Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods
Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structure...
Saved in:
Published in | Nano letters Vol. 18; no. 7; pp. 4467 - 4472 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
11.07.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions. |
---|---|
AbstractList | Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10
M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions. Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions. Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. In this paper, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. Finally, this method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions. Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10-15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10-15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions. |
Author | Li, Wentao Fan, Hongyou Zuo, Shanshan Bai, Feng Wei, Wenbo Ji, Juanjuan Wang, Yuru |
AuthorAffiliation | Center for Integrated Nanotechnologies Department of Chemical and Biological Engineering Collaborative Innovation Center of Nano Functional Materials and Applications The University of New Mexico Key Laboratory for Special Functional Materials of the Ministry of Education Henan University |
AuthorAffiliation_xml | – name: Key Laboratory for Special Functional Materials of the Ministry of Education – name: Collaborative Innovation Center of Nano Functional Materials and Applications – name: Department of Chemical and Biological Engineering – name: The University of New Mexico – name: Henan University – name: Center for Integrated Nanotechnologies |
Author_xml | – sequence: 1 givenname: Wenbo surname: Wei fullname: Wei, Wenbo organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 2 givenname: Yuru surname: Wang fullname: Wang, Yuru organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 3 givenname: Juanjuan surname: Ji fullname: Ji, Juanjuan organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 4 givenname: Shanshan surname: Zuo fullname: Zuo, Shanshan organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 5 givenname: Wentao surname: Li fullname: Li, Wentao organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 6 givenname: Feng surname: Bai fullname: Bai, Feng email: baifengsun@126.com organization: Collaborative Innovation Center of Nano Functional Materials and Applications – sequence: 7 givenname: Hongyou orcidid: 0000-0001-6174-4263 surname: Fan fullname: Fan, Hongyou email: hfan@sandia.gov organization: Center for Integrated Nanotechnologies |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29940113$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1469626$$D View this record in Osti.gov |
BookMark | eNqFkU9PGzEQxa0KVBLKN6jQilMvm_rvZs0toiRUiuil5WrN2t6wyLFT2znk2-OQpAcO5eSR5_dmRu-N0ZkP3iL0leAJwZR8B50mHnxwNudJ22EiWv4JjYhguG6kpGf_6pZfoHFKLxhjyQT-jC6olBwTwkboxxy6OGjIQ_BV6KslxJWtZ9FCNYsRdmn_-WRjLoxzu2rmhpW3ploEZ6rHsj4Gk76g8x5cslfH9xL9md__vnuol78WP-9myxp4O821sG3XiL6lhhijgWLTGdF3Uw2YCo17YsqpVjCGqQQGYIzkPQNpWCenuufsEt0c5oaUB5X0kK1-1sF7q7MivJENbQr07QBtYvi7tSmr9ZC0dQ68DdukKBZSNC2f7tHrI7rt1taoTRzWEHfqZE8Bbg-AjiGlaHtVdr55lSMMThGs9lmokoU6ZaGOWRQxfyc-zf9Ahg-yffclbKMvlv5f8gqo46H3 |
CitedBy_id | crossref_primary_10_1016_j_colsurfa_2022_128982 crossref_primary_10_1021_acsphotonics_8b00898 crossref_primary_10_1016_j_jcis_2023_05_167 crossref_primary_10_1039_C9TC03143J crossref_primary_10_1021_acsnano_4c15183 crossref_primary_10_1038_s41598_025_92926_5 crossref_primary_10_1039_D4SM00836G crossref_primary_10_1021_acsami_0c05945 crossref_primary_10_1021_acs_jpcc_9b02700 crossref_primary_10_1021_acs_jpclett_0c01116 crossref_primary_10_1007_s00604_023_05634_0 crossref_primary_10_1021_acs_jpcc_3c00393 crossref_primary_10_1186_s11671_019_2927_9 crossref_primary_10_1002_adfm_202309929 crossref_primary_10_1002_cphc_202400146 crossref_primary_10_1021_acs_nanolett_2c04541 crossref_primary_10_1016_j_talanta_2018_11_114 crossref_primary_10_1021_acs_nanolett_0c02779 crossref_primary_10_1039_D2SM01625G crossref_primary_10_1039_D0CS00541J crossref_primary_10_1039_D0NA00315H crossref_primary_10_1016_j_apmt_2018_12_013 crossref_primary_10_1039_D0SM00482K crossref_primary_10_1088_1361_6528_ab2a3f crossref_primary_10_3389_fmats_2022_1048011 crossref_primary_10_1016_j_surfin_2022_102400 crossref_primary_10_1021_acs_jpcc_0c06162 crossref_primary_10_1021_acs_analchem_9b04339 crossref_primary_10_1002_ange_201902620 crossref_primary_10_1021_acsanm_3c04574 crossref_primary_10_1039_D0SC00592D crossref_primary_10_1039_D1NR01884A crossref_primary_10_1007_s40996_024_01461_2 crossref_primary_10_1021_acsami_0c17471 crossref_primary_10_1021_acsanm_0c01177 crossref_primary_10_1021_acs_langmuir_9b03835 crossref_primary_10_1021_acs_chemrev_1c00422 crossref_primary_10_1038_s41467_023_43511_9 crossref_primary_10_1039_D3NR01456H crossref_primary_10_1021_acs_nanolett_9b02853 crossref_primary_10_1088_1361_6528_ab7100 crossref_primary_10_3389_fchem_2023_1183381 crossref_primary_10_1002_chem_202005422 crossref_primary_10_1021_acs_chemrev_2c00078 crossref_primary_10_1016_j_colsurfa_2021_126542 crossref_primary_10_1021_acs_nanolett_0c02683 crossref_primary_10_1186_s11671_019_3184_7 crossref_primary_10_1002_anie_201902620 crossref_primary_10_1021_acssensors_3c00967 crossref_primary_10_1002_adma_202203366 crossref_primary_10_1016_j_aca_2022_340380 crossref_primary_10_1021_acs_langmuir_2c00153 crossref_primary_10_1557_mrs_2020_21 crossref_primary_10_1016_j_snb_2020_129214 crossref_primary_10_1021_acs_chemrev_9b00023 crossref_primary_10_1021_acssuschemeng_2c05291 crossref_primary_10_1021_acsnano_2c09187 crossref_primary_10_1002_admi_201900986 crossref_primary_10_1016_j_snb_2023_133529 crossref_primary_10_1039_D1SM00820J crossref_primary_10_1021_acsomega_1c05452 crossref_primary_10_1039_D1CC03047G crossref_primary_10_1039_D1RA03900H crossref_primary_10_1016_j_trac_2024_117873 crossref_primary_10_1021_acsanm_1c03332 crossref_primary_10_1021_acs_langmuir_1c00789 crossref_primary_10_1016_j_snb_2024_135576 crossref_primary_10_1021_acsnano_0c09746 crossref_primary_10_3390_nano11102597 crossref_primary_10_1002_smll_202201075 crossref_primary_10_1002_adma_202007668 crossref_primary_10_1016_j_jcis_2021_01_098 crossref_primary_10_1038_s41467_018_07869_5 crossref_primary_10_3390_nano12213842 crossref_primary_10_1021_acsami_1c12594 crossref_primary_10_1021_acsnano_1c09930 crossref_primary_10_1039_D1CP03684J crossref_primary_10_1016_j_talanta_2025_127669 crossref_primary_10_1002_admt_202300367 crossref_primary_10_1016_j_cej_2022_137630 crossref_primary_10_1002_smll_201901304 crossref_primary_10_1016_j_jcis_2025_01_254 crossref_primary_10_1016_j_colsurfa_2024_133762 crossref_primary_10_1016_j_physleta_2024_130177 crossref_primary_10_1039_C9NR08118F crossref_primary_10_1016_j_scib_2020_01_012 crossref_primary_10_1039_D2NJ03142F crossref_primary_10_1016_j_cis_2024_103286 crossref_primary_10_7498_aps_72_20231105 crossref_primary_10_1038_s41467_021_21531_7 crossref_primary_10_1002_smll_202412267 crossref_primary_10_1088_1361_6528_ad0483 |
Cites_doi | 10.1021/nn401685p 10.1073/pnas.1016530108 10.1103/PhysRevE.62.756 10.1002/adma.201502869 10.1021/nl403149u 10.1126/sciadv.1500025 10.1039/c4tc00325j 10.1002/adma.201505617 10.1039/C1JM14382D 10.1038/nmat1611 10.1021/acs.accounts.7b00048 10.1002/adma.200903097 10.1007/s12274-014-0572-2 10.1103/PhysRevE.61.475 10.1021/acs.accounts.7b00194 10.1021/acs.accounts.6b00393 10.1021/acsphotonics.5b00369 10.1002/aic.14338 10.1002/anie.200803642 10.1021/cr400081d 10.1038/39827 10.1039/b601494c 10.1021/acs.nanolett.5b02879 10.1021/acsnano.7b02059 10.1002/anie.201005493 10.1007/s12274-015-0767-1 10.1016/j.aquatox.2003.09.008 10.1039/C2CS35289C 10.1021/ja408250q 10.1021/nl304478h 10.1021/nl1018035 10.1126/science.1095140 10.1039/C2CS35367A 10.1021/acs.nanolett.7b00958 10.1126/science.1224221 10.1039/c3cs60397k 10.1039/C3NR06341K 10.1002/adma.200390087 |
ContentType | Journal Article |
CorporateAuthor | Henan Univ., Kaifeng (China) Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) |
CorporateAuthor_xml | – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) – name: Henan Univ., Kaifeng (China) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acs.nanolett.8b01584 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 4472 |
ExternalDocumentID | 1469626 29940113 10_1021_acs_nanolett_8b01584 b940129652 |
Genre | Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a487t-5e8b65f82d1ddca20dbd5fb7ca025c0f1d984e533029a3aadd94f3a9d3b97cf43 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Mon Jul 03 03:58:05 EDT 2023 Fri Jul 11 01:23:00 EDT 2025 Tue Aug 05 11:35:08 EDT 2025 Tue Jul 01 03:14:01 EDT 2025 Thu Apr 24 23:08:34 EDT 2025 Thu Aug 27 13:42:17 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Gold nanorods morphology SERS directional self-assembly vertical alignment depletion attraction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-5e8b65f82d1ddca20dbd5fb7ca025c0f1d984e533029a3aadd94f3a9d3b97cf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE Office of Science (SC), Basic Energy Sciences (BES) SAND-2018-9736J Program for Changjiang Scholars and Innovative Research Team in University (China) National Natural Science Foundation of China (NSFC) Plan for Scientific Innovation Talent of Henan Province (China) NA0003525; 21422102; 21403054; 21771055; U1604139; 174200510019; PCS IRT_15R18 USDOE National Nuclear Security Administration (NNSA) |
ORCID | 0000-0001-6174-4263 0000000161744263 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1469626 |
PMID | 29940113 |
PQID | 2059568476 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | osti_scitechconnect_1469626 proquest_miscellaneous_2059568476 pubmed_primary_29940113 crossref_citationtrail_10_1021_acs_nanolett_8b01584 crossref_primary_10_1021_acs_nanolett_8b01584 acs_journals_10_1021_acs_nanolett_8b01584 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-11 |
PublicationDateYYYYMMDD | 2018-07-11 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref27/cit27 doi: 10.1021/nn401685p – ident: ref30/cit30 doi: 10.1073/pnas.1016530108 – ident: ref22/cit22 doi: 10.1103/PhysRevE.62.756 – ident: ref2/cit2 doi: 10.1002/adma.201502869 – ident: ref31/cit31 doi: 10.1021/nl403149u – ident: ref14/cit14 doi: 10.1126/sciadv.1500025 – ident: ref33/cit33 doi: 10.1039/c4tc00325j – ident: ref16/cit16 doi: 10.1002/adma.201505617 – ident: ref32/cit32 doi: 10.1039/C1JM14382D – ident: ref24/cit24 doi: 10.1038/nmat1611 – ident: ref3/cit3 doi: 10.1021/acs.accounts.7b00048 – ident: ref15/cit15 doi: 10.1002/adma.200903097 – ident: ref28/cit28 doi: 10.1007/s12274-014-0572-2 – ident: ref20/cit20 doi: 10.1103/PhysRevE.61.475 – ident: ref11/cit11 doi: 10.1021/acs.accounts.7b00194 – ident: ref12/cit12 doi: 10.1021/acs.accounts.6b00393 – ident: ref29/cit29 doi: 10.1021/acsphotonics.5b00369 – ident: ref21/cit21 doi: 10.1002/aic.14338 – ident: ref36/cit36 doi: 10.1002/anie.200803642 – ident: ref18/cit18 doi: 10.1021/cr400081d – ident: ref19/cit19 doi: 10.1038/39827 – ident: ref38/cit38 doi: 10.1039/b601494c – ident: ref5/cit5 doi: 10.1021/acs.nanolett.5b02879 – ident: ref4/cit4 doi: 10.1021/acsnano.7b02059 – ident: ref1/cit1 doi: 10.1002/anie.201005493 – ident: ref7/cit7 doi: 10.1007/s12274-015-0767-1 – ident: ref37/cit37 doi: 10.1016/j.aquatox.2003.09.008 – ident: ref10/cit10 doi: 10.1039/C2CS35289C – ident: ref6/cit6 doi: 10.1021/ja408250q – ident: ref35/cit35 doi: 10.1021/nl304478h – ident: ref26/cit26 doi: 10.1021/nl1018035 – ident: ref25/cit25 doi: 10.1126/science.1095140 – ident: ref23/cit23 doi: 10.1039/C2CS35367A – ident: ref8/cit8 doi: 10.1021/acs.nanolett.7b00958 – ident: ref13/cit13 doi: 10.1126/science.1224221 – ident: ref17/cit17 doi: 10.1039/c3cs60397k – ident: ref34/cit34 doi: 10.1039/C3NR06341K – ident: ref9/cit9 doi: 10.1002/adma.200390087 |
SSID | ssj0009350 |
Score | 2.5557187 |
Snippet | Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation,... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4467 |
SubjectTerms | depletion attraction directional self-assembly gold nanorods morphology NANOSCIENCE AND NANOTECHNOLOGY SERS vertical alignment |
Title | Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods |
URI | http://dx.doi.org/10.1021/acs.nanolett.8b01584 https://www.ncbi.nlm.nih.gov/pubmed/29940113 https://www.proquest.com/docview/2059568476 https://www.osti.gov/servlets/purl/1469626 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmkPtPRBtxQUJC49eJvEcdY-rrYsCAE9tFTcorEdI0SUVJvsAX59Z7LJUooQ5WrZjjyexzfx-DNj-9pKHfpUc5_KMU-U8xyMSDlGojw0VsswoYvCp2fp0XlyfCEv7hLFf0_w4-gr2HpUQlnhMpqRMhi-VPKCrcepGlOyNZn-uCPZFe2LrGjEmBJplfRX5R6ZhQKSre8FpEGFhvU42GyDzuw1-95f3VnWmlyPFo0Z2duHTI7_uZ43bKPDn8FkqTCbbC0v37JXf7ESvmPfZmDm3a-8oPLBCRWL8wmiSxw2h5uaGn-19dhQFDfBpLi6RGcdHFaFC9BbV-iT6_fsfHbwc3rEu8cWOGDO0nCZK5NKr2IXOWchDp1x0puxBURFNvSRQ4HmVIsaaxCAblEnXoB2wuix9Yn4wAZlVeYfWaBSosGLQHtB5D0JuFjmFidzQPAAhuwLCiHrjKXO2nPwOMqosZdM1klmyES_O5ntWMvp8YziiVF8Ner3krXjif7btPEZog6izrVUY2QbSos0JnxDttfrQ4bGRycqUObVos5iBKcyxQCPfbaWirL6HsZ5zF0j8ekZq91mLxGQKfp3HEWf2aCZL_IdBD2N2W01_Q9raf4H |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7aHl0NL3FmhTqZcevE3iOBsfV8B22y5cCoib5UeMUKMEbbIH-PXMZJOlRUKIq2U78dgz8409_gzwVVohQ59K5lMxZknmPNOGpww9UR4aK0WY0EXhw6N0dpL8OhNnGyD6uzD4EzX2VLeH-LfsAtF3Kit1WeFomlFm0ItlyRN4ingkpphrsvfnlmuXtw-zoi5jZCSzpL8xd08v5Jds_Z9fGlSoX_djztb3TF_C6fqv25STv6NlY0b2-g6h46OHtQUvOjQaTFbL5xVs5OVr2PyHo_AN7E-1WXQbe0HlgzmljrMJYk1sttBXNRWettnZuiiugklxcY6mO_hRFS5A212hha7fwsn04HhvxrqnF5jGCKZhIs9MKnwWu8g5q-PQGSe8GVuNGMmGPnIo15wyU2OpuUYjKRPPtXTcyLH1CX8Hg7Iq8w8QZCmR4kVaek5UPol2scgtduY0gQU9hG8oBNWpTq3aU_E4UlTYS0Z1khkC7ydJ2Y7DnJ7SKB5oxdatLlccHg_U36b5V4hBiEjXUsaRbShIkhj-DeFLvywUqiKdr-gyr5a1ihGqihTdPdZ5v1ov6--h18dINuIfHzHaz_Bsdnw4V_OfR7-34TlCtYx2laNoBwbNYpnvIhxqzKd28d8ADhIGdw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61WwmVA33Q0i20TaVeOHibxHE2Pq6ALW8hURDiYvkRI9QoQZvsAX59Z7LZLVRCqL1atmNPZjzf2OPPAN-kFTL0qWQ-FUOWZM4zbXjK0BPlobFShAldFD46TnfPkv0LcXHvqS8cRI091e0hPln1jfMdw0D0ncpLXVY4o2aQGfRkWfIcXtDJHcVdo63TP3y7vH2cFe0ZoyOZJfNbc4_0Qr7J1g98U69CG3scd7b-Z_wKLhcjb9NOfg2mjRnYu79IHf9raq9hpUOlwWimRm_gWV6-heV7XIWrsD3WZtJt8AWVDw4phZyNEHNis4m-ranwvM3S1kVxG4yK6ytcwoMfVeECXMMrXKnrd3A23vm5tcu6JxiYxkimYSLPTCp8FrvIOavj0BknvBlajVjJhj5yKNucMlRjqbnGxVImnmvpuJFD6xP-HnplVeYfIMhSIseLtPScKH0S7WKRW-zMaQINug-bKATVmVCt2tPxOFJUOJeM6iTTBz7_Ucp2XOb0pEbxRCu2aHUz4_J4ov466YBCLEKEupYyj2xDwZLEMLAPX-eqodAk6ZxFl3k1rVWMkFWk6PaxztpMZxbfQ--PEW3EP_7DbL_A0sn2WB3uHR-sw0tEbBltLkfRBvSayTT_hKioMZ9b_f8NfN0I-g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Large-Area+Arrays+of+Vertically+Aligned+Gold+Nanorods&rft.jtitle=Nano+letters&rft.au=Wei%2C+Wenbo&rft.au=Wang%2C+Yuru&rft.au=Ji%2C+Juanjuan&rft.au=Zuo%2C+Shanshan&rft.date=2018-07-11&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=7&rft.spage=4467&rft_id=info:doi/10.1021%2Facs.nanolett.8b01584&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |