Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping

The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Foo...

Full description

Saved in:
Bibliographic Details
Published inACS nano Vol. 9; no. 9; pp. 9357 - 9372
Main Authors Sun, Bingbing, Pokhrel, Suman, Dunphy, Darren R, Zhang, Haiyuan, Ji, Zhaoxia, Wang, Xiang, Wang, Meiying, Liao, Yu-Pei, Chang, Chong Hyun, Dong, Juyao, Li, Ruibin, Mädler, Lutz, Brinker, C. Jeffrey, Nel, André E, Xia, Tian
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 22.09.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure–activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0–7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.
AbstractList The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances. Keywords: fumed silica; silanol groups; doping; NLRP3 inflammasome; IL-1 beta ; lung inflammation
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure–activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0–7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe for use in food products by the Food and Drug Administration. However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and "string-of-pearl-like" aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium and aluminum doping (0-7%), using flame spray pyrolysis. Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation, and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone-marrow-derived macrophages. Ti doping, and to a lesser extent Al doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other industrial products. Synthetic amorphous silica, including fumed silica, has been generally recognized as safe (GRAS) for use in food products by the Food and Drug Administration (FDA). However, emerging evidence from experimental studies now suggests that fumed silica could be hazardous due to its siloxane ring structure, high silanol density, and “string-of-pearl-like” aggregate structure, which could combine to cause membrane disruption, generation of reactive oxygen species, pro-inflammatory effects, and liver fibrosis. Based on this structure-activity analysis (SAA), we investigated whether calcination and rehydration of fumed silica changes its hazard potential in the lung due to an effect on silanol density display. This analysis demonstrated that the accompanying change in surface reactivity could indeed impact cytokine production in macrophages and acute inflammation in the lung, in a manner that is dependent on siloxane ring reconstruction. Confirmation of this SAA in vivo, prompted us to consider safer design of fumed silica properties by titanium (Ti) and aluminum (Al) doping (0–7%), using flame spray pyrolysis (FSP). Detailed characterization revealed that increased Ti and Al doping could reduce surface silanol density and expression of three-membered siloxane rings, leading to dose-dependent reduction in hydroxyl radical generation, membrane perturbation, potassium efflux, NLRP3 inflammasome activation and cytotoxicity in THP-1 cells. The reduction of NLRP3 inflammasome activation was also confirmed in bone marrow-derived macrophages (BMDMs). Ti- and to a lesser extent Al-doping, also ameliorated acute pulmonary inflammation, demonstrating the possibility of a safer design approach for fumed silica, should that be required for specific use circumstances.
Author Brinker, C. Jeffrey
Sun, Bingbing
Wang, Meiying
Liao, Yu-Pei
Chang, Chong Hyun
Dong, Juyao
Nel, André E
Dunphy, Darren R
Wang, Xiang
Mädler, Lutz
Ji, Zhaoxia
Pokhrel, Suman
Li, Ruibin
Xia, Tian
Zhang, Haiyuan
AuthorAffiliation Chinese Academy of Sciences
Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry
University of Bremen
Self-Assembled Materials Department
Division of NanoMedicine, Department of Medicine
University of California
Department of Molecular Genetics and Microbiology
Sandia National Laboratories
Department of Chemistry
California NanoSystems Institute
Foundation Institute of Materials Science (IWT), Department of Production Engineering
Department of Chemical and Nuclear Engineering
University of New Mexico
AuthorAffiliation_xml – name: Self-Assembled Materials Department
– name: Department of Chemistry
– name: Chinese Academy of Sciences
– name: Department of Molecular Genetics and Microbiology
– name: Division of NanoMedicine, Department of Medicine
– name: Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry
– name: California NanoSystems Institute
– name: University of California
– name: University of New Mexico
– name: Department of Chemical and Nuclear Engineering
– name: Sandia National Laboratories
– name: Foundation Institute of Materials Science (IWT), Department of Production Engineering
– name: University of Bremen
– name: 6 Department of Chemistry, University of California, Los Angeles, CA 90095, United States
– name: 3 Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
– name: 8 Self-Assembled Materials Department, Sandia National Laboratories, PO Box 5800 MS1349, Albuquerque, New Mexico 87185, United States
– name: 5 California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
– name: 1 Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA 90095, United States
– name: 4 Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
– name: 7 Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico 87131, United States
– name: 2 Foundation Institute of Materials Science (IWT), Department of Production Engineering, University of Bremen, Germany
Author_xml – sequence: 1
  givenname: Bingbing
  surname: Sun
  fullname: Sun, Bingbing
– sequence: 2
  givenname: Suman
  surname: Pokhrel
  fullname: Pokhrel, Suman
– sequence: 3
  givenname: Darren R
  surname: Dunphy
  fullname: Dunphy, Darren R
– sequence: 4
  givenname: Haiyuan
  surname: Zhang
  fullname: Zhang, Haiyuan
– sequence: 5
  givenname: Zhaoxia
  surname: Ji
  fullname: Ji, Zhaoxia
– sequence: 6
  givenname: Xiang
  surname: Wang
  fullname: Wang, Xiang
– sequence: 7
  givenname: Meiying
  surname: Wang
  fullname: Wang, Meiying
– sequence: 8
  givenname: Yu-Pei
  surname: Liao
  fullname: Liao, Yu-Pei
– sequence: 9
  givenname: Chong Hyun
  surname: Chang
  fullname: Chang, Chong Hyun
– sequence: 10
  givenname: Juyao
  surname: Dong
  fullname: Dong, Juyao
– sequence: 11
  givenname: Ruibin
  surname: Li
  fullname: Li, Ruibin
– sequence: 12
  givenname: Lutz
  surname: Mädler
  fullname: Mädler, Lutz
– sequence: 13
  givenname: C. Jeffrey
  surname: Brinker
  fullname: Brinker, C. Jeffrey
– sequence: 14
  givenname: André E
  surname: Nel
  fullname: Nel, André E
  email: txia@ucla.edu, anel@mednet.ucla.edu
– sequence: 15
  givenname: Tian
  surname: Xia
  fullname: Xia, Tian
  email: txia@ucla.edu, anel@mednet.ucla.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26200133$$D View this record in MEDLINE/PubMed
BookMark eNqNkkmLFDEUx4OMOIuevUmOgvRMlkotF6FpZ3SgVXABb-F1KtWdJpWUWYT-HH5hM9Nto4LiKQn_3_8tee8cnTjvNEJPKbmkhNErUNGB85diRXhV8QfojHa8npG2_nJyvAt6is5j3BIimrapH6FTVjNCKOdn6PsH3WeVjHfYD3iuctL41g0WxhGSDzt8PQxapXin3uRR9_ijsUYBflfSThCSUVZHbBxOG42X2a3xaofn_TbHZMqj0AW0-JWJk4VdoYLP6w1egFXGwX1icD1-qxMUyk_F9Bg9HMBG_eRwXqDPN9efFm9my_evbxfz5QyqtkkzNQAVijZNyyvOBiUaaBnUmnEBvO0p00LUomdt36mBaEU1kEp0DSGVqllX8wv0ch93yqvSmdIuBbByCmaEsJMejPxdcWYj1_6brOq26equBHh-CBD816xjkqOJStvSsvY5ylIb4Zx13f-gVHS0IowV9NmvZR3r-Tm0AlztARV8jEEPR4QSebcW8rAW8rAWxSH-cCiT7j-_9GXsP3wv9r4iyK3PwZV5_JX-AVnTzuc
CitedBy_id crossref_primary_10_2174_1573413718666220929102013
crossref_primary_10_1039_C7EN01130J
crossref_primary_10_1039_C9EN00372J
crossref_primary_10_1093_nsr_nww064
crossref_primary_10_1021_acsanm_3c03852
crossref_primary_10_1016_j_ecoenv_2018_09_077
crossref_primary_10_1016_j_biomaterials_2017_03_029
crossref_primary_10_1007_s10971_018_4772_1
crossref_primary_10_1002_smll_202000603
crossref_primary_10_1186_s12989_019_0325_1
crossref_primary_10_1007_s13738_019_01591_9
crossref_primary_10_1016_j_impact_2021_100313
crossref_primary_10_1021_acssuschemeng_6b00218
crossref_primary_10_1016_j_jhazmat_2020_124050
crossref_primary_10_1021_acs_langmuir_9b02578
crossref_primary_10_1016_j_ecoenv_2018_07_076
crossref_primary_10_1002_anie_202006861
crossref_primary_10_1007_s11434_016_1069_z
crossref_primary_10_1021_acsaem_0c01231
crossref_primary_10_1039_C9NR03756J
crossref_primary_10_1016_j_envpol_2021_117438
crossref_primary_10_1021_acsnano_6b04143
crossref_primary_10_1016_j_jcis_2017_07_096
crossref_primary_10_1002_adfm_202104487
crossref_primary_10_1039_C6EN00009F
crossref_primary_10_1016_j_impact_2016_08_002
crossref_primary_10_1016_j_jpowsour_2017_11_016
crossref_primary_10_1186_s12989_017_0220_6
crossref_primary_10_1016_j_scitotenv_2021_149538
crossref_primary_10_1021_acsomega_2c04975
crossref_primary_10_1038_s41578_020_0230_0
crossref_primary_10_1093_toxsci_kfab120
crossref_primary_10_1016_j_bioadv_2022_213005
crossref_primary_10_1007_s10311_024_01787_3
crossref_primary_10_1007_s00216_018_1289_y
crossref_primary_10_1016_j_jes_2021_04_021
crossref_primary_10_1016_j_biomaterials_2016_12_010
crossref_primary_10_1016_j_chemosphere_2019_124937
crossref_primary_10_1186_s12951_018_0413_7
crossref_primary_10_1039_D1EN00026H
crossref_primary_10_14356_kona_2025004
crossref_primary_10_1016_j_etap_2021_103689
crossref_primary_10_1021_acssuschemeng_8b05550
crossref_primary_10_1039_D0CP03472J
crossref_primary_10_1002_ange_202006861
crossref_primary_10_1021_acsami_7b05817
crossref_primary_10_1126_science_aad0768
crossref_primary_10_1021_acscatal_6b00396
crossref_primary_10_1039_C6EN00601A
crossref_primary_10_1021_acs_energyfuels_0c02220
crossref_primary_10_1177_0300060520912105
crossref_primary_10_1021_acsnano_6b07461
crossref_primary_10_1186_s12989_017_0202_8
crossref_primary_10_1016_j_actbio_2017_12_020
crossref_primary_10_1016_j_cis_2023_102903
crossref_primary_10_1021_acsnano_2c01283
crossref_primary_10_1016_j_biomaterials_2016_12_029
crossref_primary_10_1016_j_csbj_2020_02_023
crossref_primary_10_1124_jpet_123_002031
crossref_primary_10_3390_ijms22010385
crossref_primary_10_1002_smll_202000528
crossref_primary_10_1002_smll_201703915
crossref_primary_10_1021_acsnano_4c02685
crossref_primary_10_1371_journal_pone_0154447
crossref_primary_10_3390_nano10040815
crossref_primary_10_1021_acsnano_3c05600
crossref_primary_10_1039_C6CY01252C
crossref_primary_10_1016_j_impact_2022_100380
crossref_primary_10_1016_j_nanoen_2018_05_007
crossref_primary_10_1016_j_susmat_2024_e00826
crossref_primary_10_1039_D0NR04401F
crossref_primary_10_3390_nano12213908
crossref_primary_10_1016_j_envpol_2021_117993
crossref_primary_10_1016_j_impact_2019_01_001
crossref_primary_10_3390_nano12142392
crossref_primary_10_1080_17435390_2017_1287313
crossref_primary_10_1002_adma_201705691
crossref_primary_10_1186_s12989_025_00619_8
crossref_primary_10_1002_smll_201907663
crossref_primary_10_1166_jbn_2021_3109
crossref_primary_10_1021_acsami_7b11435
crossref_primary_10_1021_acsnano_2c11147
crossref_primary_10_1073_pnas_2008006117
crossref_primary_10_1016_j_biomaterials_2021_120960
crossref_primary_10_1007_s10853_021_06412_0
crossref_primary_10_1016_j_jddst_2023_104970
crossref_primary_10_1016_j_ymthe_2017_03_011
crossref_primary_10_1111_ijag_16655
crossref_primary_10_1208_s12249_020_01855_1
crossref_primary_10_1073_pnas_2021078117
crossref_primary_10_1016_j_nantod_2022_101559
crossref_primary_10_1002_advs_202204842
crossref_primary_10_1016_j_arabjc_2022_104120
crossref_primary_10_1002_cctc_202200286
crossref_primary_10_1007_s11356_020_09313_y
crossref_primary_10_1039_D1EN00696G
crossref_primary_10_25040_ecpb2019_01_052
crossref_primary_10_2139_ssrn_3576872
Cites_doi 10.1021/nn507243w
10.1080/10408436.2011.572741
10.1021/nn3012114
10.1074/jbc.274.31.21953
10.1093/toxsci/kfu009
10.1186/1743-8977-9-32
10.1038/nnano.2014.196
10.1002/smll.201201962
10.1021/es100417s
10.1007/978-1-60327-811-9_10
10.1016/j.jcat.2013.02.017
10.1016/j.combustflame.2006.06.003
10.1136/oem.47.11.763
10.1021/nn301669t
10.1038/sj.cdd.4402195
10.1136/oem.14.2.81
10.1021/nn3010087
10.1289/ehp.7339
10.1021/nl300895y
10.1016/0022-328X(96)06319-X
10.1152/ajplung.90287.2008
10.1021/nn5012754
10.1021/ar300022h
10.1021/ar300032q
10.1021/nn700256c
10.1111/j.1151-2916.1993.tb04034.x
10.1186/1743-8977-11-8
10.1002/smll.201402859
10.1021/nn305567s
10.1021/ja304907c
10.1002/smll.201301597
10.1016/j.jaci.2003.07.005
10.1504/IJBNN.2013.054506
10.1021/nn800511k
10.1002/anie.200804580
10.1021/nn404211j
10.3109/17435390903276933
10.1016/j.immuni.2013.05.016
10.2217/nnm.14.139
10.1021/ja910846q
10.1002/anie.201003391
10.1016/j.ces.2011.06.010
10.1002/smll.200800926
10.1016/S0140-6736(12)60235-9
10.1021/ja501699e
10.1021/nn1028482
10.1038/nmat2442
10.1016/j.cbi.2011.06.004
10.1021/nn200328m
10.1002/(SICI)1097-4652(199602)166:2<274::AID-JCP4>3.3.CO;2-X
10.1021/bi00028a002
10.1021/nn406166n
10.1007/978-1-4757-9646-9
10.1038/210259a0
10.1016/j.fct.2007.04.001
10.1074/jbc.M610762200
10.1063/1.3248476
10.1021/ja202836s
10.1021/cg9010423
ContentType Journal Article
Copyright Copyright © American Chemical Society
Copyright_xml – notice: Copyright © American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
DOI 10.1021/acsnano.5b03443
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-086X
EndPage 9372
ExternalDocumentID PMC4687969
26200133
10_1021_acsnano_5b03443
c03940298
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: R01 ES016746
– fundername: NCRR NIH HHS
  grantid: S10 RR023057
GroupedDBID -
23M
4.4
53G
55A
5GY
5VS
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
LG6
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
YZZ
---
.K2
6J9
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHGD
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
5PM
ID FETCH-LOGICAL-a487t-cfa15c17783432fc57a82a6e235a38d12e5565d28d9cf0ec1ea04597004c62963
IEDL.DBID ACS
ISSN 1936-0851
1936-086X
IngestDate Thu Aug 21 13:53:00 EDT 2025
Fri Jul 11 00:33:42 EDT 2025
Fri Jul 11 02:43:16 EDT 2025
Mon Jul 21 05:59:20 EDT 2025
Tue Jul 01 01:33:53 EDT 2025
Thu Apr 24 23:07:07 EDT 2025
Thu Aug 27 13:41:55 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords doping
fumed silica
silanol groups
NLRP3 inflammasome
IL-1β
lung inflammation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-cfa15c17783432fc57a82a6e235a38d12e5565d28d9cf0ec1ea04597004c62963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26200133
PQID 1715914022
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4687969
proquest_miscellaneous_1770332999
proquest_miscellaneous_1715914022
pubmed_primary_26200133
crossref_primary_10_1021_acsnano_5b03443
crossref_citationtrail_10_1021_acsnano_5b03443
acs_journals_10_1021_acsnano_5b03443
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-22
PublicationDateYYYYMMDD 2015-09-22
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-22
  day: 22
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS nano
PublicationTitleAlternate ACS Nano
PublicationYear 2015
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
March H. N. (ref48/cit48) 1993
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
Sahl R. (ref49/cit49) 2011
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
4289018 - Nature. 1966 Apr 16;210(5033):259-61
20821781 - Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7776-81
23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68
24417322 - ACS Nano. 2014 Feb 25;8(2):1771-83
8591986 - J Cell Physiol. 1996 Feb;166(2):274-80
25343348 - Nanomedicine (Lond). 2014 Sep;9(13):1971-89
22882971 - Part Fibre Toxicol. 2012;9:32
22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
22676423 - Acc Chem Res. 2013 Mar 19;46(3):607-21
19381952 - Methods Mol Biol. 2009;520:143-50
22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804
19206551 - ACS Nano. 2008 Jan;2(1):85-96
2173947 - Br J Ind Med. 1990 Nov;47(11):763-6
21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
13426429 - Br J Ind Med. 1957 Apr;14(2):81-4
23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41
17524541 - Food Chem Toxicol. 2007 Oct;45(10):1856-67
7619793 - Biochemistry. 1995 Jul 18;34(28):8940-9
24039004 - Small. 2014 Jan 29;10(2):385-98
24449423 - Toxicol Sci. 2014 Apr;138(2):354-64
17491021 - J Biol Chem. 2007 Jun 29;282(26):18810-8
19153974 - Angew Chem Int Ed Engl. 2009;48(16):2891-3
19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34
24261790 - ACS Nano. 2013 Dec 23;7(12):10834-49
23809161 - Immunity. 2013 Jun 27;38(6):1142-53
10419518 - J Biol Chem. 1999 Jul 30;274(31):21953-62
16002369 - Environ Health Perspect. 2005 Jul;113(7):823-39
25646681 - ACS Nano. 2015 Mar 24;9(3):3032-43
24507464 - Part Fibre Toxicol. 2014;11:8
17599094 - Cell Death Differ. 2007 Sep;14(9):1583-9
14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14
25182032 - Nat Nanotechnol. 2014 Sep;9(9):658-9
21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8
20230032 - J Am Chem Soc. 2010 Apr 7;132(13):4834-42
18658273 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L552-65
20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14
19525947 - Nat Mater. 2009 Jul;8(7):543-57
24720650 - ACS Nano. 2014 May 27;8(5):4450-64
21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
19051185 - Small. 2009 Jan;5(1):57-62
25581126 - Small. 2015 May 6;11(17):2087-97
23180683 - Small. 2013 May 27;9(9-10):1595-607
22502734 - ACS Nano. 2012 May 22;6(5):4349-68
21736874 - Chem Biol Interact. 2011 Sep 5;193(2):149-53
22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
22591378 - ACS Nano. 2012 Jun 26;6(6):5668-79
22534002 - Lancet. 2012 May 26;379(9830):2008-18
24673286 - J Am Chem Soc. 2014 Apr 30;136(17):6406-20
References_xml – ident: ref54/cit54
  doi: 10.1021/nn507243w
– ident: ref50/cit50
  doi: 10.1080/10408436.2011.572741
– ident: ref36/cit36
  doi: 10.1021/nn3012114
– start-page: 135
  volume-title: Crystalline Silicon—Properties and Uses
  year: 2011
  ident: ref49/cit49
– ident: ref38/cit38
  doi: 10.1074/jbc.274.31.21953
– ident: ref7/cit7
  doi: 10.1093/toxsci/kfu009
– ident: ref4/cit4
  doi: 10.1186/1743-8977-9-32
– ident: ref3/cit3
  doi: 10.1038/nnano.2014.196
– ident: ref19/cit19
  doi: 10.1002/smll.201201962
– ident: ref58/cit58
  doi: 10.1021/es100417s
– ident: ref61/cit61
  doi: 10.1007/978-1-60327-811-9_10
– ident: ref29/cit29
  doi: 10.1016/j.jcat.2013.02.017
– ident: ref51/cit51
  doi: 10.1016/j.combustflame.2006.06.003
– ident: ref45/cit45
  doi: 10.1136/oem.47.11.763
– ident: ref27/cit27
  doi: 10.1021/nn301669t
– ident: ref40/cit40
  doi: 10.1038/sj.cdd.4402195
– ident: ref13/cit13
  doi: 10.1136/oem.14.2.81
– ident: ref32/cit32
  doi: 10.1021/nn3010087
– ident: ref41/cit41
  doi: 10.1289/ehp.7339
– ident: ref18/cit18
  doi: 10.1021/nl300895y
– ident: ref35/cit35
  doi: 10.1016/0022-328X(96)06319-X
– ident: ref59/cit59
  doi: 10.1152/ajplung.90287.2008
– ident: ref43/cit43
  doi: 10.1021/nn5012754
– ident: ref10/cit10
  doi: 10.1021/ar300022h
– ident: ref28/cit28
  doi: 10.1021/ar300032q
– ident: ref26/cit26
  doi: 10.1021/nn700256c
– ident: ref34/cit34
  doi: 10.1111/j.1151-2916.1993.tb04034.x
– ident: ref9/cit9
  doi: 10.1186/1743-8977-11-8
– ident: ref44/cit44
  doi: 10.1002/smll.201402859
– ident: ref25/cit25
  doi: 10.1021/nn305567s
– ident: ref5/cit5
  doi: 10.1021/ja304907c
– ident: ref46/cit46
  doi: 10.1002/smll.201301597
– ident: ref60/cit60
  doi: 10.1016/j.jaci.2003.07.005
– ident: ref11/cit11
  doi: 10.1504/IJBNN.2013.054506
– ident: ref31/cit31
  doi: 10.1021/nn800511k
– ident: ref47/cit47
  doi: 10.1002/anie.200804580
– ident: ref20/cit20
  doi: 10.1021/nn404211j
– ident: ref8/cit8
  doi: 10.3109/17435390903276933
– ident: ref56/cit56
  doi: 10.1016/j.immuni.2013.05.016
– ident: ref42/cit42
  doi: 10.2217/nnm.14.139
– ident: ref15/cit15
  doi: 10.1021/ja910846q
– ident: ref30/cit30
  doi: 10.1002/anie.201003391
– ident: ref52/cit52
  doi: 10.1016/j.ces.2011.06.010
– ident: ref14/cit14
  doi: 10.1002/smll.200800926
– ident: ref2/cit2
  doi: 10.1016/S0140-6736(12)60235-9
– ident: ref22/cit22
  doi: 10.1021/ja501699e
– ident: ref21/cit21
  doi: 10.1021/nn1028482
– ident: ref33/cit33
  doi: 10.1038/nmat2442
– ident: ref17/cit17
  doi: 10.1016/j.cbi.2011.06.004
– ident: ref1/cit1
– ident: ref37/cit37
  doi: 10.1021/nn200328m
– ident: ref39/cit39
  doi: 10.1002/(SICI)1097-4652(199602)166:2<274::AID-JCP4>3.3.CO;2-X
– ident: ref16/cit16
  doi: 10.1021/bi00028a002
– ident: ref24/cit24
  doi: 10.1021/nn406166n
– volume-title: Chemical Physics of Free Molecules
  year: 1993
  ident: ref48/cit48
  doi: 10.1007/978-1-4757-9646-9
– ident: ref12/cit12
  doi: 10.1038/210259a0
– ident: ref6/cit6
  doi: 10.1016/j.fct.2007.04.001
– ident: ref55/cit55
  doi: 10.1074/jbc.M610762200
– ident: ref53/cit53
  doi: 10.1063/1.3248476
– ident: ref23/cit23
  doi: 10.1021/ja202836s
– ident: ref57/cit57
  doi: 10.1021/cg9010423
– reference: 19153974 - Angew Chem Int Ed Engl. 2009;48(16):2891-3
– reference: 25646681 - ACS Nano. 2015 Mar 24;9(3):3032-43
– reference: 22882971 - Part Fibre Toxicol. 2012;9:32
– reference: 24673286 - J Am Chem Soc. 2014 Apr 30;136(17):6406-20
– reference: 23809161 - Immunity. 2013 Jun 27;38(6):1142-53
– reference: 24449423 - Toxicol Sci. 2014 Apr;138(2):354-64
– reference: 24720650 - ACS Nano. 2014 May 27;8(5):4450-64
– reference: 19051185 - Small. 2009 Jan;5(1):57-62
– reference: 18658273 - Am J Physiol Lung Cell Mol Physiol. 2008 Oct;295(4):L552-65
– reference: 13426429 - Br J Ind Med. 1957 Apr;14(2):81-4
– reference: 17524541 - Food Chem Toxicol. 2007 Oct;45(10):1856-67
– reference: 24417322 - ACS Nano. 2014 Feb 25;8(2):1771-83
– reference: 17491021 - J Biol Chem. 2007 Jun 29;282(26):18810-8
– reference: 19206459 - ACS Nano. 2008 Oct 28;2(10):2121-34
– reference: 20536146 - Environ Sci Technol. 2010 Oct 1;44(19):7309-14
– reference: 2173947 - Br J Ind Med. 1990 Nov;47(11):763-6
– reference: 21678906 - J Am Chem Soc. 2011 Jul 27;133(29):11270-8
– reference: 24261790 - ACS Nano. 2013 Dec 23;7(12):10834-49
– reference: 25581126 - Small. 2015 May 6;11(17):2087-97
– reference: 8591986 - J Cell Physiol. 1996 Feb;166(2):274-80
– reference: 10419518 - J Biol Chem. 1999 Jul 30;274(31):21953-62
– reference: 20230032 - J Am Chem Soc. 2010 Apr 7;132(13):4834-42
– reference: 22534002 - Lancet. 2012 May 26;379(9830):2008-18
– reference: 17599094 - Cell Death Differ. 2007 Sep;14(9):1583-9
– reference: 22676423 - Acc Chem Res. 2013 Mar 19;46(3):607-21
– reference: 19381952 - Methods Mol Biol. 2009;520:143-50
– reference: 23194152 - Acc Chem Res. 2013 Mar 19;46(3):632-41
– reference: 22546002 - Nano Lett. 2012 Jun 13;12(6):3050-61
– reference: 24039004 - Small. 2014 Jan 29;10(2):385-98
– reference: 19525947 - Nat Mater. 2009 Jul;8(7):543-57
– reference: 21366263 - ACS Nano. 2011 Apr 26;5(4):2756-69
– reference: 14610479 - J Allergy Clin Immunol. 2003 Nov;112(5):905-14
– reference: 25182032 - Nat Nanotechnol. 2014 Sep;9(9):658-9
– reference: 22564147 - ACS Nano. 2012 Jun 26;6(6):5366-80
– reference: 24507464 - Part Fibre Toxicol. 2014;11:8
– reference: 23180683 - Small. 2013 May 27;9(9-10):1595-607
– reference: 23414138 - ACS Nano. 2013 Mar 26;7(3):2352-68
– reference: 19206551 - ACS Nano. 2008 Jan;2(1):85-96
– reference: 21736874 - Chem Biol Interact. 2011 Sep 5;193(2):149-53
– reference: 7619793 - Biochemistry. 1995 Jul 18;34(28):8940-9
– reference: 25343348 - Nanomedicine (Lond). 2014 Sep;9(13):1971-89
– reference: 22924492 - J Am Chem Soc. 2012 Sep 26;134(38):15790-804
– reference: 4289018 - Nature. 1966 Apr 16;210(5033):259-61
– reference: 16002369 - Environ Health Perspect. 2005 Jul;113(7):823-39
– reference: 22591378 - ACS Nano. 2012 Jun 26;6(6):5668-79
– reference: 21250651 - ACS Nano. 2011 Feb 22;5(2):1223-35
– reference: 20821781 - Angew Chem Int Ed Engl. 2010 Oct 11;49(42):7776-81
– reference: 22502734 - ACS Nano. 2012 May 22;6(5):4349-68
SSID ssj0057876
Score 2.4883845
Snippet The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals, and other...
The production of pyrogenic (fumed) silica is increasing worldwide at a 7% annual growth rate, including expanded use in food, pharmaceuticals and other...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 9357
SubjectTerms Calcium - metabolism
Cell Line
Density
Doping
Foods
Fumed silica
Humans
Liver Cirrhosis - chemically induced
Liver Cirrhosis - pathology
Lung - drug effects
Lung - pathology
Lungs
Nanoparticles - adverse effects
Nanoparticles - chemistry
Pneumonia - chemically induced
Pneumonia - pathology
Reactive Oxygen Species - toxicity
Reduction
Silanes - chemistry
Silicon Dioxide - adverse effects
Silicon Dioxide - chemistry
Siloxanes
Structure-Activity Relationship
Titanium
United States
United States Food and Drug Administration
Title Reduction of Acute Inflammatory Effects of Fumed Silica Nanoparticles in the Lung by Adjusting Silanol Display through Calcination and Metal Doping
URI http://dx.doi.org/10.1021/acsnano.5b03443
https://www.ncbi.nlm.nih.gov/pubmed/26200133
https://www.proquest.com/docview/1715914022
https://www.proquest.com/docview/1770332999
https://pubmed.ncbi.nlm.nih.gov/PMC4687969
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NgDH4F2wUOY-NrhYGMtAOXlMb5PlYd1UCMA2PSbtH7KQLd22lJD-Nv8Iexk7SsqwYcozhfjl_7cew8FuJQUQwYoZEBauWCWJs4KEYyDCg0onKY61Dxv8Mnn9Pjs_jjeXL-hyz6dgUfw3dS1176-TBRzE4X3RfbmNISZhQ0OV06Xba7tCsgU4JMKGLF4rNxAg5Dul4PQxvY8naL5I2YM33UdWvVLVUht5r8GC4aNdQ_N4kc__04u2KnR54w7kxlT9yz_rF4eIOP8In49YWJXPlVwdzBWC8aCx-8I6O5aIvx0HEd17x3Sk7NwGnFH_2AfDQl332PHVQeCFbCJ_IjoK5hbL7zyDDaIGkSnMFRVV_O5DX0Q4JgIme66j5LgvQGTiylBHDU_sv1VJxN33-dHAf91IZAUvLTBNrJMNFhxhM8InQ6yWSOMrUYJTLKTYg2IRBpMDeFdiOrQysJVhZMs69TJH_wTGz5ubf7AhwBFBNTQukwitPcqcLJSJMTiiihLzIzEIekzrJfdXXZFtQxLHsdl72OB2K4fNel7pnPeQDH7O4D3q4OuOxIP-4WfbM0npIWJldbpLfzBd1MRkiR0lfEv8mQw40IERQD8bwzuNUFeVIA4XO6QrZmiisBJgZf3-Orby1BOOkqK9Lixf-p56V4QCgw4SYYxAOx1Vwt7CtCWo163a6x35K9Ju4
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF6VcoAeeFPCc5B64OI0Xr-PUUqUQlIJ2kq9Wet9iEDYVNg5lL_BH-Zb2zFNqyI42h7b69nZ2W88u98wtldgDhhwJTwuC-OFUoVeNhC-h6mRF4an0i_c3uHZUTw5DT-cRWdbbLDeC4NGlHhSWSfx_7AL-Ps4Z4Vd9qPCkdQFt9htQBHubHo4Ol77Xmd-cZNHRpwMMNGR-Vx7gJuNZLk5G12DmFdXSl6aesb32aeu0fWKk2_9VVX05c8rfI7_81UP2L0Wh9KwMZyHbEvbR2znEjvhY_brs6N1dR1HS0NDuao0HVoDE_pep-apYT4u3dUxXJyi47n7BUjw2AjF2xV3NLcEkElTeBUqLmiovroCYjiANAQXdDAvzxfigtqSQTQSCzlvflKSsIpmGgECHdQ7u56w0_H7k9HEa2s4eAKhUOVJI_xI-omr5xFwI6NEpFzEmgeRCFLlcx2hHxVPVSbNQEtfC4DMzJHuy5jDOzxl23Zp9TNGBnBFhQgvDQ_CODVFZkQg4ZIChPdZonpsD-rM2zFY5nV6nft5q-O81XGP9dddnsuWB92V41jcfMO77obzhgLkZtG3axvKMUxd7kVYvVyhMQlwI4JZzv8mA_cbAB9kPbbb2F33Qlc3AGgdb0g2LLITcDThm1fs_EtNFw5dJVmcPf839bxhdyYns2k-PTz6-ILdBT6M3PIYzl-y7erHSr8CBquK1_Ww-w2mOi9P
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BkRAceFPCc5B64OIQr9_HKCFqoa0QJVJv1j6FadhE2DmUv8EfZsbeWE2rIjjaHtvr2dnZbzy73zC2J3EOGHEtAq6kDWKl46AYiTDAqZFLy3MVSto7fHSc7s_jj6fJqd8URnthsBE1Pqluk_g0qlfaeoaB8D2ed8Ith4kkorroJrtFSTuy6_HkZON_yQTTLpeMsTICip7Q58oDaEZS9faMdAVmXl4teWH6md1n877h7aqTs-G6kUP16xKn4_9-2QN2z-NRGHcG9JDdMO4Ru3uBpfAx-_2F6F2pA2FpYazWjYEDZ9GUfrQpeugYkGu6OkNXp-Gkol-BgJ4bQ3K_8g4qBwg24RC9C8hzGOvvVEgMD1AaBRcwrerVQpyDLx0EE7FQVfezEoTTcGQwUIBpu8PrCZvPPnyd7Ae-lkMgMCRqAmVFmKgwo7oeEbcqyUTORWp4lIgo1yE3Cfal5rkulB0ZFRqBYLMg8n2VcvQST9mOWzrzjIFF2KJjDDMtj-I0t7KwIlLomiIM84tMD9geqrP0Y7Eu2zQ7D0uv49LreMCGm24vledDp7Ici-tveNffsOqoQK4XfbuxoxKHK-VghDPLNTYmQ_yIQS3nf5NBNxwhTigGbLezvf6FVD8AUTu-Iduyyl6A6MK3r7jqW0sbjrrKirR4_m_qecNuf57OysOD408v2B2EiQmtkuH8Jdtpfq7NK4RijXzdjrw_QE0x0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reduction+of+Acute+Inflammatory+Effects+of+Fumed+Silica+Nanoparticles+in+the+Lung+by+Adjusting+Silanol+Display+through+Calcination+and+Metal+Doping&rft.jtitle=ACS+nano&rft.au=Sun%2C+Bingbing&rft.au=Pokhrel%2C+Suman&rft.au=Dunphy%2C+Darren+R.&rft.au=Zhang%2C+Haiyuan&rft.date=2015-09-22&rft.issn=1936-0851&rft.eissn=1936-086X&rft.volume=9&rft.issue=9&rft.spage=9357&rft.epage=9372&rft_id=info:doi/10.1021%2Facsnano.5b03443&rft_id=info%3Apmid%2F26200133&rft.externalDocID=PMC4687969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-0851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-0851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-0851&client=summon