Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Foo...
Saved in:
Published in | ACS nano Vol. 9; no. 9; pp. 9357 - 9372 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
22.09.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure–activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0–7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. |
---|---|
AbstractList | The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. Keywords: fumed silica; silanol groups; doping; NLRP3 inflammasome; IL-1 beta ; lung inflammation The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure–activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0–7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe (GRAS) for use in food products by the Food and Drug Administration (FDA). However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium (Ti) and aluminum (Al) doping (0–7%), using flame spray pyrolysis (FSP). Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone marrow-derived macrophages (BMDMs). Ti- and to a lesser extent Al-doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. |
Author | Brinker, C. Jeffrey Sun, Bingbing Wang, Meiying Liao, Yu-Pei Chang, Chong Hyun Dong, Juyao Nel, André E Dunphy, Darren R Wang, Xiang Mädler, Lutz Ji, Zhaoxia Pokhrel, Suman Li, Ruibin Xia, Tian Zhang, Haiyuan |
AuthorAffiliation | Chinese Academy of Sciences Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry University of Bremen Self-Assembled Materials Department Division of NanoMedicine, Department of Medicine University of California Department of Molecular Genetics and Microbiology Sandia National Laboratories Department of Chemistry California NanoSystems Institute Foundation Institute of Materials Science (IWT), Department of Production Engineering Department of Chemical and Nuclear Engineering University of New Mexico |
AuthorAffiliation_xml | – name: Self-Assembled Materials Department – name: Department of Chemistry – name: Chinese Academy of Sciences – name: Department of Molecular Genetics and Microbiology – name: Division of NanoMedicine, Department of Medicine – name: Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry – name: California NanoSystems Institute – name: University of California – name: University of New Mexico – name: Department of Chemical and Nuclear Engineering – name: Sandia National Laboratories – name: Foundation Institute of Materials Science (IWT), Department of Production Engineering – name: University of Bremen – name: 6 Department of Chemistry, University of California, Los Angeles, CA 90095, United States – name: 3 Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States – name: 8 Self-Assembled Materials Department, Sandia National Laboratories, PO Box 5800 MS1349, Albuquerque, New Mexico 87185, United States – name: 5 California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States – name: 1 Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States – name: 4 Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China – name: 7 Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States – name: 2 Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany |
Author_xml | – sequence: 1 givenname: Bingbing surname: Sun fullname: Sun, Bingbing – sequence: 2 givenname: Suman surname: Pokhrel fullname: Pokhrel, Suman – sequence: 3 givenname: Darren R surname: Dunphy fullname: Dunphy, Darren R – sequence: 4 givenname: Haiyuan surname: Zhang fullname: Zhang, Haiyuan – sequence: 5 givenname: Zhaoxia surname: Ji fullname: Ji, Zhaoxia – sequence: 6 givenname: Xiang surname: Wang fullname: Wang, Xiang – sequence: 7 givenname: Meiying surname: Wang fullname: Wang, Meiying – sequence: 8 givenname: Yu-Pei surname: Liao fullname: Liao, Yu-Pei – sequence: 9 givenname: Chong Hyun surname: Chang fullname: Chang, Chong Hyun – sequence: 10 givenname: Juyao surname: Dong fullname: Dong, Juyao – sequence: 11 givenname: Ruibin surname: Li fullname: Li, Ruibin – sequence: 12 givenname: Lutz surname: Mädler fullname: Mädler, Lutz – sequence: 13 givenname: C. Jeffrey surname: Brinker fullname: Brinker, C. Jeffrey – sequence: 14 givenname: André E surname: Nel fullname: Nel, André E email: txia@ucla.edu, anel@mednet.ucla.edu – sequence: 15 givenname: Tian surname: Xia fullname: Xia, Tian email: txia@ucla.edu, anel@mednet.ucla.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26200133$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkkmLFDEUx4OMOIuevUmOgvRMlkotF6FpZ3SgVXABb-F1KtWdJpWUWYT-HH5hM9Nto4LiKQn_3_8tee8cnTjvNEJPKbmkhNErUNGB85diRXhV8QfojHa8npG2_nJyvAt6is5j3BIimrapH6FTVjNCKOdn6PsH3WeVjHfYD3iuctL41g0WxhGSDzt8PQxapXin3uRR9_ijsUYBflfSThCSUVZHbBxOG42X2a3xaofn_TbHZMqj0AW0-JWJk4VdoYLP6w1egFXGwX1icD1-qxMUyk_F9Bg9HMBG_eRwXqDPN9efFm9my_evbxfz5QyqtkkzNQAVijZNyyvOBiUaaBnUmnEBvO0p00LUomdt36mBaEU1kEp0DSGVqllX8wv0ch93yqvSmdIuBbByCmaEsJMejPxdcWYj1_6brOq26equBHh-CBD816xjkqOJStvSsvY5ylIb4Zx13f-gVHS0IowV9NmvZR3r-Tm0AlztARV8jEEPR4QSebcW8rAW8rAWxSH-cCiT7j-_9GXsP3wv9r4iyK3PwZV5_JX-AVnTzuc |
CitedBy_id | crossref_primary_10_2174_1573413718666220929102013 crossref_primary_10_1039_C7EN01130J crossref_primary_10_1039_C9EN00372J crossref_primary_10_1093_nsr_nww064 crossref_primary_10_1021_acsanm_3c03852 crossref_primary_10_1016_j_ecoenv_2018_09_077 crossref_primary_10_1016_j_biomaterials_2017_03_029 crossref_primary_10_1007_s10971_018_4772_1 crossref_primary_10_1002_smll_202000603 crossref_primary_10_1186_s12989_019_0325_1 crossref_primary_10_1007_s13738_019_01591_9 crossref_primary_10_1016_j_impact_2021_100313 crossref_primary_10_1021_acssuschemeng_6b00218 crossref_primary_10_1016_j_jhazmat_2020_124050 crossref_primary_10_1021_acs_langmuir_9b02578 crossref_primary_10_1016_j_ecoenv_2018_07_076 crossref_primary_10_1002_anie_202006861 crossref_primary_10_1007_s11434_016_1069_z crossref_primary_10_1021_acsaem_0c01231 crossref_primary_10_1039_C9NR03756J crossref_primary_10_1016_j_envpol_2021_117438 crossref_primary_10_1021_acsnano_6b04143 crossref_primary_10_1016_j_jcis_2017_07_096 crossref_primary_10_1002_adfm_202104487 crossref_primary_10_1039_C6EN00009F crossref_primary_10_1016_j_impact_2016_08_002 crossref_primary_10_1016_j_jpowsour_2017_11_016 crossref_primary_10_1186_s12989_017_0220_6 crossref_primary_10_1016_j_scitotenv_2021_149538 crossref_primary_10_1021_acsomega_2c04975 crossref_primary_10_1038_s41578_020_0230_0 crossref_primary_10_1093_toxsci_kfab120 crossref_primary_10_1016_j_bioadv_2022_213005 crossref_primary_10_1007_s10311_024_01787_3 crossref_primary_10_1007_s00216_018_1289_y crossref_primary_10_1016_j_jes_2021_04_021 crossref_primary_10_1016_j_biomaterials_2016_12_010 crossref_primary_10_1016_j_chemosphere_2019_124937 crossref_primary_10_1186_s12951_018_0413_7 crossref_primary_10_1039_D1EN00026H crossref_primary_10_14356_kona_2025004 crossref_primary_10_1016_j_etap_2021_103689 crossref_primary_10_1021_acssuschemeng_8b05550 crossref_primary_10_1039_D0CP03472J crossref_primary_10_1002_ange_202006861 crossref_primary_10_1021_acsami_7b05817 crossref_primary_10_1126_science_aad0768 crossref_primary_10_1021_acscatal_6b00396 crossref_primary_10_1039_C6EN00601A crossref_primary_10_1021_acs_energyfuels_0c02220 crossref_primary_10_1177_0300060520912105 crossref_primary_10_1021_acsnano_6b07461 crossref_primary_10_1186_s12989_017_0202_8 crossref_primary_10_1016_j_actbio_2017_12_020 crossref_primary_10_1016_j_cis_2023_102903 crossref_primary_10_1021_acsnano_2c01283 crossref_primary_10_1016_j_biomaterials_2016_12_029 crossref_primary_10_1016_j_csbj_2020_02_023 crossref_primary_10_1124_jpet_123_002031 crossref_primary_10_3390_ijms22010385 crossref_primary_10_1002_smll_202000528 crossref_primary_10_1002_smll_201703915 crossref_primary_10_1021_acsnano_4c02685 crossref_primary_10_1371_journal_pone_0154447 crossref_primary_10_3390_nano10040815 crossref_primary_10_1021_acsnano_3c05600 crossref_primary_10_1039_C6CY01252C crossref_primary_10_1016_j_impact_2022_100380 crossref_primary_10_1016_j_nanoen_2018_05_007 crossref_primary_10_1016_j_susmat_2024_e00826 crossref_primary_10_1039_D0NR04401F crossref_primary_10_3390_nano12213908 crossref_primary_10_1016_j_envpol_2021_117993 crossref_primary_10_1016_j_impact_2019_01_001 crossref_primary_10_3390_nano12142392 crossref_primary_10_1080_17435390_2017_1287313 crossref_primary_10_1002_adma_201705691 crossref_primary_10_1186_s12989_025_00619_8 crossref_primary_10_1002_smll_201907663 crossref_primary_10_1166_jbn_2021_3109 crossref_primary_10_1021_acsami_7b11435 crossref_primary_10_1021_acsnano_2c11147 crossref_primary_10_1073_pnas_2008006117 crossref_primary_10_1016_j_biomaterials_2021_120960 crossref_primary_10_1007_s10853_021_06412_0 crossref_primary_10_1016_j_jddst_2023_104970 crossref_primary_10_1016_j_ymthe_2017_03_011 crossref_primary_10_1111_ijag_16655 crossref_primary_10_1208_s12249_020_01855_1 crossref_primary_10_1073_pnas_2021078117 crossref_primary_10_1016_j_nantod_2022_101559 crossref_primary_10_1002_advs_202204842 crossref_primary_10_1016_j_arabjc_2022_104120 crossref_primary_10_1002_cctc_202200286 crossref_primary_10_1007_s11356_020_09313_y crossref_primary_10_1039_D1EN00696G crossref_primary_10_25040_ecpb2019_01_052 crossref_primary_10_2139_ssrn_3576872 |
Cites_doi | 10.1021/nn507243w 10.1080/10408436.2011.572741 10.1021/nn3012114 10.1074/jbc.274.31.21953 10.1093/toxsci/kfu009 10.1186/1743-8977-9-32 10.1038/nnano.2014.196 10.1002/smll.201201962 10.1021/es100417s 10.1007/978-1-60327-811-9_10 10.1016/j.jcat.2013.02.017 10.1016/j.combustflame.2006.06.003 10.1136/oem.47.11.763 10.1021/nn301669t 10.1038/sj.cdd.4402195 10.1136/oem.14.2.81 10.1021/nn3010087 10.1289/ehp.7339 10.1021/nl300895y 10.1016/0022-328X(96)06319-X 10.1152/ajplung.90287.2008 10.1021/nn5012754 10.1021/ar300022h 10.1021/ar300032q 10.1021/nn700256c 10.1111/j.1151-2916.1993.tb04034.x 10.1186/1743-8977-11-8 10.1002/smll.201402859 10.1021/nn305567s 10.1021/ja304907c 10.1002/smll.201301597 10.1016/j.jaci.2003.07.005 10.1504/IJBNN.2013.054506 10.1021/nn800511k 10.1002/anie.200804580 10.1021/nn404211j 10.3109/17435390903276933 10.1016/j.immuni.2013.05.016 10.2217/nnm.14.139 10.1021/ja910846q 10.1002/anie.201003391 10.1016/j.ces.2011.06.010 10.1002/smll.200800926 10.1016/S0140-6736(12)60235-9 10.1021/ja501699e 10.1021/nn1028482 10.1038/nmat2442 10.1016/j.cbi.2011.06.004 10.1021/nn200328m 10.1002/(SICI)1097-4652(199602)166:2<274::AID-JCP4>3.3.CO;2-X 10.1021/bi00028a002 10.1021/nn406166n 10.1007/978-1-4757-9646-9 10.1038/210259a0 10.1016/j.fct.2007.04.001 10.1074/jbc.M610762200 10.1063/1.3248476 10.1021/ja202836s 10.1021/cg9010423 |
ContentType | Journal Article |
Copyright | Copyright © American Chemical Society |
Copyright_xml | – notice: Copyright © American Chemical Society |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
DOI | 10.1021/acsnano.5b03443 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-086X |
EndPage | 9372 |
ExternalDocumentID | PMC4687969 26200133 10_1021_acsnano_5b03443 c03940298 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: NIEHS NIH HHS grantid: R01 ES016746 – fundername: NCRR NIH HHS grantid: S10 RR023057 |
GroupedDBID | - 23M 4.4 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ LG6 P2P RNS ROL UI2 VF5 VG9 W1F XKZ YZZ --- .K2 6J9 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHGD ADHLV AHGAQ CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M 5PM |
ID | FETCH-LOGICAL-a487t-cfa15c17783432fc57a82a6e235a38d12e5565d28d9cf0ec1ea04597004c62963 |
IEDL.DBID | ACS |
ISSN | 1936-0851 1936-086X |
IngestDate | Thu Aug 21 13:53:00 EDT 2025 Fri Jul 11 00:33:42 EDT 2025 Fri Jul 11 02:43:16 EDT 2025 Mon Jul 21 05:59:20 EDT 2025 Tue Jul 01 01:33:53 EDT 2025 Thu Apr 24 23:07:07 EDT 2025 Thu Aug 27 13:41:55 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | doping fumed silica silanol groups NLRP3 inflammasome IL-1β lung inflammation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-cfa15c17783432fc57a82a6e235a38d12e5565d28d9cf0ec1ea04597004c62963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26200133 |
PQID | 1715914022 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687969 proquest_miscellaneous_1770332999 proquest_miscellaneous_1715914022 pubmed_primary_26200133 crossref_primary_10_1021_acsnano_5b03443 crossref_citationtrail_10_1021_acsnano_5b03443 acs_journals_10_1021_acsnano_5b03443 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 XKZ 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-22 |
PublicationDateYYYYMMDD | 2015-09-22 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS nano |
PublicationTitleAlternate | ACS Nano |
PublicationYear | 2015 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 March H. N. (ref48/cit48) 1993 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 Sahl R. (ref49/cit49) 2011 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 4289018 - Nature. 1966 Apr 16;210(5033):259-61 20821781 - Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7776-81 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68 24417322 - ACS Nano. 2014 Feb 25;8(2):1771-83 8591986 - J Cell Physiol. 1996 Feb;166(2):274-80 25343348 - Nanomedicine (Lond). 2014 Sep;9(13):1971-89 22882971 - Part Fibre Toxicol. 2012;9:32 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 22676423 - Acc Chem Res. 2013 Mar 19;46(3):607-21 19381952 - Methods Mol Biol. 2009;520:143-50 22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804 19206551 - ACS Nano. 2008 Jan;2(1):85-96 2173947 - Br J Ind Med. 1990 Nov;47(11):763-6 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 13426429 - Br J Ind Med. 1957 Apr;14(2):81-4 23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41 17524541 - Food Chem Toxicol. 2007 Oct;45(10):1856-67 7619793 - Biochemistry. 1995 Jul 18;34(28):8940-9 24039004 - Small. 2014 Jan 29;10(2):385-98 24449423 - Toxicol Sci. 2014 Apr;138(2):354-64 17491021 - J Biol Chem. 2007 Jun 29;282(26):18810-8 19153974 - Angew Chem Int Ed Engl. 2009;48(16):2891-3 19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34 24261790 - ACS Nano. 2013 Dec 23;7(12):10834-49 23809161 - Immunity. 2013 Jun 27;38(6):1142-53 10419518 - J Biol Chem. 1999 Jul 30;274(31):21953-62 16002369 - Environ Health Perspect. 2005 Jul;113(7):823-39 25646681 - ACS Nano. 2015 Mar 24;9(3):3032-43 24507464 - Part Fibre Toxicol. 2014;11:8 17599094 - Cell Death Differ. 2007 Sep;14(9):1583-9 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14 25182032 - Nat Nanotechnol. 2014 Sep;9(9):658-9 21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8 20230032 - J Am Chem Soc. 2010 Apr 7;132(13):4834-42 18658273 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L552-65 20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14 19525947 - Nat Mater. 2009 Jul;8(7):543-57 24720650 - ACS Nano. 2014 May 27;8(5):4450-64 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35 19051185 - Small. 2009 Jan;5(1):57-62 25581126 - Small. 2015 May 6;11(17):2087-97 23180683 - Small. 2013 May 27;9(9-10):1595-607 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 21736874 - Chem Biol Interact. 2011 Sep 5;193(2):149-53 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 22591378 - ACS Nano. 2012 Jun 26;6(6):5668-79 22534002 - Lancet. 2012 May 26;379(9830):2008-18 24673286 - J Am Chem Soc. 2014 Apr 30;136(17):6406-20 |
References_xml | – ident: ref54/cit54 doi: 10.1021/nn507243w – ident: ref50/cit50 doi: 10.1080/10408436.2011.572741 – ident: ref36/cit36 doi: 10.1021/nn3012114 – start-page: 135 volume-title: Crystalline Silicon—Properties and Uses year: 2011 ident: ref49/cit49 – ident: ref38/cit38 doi: 10.1074/jbc.274.31.21953 – ident: ref7/cit7 doi: 10.1093/toxsci/kfu009 – ident: ref4/cit4 doi: 10.1186/1743-8977-9-32 – ident: ref3/cit3 doi: 10.1038/nnano.2014.196 – ident: ref19/cit19 doi: 10.1002/smll.201201962 – ident: ref58/cit58 doi: 10.1021/es100417s – ident: ref61/cit61 doi: 10.1007/978-1-60327-811-9_10 – ident: ref29/cit29 doi: 10.1016/j.jcat.2013.02.017 – ident: ref51/cit51 doi: 10.1016/j.combustflame.2006.06.003 – ident: ref45/cit45 doi: 10.1136/oem.47.11.763 – ident: ref27/cit27 doi: 10.1021/nn301669t – ident: ref40/cit40 doi: 10.1038/sj.cdd.4402195 – ident: ref13/cit13 doi: 10.1136/oem.14.2.81 – ident: ref32/cit32 doi: 10.1021/nn3010087 – ident: ref41/cit41 doi: 10.1289/ehp.7339 – ident: ref18/cit18 doi: 10.1021/nl300895y – ident: ref35/cit35 doi: 10.1016/0022-328X(96)06319-X – ident: ref59/cit59 doi: 10.1152/ajplung.90287.2008 – ident: ref43/cit43 doi: 10.1021/nn5012754 – ident: ref10/cit10 doi: 10.1021/ar300022h – ident: ref28/cit28 doi: 10.1021/ar300032q – ident: ref26/cit26 doi: 10.1021/nn700256c – ident: ref34/cit34 doi: 10.1111/j.1151-2916.1993.tb04034.x – ident: ref9/cit9 doi: 10.1186/1743-8977-11-8 – ident: ref44/cit44 doi: 10.1002/smll.201402859 – ident: ref25/cit25 doi: 10.1021/nn305567s – ident: ref5/cit5 doi: 10.1021/ja304907c – ident: ref46/cit46 doi: 10.1002/smll.201301597 – ident: ref60/cit60 doi: 10.1016/j.jaci.2003.07.005 – ident: ref11/cit11 doi: 10.1504/IJBNN.2013.054506 – ident: ref31/cit31 doi: 10.1021/nn800511k – ident: ref47/cit47 doi: 10.1002/anie.200804580 – ident: ref20/cit20 doi: 10.1021/nn404211j – ident: ref8/cit8 doi: 10.3109/17435390903276933 – ident: ref56/cit56 doi: 10.1016/j.immuni.2013.05.016 – ident: ref42/cit42 doi: 10.2217/nnm.14.139 – ident: ref15/cit15 doi: 10.1021/ja910846q – ident: ref30/cit30 doi: 10.1002/anie.201003391 – ident: ref52/cit52 doi: 10.1016/j.ces.2011.06.010 – ident: ref14/cit14 doi: 10.1002/smll.200800926 – ident: ref2/cit2 doi: 10.1016/S0140-6736(12)60235-9 – ident: ref22/cit22 doi: 10.1021/ja501699e – ident: ref21/cit21 doi: 10.1021/nn1028482 – ident: ref33/cit33 doi: 10.1038/nmat2442 – ident: ref17/cit17 doi: 10.1016/j.cbi.2011.06.004 – ident: ref1/cit1 – ident: ref37/cit37 doi: 10.1021/nn200328m – ident: ref39/cit39 doi: 10.1002/(SICI)1097-4652(199602)166:2<274::AID-JCP4>3.3.CO;2-X – ident: ref16/cit16 doi: 10.1021/bi00028a002 – ident: ref24/cit24 doi: 10.1021/nn406166n – volume-title: Chemical Physics of Free Molecules year: 1993 ident: ref48/cit48 doi: 10.1007/978-1-4757-9646-9 – ident: ref12/cit12 doi: 10.1038/210259a0 – ident: ref6/cit6 doi: 10.1016/j.fct.2007.04.001 – ident: ref55/cit55 doi: 10.1074/jbc.M610762200 – ident: ref53/cit53 doi: 10.1063/1.3248476 – ident: ref23/cit23 doi: 10.1021/ja202836s – ident: ref57/cit57 doi: 10.1021/cg9010423 – reference: 19153974 - Angew Chem Int Ed Engl. 2009;48(16):2891-3 – reference: 25646681 - ACS Nano. 2015 Mar 24;9(3):3032-43 – reference: 22882971 - Part Fibre Toxicol. 2012;9:32 – reference: 24673286 - J Am Chem Soc. 2014 Apr 30;136(17):6406-20 – reference: 23809161 - Immunity. 2013 Jun 27;38(6):1142-53 – reference: 24449423 - Toxicol Sci. 2014 Apr;138(2):354-64 – reference: 24720650 - ACS Nano. 2014 May 27;8(5):4450-64 – reference: 19051185 - Small. 2009 Jan;5(1):57-62 – reference: 18658273 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L552-65 – reference: 13426429 - Br J Ind Med. 1957 Apr;14(2):81-4 – reference: 17524541 - Food Chem Toxicol. 2007 Oct;45(10):1856-67 – reference: 24417322 - ACS Nano. 2014 Feb 25;8(2):1771-83 – reference: 17491021 - J Biol Chem. 2007 Jun 29;282(26):18810-8 – reference: 19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34 – reference: 20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14 – reference: 2173947 - Br J Ind Med. 1990 Nov;47(11):763-6 – reference: 21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8 – reference: 24261790 - ACS Nano. 2013 Dec 23;7(12):10834-49 – reference: 25581126 - Small. 2015 May 6;11(17):2087-97 – reference: 8591986 - J Cell Physiol. 1996 Feb;166(2):274-80 – reference: 10419518 - J Biol Chem. 1999 Jul 30;274(31):21953-62 – reference: 20230032 - J Am Chem Soc. 2010 Apr 7;132(13):4834-42 – reference: 22534002 - Lancet. 2012 May 26;379(9830):2008-18 – reference: 17599094 - Cell Death Differ. 2007 Sep;14(9):1583-9 – reference: 22676423 - Acc Chem Res. 2013 Mar 19;46(3):607-21 – reference: 19381952 - Methods Mol Biol. 2009;520:143-50 – reference: 23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41 – reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61 – reference: 24039004 - Small. 2014 Jan 29;10(2):385-98 – reference: 19525947 - Nat Mater. 2009 Jul;8(7):543-57 – reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69 – reference: 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14 – reference: 25182032 - Nat Nanotechnol. 2014 Sep;9(9):658-9 – reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80 – reference: 24507464 - Part Fibre Toxicol. 2014;11:8 – reference: 23180683 - Small. 2013 May 27;9(9-10):1595-607 – reference: 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68 – reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96 – reference: 21736874 - Chem Biol Interact. 2011 Sep 5;193(2):149-53 – reference: 7619793 - Biochemistry. 1995 Jul 18;34(28):8940-9 – reference: 25343348 - Nanomedicine (Lond). 2014 Sep;9(13):1971-89 – reference: 22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804 – reference: 4289018 - Nature. 1966 Apr 16;210(5033):259-61 – reference: 16002369 - Environ Health Perspect. 2005 Jul;113(7):823-39 – reference: 22591378 - ACS Nano. 2012 Jun 26;6(6):5668-79 – reference: 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35 – reference: 20821781 - Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7776-81 – reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68 |
SSID | ssj0057876 |
Score | 2.4883845 |
Snippet | The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other... The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9357 |
SubjectTerms | Calcium - metabolism Cell Line Density Doping Foods Fumed silica Humans Liver Cirrhosis - chemically induced Liver Cirrhosis - pathology Lung - drug effects Lung - pathology Lungs Nanoparticles - adverse effects Nanoparticles - chemistry Pneumonia - chemically induced Pneumonia - pathology Reactive Oxygen Species - toxicity Reduction Silanes - chemistry Silicon Dioxide - adverse effects Silicon Dioxide - chemistry Siloxanes Structure-Activity Relationship Titanium United States United States Food and Drug Administration |
Title | Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping |
URI | http://dx.doi.org/10.1021/acsnano.5b03443 https://www.ncbi.nlm.nih.gov/pubmed/26200133 https://www.proquest.com/docview/1715914022 https://www.proquest.com/docview/1770332999 https://pubmed.ncbi.nlm.nih.gov/PMC4687969 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NgDH4F2wUOY-NrhYGMtAOXlMb5PlYd1UCMA2PSbtH7KQLd22lJD-Nv8Iexk7SsqwYcozhfjl_7cew8FuJQUQwYoZEBauWCWJs4KEYyDCg0onKY61Dxv8Mnn9Pjs_jjeXL-hyz6dgUfw3dS1176-TBRzE4X3RfbmNISZhQ0OV06Xba7tCsgU4JMKGLF4rNxAg5Dul4PQxvY8naL5I2YM33UdWvVLVUht5r8GC4aNdQ_N4kc__04u2KnR54w7kxlT9yz_rF4eIOP8In49YWJXPlVwdzBWC8aCx-8I6O5aIvx0HEd17x3Sk7NwGnFH_2AfDQl332PHVQeCFbCJ_IjoK5hbL7zyDDaIGkSnMFRVV_O5DX0Q4JgIme66j5LgvQGTiylBHDU_sv1VJxN33-dHAf91IZAUvLTBNrJMNFhxhM8InQ6yWSOMrUYJTLKTYg2IRBpMDeFdiOrQysJVhZMs69TJH_wTGz5ubf7AhwBFBNTQukwitPcqcLJSJMTiiihLzIzEIekzrJfdXXZFtQxLHsdl72OB2K4fNel7pnPeQDH7O4D3q4OuOxIP-4WfbM0npIWJldbpLfzBd1MRkiR0lfEv8mQw40IERQD8bwzuNUFeVIA4XO6QrZmiisBJgZf3-Orby1BOOkqK9Lixf-p56V4QCgw4SYYxAOx1Vwt7CtCWo163a6x35K9Ju4 |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VcoAeeFPCc5B64OI0Xr-PUUqUQlIJ2kq9Wet9iEDYVNg5lL_BH-Zb2zFNqyI42h7b69nZ2W88u98wtldgDhhwJTwuC-OFUoVeNhC-h6mRF4an0i_c3uHZUTw5DT-cRWdbbLDeC4NGlHhSWSfx_7AL-Ps4Z4Vd9qPCkdQFt9htQBHubHo4Ol77Xmd-cZNHRpwMMNGR-Vx7gJuNZLk5G12DmFdXSl6aesb32aeu0fWKk2_9VVX05c8rfI7_81UP2L0Wh9KwMZyHbEvbR2znEjvhY_brs6N1dR1HS0NDuao0HVoDE_pep-apYT4u3dUxXJyi47n7BUjw2AjF2xV3NLcEkElTeBUqLmiovroCYjiANAQXdDAvzxfigtqSQTQSCzlvflKSsIpmGgECHdQ7u56w0_H7k9HEa2s4eAKhUOVJI_xI-omr5xFwI6NEpFzEmgeRCFLlcx2hHxVPVSbNQEtfC4DMzJHuy5jDOzxl23Zp9TNGBnBFhQgvDQ_CODVFZkQg4ZIChPdZonpsD-rM2zFY5nV6nft5q-O81XGP9dddnsuWB92V41jcfMO77obzhgLkZtG3axvKMUxd7kVYvVyhMQlwI4JZzv8mA_cbAB9kPbbb2F33Qlc3AGgdb0g2LLITcDThm1fs_EtNFw5dJVmcPf839bxhdyYns2k-PTz6-ILdBT6M3PIYzl-y7erHSr8CBquK1_Ww-w2mOi9P |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BkRAceFPCc5B64OIQr9_HKCFqoa0QJVJv1j6FadhE2DmUv8EfZsbeWE2rIjjaHtvr2dnZbzy73zC2J3EOGHEtAq6kDWKl46AYiTDAqZFLy3MVSto7fHSc7s_jj6fJqd8URnthsBE1Pqluk_g0qlfaeoaB8D2ed8Ith4kkorroJrtFSTuy6_HkZON_yQTTLpeMsTICip7Q58oDaEZS9faMdAVmXl4teWH6md1n877h7aqTs-G6kUP16xKn4_9-2QN2z-NRGHcG9JDdMO4Ru3uBpfAx-_2F6F2pA2FpYazWjYEDZ9GUfrQpeugYkGu6OkNXp-Gkol-BgJ4bQ3K_8g4qBwg24RC9C8hzGOvvVEgMD1AaBRcwrerVQpyDLx0EE7FQVfezEoTTcGQwUIBpu8PrCZvPPnyd7Ae-lkMgMCRqAmVFmKgwo7oeEbcqyUTORWp4lIgo1yE3Cfal5rkulB0ZFRqBYLMg8n2VcvQST9mOWzrzjIFF2KJjDDMtj-I0t7KwIlLomiIM84tMD9geqrP0Y7Eu2zQ7D0uv49LreMCGm24vledDp7Ici-tveNffsOqoQK4XfbuxoxKHK-VghDPLNTYmQ_yIQS3nf5NBNxwhTigGbLezvf6FVD8AUTu-Iduyyl6A6MK3r7jqW0sbjrrKirR4_m_qecNuf57OysOD408v2B2EiQmtkuH8Jdtpfq7NK4RijXzdjrw_QE0x0g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Acute+Inflammatory+Effects+of+Fumed+Silica+Nanoparticles+in+the+Lung+by+Adjusting+Silanol+Display+through+Calcination+and+Metal+Doping&rft.jtitle=ACS+nano&rft.au=Sun%2C+Bingbing&rft.au=Pokhrel%2C+Suman&rft.au=Dunphy%2C+Darren+R.&rft.au=Zhang%2C+Haiyuan&rft.date=2015-09-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=9&rft.spage=9357&rft.epage=9372&rft_id=info:doi/10.1021%2Facsnano.5b03443&rft_id=info%3Apmid%2F26200133&rft.externalDocID=PMC4687969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon |