Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects
Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reactio...
Saved in:
Published in | Journal of the American Chemical Society Vol. 138; no. 13; pp. 4408 - 4415 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
06.04.2016
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by 29Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water. |
---|---|
AbstractList | This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects. Recent work suggests that the presence of silanol defects destabilizes the framework integrity of most zeolites and makes them susceptible to hydrolysis of the siloxy bonds by hot liquid water. The described approach allows for a key removal of silanols as shown with 29Si-MAS-NMR. Subsequently, the material stability in hot liquid water, measured by retention of its crystallinity with X-ray diffraction (XRD), is found to be superior to defective zeolites. In addition, N2-sorption measurements (BET) and transmission electron microscopy (TEM) show the formation of different types of mesoporosity for water-treated stabilized and unmodified materials. While the sorption capacity for untreated materials drops, related to re-precipitation of dissolved silica and pore blocking, the stabilized material retains its microporosity and improves its overall sorption capacity. The authors would like to thank B. W. Arey (PNNL) for HIM measurements and I. Arslan for TEM imaging. This work was supported by the U. S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. SP and MD acknowledge support by the Materials Synthesis and Simulation Across Scales (MS3 Initiative) conducted under Laboratory Directed Research & Development Program at PNNL. Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water. Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by 29Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water. Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water.Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si-O-Si bonds were eventually formed. Hydrolysis of Si-O-Si bonds of the parent materials and dissolution of silica-oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by (29)Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water. Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal drastically improved their structural stability as demonstrated using zeolite beta as example. The defects in the siloxy bonds were capped by reaction with trimethylchlorosilane, and Si–O–Si bonds were eventually formed. Hydrolysis of Si–O–Si bonds of the parent materials and dissolution of silica–oxygen tetrahedra in water causing a decrease in sorption capacity by reprecipitation of dissolved silica and pore blocking was largely mitigated by the treatment. The stability of the modified molecular sieves was monitored by ²⁹Si-MAS NMR, transmission electron micrographs, X-ray diffraction, and adsorption isotherms. The microporosity, sorption capacity, and long-range order of the stabilized material were fully retained even after prolonged exposure to hot liquid water. |
Author | Lercher, Johannes A Burton, Sarah D Arslan, Ilke Prodinger, Sebastian Vjunov, Aleksei Derewinski, Miroslaw A |
AuthorAffiliation | TU München Institute for Integrated Catalysis Department of Chemistry and Catalysis Research Institute Pacific Northwest National Laboratory |
AuthorAffiliation_xml | – name: Institute for Integrated Catalysis – name: Pacific Northwest National Laboratory – name: TU München – name: Department of Chemistry and Catalysis Research Institute |
Author_xml | – sequence: 1 givenname: Sebastian surname: Prodinger fullname: Prodinger, Sebastian – sequence: 2 givenname: Miroslaw A surname: Derewinski fullname: Derewinski, Miroslaw A email: miroslaw.derewinski@pnnl.com – sequence: 3 givenname: Aleksei surname: Vjunov fullname: Vjunov, Aleksei – sequence: 4 givenname: Sarah D surname: Burton fullname: Burton, Sarah D – sequence: 5 givenname: Ilke surname: Arslan fullname: Arslan, Ilke – sequence: 6 givenname: Johannes A surname: Lercher fullname: Lercher, Johannes A email: Johannes.Lercher@pnnl.gov |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26972547$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1254581$$D View this record in Osti.gov |
BookMark | eNqFkUFv1DAQhS1URLeFG2dkceqBtLY3iZ1jVQpUqkTFwgUhWWPHoV4ldrGdlfrvmWi3FwTiZI_9zcx7MyfkKMTgCHnN2Tlngl9swebzxnAhVfOMrHgjWNVw0R6RFWNMVFK162NykvMWw1oo_oIci7aToqnlivy4mR5S3Pnwk24KGD_68kjjQL-7iFeXqQ_08tfs4pzp3T1kR3ce6MaNzha_c_SLm-IOxiVlU9Jsy5wweu8G_M8vyfMBxuxeHc5T8u3D9derT9Xt5483V5e3FdRKlqo3bA3G2E4NLZOiN30PUoI1XLVDC1aqGvjQWtsCw1hx54yVHcDQS2FYsz4lb_d1Yy5eZ4vC7b2NIaAIzdFoozhCZ3sI_aKhXPTks3XjCGFxpwWOZ42t6v-jXMpOKS5Yh-ibAzqbyfX6IfkJ0qN-mjACYg_YFHNObtAoD4qPoSTwo-ZML2vUyxr1YY2Y9O6PpKe6_8APepfHbZxTwGn_Hf0N6XysvA |
CitedBy_id | crossref_primary_10_1002_adma_202002565 crossref_primary_10_1002_ange_202116990 crossref_primary_10_1021_acs_chemmater_7b02133 crossref_primary_10_1021_acs_chemmater_7b04554 crossref_primary_10_1038_s41467_021_24403_2 crossref_primary_10_1016_j_cattod_2019_09_023 crossref_primary_10_1039_C9CY01886G crossref_primary_10_1039_D2CY00829G crossref_primary_10_1039_D1SC01179K crossref_primary_10_1134_S0965544120040143 crossref_primary_10_1021_jacsau_3c00733 crossref_primary_10_1021_jacs_4c14741 crossref_primary_10_1039_C7CS00358G crossref_primary_10_1016_j_cattod_2018_05_056 crossref_primary_10_1021_acs_chemmater_7b01847 crossref_primary_10_1039_D3CS00404J crossref_primary_10_1002_ange_202009648 crossref_primary_10_1002_anie_201702672 crossref_primary_10_1002_cphc_201800333 crossref_primary_10_1002_ange_202210658 crossref_primary_10_1021_jacs_3c07873 crossref_primary_10_1016_j_fuel_2024_131881 crossref_primary_10_1016_j_energy_2025_134866 crossref_primary_10_1021_acssuschemeng_7b00659 crossref_primary_10_1039_D3TA03444E crossref_primary_10_1063_1_5075519 crossref_primary_10_1246_cl_200201 crossref_primary_10_1021_acscatal_4c01914 crossref_primary_10_1016_j_micromeso_2024_113087 crossref_primary_10_1021_acs_jpcc_4c01659 crossref_primary_10_1016_j_trechm_2021_03_004 crossref_primary_10_1038_nmat4941 crossref_primary_10_1021_acscatal_1c00197 crossref_primary_10_1038_s41467_019_12752_y crossref_primary_10_3389_fchem_2018_00143 crossref_primary_10_1002_cctc_202301681 crossref_primary_10_1021_acsmaterialsau_4c00030 crossref_primary_10_1002_ange_201702672 crossref_primary_10_1021_acscatal_0c04167 crossref_primary_10_1016_j_apcatb_2022_121368 crossref_primary_10_1016_j_micromeso_2019_02_014 crossref_primary_10_1002_cite_202000193 crossref_primary_10_1021_acs_jpcc_1c01475 crossref_primary_10_1021_jacs_2c13847 crossref_primary_10_1002_anie_202009648 crossref_primary_10_1016_j_apcatb_2018_06_065 crossref_primary_10_1021_jacsau_4c00730 crossref_primary_10_1016_j_seppur_2022_123030 crossref_primary_10_1021_acscatal_1c05896 crossref_primary_10_1021_acscatal_2c02074 crossref_primary_10_1080_01614940_2021_1948301 crossref_primary_10_1021_jacs_8b12861 crossref_primary_10_1021_acscatal_1c04518 crossref_primary_10_1039_D1CY01194D crossref_primary_10_1021_acscatal_0c01722 crossref_primary_10_1016_j_micromeso_2023_112557 crossref_primary_10_1021_jacs_9b12709 crossref_primary_10_1002_anie_202116990 crossref_primary_10_1002_slct_202204764 crossref_primary_10_1016_j_ces_2023_118712 crossref_primary_10_1002_ange_202117394 crossref_primary_10_1016_j_fuel_2024_133683 crossref_primary_10_1016_j_surfin_2024_105360 crossref_primary_10_1039_D1CS00395J crossref_primary_10_1007_s10450_020_00275_8 crossref_primary_10_1021_acs_iecr_9b01417 crossref_primary_10_1002_cctc_202401270 crossref_primary_10_1007_s13738_024_03157_w crossref_primary_10_1002_adma_202003264 crossref_primary_10_1021_jacs_3c12437 crossref_primary_10_1021_acscatal_4c01976 crossref_primary_10_1021_acs_iecr_7b04985 crossref_primary_10_1016_j_apcatb_2017_06_013 crossref_primary_10_1016_j_jcat_2021_10_023 crossref_primary_10_1021_acs_jpcc_3c05405 crossref_primary_10_1021_acs_jpcc_6b04980 crossref_primary_10_2139_ssrn_3994505 crossref_primary_10_4164_sptj_60_485 crossref_primary_10_1039_C8CS00452H crossref_primary_10_1016_j_fuel_2022_123696 crossref_primary_10_1016_j_micromeso_2023_112626 crossref_primary_10_1002_anie_202117394 crossref_primary_10_1016_j_micromeso_2024_113219 crossref_primary_10_1021_acscatal_4c06239 crossref_primary_10_1002_anie_202210658 crossref_primary_10_1021_acs_chemmater_0c02405 crossref_primary_10_1039_C9SC02634G crossref_primary_10_1016_j_cattod_2019_08_006 crossref_primary_10_1016_S1872_2067_24_60160_9 |
Cites_doi | 10.1016/j.jcat.2013.05.024 10.1039/ft9938904231 10.1021/cr020060i 10.1016/0144-2449(83)90077-5 10.1002/zaac.19885640109 10.1016/0144-2449(93)90132-M 10.1021/j100223a029 10.1021/j100842a056 10.1016/0144-2449(92)90011-D 10.1346/CCMN.1987.0350410 10.1252/jcej.16.470 10.1016/j.jcat.2012.01.005 10.1021/jacs.5b06169 10.1016/S0167-2991(08)61562-1 10.1016/S0927-7757(98)00813-9 10.1016/S0144-2449(88)80219-7 10.1021/jp108338g 10.1126/science.157.3793.1177 10.1021/j100248a020 10.1021/acs.chemmater.5b01238 10.1016/0144-2449(86)90005-9 10.1016/j.apcata.2008.11.033 10.1039/a809654f 10.1039/f19878303459 10.1098/rspa.1988.0131 10.1016/S0167-2991(09)60593-0 10.1016/S0920-5861(98)00050-9 10.1007/s11244-009-9226-0 10.1016/S0167-2991(08)61013-7 10.1002/jhrc.1240071102 10.1039/b002134m 10.1039/B916822B 10.1351/pac198557040603 10.1016/S0144-2449(82)80042-0 10.1021/jacs.5b07398 10.1007/BF00708767 10.1021/ja3015082 10.1021/jp104639e 10.1039/ft9908603039 10.1016/0144-2449(93)90072-B 10.1016/0144-2449(85)90092-2 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.5b12785 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 4415 |
ExternalDocumentID | 1254581 26972547 10_1021_jacs_5b12785 a917261755 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 AAYWT NPM 7X8 7S9 L.6 ABFRP OTOTI TAF |
ID | FETCH-LOGICAL-a487t-db03abbc98f6072dbdda77acb186f6ac784a1f6cc6a0f6a81eebc79aafd72b053 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 18:39:18 EDT 2023 Fri Jul 11 02:03:48 EDT 2025 Fri Jul 11 01:32:40 EDT 2025 Mon Jul 21 06:04:51 EDT 2025 Thu Apr 24 23:09:20 EDT 2025 Tue Jul 01 04:33:25 EDT 2025 Thu Aug 27 13:42:00 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-db03abbc98f6072dbdda77acb186f6ac784a1f6cc6a0f6a81eebc79aafd72b053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC05-76RL01830 PNNL-SA-113662 |
PMID | 26972547 |
PQID | 1779881209 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1254581 proquest_miscellaneous_2000378441 proquest_miscellaneous_1779881209 pubmed_primary_26972547 crossref_citationtrail_10_1021_jacs_5b12785 crossref_primary_10_1021_jacs_5b12785 acs_journals_10_1021_jacs_5b12785 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-04-06 |
PublicationDateYYYYMMDD | 2016-04-06 |
PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2016 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref9/cit9 doi: 10.1016/j.jcat.2013.05.024 – ident: ref10/cit10 doi: 10.1039/ft9938904231 – ident: ref25/cit25 doi: 10.1021/cr020060i – ident: ref11/cit11 doi: 10.1016/0144-2449(83)90077-5 – ident: ref13/cit13 doi: 10.1002/zaac.19885640109 – ident: ref18/cit18 doi: 10.1016/0144-2449(93)90132-M – ident: ref41/cit41 doi: 10.1021/j100223a029 – ident: ref20/cit20 doi: 10.1021/j100842a056 – ident: ref24/cit24 doi: 10.1016/0144-2449(92)90011-D – ident: ref21/cit21 – ident: ref36/cit36 doi: 10.1346/CCMN.1987.0350410 – ident: ref42/cit42 doi: 10.1252/jcej.16.470 – ident: ref3/cit3 doi: 10.1016/j.jcat.2012.01.005 – ident: ref6/cit6 doi: 10.1021/jacs.5b06169 – ident: ref19/cit19 doi: 10.1016/S0167-2991(08)61562-1 – ident: ref33/cit33 doi: 10.1016/S0927-7757(98)00813-9 – ident: ref14/cit14 doi: 10.1016/S0144-2449(88)80219-7 – ident: ref32/cit32 doi: 10.1021/jp108338g – ident: ref37/cit37 doi: 10.1126/science.157.3793.1177 – ident: ref27/cit27 doi: 10.1021/j100248a020 – ident: ref5/cit5 doi: 10.1021/acs.chemmater.5b01238 – ident: ref30/cit30 doi: 10.1016/0144-2449(86)90005-9 – ident: ref35/cit35 doi: 10.1016/j.apcata.2008.11.033 – ident: ref34/cit34 doi: 10.1039/a809654f – ident: ref28/cit28 doi: 10.1039/f19878303459 – ident: ref16/cit16 doi: 10.1098/rspa.1988.0131 – ident: ref12/cit12 doi: 10.1016/S0167-2991(09)60593-0 – ident: ref39/cit39 doi: 10.1016/S0920-5861(98)00050-9 – ident: ref1/cit1 doi: 10.1007/s11244-009-9226-0 – ident: ref43/cit43 doi: 10.1016/S0167-2991(08)61013-7 – ident: ref26/cit26 doi: 10.1002/jhrc.1240071102 – ident: ref22/cit22 doi: 10.1039/b002134m – ident: ref2/cit2 doi: 10.1039/B916822B – ident: ref38/cit38 doi: 10.1351/pac198557040603 – ident: ref40/cit40 doi: 10.1016/S0144-2449(82)80042-0 – ident: ref7/cit7 doi: 10.1021/jacs.5b07398 – ident: ref17/cit17 doi: 10.1007/BF00708767 – ident: ref8/cit8 doi: 10.1021/ja3015082 – ident: ref15/cit15 – ident: ref4/cit4 doi: 10.1021/jp104639e – ident: ref29/cit29 doi: 10.1039/ft9908603039 – ident: ref23/cit23 doi: 10.1016/0144-2449(93)90072-B – ident: ref31/cit31 doi: 10.1016/0144-2449(85)90092-2 |
SSID | ssj0004281 |
Score | 2.485782 |
Snippet | Missing silicon–oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal... Missing silicon-oxygen bonds in zeolites are shown to be the cause for structural instability of zeolites in hot liquid water. Their selective removal... This work reports significant improvement in the hydrothermal stability of a well-characterized BEA zeolite via the selective removal of structural defects.... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4408 |
SubjectTerms | Environmental Molecular Sciences Laboratory hydrothermal zeolite stability nuclear magnetic resonance spectroscopy sieves silanol defects silylation sorption sorption isotherms X-ray diffraction zeolites |
Title | Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects |
URI | http://dx.doi.org/10.1021/jacs.5b12785 https://www.ncbi.nlm.nih.gov/pubmed/26972547 https://www.proquest.com/docview/1779881209 https://www.proquest.com/docview/2000378441 https://www.osti.gov/biblio/1254581 |
Volume | 138 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEF_q9UFfqvWjPatlBX2SHNlNsrP3eJzWUlDEs1BECLObDS3VRMhV0L_emb3kipXDPibMksnOTGYmO_MbIV6aDMjJakyUS5ESFJsntsaK4e6ssbVCbbhR-P0Hc3yan5wVZ9cFsjdP8DXjA_luUjilwRZ3xLY2FjjJms0X1_2P2qohzAVrsr7A_eZqdkC--8sBjVoypM3BZXQyR_fFu6FVZ1Vbcjm5WrqJ__0vcuN_-H8gdvo4U85WirErtkLzUNydD-PdHomv698JkgLOWCL7S7a1_BK4Ii508qKRM-K2verkx3PydfLnBcpFHJtDX0j5KXxvSUt5ySJi0DJ-h3wTYnnIY3F69Pbz_DjpRy0kSBnLMqlcmqFzfmprk4KuXFUhAHqnrKkNerA5qtp4bzCla6tCcB6miHUF2pEhPxGjpm3CvpAZApKR12B9moMBrHxaqQIzXzgebz0WL2hHyt5UujKegmvKQvhuv09j8XqQUel7rHIemfFtA_WrNfWPFUbHBroDFndJsQUD5HquJPLLkkK8vLCK-Bq0oCRR8LkJNrzJpQIGdeMm4800OiL5WNL7sdhbqdCaF22mQM-Ap7d48wNxj0IyE2uDzDMxIgGG5xT2LN1h1Pk_CeH8Hw |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwELaq5VAuQFt-llLqSu0JpYqdxPYeOKy2VFv6o4ptpQohhbHjiApIkLIFlXfhVXg2ZrzJVlRaiUsljomcxPbMeL6Jx98wtq0SjU5WQiRsDBigmDQyJRREd2eUKQVIRQeFj0_U-Dx9e5FdLLFf3VkY7ESDb2rCJv4NuwDRBOHNzAqpTZdDeeivf2CE1rw-2ENx7ki5_-ZsNI7aIgIRIBafRoWNE7DWDUypYi0LWxSgNTgrjCoVOG1SEKVyTkGM10Z4b50eAJSFljamohC4wt9D3CMpthuOJjfHLqURHbrWRiVtXv3t3pLfc81ffq9Xo_0uxrTBt-0_ZL_nsxJSWj7vXk3trvt5izDyv522R-xBi6r5cGYGK2zJV6tsedQVs1tjH-Y_TzjC65AQfM3rkr_3lP_nG35Z8SFOUn3V8NNP6Nn590vgk1AkCP0Bf-e_1miT9MgkMO4SWwnf8yEZ5jE7v5PBPWG9qq78M8YT0IBLWqmNi1OtNBQuLkQGicssFfPusy2UQN4uDE0e9vwlxlx0t5VLn73qVCN3LTM7FQj5sqD1zrz1txkjyYJ266RlOSIpogN2lDflpjkC2jQzAvvVKV-OoqBdIqhoknOhicKOjlQvbiMDb5FBK--zpzPNnfdFqoHGb-jn_zDyTbY8Pjs-yo8OTg7X2X0EoypkRakXrIfC9BsI-Kb2ZTA7zj7etcL-AUt8Y_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqRQIuvB9LeRiJnlCq2Els74HDapdVS6GqWCpVCCmMHVtUQFIpW1D5N_wVfhkz3mQRlVbiUoljEieZeGY8n-PxN4w9U5nGICshETYFnKCYPDEBKqK7M8oEAVLRRuE3-2rnMH91VBxtsJ_9XhgUosUntXERn7z6pAodwwBRBeGFwgqpTZ9HuefPvuMsrX2xO0WVbkk5e_luspN0hQQSQDy-SCqbZmCtG5mgUi0rW1WgNTgrjAoKnDY5iKCcU5DisRHeW6dHAKHS0qZUGAJH-Uu0Qkjzu_Fk_mfrpTSiR9jaqKzLrT8vLcU-1_4V-wYN-vB6XBvj2-w6-7XqmZjW8nn7dGG33Y9zpJH_ddfdYNc6dM3HS3e4yTZ8fYtdmfRF7W6zD6ufKBxhdkwMPuNN4O895QH6lh_XfIwd1Zy2_OATRnj-7Rj4PBYLwrjA3_qvDfom3TKPzLvEWsKnPibF3GGHF_Jxd9mgbmp_n_EMNODQFrRxaa6VhsqllSggc4Wlot5D9hQ1UHYDRFvGtX-Jcy862-llyJ735lG6jqGdCoV8WdN6a9X6ZMlMsqbdJllaiYiKaIEd5U-5RYnANi-MQLl6AyxRFbRaBDV1cik0UdnR1ur1bWTkLzLo7UN2b2m9K1mkGml8h37wD1_-hF0-mM7K17v7e5vsKmJSFZOj1EM2QF36R4j7FvZx9DzOPl60vf4G3Jxmew |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Stability+of+Zeolites+in+Aqueous+Phase+via+Selective+Removal+of+Structural+Defects&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Prodinger%2C+Sebastian&rft.au=Derewinski%2C+Miroslaw+A.&rft.au=Vjunov%2C+Aleksei&rft.au=Burton%2C+Sarah+D.&rft.date=2016-04-06&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=138&rft.issue=13&rft.spage=4408&rft.epage=4415&rft_id=info:doi/10.1021%2Fjacs.5b12785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_5b12785 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |