETCH-LOGICAL-a487t-db03abbc98f6072dbdda77acb186f6ac784a1f6cc6a0f6a81eebc79aafd72b053
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 18:39:18 EDT 2023
Fri Jul 11 02:03:48 EDT 2025
Fri Jul 11 01:32:40 EDT 2025
Mon Jul 21 06:04:51 EDT 2025
Thu Apr 24 23:09:20 EDT 2025
Tue Jul 01 04:33:25 EDT 2025
Thu Aug 27 13:42:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-db03abbc98f6072dbdda77acb186f6ac784a1f6cc6a0f6a81eebc79aafd72b053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC05-76RL01830
PNNL-SA-113662
PMID 26972547
PQID 1779881209
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1254581
proquest_miscellaneous_2000378441
proquest_miscellaneous_1779881209
pubmed_primary_26972547
crossref_citationtrail_10_1021_jacs_5b12785
crossref_primary_10_1021_jacs_5b12785
acs_journals_10_1021_jacs_5b12785
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-06
PublicationDateYYYYMMDD 2016-04-06
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2016
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref9/cit9
  doi: 10.1016/j.jcat.2013.05.024
– ident: ref10/cit10
  doi: 10.1039/ft9938904231
– ident: ref25/cit25
  doi: 10.1021/cr020060i
– ident: ref11/cit11
  doi: 10.1016/0144-2449(83)90077-5
– ident: ref13/cit13
  doi: 10.1002/zaac.19885640109
– ident: ref18/cit18
  doi: 10.1016/0144-2449(93)90132-M
– ident: ref41/cit41
  doi: 10.1021/j100223a029
– ident: ref20/cit20
  doi: 10.1021/j100842a056
– ident: ref24/cit24
  doi: 10.1016/0144-2449(92)90011-D
– ident: ref21/cit21
– ident: ref36/cit36
  doi: 10.1346/CCMN.1987.0350410
– ident: ref42/cit42
  doi: 10.1252/jcej.16.470
– ident: ref3/cit3
  doi: 10.1016/j.jcat.2012.01.005
– ident: ref6/cit6
  doi: 10.1021/jacs.5b06169
– ident: ref19/cit19
  doi: 10.1016/S0167-2991(08)61562-1
– ident: ref33/cit33
  doi: 10.1016/S0927-7757(98)00813-9
– ident: ref14/cit14
  doi: 10.1016/S0144-2449(88)80219-7
– ident: ref32/cit32
  doi: 10.1021/jp108338g
– ident: ref37/cit37
  doi: 10.1126/science.157.3793.1177
– ident: ref27/cit27
  doi: 10.1021/j100248a020
– ident: ref5/cit5
  doi: 10.1021/acs.chemmater.5b01238
– ident: ref30/cit30
  doi: 10.1016/0144-2449(86)90005-9
– ident: ref35/cit35
  doi: 10.1016/j.apcata.2008.11.033
– ident: ref34/cit34
  doi: 10.1039/a809654f
– ident: ref28/cit28
  doi: 10.1039/f19878303459
– ident: ref16/cit16
  doi: 10.1098/rspa.1988.0131
– ident: ref12/cit12
  doi: 10.1016/S0167-2991(09)60593-0
– ident: ref39/cit39
  doi: 10.1016/S0920-5861(98)00050-9
– ident: ref1/cit1
  doi: 10.1007/s11244-009-9226-0
– ident: ref43/cit43
  doi: 10.1016/S0167-2991(08)61013-7
– ident: ref26/cit26
  doi: 10.1002/jhrc.1240071102
– ident: ref22/cit22
  doi: 10.1039/b002134m
– ident: ref2/cit2
  doi: 10.1039/B916822B
– ident: ref38/cit38
  doi: 10.1351/pac198557040603
– ident: ref40/cit40
  doi: 10.1016/S0144-2449(82)80042-0
– ident: ref7/cit7
  doi: 10.1021/jacs.5b07398
– ident: ref17/cit17
  doi: 10.1007/BF00708767
– ident: ref8/cit8
  doi: 10.1021/ja3015082
– ident: ref15/cit15
– ident: ref4/cit4
  doi: 10.1021/jp104639e
– ident: ref29/cit29
  doi: 10.1039/ft9908603039
– ident: ref23/cit23
  doi: 10.1016/0144-2449(93)90072-B
– ident: ref31/cit31
  doi: 10.1016/0144-2449(85)90092-2
SSID ssj0004281
Score 2.485782
Snippet Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal...
Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal...
This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects....
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4408
SubjectTerms Environmental Molecular Sciences Laboratory
hydrothermal zeolite stability
nuclear magnetic resonance spectroscopy
sieves
silanol defects
silylation
sorption
sorption isotherms
X-ray diffraction
zeolites
Title Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects
URI http://dx.doi.org/10.1021/jacs.5b12785
https://www.ncbi.nlm.nih.gov/pubmed/26972547
https://www.proquest.com/docview/1779881209
https://www.proquest.com/docview/2000378441
https://www.osti.gov/biblio/1254581
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_q9UFfqvWjPatlBX2SHNlNsrP3eJzWUlDEs1BECLObDS3VRMhV0L_emb3kipXDPibMksnOTGYmO_MbIV6aDMjJakyUS5ESFJsntsaK4e6ssbVCbbhR-P0Hc3yan5wVZ9cFsjdP8DXjA_luUjilwRZ3xLY2FjjJms0X1_2P2qohzAVrsr7A_eZqdkC--8sBjVoypM3BZXQyR_fFu6FVZ1Vbcjm5WrqJ__0vcuN_-H8gdvo4U85WirErtkLzUNydD-PdHomv698JkgLOWCL7S7a1_BK4Ii508qKRM-K2verkx3PydfLnBcpFHJtDX0j5KXxvSUt5ySJi0DJ-h3wTYnnIY3F69Pbz_DjpRy0kSBnLMqlcmqFzfmprk4KuXFUhAHqnrKkNerA5qtp4bzCla6tCcB6miHUF2pEhPxGjpm3CvpAZApKR12B9moMBrHxaqQIzXzgebz0WL2hHyt5UujKegmvKQvhuv09j8XqQUel7rHIemfFtA_WrNfWPFUbHBroDFndJsQUD5HquJPLLkkK8vLCK-Bq0oCRR8LkJNrzJpQIGdeMm4800OiL5WNL7sdhbqdCaF22mQM-Ap7d48wNxj0IyE2uDzDMxIgGG5xT2LN1h1Pk_CeH8Hw
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaq5VAuQFt-llLqSu0JpYqdxPYeOKy2VFv6o4ptpQohhbHjiApIkLIFlXfhVXg2ZrzJVlRaiUsljomcxPbMeL6Jx98wtq0SjU5WQiRsDBigmDQyJRREd2eUKQVIRQeFj0_U-Dx9e5FdLLFf3VkY7ESDb2rCJv4NuwDRBOHNzAqpTZdDeeivf2CE1rw-2ENx7ki5_-ZsNI7aIgIRIBafRoWNE7DWDUypYi0LWxSgNTgrjCoVOG1SEKVyTkGM10Z4b50eAJSFljamohC4wt9D3CMpthuOJjfHLqURHbrWRiVtXv3t3pLfc81ffq9Xo_0uxrTBt-0_ZL_nsxJSWj7vXk3trvt5izDyv522R-xBi6r5cGYGK2zJV6tsedQVs1tjH-Y_TzjC65AQfM3rkr_3lP_nG35Z8SFOUn3V8NNP6Nn590vgk1AkCP0Bf-e_1miT9MgkMO4SWwnf8yEZ5jE7v5PBPWG9qq78M8YT0IBLWqmNi1OtNBQuLkQGicssFfPusy2UQN4uDE0e9vwlxlx0t5VLn73qVCN3LTM7FQj5sqD1zrz1txkjyYJ266RlOSIpogN2lDflpjkC2jQzAvvVKV-OoqBdIqhoknOhicKOjlQvbiMDb5FBK--zpzPNnfdFqoHGb-jn_zDyTbY8Pjs-yo8OTg7X2X0EoypkRakXrIfC9BsI-Kb2ZTA7zj7etcL-AUt8Y_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqRQIuvB9LeRiJnlCq2Els74HDapdVS6GqWCpVCCmMHVtUQFIpW1D5N_wVfhkz3mQRlVbiUoljEieZeGY8n-PxN4w9U5nGICshETYFnKCYPDEBKqK7M8oEAVLRRuE3-2rnMH91VBxtsJ_9XhgUosUntXERn7z6pAodwwBRBeGFwgqpTZ9HuefPvuMsrX2xO0WVbkk5e_luspN0hQQSQDy-SCqbZmCtG5mgUi0rW1WgNTgrjAoKnDY5iKCcU5DisRHeW6dHAKHS0qZUGAJH-Uu0Qkjzu_Fk_mfrpTSiR9jaqKzLrT8vLcU-1_4V-wYN-vB6XBvj2-w6-7XqmZjW8nn7dGG33Y9zpJH_ddfdYNc6dM3HS3e4yTZ8fYtdmfRF7W6zD6ufKBxhdkwMPuNN4O895QH6lh_XfIwd1Zy2_OATRnj-7Rj4PBYLwrjA3_qvDfom3TKPzLvEWsKnPibF3GGHF_Jxd9mgbmp_n_EMNODQFrRxaa6VhsqllSggc4Wlot5D9hQ1UHYDRFvGtX-Jcy862-llyJ735lG6jqGdCoV8WdN6a9X6ZMlMsqbdJllaiYiKaIEd5U-5RYnANi-MQLl6AyxRFbRaBDV1cik0UdnR1ur1bWTkLzLo7UN2b2m9K1mkGml8h37wD1_-hF0-mM7K17v7e5vsKmJSFZOj1EM2QF36R4j7FvZx9DzOPl60vf4G3Jxmew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Stability+of+Zeolites+in+Aqueous+Phase+via+Selective+Removal+of+Structural+Defects&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Prodinger%2C+Sebastian&rft.au=Derewinski%2C+Miroslaw+A.&rft.au=Vjunov%2C+Aleksei&rft.au=Burton%2C+Sarah+D.&rft.date=2016-04-06&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=13&rft.spage=4408&rft.epage=4415&rft_id=info:doi/10.1021%2Fjacs.5b12785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_5b12785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon