Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework

Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theor...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 139; no. 30; pp. 10294 - 10301
Main Authors Ikuno, Takaaki, Zheng, Jian, Vjunov, Aleksei, Sanchez-Sanchez, Maricruz, Ortuño, Manuel A, Pahls, Dale R, Fulton, John L, Camaioni, Donald M, Li, Zhanyong, Ray, Debmalya, Mehdi, B. Layla, Browning, Nigel D, Farha, Omar K, Hupp, Joseph T, Cramer, Christopher J, Gagliardi, Laura, Lercher, Johannes A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 02.08.2017
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
AbstractList Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu⁺ and ∼85% Cu²⁺. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu²⁺ to Cu⁺. The products, methanol, dimethyl ether, and CO₂, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu and ∼85% Cu . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu to Cu . The products, methanol, dimethyl ether, and CO , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.
Author Ray, Debmalya
Hupp, Joseph T
Pahls, Dale R
Farha, Omar K
Fulton, John L
Camaioni, Donald M
Zheng, Jian
Sanchez-Sanchez, Maricruz
Li, Zhanyong
Vjunov, Aleksei
Ikuno, Takaaki
Gagliardi, Laura
Lercher, Johannes A
Ortuño, Manuel A
Mehdi, B. Layla
Cramer, Christopher J
Browning, Nigel D
AuthorAffiliation Department of Chemistry
Department of Chemistry, Faculty of Science
Technische Universität München
Materials Science and Engineering
Department of Chemistry and Catalysis Research Institute
University of Washington
Department of Chemistry, Supercomputing Institute, and Chemical Theory Center
University of Minnesota
Northwestern University
Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate
Pacific Northwest National Laboratory
King Abdulaziz University
AuthorAffiliation_xml – name: Department of Chemistry, Supercomputing Institute, and Chemical Theory Center
– name: Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate
– name: Department of Chemistry
– name: Technische Universität München
– name: Pacific Northwest National Laboratory
– name: Department of Chemistry, Faculty of Science
– name: Materials Science and Engineering
– name: Northwestern University
– name: University of Minnesota
– name: King Abdulaziz University
– name: Department of Chemistry and Catalysis Research Institute
– name: University of Washington
Author_xml – sequence: 1
  givenname: Takaaki
  surname: Ikuno
  fullname: Ikuno, Takaaki
  organization: Technische Universität München
– sequence: 2
  givenname: Jian
  orcidid: 0000-0003-2054-9482
  surname: Zheng
  fullname: Zheng, Jian
  organization: Pacific Northwest National Laboratory
– sequence: 3
  givenname: Aleksei
  surname: Vjunov
  fullname: Vjunov, Aleksei
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Maricruz
  surname: Sanchez-Sanchez
  fullname: Sanchez-Sanchez, Maricruz
  organization: Technische Universität München
– sequence: 5
  givenname: Manuel A
  orcidid: 0000-0002-6175-3941
  surname: Ortuño
  fullname: Ortuño, Manuel A
  organization: University of Minnesota
– sequence: 6
  givenname: Dale R
  surname: Pahls
  fullname: Pahls, Dale R
  organization: University of Minnesota
– sequence: 7
  givenname: John L
  surname: Fulton
  fullname: Fulton, John L
  organization: Pacific Northwest National Laboratory
– sequence: 8
  givenname: Donald M
  orcidid: 0000-0002-2213-0960
  surname: Camaioni
  fullname: Camaioni, Donald M
  organization: Pacific Northwest National Laboratory
– sequence: 9
  givenname: Zhanyong
  orcidid: 0000-0002-3230-5955
  surname: Li
  fullname: Li, Zhanyong
  organization: Northwestern University
– sequence: 10
  givenname: Debmalya
  surname: Ray
  fullname: Ray, Debmalya
  organization: University of Minnesota
– sequence: 11
  givenname: B. Layla
  surname: Mehdi
  fullname: Mehdi, B. Layla
  organization: Pacific Northwest National Laboratory
– sequence: 12
  givenname: Nigel D
  surname: Browning
  fullname: Browning, Nigel D
  organization: University of Washington
– sequence: 13
  givenname: Omar K
  orcidid: 0000-0002-9904-9845
  surname: Farha
  fullname: Farha, Omar K
  organization: King Abdulaziz University
– sequence: 14
  givenname: Joseph T
  orcidid: 0000-0003-3982-9812
  surname: Hupp
  fullname: Hupp, Joseph T
  organization: Northwestern University
– sequence: 15
  givenname: Christopher J
  orcidid: 0000-0001-5048-1859
  surname: Cramer
  fullname: Cramer, Christopher J
  organization: University of Minnesota
– sequence: 16
  givenname: Laura
  orcidid: 0000-0001-5227-1396
  surname: Gagliardi
  fullname: Gagliardi, Laura
  organization: University of Minnesota
– sequence: 17
  givenname: Johannes A
  orcidid: 0000-0002-2495-1404
  surname: Lercher
  fullname: Lercher, Johannes A
  email: johannes.lercher@pnnl.gov, johannes.lercher@ch.tum.de
  organization: Pacific Northwest National Laboratory
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28613861$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1375358$$D View this record in Osti.gov
BookMark eNqFkc1u1DAUhS1URKeFHWtksWLRlHvtxImXKKKAVJgFdB05jkM9eOJiO6LDinfoG_IkOMzAAoFYWJavv_t3zgk5mvxkCHmMcI7A8PlG6Xhe98AkF_fICisGRYVMHJEVALCibgQ_JicxbvKzZA0-IMesEcjzWZHNW5Ou1WTo-tYOKlk_0eTpPugdbVVSbvfVDLTf0XYu1reetm6OyYRI3yfVW2eXXzvRd1cF5g5LrnLfv92tw0c1WU0vgtqaLz58ekjuj8pF8-hwn5Kri5cf2tfF5frVm_bFZaHKpk6FBOglAzSMl2bkqAToceRQ6qqRpuZa1iNyAFXDACOTjWKDVqURvALUUvNT8nRf18dku6htMvpa-2kyOnXI64pXTYae7aGb4D_PJqZua6M2zmUt_Bw7higaUaGs_ouiROBclPVS9ckBnfutGbqbYLcq7LpfemfgbA_o4GMMZvyNIHSLnd1iZ3ewM-PsDzxv89OlFJR1_0o6zLsEN34OU1b77-gPk1Wu9w
CitedBy_id crossref_primary_10_1007_s11696_023_02738_y
crossref_primary_10_1021_acsanm_0c01837
crossref_primary_10_1515_psr_2017_0014
crossref_primary_10_1002_jctb_7342
crossref_primary_10_1063_1_5016192
crossref_primary_10_1039_D2CP00963C
crossref_primary_10_1021_acsami_9b18478
crossref_primary_10_1021_acs_jpcc_7b09284
crossref_primary_10_1021_acscatal_8b04611
crossref_primary_10_1038_s41929_023_01011_5
crossref_primary_10_1021_acscatal_8b00012
crossref_primary_10_1016_j_mtcata_2024_100070
crossref_primary_10_1016_j_nanoen_2020_105718
crossref_primary_10_1021_acs_chemrev_0c00148
crossref_primary_10_1021_acscatal_9b02093
crossref_primary_10_1002_aoc_6146
crossref_primary_10_1016_j_apcatb_2023_122384
crossref_primary_10_1002_adma_202408658
crossref_primary_10_1007_s12274_022_4397_0
crossref_primary_10_1002_smll_202005334
crossref_primary_10_1039_C7CC09173G
crossref_primary_10_1039_D0CP01451F
crossref_primary_10_3390_catal12020217
crossref_primary_10_1002_anie_202413402
crossref_primary_10_1039_C9QI00233B
crossref_primary_10_1016_j_cej_2023_143512
crossref_primary_10_1002_ange_201713244
crossref_primary_10_1002_anie_202112116
crossref_primary_10_1021_acsami_0c11615
crossref_primary_10_1002_chem_201805835
crossref_primary_10_1007_s10562_023_04447_3
crossref_primary_10_1039_D4SC06281G
crossref_primary_10_1002_celc_202200817
crossref_primary_10_1002_slct_202200592
crossref_primary_10_1039_C9SC06024C
crossref_primary_10_1039_D3DT01668D
crossref_primary_10_1021_acscatal_8b04055
crossref_primary_10_1039_D3RA02650G
crossref_primary_10_1007_s11696_023_02921_1
crossref_primary_10_1002_jcc_25714
crossref_primary_10_1021_jacs_8b11085
crossref_primary_10_1021_acscatal_2c02033
crossref_primary_10_1016_j_cej_2024_151528
crossref_primary_10_1002_adma_202403187
crossref_primary_10_1021_acsanm_3c04281
crossref_primary_10_1016_j_jmgm_2022_108284
crossref_primary_10_1021_jacs_8b11525
crossref_primary_10_1016_j_ccr_2022_214710
crossref_primary_10_1002_chem_202000772
crossref_primary_10_1021_acscatal_8b04515
crossref_primary_10_3390_molecules27217146
crossref_primary_10_1016_j_cej_2022_138472
crossref_primary_10_1039_C9SC06418D
crossref_primary_10_1016_j_chempr_2019_05_008
crossref_primary_10_1021_acsanm_1c02564
crossref_primary_10_1016_j_fuel_2023_127525
crossref_primary_10_1021_acs_jpca_9b11835
crossref_primary_10_1002_anie_202003908
crossref_primary_10_1021_acscatal_8b05178
crossref_primary_10_1021_acs_chemmater_9b02375
crossref_primary_10_1021_acscatal_2c02823
crossref_primary_10_1021_acs_jctc_8b01301
crossref_primary_10_1002_slct_202203632
crossref_primary_10_1002_ange_202300233
crossref_primary_10_1002_smll_202201550
crossref_primary_10_1021_acs_inorgchem_7b01334
crossref_primary_10_1016_j_jlumin_2018_09_056
crossref_primary_10_1016_j_fuel_2024_132720
crossref_primary_10_1016_j_mcat_2024_113871
crossref_primary_10_1126_sciadv_aaz4824
crossref_primary_10_1016_j_apcatb_2019_118133
crossref_primary_10_1021_jacs_7b09365
crossref_primary_10_1007_s00604_020_04622_y
crossref_primary_10_1007_s12274_021_3380_5
crossref_primary_10_1016_j_cej_2024_150682
crossref_primary_10_1016_j_cjche_2021_04_034
crossref_primary_10_1039_D3TA06198A
crossref_primary_10_1007_s41061_021_00324_y
crossref_primary_10_1021_jacs_9b04285
crossref_primary_10_1038_s41467_020_16531_y
crossref_primary_10_1002_anie_202300233
crossref_primary_10_1246_bcsj_20190171
crossref_primary_10_1021_acs_chemmater_0c03855
crossref_primary_10_1021_jacs_3c05342
crossref_primary_10_1016_j_ijhydene_2024_07_329
crossref_primary_10_1039_C7FD00110J
crossref_primary_10_1002_anie_201713244
crossref_primary_10_1016_j_mcat_2022_112855
crossref_primary_10_1002_ange_202003908
crossref_primary_10_1016_j_nanoms_2024_11_001
crossref_primary_10_1039_D2CP05480A
crossref_primary_10_1002_open_202400428
crossref_primary_10_1021_acs_langmuir_8b00823
crossref_primary_10_1039_D1CY01265G
crossref_primary_10_1021_jacs_9b10034
crossref_primary_10_1021_acs_chemrev_9b00685
crossref_primary_10_1021_acs_inorgchem_9b02084
crossref_primary_10_1016_j_apcatb_2021_120682
crossref_primary_10_1021_jacs_7b10139
crossref_primary_10_1021_acsami_8b02825
crossref_primary_10_1016_j_chempr_2021_02_026
crossref_primary_10_1021_jacs_0c03906
crossref_primary_10_1021_acs_chemrev_8b00361
crossref_primary_10_1021_acs_jpclett_4c00324
crossref_primary_10_1002_er_5088
crossref_primary_10_1021_jacs_0c06925
crossref_primary_10_1073_pnas_2206619120
crossref_primary_10_1016_j_ccr_2022_214912
crossref_primary_10_1002_smll_202304574
crossref_primary_10_1021_acs_accounts_8b00346
crossref_primary_10_1007_s12039_021_01886_6
crossref_primary_10_1016_S1872_2067_23_64520_6
crossref_primary_10_1021_jacs_3c07216
crossref_primary_10_1016_j_chemosphere_2020_128863
crossref_primary_10_1002_slct_202004117
crossref_primary_10_1002_chem_201804059
crossref_primary_10_1016_j_cattod_2018_03_063
crossref_primary_10_1021_acs_inorgchem_4c00188
crossref_primary_10_1021_acs_jpcc_0c01422
crossref_primary_10_1021_jacs_8b04277
crossref_primary_10_1016_j_ccr_2023_215042
crossref_primary_10_2139_ssrn_4005060
crossref_primary_10_1002_asia_202400062
crossref_primary_10_1002_jcc_25787
crossref_primary_10_1021_acsami_7b17306
crossref_primary_10_1016_j_enchem_2020_100050
crossref_primary_10_1016_j_jece_2022_107287
crossref_primary_10_1021_jacs_7b11241
crossref_primary_10_1007_s11244_018_0907_4
crossref_primary_10_1002_chem_201903966
crossref_primary_10_1039_C8SC02376J
crossref_primary_10_1021_acs_organomet_9b00331
crossref_primary_10_1016_j_joule_2019_06_023
crossref_primary_10_1038_s42004_020_00361_6
crossref_primary_10_1021_acscatal_0c00592
crossref_primary_10_1039_D1CE01076J
crossref_primary_10_1021_acs_jpclett_3c01525
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1016_j_mcat_2021_111432
crossref_primary_10_1021_acs_jpcc_4c00742
crossref_primary_10_1002_anie_202201540
crossref_primary_10_1039_C9TA11778D
crossref_primary_10_1002_advs_202412246
crossref_primary_10_1039_D0CY01325K
crossref_primary_10_1002_ange_202112116
crossref_primary_10_1039_D1CY01876K
crossref_primary_10_1021_acs_jpcc_1c04906
crossref_primary_10_1021_acscentsci_7b00500
crossref_primary_10_1039_D0DT03877F
crossref_primary_10_1038_s41578_020_00250_3
crossref_primary_10_1038_s41467_024_53483_z
crossref_primary_10_1002_ange_202201540
crossref_primary_10_1021_acs_jpcc_8b12263
crossref_primary_10_1016_j_ccr_2022_214691
crossref_primary_10_1021_jacs_3c01498
crossref_primary_10_1021_acsami_3c03310
crossref_primary_10_1016_j_fuel_2021_121593
crossref_primary_10_1021_acscatal_4c04021
crossref_primary_10_1002_ajoc_202100192
crossref_primary_10_1021_acscatal_8b04101
crossref_primary_10_1021_acscatal_0c01863
crossref_primary_10_1021_acs_jpca_9b04005
crossref_primary_10_3390_molecules23040755
crossref_primary_10_1016_j_jssc_2017_11_001
crossref_primary_10_1016_j_apcatb_2021_120124
crossref_primary_10_1016_j_mtcomm_2024_109780
crossref_primary_10_1016_j_tsep_2021_100900
crossref_primary_10_1016_j_jallcom_2021_161563
crossref_primary_10_1021_acs_jpclett_3c00375
crossref_primary_10_1039_D3EE02643D
crossref_primary_10_1134_S0023158420030180
crossref_primary_10_1016_j_ccr_2021_213777
crossref_primary_10_1016_j_jcat_2020_02_001
crossref_primary_10_1021_jacs_8b10703
crossref_primary_10_1016_j_apsusc_2024_160388
crossref_primary_10_1016_j_checat_2022_10_023
crossref_primary_10_1039_C8CE01002A
crossref_primary_10_1039_C8CY02414F
crossref_primary_10_1016_j_apcatb_2020_118687
crossref_primary_10_1021_acscatal_9b03594
crossref_primary_10_1002_tcr_202400186
crossref_primary_10_1063_5_0153656
crossref_primary_10_1021_acscatal_8b01180
crossref_primary_10_1002_bkcs_12184
crossref_primary_10_1088_1361_648X_aab87f
crossref_primary_10_1016_j_jcat_2024_115465
crossref_primary_10_1021_acs_chemrev_0c00797
crossref_primary_10_1016_j_ccr_2019_02_001
crossref_primary_10_1016_j_jcat_2022_06_019
crossref_primary_10_1016_j_pmatsci_2023_101159
crossref_primary_10_1039_C9CS00917E
crossref_primary_10_1039_D0CS00424C
crossref_primary_10_1021_acs_chemrev_9b00757
crossref_primary_10_1021_acscatal_4c00234
crossref_primary_10_1021_acs_iecr_1c01069
crossref_primary_10_1039_D4NJ00076E
crossref_primary_10_1063_1_5130600
crossref_primary_10_1021_acs_chemmater_3c03129
crossref_primary_10_1039_C8RA08038K
crossref_primary_10_1038_s41467_021_21482_z
crossref_primary_10_1021_acs_inorgchem_3c04215
crossref_primary_10_1016_j_jcat_2018_04_001
crossref_primary_10_3390_nano13202754
crossref_primary_10_1016_j_jhazmat_2024_133632
crossref_primary_10_1016_j_jcat_2024_115452
crossref_primary_10_1021_acs_jpcc_0c00007
crossref_primary_10_1039_D3CY00590A
crossref_primary_10_1021_acscatal_0c05205
crossref_primary_10_1021_acs_jpcc_9b08749
crossref_primary_10_1021_jacs_0c11920
crossref_primary_10_3389_fnano_2022_1012384
crossref_primary_10_1002_ange_201802231
crossref_primary_10_1038_s41929_019_0308_5
crossref_primary_10_1021_acs_inorgchem_7b02144
crossref_primary_10_1039_D0CY00394H
crossref_primary_10_1016_j_mtsust_2023_100351
crossref_primary_10_1039_C8CP07580H
crossref_primary_10_1002_adfm_202308130
crossref_primary_10_1016_j_jcat_2019_11_031
crossref_primary_10_1039_C9DT00516A
crossref_primary_10_3390_catal13101338
crossref_primary_10_1021_jacs_7b13330
crossref_primary_10_1016_j_chempr_2020_06_018
crossref_primary_10_1080_01614940_2019_1674475
crossref_primary_10_1016_j_jcat_2022_11_030
crossref_primary_10_1038_s41929_022_00840_0
crossref_primary_10_1039_C8TA04498H
crossref_primary_10_1021_jacs_2c12042
crossref_primary_10_1002_ange_202413402
crossref_primary_10_1039_D2EE01010K
crossref_primary_10_1002_chem_201804490
crossref_primary_10_1021_acs_jpcc_0c05881
crossref_primary_10_1021_acs_jpclett_3c00863
crossref_primary_10_1016_j_apsusc_2025_162358
crossref_primary_10_1021_acs_jpcc_8b09178
crossref_primary_10_1126_sciadv_aat9180
crossref_primary_10_1002_cctc_202101244
crossref_primary_10_1016_j_ccr_2019_03_005
crossref_primary_10_1021_acs_chemrev_8b00074
crossref_primary_10_1039_D0TA03758C
crossref_primary_10_1080_02603594_2023_2285064
crossref_primary_10_1021_acsaem_8b01282
crossref_primary_10_1021_acsami_0c12877
crossref_primary_10_1016_j_cej_2022_139505
crossref_primary_10_1039_C9TA01521C
crossref_primary_10_1021_acs_jpcc_9b04803
crossref_primary_10_1021_acsami_0c02273
crossref_primary_10_1021_acscatal_9b03932
crossref_primary_10_1627_jpi_63_248
crossref_primary_10_1016_j_pnsc_2019_05_005
crossref_primary_10_1021_jacs_3c06981
crossref_primary_10_1016_j_rser_2023_113561
crossref_primary_10_1002_smll_202306353
crossref_primary_10_1038_s41467_020_19438_w
crossref_primary_10_1039_D3CC03148A
crossref_primary_10_1039_D0CE01666G
crossref_primary_10_1088_1361_648X_ab38da
crossref_primary_10_1016_j_cej_2022_140623
crossref_primary_10_1021_acs_chemrev_2c00537
crossref_primary_10_1002_anie_201802231
crossref_primary_10_1021_acsami_2c03370
crossref_primary_10_3390_methane2030017
crossref_primary_10_1021_acs_chemmater_0c00761
crossref_primary_10_1021_acscatal_4c01328
crossref_primary_10_1021_jacs_9b02902
crossref_primary_10_1016_j_ccr_2017_10_014
crossref_primary_10_1016_j_mtsust_2021_100061
crossref_primary_10_1016_j_jcat_2019_04_042
crossref_primary_10_1016_j_enchem_2019_100005
crossref_primary_10_1038_s41929_019_0273_z
crossref_primary_10_1016_j_matlet_2021_131078
crossref_primary_10_1002_adfm_202007624
crossref_primary_10_1021_jacs_2c12192
crossref_primary_10_1016_j_ccr_2020_213734
crossref_primary_10_1016_j_apcatb_2021_120742
crossref_primary_10_1016_j_envpol_2021_116899
crossref_primary_10_1021_acscatal_0c02493
crossref_primary_10_1021_acsami_7b15086
crossref_primary_10_1002_adts_201800158
crossref_primary_10_1016_j_saa_2020_118430
crossref_primary_10_1007_s40843_023_2771_4
crossref_primary_10_1002_ente_201900750
crossref_primary_10_1039_D1NJ00712B
crossref_primary_10_1021_accountsmr_4c00279
crossref_primary_10_1002_cctc_202401437
crossref_primary_10_1039_C9RA04495G
crossref_primary_10_1021_acs_inorgchem_3c04380
crossref_primary_10_1016_j_apsusc_2019_06_117
crossref_primary_10_1021_jacs_0c10367
crossref_primary_10_1016_j_mencom_2021_09_002
crossref_primary_10_1039_D4NJ04561K
crossref_primary_10_1016_j_chempr_2021_04_001
crossref_primary_10_1039_D3EY00234A
Cites_doi 10.1063/1.1677527
10.1107/S0108270190006230
10.1063/1.444267
10.1016/j.jcat.2016.03.014
10.1021/jp0275847
10.1038/ncomms8546
10.1021/ja0176696
10.1016/j.micromeso.2012.04.054
10.1021/jp7112363
10.1126/science.1195875
10.1039/C7FD00110J
10.1103/PhysRevLett.77.3865
10.1038/nchem.1956
10.1021/ja029684w
10.1126/science.344.6191.1464
10.1103/PhysRevB.49.15531
10.1039/C4CP03226H
10.1021/acsnano.5b03429
10.1002/anie.200462121
10.1016/j.ccr.2012.07.008
10.1002/ange.200503923
10.1016/j.jcat.2008.02.011
10.1103/PhysRevB.54.11169
10.1021/ja4050828
10.1103/PhysRevB.49.14251
10.1107/S0909049505012719
10.1006/jcat.1999.2732
10.1002/chem.200802385
10.1021/jz501899j
10.1021/ic50133a014
10.1016/0927-0256(96)00008-0
10.1021/jacs.5b02956
10.1021/ja00200a032
10.1002/adsc.201201018
10.1039/b926434e
10.1021/acs.chemmater.5b01560
10.1021/jo802628z
10.1021/ja047158u
10.1021/jz500241m
10.1007/BF01114537
10.1063/1.3382344
10.1039/C4SC02907K
10.1021/jacs.5b02817
10.1021/ja00255a032
10.1126/science.328.5986.1624
10.1021/acscentsci.6b00290
10.1103/PhysRevB.45.13244
10.1021/ja507947d
10.1021/jacs.5b12515
10.1021/jacs.6b06809
10.1016/j.cplett.2010.11.060
10.1098/rspa.1937.0142
10.1063/1.2370993
10.1021/ar700111a
10.1007/s10562-010-0380-6
10.1002/ange.201511065
10.1016/j.cattod.2009.01.004
10.1103/PhysRevB.47.558
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
CorporateAuthor Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
CorporateAuthor_xml – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
– name: Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC)
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
OTOTI
DOI 10.1021/jacs.7b02936
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5126
EndPage 10301
ExternalDocumentID 1375358
28613861
10_1021_jacs_7b02936
d282655721
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABPPZ
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AETEA
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
DU5
DZ
EBS
ED
ED~
EJD
ET
F5P
GNL
IH9
JG
JG~
K2
LG6
P2P
ROL
RXW
TAE
TN5
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
XFK
YZZ
ZHY
---
-DZ
-ET
-~X
.DC
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ACGFO
ADHLV
AGXLV
AHDLI
AHGAQ
CITATION
CUPRZ
GGK
IH2
XSW
YQT
ZCA
~02
NPM
YIN
7X8
7S9
AAYWT
L.6
ABFRP
OTOTI
TAF
ID FETCH-LOGICAL-a487t-900b9201e234ef31a60cff304c589e73c97f1300a70d0f298a2dca4e63501c9c3
IEDL.DBID ACS
ISSN 0002-7863
1520-5126
IngestDate Thu May 18 22:31:01 EDT 2023
Tue Aug 05 11:20:49 EDT 2025
Thu Jul 10 17:48:30 EDT 2025
Wed Feb 19 02:41:26 EST 2025
Tue Jul 01 03:21:16 EDT 2025
Thu Apr 24 22:51:41 EDT 2025
Thu Aug 27 13:43:08 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-900b9201e234ef31a60cff304c589e73c97f1300a70d0f298a2dca4e63501c9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
ORCID 0000-0002-2495-1404
0000-0002-6175-3941
0000-0002-2213-0960
0000-0003-2054-9482
0000-0003-3982-9812
0000-0002-3230-5955
0000-0001-5048-1859
0000-0002-9904-9845
0000-0001-5227-1396
0000000339829812
0000000150481859
0000000320549482
0000000222130960
0000000232305955
0000000261753941
0000000152271396
0000000224951404
0000000299049845
PMID 28613861
PQID 1910336478
PQPubID 23479
PageCount 8
ParticipantIDs osti_scitechconnect_1375358
proquest_miscellaneous_2116865195
proquest_miscellaneous_1910336478
pubmed_primary_28613861
crossref_primary_10_1021_jacs_7b02936
crossref_citationtrail_10_1021_jacs_7b02936
acs_journals_10_1021_jacs_7b02936
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-02
PublicationDateYYYYMMDD 2017-08-02
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American Chemical Society
PublicationTitleAlternate J. Am. Chem. Soc
PublicationYear 2017
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
Bard A. J. (ref29/cit29) 1985; 6
ref27/cit27
ref33/cit33a
ref23/cit23
ref8/cit8
Frisch M. J. (ref37/cit37) 2009
ref2/cit2b
ref31/cit31
ref2/cit2a
ref1/cit1a
ref33/cit33b
ref34/cit34
ref43/cit43d
ref1/cit1c
ref1/cit1b
ref43/cit43a
ref43/cit43c
ref43/cit43b
ref5/cit5b
ref17/cit17
ref10/cit10
ref5/cit5a
ref35/cit35
ref21/cit21
ref3/cit3b
ref42/cit42
ref3/cit3c
Shriver D. F. (ref25/cit25a) 1999
ref3/cit3a
ref3/cit3f
ref3/cit3d
ref3/cit3e
ref13/cit13
ref19/cit19a
Miessler G. L. (ref16/cit16) 2013
ref24/cit24
ref6/cit6
ref36/cit36
ref18/cit18
ref19/cit19b
ref11/cit11
ref32/cit32
ref39/cit39
ref14/cit14
ref41/cit41b
ref41/cit41a
ref26/cit26
Janes R. (ref25/cit25b) 2004
ref38/cit38b
ref38/cit38c
ref12/cit12
ref15/cit15
ref38/cit38a
ref30/cit30a
ref20/cit20a
ref22/cit22
ref40/cit40b
ref30/cit30b
ref20/cit20b
ref4/cit4
ref40/cit40a
ref7/cit7
References_xml – ident: ref41/cit41b
  doi: 10.1063/1.1677527
– ident: ref22/cit22
  doi: 10.1107/S0108270190006230
– ident: ref41/cit41a
  doi: 10.1063/1.444267
– ident: ref3/cit3e
  doi: 10.1016/j.jcat.2016.03.014
– ident: ref19/cit19b
  doi: 10.1021/jp0275847
– ident: ref27/cit27
  doi: 10.1038/ncomms8546
– ident: ref30/cit30a
  doi: 10.1021/ja0176696
– ident: ref20/cit20b
  doi: 10.1016/j.micromeso.2012.04.054
– ident: ref38/cit38c
  doi: 10.1021/jp7112363
– ident: ref31/cit31
  doi: 10.1126/science.1195875
– ident: ref13/cit13
  doi: 10.1039/C7FD00110J
– ident: ref40/cit40b
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref12/cit12
  doi: 10.1038/nchem.1956
– ident: ref15/cit15
  doi: 10.1021/ja029684w
– ident: ref1/cit1c
  doi: 10.1126/science.344.6191.1464
– ident: ref23/cit23
  doi: 10.1103/PhysRevB.49.15531
– ident: ref3/cit3c
  doi: 10.1039/C4CP03226H
– ident: ref5/cit5b
  doi: 10.1021/acsnano.5b03429
– ident: ref1/cit1a
  doi: 10.1002/anie.200462121
– ident: ref30/cit30b
  doi: 10.1016/j.ccr.2012.07.008
– ident: ref9/cit9
  doi: 10.1002/ange.200503923
– ident: ref10/cit10
  doi: 10.1016/j.jcat.2008.02.011
– ident: ref43/cit43b
  doi: 10.1103/PhysRevB.54.11169
– volume-title: Inorganic Chemistry
  year: 1999
  ident: ref25/cit25a
– ident: ref4/cit4
  doi: 10.1021/ja4050828
– ident: ref43/cit43a
  doi: 10.1103/PhysRevB.49.14251
– ident: ref34/cit34
  doi: 10.1107/S0909049505012719
– ident: ref2/cit2a
  doi: 10.1006/jcat.1999.2732
– ident: ref11/cit11
  doi: 10.1002/chem.200802385
– ident: ref26/cit26
  doi: 10.1021/jz501899j
– volume: 6
  volume-title: Standard potentials in aqueous solution
  year: 1985
  ident: ref29/cit29
– ident: ref32/cit32
  doi: 10.1021/ic50133a014
– ident: ref43/cit43c
  doi: 10.1016/0927-0256(96)00008-0
– ident: ref7/cit7
  doi: 10.1021/jacs.5b02956
– volume-title: Gaussian 09
  year: 2009
  ident: ref37/cit37
– ident: ref19/cit19a
  doi: 10.1021/ja00200a032
– ident: ref33/cit33b
  doi: 10.1002/adsc.201201018
– ident: ref35/cit35
  doi: 10.1039/b926434e
– ident: ref5/cit5a
  doi: 10.1021/acs.chemmater.5b01560
– ident: ref33/cit33a
  doi: 10.1021/jo802628z
– volume-title: Metal-ligand bonding
  year: 2004
  ident: ref25/cit25b
– ident: ref3/cit3a
  doi: 10.1021/ja047158u
– ident: ref17/cit17
  doi: 10.1021/jz500241m
– ident: ref42/cit42
  doi: 10.1007/BF01114537
– ident: ref39/cit39
  doi: 10.1063/1.3382344
– ident: ref21/cit21
  doi: 10.1039/C4SC02907K
– ident: ref3/cit3d
  doi: 10.1021/jacs.5b02817
– ident: ref18/cit18
  doi: 10.1021/ja00255a032
– ident: ref1/cit1b
  doi: 10.1126/science.328.5986.1624
– ident: ref8/cit8
  doi: 10.1021/acscentsci.6b00290
– ident: ref40/cit40a
  doi: 10.1103/PhysRevB.45.13244
– ident: ref6/cit6
  doi: 10.1021/ja507947d
– ident: ref14/cit14
  doi: 10.1021/jacs.5b12515
– ident: ref20/cit20a
  doi: 10.1021/jacs.6b06809
– ident: ref38/cit38b
  doi: 10.1016/j.cplett.2010.11.060
– ident: ref24/cit24
  doi: 10.1098/rspa.1937.0142
– ident: ref36/cit36
  doi: 10.1063/1.2370993
– ident: ref38/cit38a
  doi: 10.1021/ar700111a
– ident: ref3/cit3b
  doi: 10.1007/s10562-010-0380-6
– ident: ref3/cit3f
  doi: 10.1002/ange.201511065
– volume-title: Inorganic Chemistry
  year: 2013
  ident: ref16/cit16
– ident: ref2/cit2b
  doi: 10.1016/j.cattod.2009.01.004
– ident: ref43/cit43d
  doi: 10.1103/PhysRevB.47.558
SSID ssj0004281
Score 2.6418233
Snippet Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to...
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 10294
SubjectTerms carbon
carbon dioxide
catalysts
coordination polymers
cupric oxide
density functional theory
methane
methanol
oxidation
X-ray absorption spectroscopy
Title Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework
URI http://dx.doi.org/10.1021/jacs.7b02936
https://www.ncbi.nlm.nih.gov/pubmed/28613861
https://www.proquest.com/docview/1910336478
https://www.proquest.com/docview/2116865195
https://www.osti.gov/biblio/1375358
Volume 139
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgOcCF_5-lgIwEJ-SVY3sd-4gilgqp7QFW6i1yJrZUWG0Qm0htT7wDb8iTMLNJWlG0wCGXZCxNPB7NN57xZ8ZeyUrXGNhr4cBoYdCdBIJ6K7LofJYgerflKTg4tPtL8-F4fnzZIHu1gq-IHwg2s7ySGJfsdXZDWfRfgkDFx8vzj8plI8zNndVDg_vV0RSAYPNbAJo06Ei7weU2yCzusPfjUZ2-t-TLrGurGZz_ydz4D_3vstsDzuRv-4Vxj12L6_vsZjFe7_aAfT6ItGse-dHpSX-vEm8b3r9sVrygbZ2z81jz6owXnTg6bXix6ohWYcMRoVJPLX09WfPDpaDtexobVj-__-iPdwJfjH1fD9ly8e5TsS-GixdEwPylFV7KyiMyiEqbmHQWrISUtDQwdz7mGnyeqAwWclnLpLwLqoZgoqUqJXjQj9hk3azjE8bBhOQhRZmSN3XyLgsQHIGGCmSQZspe4vyUg-Nsym1NXGFOQm-HWZuyN6PFShiYy-kCjdUO6dcX0l97xo4dcntk_BKRBtHlAvUVQVtmGhO4uUO9xjVRomGoioImaTrUEAGWJtb9v8hgVm2dJeKeKXvcL6gLXZRDBIXP0__48z12SxGMoBYV9YxN2m9dfI4gqK1ebD3gF_LF_0M
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgOZQL_5SlFIwEJ-TKsb2JfawiVgt0twe6Um-R49hSYbWpSCK1PfEOvCFPwkx-tmqlRT3k4jjR2J7RfPaMvyHkA89lAY69YNopyRSYEwNQH7PIaxMF541ueQrmi3i2VF9PJ6f9ZXW8CwNCVPCnqg3iX7MLIE0QNCY5B_cU3ycPAIcIVOjD9Pv1NUihowHtJjqWfZ777a_RD7nqhh8alWBP2zFm62umj8liI2WbYvLzoKnzA3d1i8DxzsN4Qh71qJMedmrylNzz62dkJx2KvT0nP-Yez9A9Pb4466os0bqkXWO5oike8lxe-YLmlzRt2PFFSdNVgyQLFQW8ihm2-PZsTRdLhof5-K1d_f39p7vs6eh0yAJ7QZbTzyfpjPVlGJiF3UzNDOe5AZzghVQ-yMjG3IUguXITbXwinUkCBsVswgsehNFWFM4qH2PM0hknX5LRulz7V4Q6ZYNxwfMQjCqC0ZF1ViOEyB23XI3Je5ifrDejKmsj5AJ2KNjaz9qYfBoWLnM9jzmW01ht6f1x0_u84-_Y0m8PdSAD3IHkuQ6zjFydRRK2cxMNcg2qkcHCYEwFlqRsQEKAWxI5-P_TB_bYsY6RxmdMdju92sgiNOApeF7fYeTvyM7sZH6UHX1ZfNsjDwUCDExeEW_IqP7V-H2AR3X-tjWKf_MzB7M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKIkEvlGe7lIeR4IRcOXE2sY9VYFUe3SJgpd4iZ2JLpatNRRKp7Yn_wD_kl3Qmj0VUWgSHXPyIxvaM5rNn_JmxlzJXBTr2QmiIlIjQnASC-lgETpvAgzO65Sk4nMUH8-j98eR4gwXDXRgUosI_VW0Qn6z6rPA9wwBRBWFFkkt0UfENdpMidqTU--mX31chQx0MiDfRsepz3a_3Jl8E1R--aFSiTa3Hma2_mW6xzytJ2zST072mzvfg8hqJ438N5S6706NPvt-pyz224Zb32e10ePTtAft26Ogs3fGj85PutSVel7wrLBc8pcOei0tX8PyCp404Oi95umiIbKHiiFsp05ZqT5Z8Nhd0qE997eLXj5_dpU_g0yEb7CGbT99-TQ9E_xyDsLirqYWRMjeIF1yoIudVYGMJ3isZwUQblygwiafgmE1kIX1otA0LsJGLKXYJBtQjNlqWS7fDOETWG_BOem-iwhsdWLCaoEQO0spozF7g_GS9OVVZGykPcadCpf2sjdnrYfEy6PnM6VmNxZrWr1atzzoejzXtdkkPMsQfRKILlG0EdRYo3NZNNMo1qEeGC0OxFVySskEJEXYp4uL_Sxvca8c6JjqfMdvudGslS6gRV-H3-B9G_pzd-vRmmn18N_uwyzZDwhmUwxI-YaP6e-OeIkqq82etXVwBh-UKNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Oxidation+to+Methanol+Catalyzed+by+Cu-Oxo+Clusters+Stabilized+in+NU-1000+Metal%E2%80%93Organic+Framework&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Ikuno%2C+Takaaki&rft.au=Zheng%2C+Jian&rft.au=Vjunov%2C+Aleksei&rft.au=Sanchez-Sanchez%2C+Maricruz&rft.date=2017-08-02&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=30&rft.spage=10294&rft.epage=10301&rft_id=info:doi/10.1021%2Fjacs.7b02936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b02936
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon