Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods

Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structure...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 18; no. 7; pp. 4467 - 4472
Main Authors Wei, Wenbo, Wang, Yuru, Ji, Juanjuan, Zuo, Shanshan, Li, Wentao, Bai, Feng, Fan, Hongyou
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 11.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.
AbstractList Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.
Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.
Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. In this paper, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10–15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. Finally, this method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.
Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10-15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation, which result in unique functions. Despite previous extensive efforts, formation of large areas of oriented or aligned nanoparticle structures still remains a great challenge. Here, we report fabrication of large-area arrays of vertically aligned gold nanorods (GNR) through a controlled evaporation deposition process. We began with a homogeneous suspension of GNR and surfactants prepared in water. During drop casting on silicon substrates, evaporation of water progressively enriched the concentrations of the GNR suspension, which induces the balance between electrostatic interactions and entropically driven depletion attraction in the evaporating solution to produce large-area arrays of self-assembled GNR on the substrates. Electron microscopy characterizations revealed the formation of layers of vertically aligned GNR arrays that consisted of hexagonally close-packed GNR in each layer. Benefiting from the close-packed GNR arrays and their smooth topography, the GNR arrays exhibited a surface-enhanced Raman scattering (SERS) signal for molecular detection at a concentration as low as 10-15 M. Because of the uniformity in large area, the GNR arrays exhibited exceptional detecting reproducibility and operability. This method is scalable and cost-effective and could lead to diverse packing structures and functions by variation of guest nanoparticles in the suspensions.
Author Li, Wentao
Fan, Hongyou
Zuo, Shanshan
Bai, Feng
Wei, Wenbo
Ji, Juanjuan
Wang, Yuru
AuthorAffiliation Center for Integrated Nanotechnologies
Department of Chemical and Biological Engineering
Collaborative Innovation Center of Nano Functional Materials and Applications
The University of New Mexico
Key Laboratory for Special Functional Materials of the Ministry of Education
Henan University
AuthorAffiliation_xml – name: Key Laboratory for Special Functional Materials of the Ministry of Education
– name: Collaborative Innovation Center of Nano Functional Materials and Applications
– name: Department of Chemical and Biological Engineering
– name: The University of New Mexico
– name: Henan University
– name: Center for Integrated Nanotechnologies
Author_xml – sequence: 1
  givenname: Wenbo
  surname: Wei
  fullname: Wei, Wenbo
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 2
  givenname: Yuru
  surname: Wang
  fullname: Wang, Yuru
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 3
  givenname: Juanjuan
  surname: Ji
  fullname: Ji, Juanjuan
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 4
  givenname: Shanshan
  surname: Zuo
  fullname: Zuo, Shanshan
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 5
  givenname: Wentao
  surname: Li
  fullname: Li, Wentao
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 6
  givenname: Feng
  surname: Bai
  fullname: Bai, Feng
  email: baifengsun@126.com
  organization: Collaborative Innovation Center of Nano Functional Materials and Applications
– sequence: 7
  givenname: Hongyou
  orcidid: 0000-0001-6174-4263
  surname: Fan
  fullname: Fan, Hongyou
  email: hfan@sandia.gov
  organization: Center for Integrated Nanotechnologies
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29940113$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1469626$$D View this record in Osti.gov
BookMark eNqFkU9PGzEQxa0KVBLKN6jQilMvm_rvZs0toiRUiuil5WrN2t6wyLFT2znk2-OQpAcO5eSR5_dmRu-N0ZkP3iL0leAJwZR8B50mHnxwNudJ22EiWv4JjYhguG6kpGf_6pZfoHFKLxhjyQT-jC6olBwTwkboxxy6OGjIQ_BV6KslxJWtZ9FCNYsRdmn_-WRjLoxzu2rmhpW3ploEZ6rHsj4Gk76g8x5cslfH9xL9md__vnuol78WP-9myxp4O821sG3XiL6lhhijgWLTGdF3Uw2YCo17YsqpVjCGqQQGYIzkPQNpWCenuufsEt0c5oaUB5X0kK1-1sF7q7MivJENbQr07QBtYvi7tSmr9ZC0dQ68DdukKBZSNC2f7tHrI7rt1taoTRzWEHfqZE8Bbg-AjiGlaHtVdr55lSMMThGs9lmokoU6ZaGOWRQxfyc-zf9Ahg-yffclbKMvlv5f8gqo46H3
CitedBy_id crossref_primary_10_1016_j_colsurfa_2022_128982
crossref_primary_10_1021_acsphotonics_8b00898
crossref_primary_10_1016_j_jcis_2023_05_167
crossref_primary_10_1039_C9TC03143J
crossref_primary_10_1021_acsnano_4c15183
crossref_primary_10_1038_s41598_025_92926_5
crossref_primary_10_1039_D4SM00836G
crossref_primary_10_1021_acsami_0c05945
crossref_primary_10_1021_acs_jpcc_9b02700
crossref_primary_10_1021_acs_jpclett_0c01116
crossref_primary_10_1007_s00604_023_05634_0
crossref_primary_10_1021_acs_jpcc_3c00393
crossref_primary_10_1186_s11671_019_2927_9
crossref_primary_10_1002_adfm_202309929
crossref_primary_10_1002_cphc_202400146
crossref_primary_10_1021_acs_nanolett_2c04541
crossref_primary_10_1016_j_talanta_2018_11_114
crossref_primary_10_1021_acs_nanolett_0c02779
crossref_primary_10_1039_D2SM01625G
crossref_primary_10_1039_D0CS00541J
crossref_primary_10_1039_D0NA00315H
crossref_primary_10_1016_j_apmt_2018_12_013
crossref_primary_10_1039_D0SM00482K
crossref_primary_10_1088_1361_6528_ab2a3f
crossref_primary_10_3389_fmats_2022_1048011
crossref_primary_10_1016_j_surfin_2022_102400
crossref_primary_10_1021_acs_jpcc_0c06162
crossref_primary_10_1021_acs_analchem_9b04339
crossref_primary_10_1002_ange_201902620
crossref_primary_10_1021_acsanm_3c04574
crossref_primary_10_1039_D0SC00592D
crossref_primary_10_1039_D1NR01884A
crossref_primary_10_1007_s40996_024_01461_2
crossref_primary_10_1021_acsami_0c17471
crossref_primary_10_1021_acsanm_0c01177
crossref_primary_10_1021_acs_langmuir_9b03835
crossref_primary_10_1021_acs_chemrev_1c00422
crossref_primary_10_1038_s41467_023_43511_9
crossref_primary_10_1039_D3NR01456H
crossref_primary_10_1021_acs_nanolett_9b02853
crossref_primary_10_1088_1361_6528_ab7100
crossref_primary_10_3389_fchem_2023_1183381
crossref_primary_10_1002_chem_202005422
crossref_primary_10_1021_acs_chemrev_2c00078
crossref_primary_10_1016_j_colsurfa_2021_126542
crossref_primary_10_1021_acs_nanolett_0c02683
crossref_primary_10_1186_s11671_019_3184_7
crossref_primary_10_1002_anie_201902620
crossref_primary_10_1021_acssensors_3c00967
crossref_primary_10_1002_adma_202203366
crossref_primary_10_1016_j_aca_2022_340380
crossref_primary_10_1021_acs_langmuir_2c00153
crossref_primary_10_1557_mrs_2020_21
crossref_primary_10_1016_j_snb_2020_129214
crossref_primary_10_1021_acs_chemrev_9b00023
crossref_primary_10_1021_acssuschemeng_2c05291
crossref_primary_10_1021_acsnano_2c09187
crossref_primary_10_1002_admi_201900986
crossref_primary_10_1016_j_snb_2023_133529
crossref_primary_10_1039_D1SM00820J
crossref_primary_10_1021_acsomega_1c05452
crossref_primary_10_1039_D1CC03047G
crossref_primary_10_1039_D1RA03900H
crossref_primary_10_1016_j_trac_2024_117873
crossref_primary_10_1021_acsanm_1c03332
crossref_primary_10_1021_acs_langmuir_1c00789
crossref_primary_10_1016_j_snb_2024_135576
crossref_primary_10_1021_acsnano_0c09746
crossref_primary_10_3390_nano11102597
crossref_primary_10_1002_smll_202201075
crossref_primary_10_1002_adma_202007668
crossref_primary_10_1016_j_jcis_2021_01_098
crossref_primary_10_1038_s41467_018_07869_5
crossref_primary_10_3390_nano12213842
crossref_primary_10_1021_acsami_1c12594
crossref_primary_10_1021_acsnano_1c09930
crossref_primary_10_1039_D1CP03684J
crossref_primary_10_1016_j_talanta_2025_127669
crossref_primary_10_1002_admt_202300367
crossref_primary_10_1016_j_cej_2022_137630
crossref_primary_10_1002_smll_201901304
crossref_primary_10_1016_j_jcis_2025_01_254
crossref_primary_10_1016_j_colsurfa_2024_133762
crossref_primary_10_1016_j_physleta_2024_130177
crossref_primary_10_1039_C9NR08118F
crossref_primary_10_1016_j_scib_2020_01_012
crossref_primary_10_1039_D2NJ03142F
crossref_primary_10_1016_j_cis_2024_103286
crossref_primary_10_7498_aps_72_20231105
crossref_primary_10_1038_s41467_021_21531_7
crossref_primary_10_1002_smll_202412267
crossref_primary_10_1088_1361_6528_ad0483
Cites_doi 10.1021/nn401685p
10.1073/pnas.1016530108
10.1103/PhysRevE.62.756
10.1002/adma.201502869
10.1021/nl403149u
10.1126/sciadv.1500025
10.1039/c4tc00325j
10.1002/adma.201505617
10.1039/C1JM14382D
10.1038/nmat1611
10.1021/acs.accounts.7b00048
10.1002/adma.200903097
10.1007/s12274-014-0572-2
10.1103/PhysRevE.61.475
10.1021/acs.accounts.7b00194
10.1021/acs.accounts.6b00393
10.1021/acsphotonics.5b00369
10.1002/aic.14338
10.1002/anie.200803642
10.1021/cr400081d
10.1038/39827
10.1039/b601494c
10.1021/acs.nanolett.5b02879
10.1021/acsnano.7b02059
10.1002/anie.201005493
10.1007/s12274-015-0767-1
10.1016/j.aquatox.2003.09.008
10.1039/C2CS35289C
10.1021/ja408250q
10.1021/nl304478h
10.1021/nl1018035
10.1126/science.1095140
10.1039/C2CS35367A
10.1021/acs.nanolett.7b00958
10.1126/science.1224221
10.1039/c3cs60397k
10.1039/C3NR06341K
10.1002/adma.200390087
ContentType Journal Article
CorporateAuthor Henan Univ., Kaifeng (China)
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
CorporateAuthor_xml – name: Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
– name: Henan Univ., Kaifeng (China)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acs.nanolett.8b01584
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 4472
ExternalDocumentID 1469626
29940113
10_1021_acs_nanolett_8b01584
b940129652
Genre Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a487t-5e8b65f82d1ddca20dbd5fb7ca025c0f1d984e533029a3aadd94f3a9d3b97cf43
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Mon Jul 03 03:58:05 EDT 2023
Fri Jul 11 01:23:00 EDT 2025
Tue Aug 05 11:35:08 EDT 2025
Tue Jul 01 03:14:01 EDT 2025
Thu Apr 24 23:08:34 EDT 2025
Thu Aug 27 13:42:17 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Gold nanorods
morphology
SERS
directional self-assembly
vertical alignment
depletion attraction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-5e8b65f82d1ddca20dbd5fb7ca025c0f1d984e533029a3aadd94f3a9d3b97cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SAND-2018-9736J
Program for Changjiang Scholars and Innovative Research Team in University (China)
National Natural Science Foundation of China (NSFC)
Plan for Scientific Innovation Talent of Henan Province (China)
NA0003525; 21422102; 21403054; 21771055; U1604139; 174200510019; PCS IRT_15R18
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0001-6174-4263
0000000161744263
OpenAccessLink https://www.osti.gov/servlets/purl/1469626
PMID 29940113
PQID 2059568476
PQPubID 23479
PageCount 6
ParticipantIDs osti_scitechconnect_1469626
proquest_miscellaneous_2059568476
pubmed_primary_29940113
crossref_citationtrail_10_1021_acs_nanolett_8b01584
crossref_primary_10_1021_acs_nanolett_8b01584
acs_journals_10_1021_acs_nanolett_8b01584
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-11
PublicationDateYYYYMMDD 2018-07-11
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref27/cit27
  doi: 10.1021/nn401685p
– ident: ref30/cit30
  doi: 10.1073/pnas.1016530108
– ident: ref22/cit22
  doi: 10.1103/PhysRevE.62.756
– ident: ref2/cit2
  doi: 10.1002/adma.201502869
– ident: ref31/cit31
  doi: 10.1021/nl403149u
– ident: ref14/cit14
  doi: 10.1126/sciadv.1500025
– ident: ref33/cit33
  doi: 10.1039/c4tc00325j
– ident: ref16/cit16
  doi: 10.1002/adma.201505617
– ident: ref32/cit32
  doi: 10.1039/C1JM14382D
– ident: ref24/cit24
  doi: 10.1038/nmat1611
– ident: ref3/cit3
  doi: 10.1021/acs.accounts.7b00048
– ident: ref15/cit15
  doi: 10.1002/adma.200903097
– ident: ref28/cit28
  doi: 10.1007/s12274-014-0572-2
– ident: ref20/cit20
  doi: 10.1103/PhysRevE.61.475
– ident: ref11/cit11
  doi: 10.1021/acs.accounts.7b00194
– ident: ref12/cit12
  doi: 10.1021/acs.accounts.6b00393
– ident: ref29/cit29
  doi: 10.1021/acsphotonics.5b00369
– ident: ref21/cit21
  doi: 10.1002/aic.14338
– ident: ref36/cit36
  doi: 10.1002/anie.200803642
– ident: ref18/cit18
  doi: 10.1021/cr400081d
– ident: ref19/cit19
  doi: 10.1038/39827
– ident: ref38/cit38
  doi: 10.1039/b601494c
– ident: ref5/cit5
  doi: 10.1021/acs.nanolett.5b02879
– ident: ref4/cit4
  doi: 10.1021/acsnano.7b02059
– ident: ref1/cit1
  doi: 10.1002/anie.201005493
– ident: ref7/cit7
  doi: 10.1007/s12274-015-0767-1
– ident: ref37/cit37
  doi: 10.1016/j.aquatox.2003.09.008
– ident: ref10/cit10
  doi: 10.1039/C2CS35289C
– ident: ref6/cit6
  doi: 10.1021/ja408250q
– ident: ref35/cit35
  doi: 10.1021/nl304478h
– ident: ref26/cit26
  doi: 10.1021/nl1018035
– ident: ref25/cit25
  doi: 10.1126/science.1095140
– ident: ref23/cit23
  doi: 10.1039/C2CS35367A
– ident: ref8/cit8
  doi: 10.1021/acs.nanolett.7b00958
– ident: ref13/cit13
  doi: 10.1126/science.1224221
– ident: ref17/cit17
  doi: 10.1039/c3cs60397k
– ident: ref34/cit34
  doi: 10.1039/C3NR06341K
– ident: ref9/cit9
  doi: 10.1002/adma.200390087
SSID ssj0009350
Score 2.5557187
Snippet Anisotropic nanoparticles, such as nanorods and nanoprisms, enable packing of complex nanoparticle structures with different symmetry and assembly orientation,...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4467
SubjectTerms depletion attraction
directional self-assembly
gold nanorods
morphology
NANOSCIENCE AND NANOTECHNOLOGY
SERS
vertical alignment
Title Fabrication of Large-Area Arrays of Vertically Aligned Gold Nanorods
URI http://dx.doi.org/10.1021/acs.nanolett.8b01584
https://www.ncbi.nlm.nih.gov/pubmed/29940113
https://www.proquest.com/docview/2059568476
https://www.osti.gov/servlets/purl/1469626
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocmkPtPRBtxQUJC49eJvEcdY-rrYsCAE9tFTcorEdI0SUVJvsAX59Z7LJUooQ5WrZjjyexzfx-DNj-9pKHfpUc5_KMU-U8xyMSDlGojw0VsswoYvCp2fp0XlyfCEv7hLFf0_w4-gr2HpUQlnhMpqRMhi-VPKCrcepGlOyNZn-uCPZFe2LrGjEmBJplfRX5R6ZhQKSre8FpEGFhvU42GyDzuw1-95f3VnWmlyPFo0Z2duHTI7_uZ43bKPDn8FkqTCbbC0v37JXf7ESvmPfZmDm3a-8oPLBCRWL8wmiSxw2h5uaGn-19dhQFDfBpLi6RGcdHFaFC9BbV-iT6_fsfHbwc3rEu8cWOGDO0nCZK5NKr2IXOWchDp1x0puxBURFNvSRQ4HmVIsaaxCAblEnXoB2wuix9Yn4wAZlVeYfWaBSosGLQHtB5D0JuFjmFidzQPAAhuwLCiHrjKXO2nPwOMqosZdM1klmyES_O5ntWMvp8YziiVF8Ner3krXjif7btPEZog6izrVUY2QbSos0JnxDttfrQ4bGRycqUObVos5iBKcyxQCPfbaWirL6HsZ5zF0j8ekZq91mLxGQKfp3HEWf2aCZL_IdBD2N2W01_Q9raf4H
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7R7aHl0NL3FmhTqZcevE3iOBsfV8B22y5cCoib5UeMUKMEbbIH-PXMZJOlRUKIq2U78dgz8409_gzwVVohQ59K5lMxZknmPNOGpww9UR4aK0WY0EXhw6N0dpL8OhNnGyD6uzD4EzX2VLeH-LfsAtF3Kit1WeFomlFm0ItlyRN4ingkpphrsvfnlmuXtw-zoi5jZCSzpL8xd08v5Jds_Z9fGlSoX_djztb3TF_C6fqv25STv6NlY0b2-g6h46OHtQUvOjQaTFbL5xVs5OVr2PyHo_AN7E-1WXQbe0HlgzmljrMJYk1sttBXNRWettnZuiiugklxcY6mO_hRFS5A212hha7fwsn04HhvxrqnF5jGCKZhIs9MKnwWu8g5q-PQGSe8GVuNGMmGPnIo15wyU2OpuUYjKRPPtXTcyLH1CX8Hg7Iq8w8QZCmR4kVaek5UPol2scgtduY0gQU9hG8oBNWpTq3aU_E4UlTYS0Z1khkC7ydJ2Y7DnJ7SKB5oxdatLlccHg_U36b5V4hBiEjXUsaRbShIkhj-DeFLvywUqiKdr-gyr5a1ihGqihTdPdZ5v1ov6--h18dINuIfHzHaz_Bsdnw4V_OfR7-34TlCtYx2laNoBwbNYpnvIhxqzKd28d8ADhIGdw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB61WwmVA33Q0i20TaVeOHibxHE2Pq6ALW8hURDiYvkRI9QoQZvsAX59Z7LZLVRCqL1atmNPZjzf2OPPAN-kFTL0qWQ-FUOWZM4zbXjK0BPlobFShAldFD46TnfPkv0LcXHvqS8cRI091e0hPln1jfMdw0D0ncpLXVY4o2aQGfRkWfIcXtDJHcVdo63TP3y7vH2cFe0ZoyOZJfNbc4_0Qr7J1g98U69CG3scd7b-Z_wKLhcjb9NOfg2mjRnYu79IHf9raq9hpUOlwWimRm_gWV6-heV7XIWrsD3WZtJt8AWVDw4phZyNEHNis4m-ranwvM3S1kVxG4yK6ytcwoMfVeECXMMrXKnrd3A23vm5tcu6JxiYxkimYSLPTCp8FrvIOavj0BknvBlajVjJhj5yKNucMlRjqbnGxVImnmvpuJFD6xP-HnplVeYfIMhSIseLtPScKH0S7WKRW-zMaQINug-bKATVmVCt2tPxOFJUOJeM6iTTBz7_Ucp2XOb0pEbxRCu2aHUz4_J4ov466YBCLEKEupYyj2xDwZLEMLAPX-eqodAk6ZxFl3k1rVWMkFWk6PaxztpMZxbfQ--PEW3EP_7DbL_A0sn2WB3uHR-sw0tEbBltLkfRBvSayTT_hKioMZ9b_f8NfN0I-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Large-Area+Arrays+of+Vertically+Aligned+Gold+Nanorods&rft.jtitle=Nano+letters&rft.au=Wei%2C+Wenbo&rft.au=Wang%2C+Yuru&rft.au=Ji%2C+Juanjuan&rft.au=Zuo%2C+Shanshan&rft.date=2018-07-11&rft.issn=1530-6992&rft.eissn=1530-6992&rft.volume=18&rft.issue=7&rft.spage=4467&rft_id=info:doi/10.1021%2Facs.nanolett.8b01584&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon