Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework
Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theor...
Saved in:
Published in | Journal of the American Chemical Society Vol. 139; no. 30; pp. 10294 - 10301 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
02.08.2017
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst. |
---|---|
AbstractList | Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst.Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst. Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu+ and ∼85% Cu2+. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu2+ to Cu+. The products, methanol, dimethyl ether, and CO2, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst. Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu⁺ and ∼85% Cu²⁺. The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu²⁺ to Cu⁺. The products, methanol, dimethyl ether, and CO₂, were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45–60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst. Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to methanol under mild reaction conditions. Analysis of chemical reactivity, in situ X-ray absorption spectroscopy, and density functional theory calculations are used to determine structure/activity relations in the Cu-NU-1000 catalytic system. The Cu-loaded MOF contained Cu-oxo clusters of a few Cu atoms. The Cu was present under ambient conditions as a mixture of ∼15% Cu and ∼85% Cu . The oxidation of methane on Cu-NU-1000 was accompanied by the reduction of 9% of the Cu in the catalyst from Cu to Cu . The products, methanol, dimethyl ether, and CO , were desorbed with the passage of 10% water/He at 135 °C, giving a carbon selectivity for methane to methanol of 45-60%. Cu oxo clusters stabilized in NU-1000 provide an active, first generation MOF-based, selective methane oxidation catalyst. |
Author | Ray, Debmalya Hupp, Joseph T Pahls, Dale R Farha, Omar K Fulton, John L Camaioni, Donald M Zheng, Jian Sanchez-Sanchez, Maricruz Li, Zhanyong Vjunov, Aleksei Ikuno, Takaaki Gagliardi, Laura Lercher, Johannes A Ortuño, Manuel A Mehdi, B. Layla Cramer, Christopher J Browning, Nigel D |
AuthorAffiliation | Department of Chemistry Department of Chemistry, Faculty of Science Technische Universität München Materials Science and Engineering Department of Chemistry and Catalysis Research Institute University of Washington Department of Chemistry, Supercomputing Institute, and Chemical Theory Center University of Minnesota Northwestern University Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate Pacific Northwest National Laboratory King Abdulaziz University |
AuthorAffiliation_xml | – name: Department of Chemistry, Supercomputing Institute, and Chemical Theory Center – name: Institute for Integrated Catalysis, and Fundamental and Computational Science Directorate – name: Department of Chemistry – name: Technische Universität München – name: Pacific Northwest National Laboratory – name: Department of Chemistry, Faculty of Science – name: Materials Science and Engineering – name: Northwestern University – name: University of Minnesota – name: King Abdulaziz University – name: Department of Chemistry and Catalysis Research Institute – name: University of Washington |
Author_xml | – sequence: 1 givenname: Takaaki surname: Ikuno fullname: Ikuno, Takaaki organization: Technische Universität München – sequence: 2 givenname: Jian orcidid: 0000-0003-2054-9482 surname: Zheng fullname: Zheng, Jian organization: Pacific Northwest National Laboratory – sequence: 3 givenname: Aleksei surname: Vjunov fullname: Vjunov, Aleksei organization: Pacific Northwest National Laboratory – sequence: 4 givenname: Maricruz surname: Sanchez-Sanchez fullname: Sanchez-Sanchez, Maricruz organization: Technische Universität München – sequence: 5 givenname: Manuel A orcidid: 0000-0002-6175-3941 surname: Ortuño fullname: Ortuño, Manuel A organization: University of Minnesota – sequence: 6 givenname: Dale R surname: Pahls fullname: Pahls, Dale R organization: University of Minnesota – sequence: 7 givenname: John L surname: Fulton fullname: Fulton, John L organization: Pacific Northwest National Laboratory – sequence: 8 givenname: Donald M orcidid: 0000-0002-2213-0960 surname: Camaioni fullname: Camaioni, Donald M organization: Pacific Northwest National Laboratory – sequence: 9 givenname: Zhanyong orcidid: 0000-0002-3230-5955 surname: Li fullname: Li, Zhanyong organization: Northwestern University – sequence: 10 givenname: Debmalya surname: Ray fullname: Ray, Debmalya organization: University of Minnesota – sequence: 11 givenname: B. Layla surname: Mehdi fullname: Mehdi, B. Layla organization: Pacific Northwest National Laboratory – sequence: 12 givenname: Nigel D surname: Browning fullname: Browning, Nigel D organization: University of Washington – sequence: 13 givenname: Omar K orcidid: 0000-0002-9904-9845 surname: Farha fullname: Farha, Omar K organization: King Abdulaziz University – sequence: 14 givenname: Joseph T orcidid: 0000-0003-3982-9812 surname: Hupp fullname: Hupp, Joseph T organization: Northwestern University – sequence: 15 givenname: Christopher J orcidid: 0000-0001-5048-1859 surname: Cramer fullname: Cramer, Christopher J organization: University of Minnesota – sequence: 16 givenname: Laura orcidid: 0000-0001-5227-1396 surname: Gagliardi fullname: Gagliardi, Laura organization: University of Minnesota – sequence: 17 givenname: Johannes A orcidid: 0000-0002-2495-1404 surname: Lercher fullname: Lercher, Johannes A email: johannes.lercher@pnnl.gov, johannes.lercher@ch.tum.de organization: Pacific Northwest National Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28613861$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1375358$$D View this record in Osti.gov |
BookMark | eNqFkc1u1DAUhS1URKeFHWtksWLRlHvtxImXKKKAVJgFdB05jkM9eOJiO6LDinfoG_IkOMzAAoFYWJavv_t3zgk5mvxkCHmMcI7A8PlG6Xhe98AkF_fICisGRYVMHJEVALCibgQ_JicxbvKzZA0-IMesEcjzWZHNW5Ou1WTo-tYOKlk_0eTpPugdbVVSbvfVDLTf0XYu1reetm6OyYRI3yfVW2eXXzvRd1cF5g5LrnLfv92tw0c1WU0vgtqaLz58ekjuj8pF8-hwn5Kri5cf2tfF5frVm_bFZaHKpk6FBOglAzSMl2bkqAToceRQ6qqRpuZa1iNyAFXDACOTjWKDVqURvALUUvNT8nRf18dku6htMvpa-2kyOnXI64pXTYae7aGb4D_PJqZua6M2zmUt_Bw7higaUaGs_ouiROBclPVS9ckBnfutGbqbYLcq7LpfemfgbA_o4GMMZvyNIHSLnd1iZ3ewM-PsDzxv89OlFJR1_0o6zLsEN34OU1b77-gPk1Wu9w |
CitedBy_id | crossref_primary_10_1007_s11696_023_02738_y crossref_primary_10_1021_acsanm_0c01837 crossref_primary_10_1515_psr_2017_0014 crossref_primary_10_1002_jctb_7342 crossref_primary_10_1063_1_5016192 crossref_primary_10_1039_D2CP00963C crossref_primary_10_1021_acsami_9b18478 crossref_primary_10_1021_acs_jpcc_7b09284 crossref_primary_10_1021_acscatal_8b04611 crossref_primary_10_1038_s41929_023_01011_5 crossref_primary_10_1021_acscatal_8b00012 crossref_primary_10_1016_j_mtcata_2024_100070 crossref_primary_10_1016_j_nanoen_2020_105718 crossref_primary_10_1021_acs_chemrev_0c00148 crossref_primary_10_1021_acscatal_9b02093 crossref_primary_10_1002_aoc_6146 crossref_primary_10_1016_j_apcatb_2023_122384 crossref_primary_10_1002_adma_202408658 crossref_primary_10_1007_s12274_022_4397_0 crossref_primary_10_1002_smll_202005334 crossref_primary_10_1039_C7CC09173G crossref_primary_10_1039_D0CP01451F crossref_primary_10_3390_catal12020217 crossref_primary_10_1002_anie_202413402 crossref_primary_10_1039_C9QI00233B crossref_primary_10_1016_j_cej_2023_143512 crossref_primary_10_1002_ange_201713244 crossref_primary_10_1002_anie_202112116 crossref_primary_10_1021_acsami_0c11615 crossref_primary_10_1002_chem_201805835 crossref_primary_10_1007_s10562_023_04447_3 crossref_primary_10_1039_D4SC06281G crossref_primary_10_1002_celc_202200817 crossref_primary_10_1002_slct_202200592 crossref_primary_10_1039_C9SC06024C crossref_primary_10_1039_D3DT01668D crossref_primary_10_1021_acscatal_8b04055 crossref_primary_10_1039_D3RA02650G crossref_primary_10_1007_s11696_023_02921_1 crossref_primary_10_1002_jcc_25714 crossref_primary_10_1021_jacs_8b11085 crossref_primary_10_1021_acscatal_2c02033 crossref_primary_10_1016_j_cej_2024_151528 crossref_primary_10_1002_adma_202403187 crossref_primary_10_1021_acsanm_3c04281 crossref_primary_10_1016_j_jmgm_2022_108284 crossref_primary_10_1021_jacs_8b11525 crossref_primary_10_1016_j_ccr_2022_214710 crossref_primary_10_1002_chem_202000772 crossref_primary_10_1021_acscatal_8b04515 crossref_primary_10_3390_molecules27217146 crossref_primary_10_1016_j_cej_2022_138472 crossref_primary_10_1039_C9SC06418D crossref_primary_10_1016_j_chempr_2019_05_008 crossref_primary_10_1021_acsanm_1c02564 crossref_primary_10_1016_j_fuel_2023_127525 crossref_primary_10_1021_acs_jpca_9b11835 crossref_primary_10_1002_anie_202003908 crossref_primary_10_1021_acscatal_8b05178 crossref_primary_10_1021_acs_chemmater_9b02375 crossref_primary_10_1021_acscatal_2c02823 crossref_primary_10_1021_acs_jctc_8b01301 crossref_primary_10_1002_slct_202203632 crossref_primary_10_1002_ange_202300233 crossref_primary_10_1002_smll_202201550 crossref_primary_10_1021_acs_inorgchem_7b01334 crossref_primary_10_1016_j_jlumin_2018_09_056 crossref_primary_10_1016_j_fuel_2024_132720 crossref_primary_10_1016_j_mcat_2024_113871 crossref_primary_10_1126_sciadv_aaz4824 crossref_primary_10_1016_j_apcatb_2019_118133 crossref_primary_10_1021_jacs_7b09365 crossref_primary_10_1007_s00604_020_04622_y crossref_primary_10_1007_s12274_021_3380_5 crossref_primary_10_1016_j_cej_2024_150682 crossref_primary_10_1016_j_cjche_2021_04_034 crossref_primary_10_1039_D3TA06198A crossref_primary_10_1007_s41061_021_00324_y crossref_primary_10_1021_jacs_9b04285 crossref_primary_10_1038_s41467_020_16531_y crossref_primary_10_1002_anie_202300233 crossref_primary_10_1246_bcsj_20190171 crossref_primary_10_1021_acs_chemmater_0c03855 crossref_primary_10_1021_jacs_3c05342 crossref_primary_10_1016_j_ijhydene_2024_07_329 crossref_primary_10_1039_C7FD00110J crossref_primary_10_1002_anie_201713244 crossref_primary_10_1016_j_mcat_2022_112855 crossref_primary_10_1002_ange_202003908 crossref_primary_10_1016_j_nanoms_2024_11_001 crossref_primary_10_1039_D2CP05480A crossref_primary_10_1002_open_202400428 crossref_primary_10_1021_acs_langmuir_8b00823 crossref_primary_10_1039_D1CY01265G crossref_primary_10_1021_jacs_9b10034 crossref_primary_10_1021_acs_chemrev_9b00685 crossref_primary_10_1021_acs_inorgchem_9b02084 crossref_primary_10_1016_j_apcatb_2021_120682 crossref_primary_10_1021_jacs_7b10139 crossref_primary_10_1021_acsami_8b02825 crossref_primary_10_1016_j_chempr_2021_02_026 crossref_primary_10_1021_jacs_0c03906 crossref_primary_10_1021_acs_chemrev_8b00361 crossref_primary_10_1021_acs_jpclett_4c00324 crossref_primary_10_1002_er_5088 crossref_primary_10_1021_jacs_0c06925 crossref_primary_10_1073_pnas_2206619120 crossref_primary_10_1016_j_ccr_2022_214912 crossref_primary_10_1002_smll_202304574 crossref_primary_10_1021_acs_accounts_8b00346 crossref_primary_10_1007_s12039_021_01886_6 crossref_primary_10_1016_S1872_2067_23_64520_6 crossref_primary_10_1021_jacs_3c07216 crossref_primary_10_1016_j_chemosphere_2020_128863 crossref_primary_10_1002_slct_202004117 crossref_primary_10_1002_chem_201804059 crossref_primary_10_1016_j_cattod_2018_03_063 crossref_primary_10_1021_acs_inorgchem_4c00188 crossref_primary_10_1021_acs_jpcc_0c01422 crossref_primary_10_1021_jacs_8b04277 crossref_primary_10_1016_j_ccr_2023_215042 crossref_primary_10_2139_ssrn_4005060 crossref_primary_10_1002_asia_202400062 crossref_primary_10_1002_jcc_25787 crossref_primary_10_1021_acsami_7b17306 crossref_primary_10_1016_j_enchem_2020_100050 crossref_primary_10_1016_j_jece_2022_107287 crossref_primary_10_1021_jacs_7b11241 crossref_primary_10_1007_s11244_018_0907_4 crossref_primary_10_1002_chem_201903966 crossref_primary_10_1039_C8SC02376J crossref_primary_10_1021_acs_organomet_9b00331 crossref_primary_10_1016_j_joule_2019_06_023 crossref_primary_10_1038_s42004_020_00361_6 crossref_primary_10_1021_acscatal_0c00592 crossref_primary_10_1039_D1CE01076J crossref_primary_10_1021_acs_jpclett_3c01525 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1016_j_mcat_2021_111432 crossref_primary_10_1021_acs_jpcc_4c00742 crossref_primary_10_1002_anie_202201540 crossref_primary_10_1039_C9TA11778D crossref_primary_10_1002_advs_202412246 crossref_primary_10_1039_D0CY01325K crossref_primary_10_1002_ange_202112116 crossref_primary_10_1039_D1CY01876K crossref_primary_10_1021_acs_jpcc_1c04906 crossref_primary_10_1021_acscentsci_7b00500 crossref_primary_10_1039_D0DT03877F crossref_primary_10_1038_s41578_020_00250_3 crossref_primary_10_1038_s41467_024_53483_z crossref_primary_10_1002_ange_202201540 crossref_primary_10_1021_acs_jpcc_8b12263 crossref_primary_10_1016_j_ccr_2022_214691 crossref_primary_10_1021_jacs_3c01498 crossref_primary_10_1021_acsami_3c03310 crossref_primary_10_1016_j_fuel_2021_121593 crossref_primary_10_1021_acscatal_4c04021 crossref_primary_10_1002_ajoc_202100192 crossref_primary_10_1021_acscatal_8b04101 crossref_primary_10_1021_acscatal_0c01863 crossref_primary_10_1021_acs_jpca_9b04005 crossref_primary_10_3390_molecules23040755 crossref_primary_10_1016_j_jssc_2017_11_001 crossref_primary_10_1016_j_apcatb_2021_120124 crossref_primary_10_1016_j_mtcomm_2024_109780 crossref_primary_10_1016_j_tsep_2021_100900 crossref_primary_10_1016_j_jallcom_2021_161563 crossref_primary_10_1021_acs_jpclett_3c00375 crossref_primary_10_1039_D3EE02643D crossref_primary_10_1134_S0023158420030180 crossref_primary_10_1016_j_ccr_2021_213777 crossref_primary_10_1016_j_jcat_2020_02_001 crossref_primary_10_1021_jacs_8b10703 crossref_primary_10_1016_j_apsusc_2024_160388 crossref_primary_10_1016_j_checat_2022_10_023 crossref_primary_10_1039_C8CE01002A crossref_primary_10_1039_C8CY02414F crossref_primary_10_1016_j_apcatb_2020_118687 crossref_primary_10_1021_acscatal_9b03594 crossref_primary_10_1002_tcr_202400186 crossref_primary_10_1063_5_0153656 crossref_primary_10_1021_acscatal_8b01180 crossref_primary_10_1002_bkcs_12184 crossref_primary_10_1088_1361_648X_aab87f crossref_primary_10_1016_j_jcat_2024_115465 crossref_primary_10_1021_acs_chemrev_0c00797 crossref_primary_10_1016_j_ccr_2019_02_001 crossref_primary_10_1016_j_jcat_2022_06_019 crossref_primary_10_1016_j_pmatsci_2023_101159 crossref_primary_10_1039_C9CS00917E crossref_primary_10_1039_D0CS00424C crossref_primary_10_1021_acs_chemrev_9b00757 crossref_primary_10_1021_acscatal_4c00234 crossref_primary_10_1021_acs_iecr_1c01069 crossref_primary_10_1039_D4NJ00076E crossref_primary_10_1063_1_5130600 crossref_primary_10_1021_acs_chemmater_3c03129 crossref_primary_10_1039_C8RA08038K crossref_primary_10_1038_s41467_021_21482_z crossref_primary_10_1021_acs_inorgchem_3c04215 crossref_primary_10_1016_j_jcat_2018_04_001 crossref_primary_10_3390_nano13202754 crossref_primary_10_1016_j_jhazmat_2024_133632 crossref_primary_10_1016_j_jcat_2024_115452 crossref_primary_10_1021_acs_jpcc_0c00007 crossref_primary_10_1039_D3CY00590A crossref_primary_10_1021_acscatal_0c05205 crossref_primary_10_1021_acs_jpcc_9b08749 crossref_primary_10_1021_jacs_0c11920 crossref_primary_10_3389_fnano_2022_1012384 crossref_primary_10_1002_ange_201802231 crossref_primary_10_1038_s41929_019_0308_5 crossref_primary_10_1021_acs_inorgchem_7b02144 crossref_primary_10_1039_D0CY00394H crossref_primary_10_1016_j_mtsust_2023_100351 crossref_primary_10_1039_C8CP07580H crossref_primary_10_1002_adfm_202308130 crossref_primary_10_1016_j_jcat_2019_11_031 crossref_primary_10_1039_C9DT00516A crossref_primary_10_3390_catal13101338 crossref_primary_10_1021_jacs_7b13330 crossref_primary_10_1016_j_chempr_2020_06_018 crossref_primary_10_1080_01614940_2019_1674475 crossref_primary_10_1016_j_jcat_2022_11_030 crossref_primary_10_1038_s41929_022_00840_0 crossref_primary_10_1039_C8TA04498H crossref_primary_10_1021_jacs_2c12042 crossref_primary_10_1002_ange_202413402 crossref_primary_10_1039_D2EE01010K crossref_primary_10_1002_chem_201804490 crossref_primary_10_1021_acs_jpcc_0c05881 crossref_primary_10_1021_acs_jpclett_3c00863 crossref_primary_10_1016_j_apsusc_2025_162358 crossref_primary_10_1021_acs_jpcc_8b09178 crossref_primary_10_1126_sciadv_aat9180 crossref_primary_10_1002_cctc_202101244 crossref_primary_10_1016_j_ccr_2019_03_005 crossref_primary_10_1021_acs_chemrev_8b00074 crossref_primary_10_1039_D0TA03758C crossref_primary_10_1080_02603594_2023_2285064 crossref_primary_10_1021_acsaem_8b01282 crossref_primary_10_1021_acsami_0c12877 crossref_primary_10_1016_j_cej_2022_139505 crossref_primary_10_1039_C9TA01521C crossref_primary_10_1021_acs_jpcc_9b04803 crossref_primary_10_1021_acsami_0c02273 crossref_primary_10_1021_acscatal_9b03932 crossref_primary_10_1627_jpi_63_248 crossref_primary_10_1016_j_pnsc_2019_05_005 crossref_primary_10_1021_jacs_3c06981 crossref_primary_10_1016_j_rser_2023_113561 crossref_primary_10_1002_smll_202306353 crossref_primary_10_1038_s41467_020_19438_w crossref_primary_10_1039_D3CC03148A crossref_primary_10_1039_D0CE01666G crossref_primary_10_1088_1361_648X_ab38da crossref_primary_10_1016_j_cej_2022_140623 crossref_primary_10_1021_acs_chemrev_2c00537 crossref_primary_10_1002_anie_201802231 crossref_primary_10_1021_acsami_2c03370 crossref_primary_10_3390_methane2030017 crossref_primary_10_1021_acs_chemmater_0c00761 crossref_primary_10_1021_acscatal_4c01328 crossref_primary_10_1021_jacs_9b02902 crossref_primary_10_1016_j_ccr_2017_10_014 crossref_primary_10_1016_j_mtsust_2021_100061 crossref_primary_10_1016_j_jcat_2019_04_042 crossref_primary_10_1016_j_enchem_2019_100005 crossref_primary_10_1038_s41929_019_0273_z crossref_primary_10_1016_j_matlet_2021_131078 crossref_primary_10_1002_adfm_202007624 crossref_primary_10_1021_jacs_2c12192 crossref_primary_10_1016_j_ccr_2020_213734 crossref_primary_10_1016_j_apcatb_2021_120742 crossref_primary_10_1016_j_envpol_2021_116899 crossref_primary_10_1021_acscatal_0c02493 crossref_primary_10_1021_acsami_7b15086 crossref_primary_10_1002_adts_201800158 crossref_primary_10_1016_j_saa_2020_118430 crossref_primary_10_1007_s40843_023_2771_4 crossref_primary_10_1002_ente_201900750 crossref_primary_10_1039_D1NJ00712B crossref_primary_10_1021_accountsmr_4c00279 crossref_primary_10_1002_cctc_202401437 crossref_primary_10_1039_C9RA04495G crossref_primary_10_1021_acs_inorgchem_3c04380 crossref_primary_10_1016_j_apsusc_2019_06_117 crossref_primary_10_1021_jacs_0c10367 crossref_primary_10_1016_j_mencom_2021_09_002 crossref_primary_10_1039_D4NJ04561K crossref_primary_10_1016_j_chempr_2021_04_001 crossref_primary_10_1039_D3EY00234A |
Cites_doi | 10.1063/1.1677527 10.1107/S0108270190006230 10.1063/1.444267 10.1016/j.jcat.2016.03.014 10.1021/jp0275847 10.1038/ncomms8546 10.1021/ja0176696 10.1016/j.micromeso.2012.04.054 10.1021/jp7112363 10.1126/science.1195875 10.1039/C7FD00110J 10.1103/PhysRevLett.77.3865 10.1038/nchem.1956 10.1021/ja029684w 10.1126/science.344.6191.1464 10.1103/PhysRevB.49.15531 10.1039/C4CP03226H 10.1021/acsnano.5b03429 10.1002/anie.200462121 10.1016/j.ccr.2012.07.008 10.1002/ange.200503923 10.1016/j.jcat.2008.02.011 10.1103/PhysRevB.54.11169 10.1021/ja4050828 10.1103/PhysRevB.49.14251 10.1107/S0909049505012719 10.1006/jcat.1999.2732 10.1002/chem.200802385 10.1021/jz501899j 10.1021/ic50133a014 10.1016/0927-0256(96)00008-0 10.1021/jacs.5b02956 10.1021/ja00200a032 10.1002/adsc.201201018 10.1039/b926434e 10.1021/acs.chemmater.5b01560 10.1021/jo802628z 10.1021/ja047158u 10.1021/jz500241m 10.1007/BF01114537 10.1063/1.3382344 10.1039/C4SC02907K 10.1021/jacs.5b02817 10.1021/ja00255a032 10.1126/science.328.5986.1624 10.1021/acscentsci.6b00290 10.1103/PhysRevB.45.13244 10.1021/ja507947d 10.1021/jacs.5b12515 10.1021/jacs.6b06809 10.1016/j.cplett.2010.11.060 10.1098/rspa.1937.0142 10.1063/1.2370993 10.1021/ar700111a 10.1007/s10562-010-0380-6 10.1002/ange.201511065 10.1016/j.cattod.2009.01.004 10.1103/PhysRevB.47.558 |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
CorporateAuthor | Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC) Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) |
CorporateAuthor_xml | – name: Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS) – name: Energy Frontier Research Centers (EFRC) (United States). Energy Frontier Research Center for Inorganometallic Catalyst Design (ICDC) |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 OTOTI |
DOI | 10.1021/jacs.7b02936 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5126 |
EndPage | 10301 |
ExternalDocumentID | 1375358 28613861 10_1021_jacs_7b02936 d282655721 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5RE 5VS 7~N 85S AABXI ABFLS ABMVS ABPPZ ABPTK ABUCX ABUFD ACGFS ACJ ACNCT ACS AEESW AENEX AETEA AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 DU5 DZ EBS ED ED~ EJD ET F5P GNL IH9 JG JG~ K2 LG6 P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 X XFK YZZ ZHY --- -DZ -ET -~X .DC 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ACGFO ADHLV AGXLV AHDLI AHGAQ CITATION CUPRZ GGK IH2 XSW YQT ZCA ~02 NPM YIN 7X8 7S9 AAYWT L.6 ABFRP OTOTI TAF |
ID | FETCH-LOGICAL-a487t-900b9201e234ef31a60cff304c589e73c97f1300a70d0f298a2dca4e63501c9c3 |
IEDL.DBID | ACS |
ISSN | 0002-7863 1520-5126 |
IngestDate | Thu May 18 22:31:01 EDT 2023 Tue Aug 05 11:20:49 EDT 2025 Thu Jul 10 17:48:30 EDT 2025 Wed Feb 19 02:41:26 EST 2025 Tue Jul 01 03:21:16 EDT 2025 Thu Apr 24 22:51:41 EDT 2025 Thu Aug 27 13:43:08 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-900b9201e234ef31a60cff304c589e73c97f1300a70d0f298a2dca4e63501c9c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22) |
ORCID | 0000-0002-2495-1404 0000-0002-6175-3941 0000-0002-2213-0960 0000-0003-2054-9482 0000-0003-3982-9812 0000-0002-3230-5955 0000-0001-5048-1859 0000-0002-9904-9845 0000-0001-5227-1396 0000000339829812 0000000150481859 0000000320549482 0000000222130960 0000000232305955 0000000261753941 0000000152271396 0000000224951404 0000000299049845 |
PMID | 28613861 |
PQID | 1910336478 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | osti_scitechconnect_1375358 proquest_miscellaneous_2116865195 proquest_miscellaneous_1910336478 pubmed_primary_28613861 crossref_primary_10_1021_jacs_7b02936 crossref_citationtrail_10_1021_jacs_7b02936 acs_journals_10_1021_jacs_7b02936 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-02 |
PublicationDateYYYYMMDD | 2017-08-02 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of the American Chemical Society |
PublicationTitleAlternate | J. Am. Chem. Soc |
PublicationYear | 2017 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 Bard A. J. (ref29/cit29) 1985; 6 ref27/cit27 ref33/cit33a ref23/cit23 ref8/cit8 Frisch M. J. (ref37/cit37) 2009 ref2/cit2b ref31/cit31 ref2/cit2a ref1/cit1a ref33/cit33b ref34/cit34 ref43/cit43d ref1/cit1c ref1/cit1b ref43/cit43a ref43/cit43c ref43/cit43b ref5/cit5b ref17/cit17 ref10/cit10 ref5/cit5a ref35/cit35 ref21/cit21 ref3/cit3b ref42/cit42 ref3/cit3c Shriver D. F. (ref25/cit25a) 1999 ref3/cit3a ref3/cit3f ref3/cit3d ref3/cit3e ref13/cit13 ref19/cit19a Miessler G. L. (ref16/cit16) 2013 ref24/cit24 ref6/cit6 ref36/cit36 ref18/cit18 ref19/cit19b ref11/cit11 ref32/cit32 ref39/cit39 ref14/cit14 ref41/cit41b ref41/cit41a ref26/cit26 Janes R. (ref25/cit25b) 2004 ref38/cit38b ref38/cit38c ref12/cit12 ref15/cit15 ref38/cit38a ref30/cit30a ref20/cit20a ref22/cit22 ref40/cit40b ref30/cit30b ref20/cit20b ref4/cit4 ref40/cit40a ref7/cit7 |
References_xml | – ident: ref41/cit41b doi: 10.1063/1.1677527 – ident: ref22/cit22 doi: 10.1107/S0108270190006230 – ident: ref41/cit41a doi: 10.1063/1.444267 – ident: ref3/cit3e doi: 10.1016/j.jcat.2016.03.014 – ident: ref19/cit19b doi: 10.1021/jp0275847 – ident: ref27/cit27 doi: 10.1038/ncomms8546 – ident: ref30/cit30a doi: 10.1021/ja0176696 – ident: ref20/cit20b doi: 10.1016/j.micromeso.2012.04.054 – ident: ref38/cit38c doi: 10.1021/jp7112363 – ident: ref31/cit31 doi: 10.1126/science.1195875 – ident: ref13/cit13 doi: 10.1039/C7FD00110J – ident: ref40/cit40b doi: 10.1103/PhysRevLett.77.3865 – ident: ref12/cit12 doi: 10.1038/nchem.1956 – ident: ref15/cit15 doi: 10.1021/ja029684w – ident: ref1/cit1c doi: 10.1126/science.344.6191.1464 – ident: ref23/cit23 doi: 10.1103/PhysRevB.49.15531 – ident: ref3/cit3c doi: 10.1039/C4CP03226H – ident: ref5/cit5b doi: 10.1021/acsnano.5b03429 – ident: ref1/cit1a doi: 10.1002/anie.200462121 – ident: ref30/cit30b doi: 10.1016/j.ccr.2012.07.008 – ident: ref9/cit9 doi: 10.1002/ange.200503923 – ident: ref10/cit10 doi: 10.1016/j.jcat.2008.02.011 – ident: ref43/cit43b doi: 10.1103/PhysRevB.54.11169 – volume-title: Inorganic Chemistry year: 1999 ident: ref25/cit25a – ident: ref4/cit4 doi: 10.1021/ja4050828 – ident: ref43/cit43a doi: 10.1103/PhysRevB.49.14251 – ident: ref34/cit34 doi: 10.1107/S0909049505012719 – ident: ref2/cit2a doi: 10.1006/jcat.1999.2732 – ident: ref11/cit11 doi: 10.1002/chem.200802385 – ident: ref26/cit26 doi: 10.1021/jz501899j – volume: 6 volume-title: Standard potentials in aqueous solution year: 1985 ident: ref29/cit29 – ident: ref32/cit32 doi: 10.1021/ic50133a014 – ident: ref43/cit43c doi: 10.1016/0927-0256(96)00008-0 – ident: ref7/cit7 doi: 10.1021/jacs.5b02956 – volume-title: Gaussian 09 year: 2009 ident: ref37/cit37 – ident: ref19/cit19a doi: 10.1021/ja00200a032 – ident: ref33/cit33b doi: 10.1002/adsc.201201018 – ident: ref35/cit35 doi: 10.1039/b926434e – ident: ref5/cit5a doi: 10.1021/acs.chemmater.5b01560 – ident: ref33/cit33a doi: 10.1021/jo802628z – volume-title: Metal-ligand bonding year: 2004 ident: ref25/cit25b – ident: ref3/cit3a doi: 10.1021/ja047158u – ident: ref17/cit17 doi: 10.1021/jz500241m – ident: ref42/cit42 doi: 10.1007/BF01114537 – ident: ref39/cit39 doi: 10.1063/1.3382344 – ident: ref21/cit21 doi: 10.1039/C4SC02907K – ident: ref3/cit3d doi: 10.1021/jacs.5b02817 – ident: ref18/cit18 doi: 10.1021/ja00255a032 – ident: ref1/cit1b doi: 10.1126/science.328.5986.1624 – ident: ref8/cit8 doi: 10.1021/acscentsci.6b00290 – ident: ref40/cit40a doi: 10.1103/PhysRevB.45.13244 – ident: ref6/cit6 doi: 10.1021/ja507947d – ident: ref14/cit14 doi: 10.1021/jacs.5b12515 – ident: ref20/cit20a doi: 10.1021/jacs.6b06809 – ident: ref38/cit38b doi: 10.1016/j.cplett.2010.11.060 – ident: ref24/cit24 doi: 10.1098/rspa.1937.0142 – ident: ref36/cit36 doi: 10.1063/1.2370993 – ident: ref38/cit38a doi: 10.1021/ar700111a – ident: ref3/cit3b doi: 10.1007/s10562-010-0380-6 – ident: ref3/cit3f doi: 10.1002/ange.201511065 – volume-title: Inorganic Chemistry year: 2013 ident: ref16/cit16 – ident: ref2/cit2b doi: 10.1016/j.cattod.2009.01.004 – ident: ref43/cit43d doi: 10.1103/PhysRevB.47.558 |
SSID | ssj0004281 |
Score | 2.6418233 |
Snippet | Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal–organic framework (MOF) NU-1000 are active for oxidation of methane to... Copper oxide clusters synthesized via atomic layer deposition on the nodes of the metal-organic framework (MOF) NU-1000 are active for oxidation of methane to... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 10294 |
SubjectTerms | carbon carbon dioxide catalysts coordination polymers cupric oxide density functional theory methane methanol oxidation X-ray absorption spectroscopy |
Title | Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework |
URI | http://dx.doi.org/10.1021/jacs.7b02936 https://www.ncbi.nlm.nih.gov/pubmed/28613861 https://www.proquest.com/docview/1910336478 https://www.proquest.com/docview/2116865195 https://www.osti.gov/biblio/1375358 |
Volume | 139 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgOcCF_5-lgIwEJ-SVY3sd-4gilgqp7QFW6i1yJrZUWG0Qm0htT7wDb8iTMLNJWlG0wCGXZCxNPB7NN57xZ8ZeyUrXGNhr4cBoYdCdBIJ6K7LofJYgerflKTg4tPtL8-F4fnzZIHu1gq-IHwg2s7ySGJfsdXZDWfRfgkDFx8vzj8plI8zNndVDg_vV0RSAYPNbAJo06Ei7weU2yCzusPfjUZ2-t-TLrGurGZz_ydz4D_3vstsDzuRv-4Vxj12L6_vsZjFe7_aAfT6ItGse-dHpSX-vEm8b3r9sVrygbZ2z81jz6owXnTg6bXix6ohWYcMRoVJPLX09WfPDpaDtexobVj-__-iPdwJfjH1fD9ly8e5TsS-GixdEwPylFV7KyiMyiEqbmHQWrISUtDQwdz7mGnyeqAwWclnLpLwLqoZgoqUqJXjQj9hk3azjE8bBhOQhRZmSN3XyLgsQHIGGCmSQZspe4vyUg-Nsym1NXGFOQm-HWZuyN6PFShiYy-kCjdUO6dcX0l97xo4dcntk_BKRBtHlAvUVQVtmGhO4uUO9xjVRomGoioImaTrUEAGWJtb9v8hgVm2dJeKeKXvcL6gLXZRDBIXP0__48z12SxGMoBYV9YxN2m9dfI4gqK1ebD3gF_LF_0M |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtQwELZgOZQL_5SlFIwEJ-TKsb2JfawiVgt0twe6Um-R49hSYbWpSCK1PfEOvCFPwkx-tmqlRT3k4jjR2J7RfPaMvyHkA89lAY69YNopyRSYEwNQH7PIaxMF541ueQrmi3i2VF9PJ6f9ZXW8CwNCVPCnqg3iX7MLIE0QNCY5B_cU3ycPAIcIVOjD9Pv1NUihowHtJjqWfZ777a_RD7nqhh8alWBP2zFm62umj8liI2WbYvLzoKnzA3d1i8DxzsN4Qh71qJMedmrylNzz62dkJx2KvT0nP-Yez9A9Pb4466os0bqkXWO5oike8lxe-YLmlzRt2PFFSdNVgyQLFQW8ihm2-PZsTRdLhof5-K1d_f39p7vs6eh0yAJ7QZbTzyfpjPVlGJiF3UzNDOe5AZzghVQ-yMjG3IUguXITbXwinUkCBsVswgsehNFWFM4qH2PM0hknX5LRulz7V4Q6ZYNxwfMQjCqC0ZF1ViOEyB23XI3Je5ifrDejKmsj5AJ2KNjaz9qYfBoWLnM9jzmW01ht6f1x0_u84-_Y0m8PdSAD3IHkuQ6zjFydRRK2cxMNcg2qkcHCYEwFlqRsQEKAWxI5-P_TB_bYsY6RxmdMdju92sgiNOApeF7fYeTvyM7sZH6UHX1ZfNsjDwUCDExeEW_IqP7V-H2AR3X-tjWKf_MzB7M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKIkEvlGe7lIeR4IRcOXE2sY9VYFUe3SJgpd4iZ2JLpatNRRKp7Yn_wD_kl3Qmj0VUWgSHXPyIxvaM5rNn_JmxlzJXBTr2QmiIlIjQnASC-lgETpvAgzO65Sk4nMUH8-j98eR4gwXDXRgUosI_VW0Qn6z6rPA9wwBRBWFFkkt0UfENdpMidqTU--mX31chQx0MiDfRsepz3a_3Jl8E1R--aFSiTa3Hma2_mW6xzytJ2zST072mzvfg8hqJ438N5S6706NPvt-pyz224Zb32e10ePTtAft26Ogs3fGj85PutSVel7wrLBc8pcOei0tX8PyCp404Oi95umiIbKHiiFsp05ZqT5Z8Nhd0qE997eLXj5_dpU_g0yEb7CGbT99-TQ9E_xyDsLirqYWRMjeIF1yoIudVYGMJ3isZwUQblygwiafgmE1kIX1otA0LsJGLKXYJBtQjNlqWS7fDOETWG_BOem-iwhsdWLCaoEQO0spozF7g_GS9OVVZGykPcadCpf2sjdnrYfEy6PnM6VmNxZrWr1atzzoejzXtdkkPMsQfRKILlG0EdRYo3NZNNMo1qEeGC0OxFVySskEJEXYp4uL_Sxvca8c6JjqfMdvudGslS6gRV-H3-B9G_pzd-vRmmn18N_uwyzZDwhmUwxI-YaP6e-OeIkqq82etXVwBh-UKNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methane+Oxidation+to+Methanol+Catalyzed+by+Cu-Oxo+Clusters+Stabilized+in+NU-1000+Metal%E2%80%93Organic+Framework&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Ikuno%2C+Takaaki&rft.au=Zheng%2C+Jian&rft.au=Vjunov%2C+Aleksei&rft.au=Sanchez-Sanchez%2C+Maricruz&rft.date=2017-08-02&rft.issn=0002-7863&rft.eissn=1520-5126&rft.volume=139&rft.issue=30&rft.spage=10294&rft.epage=10301&rft_id=info:doi/10.1021%2Fjacs.7b02936&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jacs_7b02936 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-7863&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-7863&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-7863&client=summon |