A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage

High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and su...

Full description

Saved in:
Bibliographic Details
Published inNano letters Vol. 20; no. 5; pp. 3880 - 3888
Main Authors Sun, Ruimin, Hou, Singyuk, Luo, Chao, Ji, Xiao, Wang, Luning, Mai, Liqiang, Wang, Chunsheng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 13.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg–1, a high specific energy density of 146 Wh kg–1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
AbstractList High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg , a high specific energy density of 146 Wh kg , and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
High safety, low cost and high volumetric capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high power, high energy and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low cost and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and ultra-long cycle life of 3000 cycles with very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in COF are redox centers for reversible reaction with magnesium ions, and the ultra-fast reaction kinetic is mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of COF offers new opportunities for the development of ultra-stable and fast charge RMBs.
High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg–1, a high specific energy density of 146 Wh kg–1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.
Author Wang, Chunsheng
Mai, Liqiang
Sun, Ruimin
Hou, Singyuk
Ji, Xiao
Wang, Luning
Luo, Chao
AuthorAffiliation Department of Chemistry and Biochemistry
George Mason University
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
Department of Chemical and Biomolecular Engineering
AuthorAffiliation_xml – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
– name: Department of Chemical and Biomolecular Engineering
– name: George Mason University
– name: Department of Chemistry and Biochemistry
Author_xml – sequence: 1
  givenname: Ruimin
  surname: Sun
  fullname: Sun, Ruimin
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
– sequence: 2
  givenname: Singyuk
  surname: Hou
  fullname: Hou, Singyuk
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 3
  givenname: Chao
  orcidid: 0000-0001-8497-8548
  surname: Luo
  fullname: Luo, Chao
  email: cluo@gmu.edu
  organization: George Mason University
– sequence: 4
  givenname: Xiao
  surname: Ji
  fullname: Ji, Xiao
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 5
  givenname: Luning
  orcidid: 0000-0002-3785-1787
  surname: Wang
  fullname: Wang, Luning
  organization: Department of Chemical and Biomolecular Engineering
– sequence: 6
  givenname: Liqiang
  orcidid: 0000-0003-4259-7725
  surname: Mai
  fullname: Mai, Liqiang
  email: mlq518@whut.edu.cn
  organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
– sequence: 7
  givenname: Chunsheng
  orcidid: 0000-0002-8626-6381
  surname: Wang
  fullname: Wang, Chunsheng
  email: cswang@umd.edu
  organization: Department of Chemical and Biomolecular Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32319781$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1799450$$D View this record in Osti.gov
BookMark eNqFkUtvEzEURi1URB_wDxCyWHUz4XrGjm12VSCAVNSKx9q649wJUyZ2sT1F_fedNGkXLOjKr3Osq-87ZgchBmLstYCZgFq8Q59nAUMcqJQZeBAg4Rk7EqqBam5tffC4N_KQHed8BQC2UfCCHTZ1I6w24ohdnvFFvMGBQuEXaY2h93yZcEN_Y_rNu5j4EnOpFr8wrYljWPEPY8J2IP6N_P3l_eHrmn8vMeGaXrLnHQ6ZXu3XE_Zz-fHH4nN1fvHpy-LsvEJpdKlqOdedadVKixqlbDs7t3OjSFjTetuSUkJoMLoWulUSZGdXIBsJBrQFKaA5YW93_8Zcepd9X6Z5fAyBfHFCWyvVFjrdQdcp_hkpF7fps6dhwEBxzK5upkC0qoWZ0Dd7dGw3tHLXqd9gunUPUU2A3AE-xZwTdY-IALdtxE2NuIdG3L6RSXv_jzaNiqWPoSTsh6dk2Mnb16s4pjBF-n_lDgRQosw
CitedBy_id crossref_primary_10_1002_adma_202104150
crossref_primary_10_1021_jacs_3c01131
crossref_primary_10_3390_polym16050687
crossref_primary_10_1002_adma_202309339
crossref_primary_10_1002_sus2_180
crossref_primary_10_1007_s12274_024_6509_5
crossref_primary_10_1039_D3TA05190K
crossref_primary_10_1016_j_ensm_2022_03_033
crossref_primary_10_1021_acsami_2c04831
crossref_primary_10_1039_D4TA04464A
crossref_primary_10_1002_batt_202400537
crossref_primary_10_1039_D0CC03099F
crossref_primary_10_1016_j_micromeso_2020_110713
crossref_primary_10_1021_acsnano_3c13028
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_1016_j_cej_2025_160145
crossref_primary_10_1016_j_ensm_2021_06_010
crossref_primary_10_1007_s11426_022_1454_0
crossref_primary_10_1039_D2CC00373B
crossref_primary_10_1002_cssc_202100340
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1002_adfm_202423533
crossref_primary_10_1039_D2TA05185K
crossref_primary_10_20517_energymater_2024_39
crossref_primary_10_1002_aenm_202400521
crossref_primary_10_1021_acs_energyfuels_1c00860
crossref_primary_10_1002_smtd_202100036
crossref_primary_10_1039_D3CC04322C
crossref_primary_10_1002_advs_202002298
crossref_primary_10_1016_j_mattod_2022_04_010
crossref_primary_10_1002_batt_202200545
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1039_D1TA09194H
crossref_primary_10_1016_j_est_2023_108006
crossref_primary_10_1021_acsami_3c17710
crossref_primary_10_1021_acsenergylett_1c01780
crossref_primary_10_1039_D2EE03270H
crossref_primary_10_1016_j_ccr_2021_214152
crossref_primary_10_1021_acsaem_3c01892
crossref_primary_10_1002_adma_202305755
crossref_primary_10_1002_adma_202307736
crossref_primary_10_1021_acs_jpclett_1c02004
crossref_primary_10_1039_D2TA02795J
crossref_primary_10_1002_idm2_12070
crossref_primary_10_1002_aenm_202100177
crossref_primary_10_1021_acsnano_4c06653
crossref_primary_10_1016_j_cej_2023_141925
crossref_primary_10_1002_aenm_202100172
crossref_primary_10_1002_ange_202300158
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1016_j_jma_2023_11_008
crossref_primary_10_1002_aenm_202403934
crossref_primary_10_1007_s12274_021_3950_6
crossref_primary_10_1007_s12274_022_5366_3
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1007_s40242_022_1494_2
crossref_primary_10_1002_sstr_202000021
crossref_primary_10_1038_s41467_021_27127_5
crossref_primary_10_1021_acsenergylett_1c00285
crossref_primary_10_1016_j_mtsust_2022_100174
crossref_primary_10_1021_acsami_1c00170
crossref_primary_10_1002_marc_202200198
crossref_primary_10_1021_acsami_1c14973
crossref_primary_10_1039_D3TA01293J
crossref_primary_10_1016_j_cej_2022_139570
crossref_primary_10_1016_j_pnsc_2023_12_018
crossref_primary_10_1002_adfm_202105027
crossref_primary_10_1002_adma_202200662
crossref_primary_10_1039_D3TA01794J
crossref_primary_10_1039_D4CS01072H
crossref_primary_10_6023_A22090385
crossref_primary_10_1002_batt_202200160
crossref_primary_10_1021_jacs_4c04044
crossref_primary_10_1016_j_matlet_2023_134994
crossref_primary_10_1039_D0EE02111C
crossref_primary_10_1039_D1TA03842G
crossref_primary_10_1039_D3CC02652C
crossref_primary_10_1002_smtd_202401195
crossref_primary_10_1021_acsami_3c11270
crossref_primary_10_1002_anie_202300158
crossref_primary_10_1021_acsami_3c00904
crossref_primary_10_1039_D1CP01209F
Cites_doi 10.1002/smll.201701744
10.1002/chem.201303345
10.1021/acsnano.8b00959
10.1149/2.061404jes
10.1016/j.nanoen.2014.12.032
10.1002/anie.201713417
10.1016/j.carbon.2017.02.057
10.1016/j.electacta.2018.06.142
10.1038/nchem.2085
10.1126/science.aak9991
10.1021/acs.chemrev.6b00614
10.1021/acsnano.8b09634
10.1002/celc.201800932
10.1038/s41560-018-0312-z
10.1021/acs.langmuir.7b02929
10.1021/acs.chemmater.8b00462
10.1002/anie.201902009
10.1002/aenm.201501937
10.1002/anie.201510686
10.1002/anie.201202476
10.1016/j.ensm.2019.05.028
10.1039/C4TA03438D
10.1126/science.1120411
10.1002/anie.201803703
10.1021/acsami.7b08930
10.1016/j.jpowsour.2018.05.051
10.1016/j.joule.2018.12.005
10.1002/eem2.12012
10.1016/j.joule.2018.11.022
10.1002/anie.201105006
10.1016/j.carbon.2016.07.017
10.1016/j.nanoen.2017.03.036
10.1038/nmat4810
10.1016/S0169-4332(03)00579-8
10.1002/aenm.201600140
10.1002/anie.201910916
10.1002/anie.201711169
10.1016/j.ensm.2017.11.012
10.1002/anie.201700673
10.1038/ncomms2481
10.1002/anie.201801128
10.1021/acsami.5b06385
10.1149/2.0021605jes
10.1002/anie.200705710
10.1016/j.jpowsour.2012.11.074
ContentType Journal Article
CorporateAuthor Univ. of Maryland, College Park, MD (United States)
CorporateAuthor_xml – name: Univ. of Maryland, College Park, MD (United States)
DBID AAYXX
CITATION
NPM
7X8
OIOZB
OTOTI
DOI 10.1021/acs.nanolett.0c01040
DatabaseName CrossRef
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1530-6992
EndPage 3888
ExternalDocumentID 1799450
32319781
10_1021_acs_nanolett_0c01040
a842729142
Genre Journal Article
GroupedDBID -
.K2
123
55A
5VS
7~N
AABXI
ABMVS
ABPTK
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
PK8
RNS
ROL
TN5
UI2
VF5
VG9
W1F
X
---
-~X
4.4
6P2
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
NPM
7X8
ABFRP
OIOZB
OTOTI
ID FETCH-LOGICAL-a487t-2467f8b5d712a44bf969685e198bc9be55117087217b5404f9d04340807904103
IEDL.DBID ACS
ISSN 1530-6984
1530-6992
IngestDate Mon Apr 17 04:47:07 EDT 2023
Fri Jul 11 11:35:12 EDT 2025
Thu Jan 02 22:58:08 EST 2025
Thu Apr 24 23:08:34 EDT 2025
Tue Jul 01 04:09:45 EDT 2025
Thu Aug 27 22:10:37 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Mg storage
high energy density
cathode
porous covalent organic framework
fast charge
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a487t-2467f8b5d712a44bf969685e198bc9be55117087217b5404f9d04340807904103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
George Mason University
Fundamental Research Funds for the Central Universities
China Postdoctoral Science Foundation
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0008202; 183904; 2018M642938; 2019T120691; 3120619324
ORCID 0000-0002-8626-6381
0000-0002-3785-1787
0000-0003-4259-7725
0000-0001-8497-8548
0000000286266381
0000000184978548
0000000342597725
0000000237851787
OpenAccessLink https://www.osti.gov/servlets/purl/1799450
PMID 32319781
PQID 2393575218
PQPubID 23479
PageCount 9
ParticipantIDs osti_scitechconnect_1799450
proquest_miscellaneous_2393575218
pubmed_primary_32319781
crossref_primary_10_1021_acs_nanolett_0c01040
crossref_citationtrail_10_1021_acs_nanolett_0c01040
acs_journals_10_1021_acs_nanolett_0c01040
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-13
PublicationDateYYYYMMDD 2020-05-13
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Nano letters
PublicationTitleAlternate Nano Lett
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref38/cit38
  doi: 10.1002/smll.201701744
– ident: ref45/cit45
  doi: 10.1002/chem.201303345
– ident: ref5/cit5
  doi: 10.1021/acsnano.8b00959
– ident: ref32/cit32
  doi: 10.1149/2.061404jes
– ident: ref33/cit33
  doi: 10.1016/j.nanoen.2014.12.032
– ident: ref34/cit34
  doi: 10.1002/anie.201713417
– ident: ref18/cit18
  doi: 10.1016/j.carbon.2017.02.057
– ident: ref31/cit31
  doi: 10.1016/j.electacta.2018.06.142
– ident: ref1/cit1
  doi: 10.1038/nchem.2085
– ident: ref2/cit2
  doi: 10.1126/science.aak9991
– ident: ref10/cit10
  doi: 10.1021/acs.chemrev.6b00614
– ident: ref29/cit29
  doi: 10.1021/acsnano.8b09634
– ident: ref9/cit9
  doi: 10.1002/celc.201800932
– ident: ref39/cit39
  doi: 10.1038/s41560-018-0312-z
– ident: ref40/cit40
  doi: 10.1021/acs.langmuir.7b02929
– ident: ref4/cit4
  doi: 10.1021/acs.chemmater.8b00462
– ident: ref22/cit22
  doi: 10.1002/anie.201902009
– ident: ref35/cit35
  doi: 10.1002/aenm.201501937
– ident: ref43/cit43
  doi: 10.1002/anie.201510686
– ident: ref17/cit17
  doi: 10.1002/anie.201202476
– ident: ref23/cit23
  doi: 10.1016/j.ensm.2019.05.028
– ident: ref19/cit19
  doi: 10.1039/C4TA03438D
– ident: ref27/cit27
  doi: 10.1126/science.1120411
– ident: ref12/cit12
  doi: 10.1002/anie.201803703
– ident: ref20/cit20
  doi: 10.1021/acsami.7b08930
– ident: ref13/cit13
  doi: 10.1016/j.jpowsour.2018.05.051
– ident: ref8/cit8
  doi: 10.1016/j.joule.2018.12.005
– ident: ref11/cit11
  doi: 10.1002/eem2.12012
– ident: ref16/cit16
  doi: 10.1016/j.joule.2018.11.022
– ident: ref3/cit3
  doi: 10.1002/anie.201105006
– ident: ref30/cit30
  doi: 10.1016/j.carbon.2016.07.017
– ident: ref37/cit37
  doi: 10.1016/j.nanoen.2017.03.036
– ident: ref36/cit36
  doi: 10.1038/nmat4810
– ident: ref44/cit44
  doi: 10.1016/S0169-4332(03)00579-8
– ident: ref14/cit14
  doi: 10.1002/aenm.201600140
– ident: ref42/cit42
  doi: 10.1002/anie.201910916
– ident: ref21/cit21
  doi: 10.1002/anie.201711169
– ident: ref6/cit6
  doi: 10.1016/j.ensm.2017.11.012
– ident: ref7/cit7
  doi: 10.1002/anie.201700673
– ident: ref24/cit24
  doi: 10.1038/ncomms2481
– ident: ref26/cit26
  doi: 10.1002/anie.201801128
– ident: ref28/cit28
  doi: 10.1021/acsami.5b06385
– ident: ref15/cit15
  doi: 10.1149/2.0021605jes
– ident: ref25/cit25
  doi: 10.1002/anie.200705710
– ident: ref41/cit41
  doi: 10.1016/j.jpowsour.2012.11.074
SSID ssj0009350
Score 2.5856261
Snippet High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack...
High safety, low cost and high volumetric capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack...
SourceID osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3880
SubjectTerms cathode
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
fast charge
high energy density
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
mg storage
porous covalent organic framework
Title A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage
URI http://dx.doi.org/10.1021/acs.nanolett.0c01040
https://www.ncbi.nlm.nih.gov/pubmed/32319781
https://www.proquest.com/docview/2393575218
https://www.osti.gov/servlets/purl/1799450
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4yXvTgvoyjEsGLh9QuaZoch9EyCC6ggrfQpKkHpZVpe_HX-9LFcUHUY9OmJel7ed_Hy_uC0LFSQoehUUSEmhKauhFJMiaI5hAPOM98k9pq5MsrNr2nFw_hw5wofs3g-95poksnT_IChlE5rrb8ASj6os94ZMnWeHI7F9kNmhNZwYmBEglO-1K5H95iA5IuPwWkQQGO9TPYbIJOvIqu-9Kddq_Jk1NXytGv35Uc_zieNbTS4U88bg1mHS2YfAMtf1Al3EQ3YzwpwAAhHOG2VFPjuN_DhQHk4jgpK2IT9Y8GJ3mKz-qZrcDCgEGbxubi8hHfAqGH9WoL3cfnd5Mp6Q5eIAnwl4r4sHpmXIVp5PkJpSprJHRC4wmutFAGUJYXuRzIY6QA8dFMpC4NKIDPSLjUc4NtNMiL3OwiLLSnKDUeY4pRxlz4ACACzoF1qkCnbIhOYEJk5zilbHLividtYz9LspulIQr6PyV1p2BuD9J4_qUXee_10ip4_PL8yBqBBARiZXS13W-kK2mV82gId49625DgiDa7kuSmqEvZaMlFgIb4EO20RvP-vQBQtBUX2_vHaEdoybfc3irFBvtoUM1qcwAAqFKHjdW_ARA3_po
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED4Y7tBmSF9J6qZtWKBLBzp6UBI5Gm4Nt4mDAk6KbIRIURlSSEEkL_31vaMluy1gBBlFPfjQHe_7QN5HgE_GKJskznCVWMFFEWQ8L1PFrcR4IGUZuYKykRcX6fxKfL9OrgeQ9Lkw2IgGv9T4RfytukB4SmVVXtXYm3YcWKIRyNSfIB6JiHNNpsut1m7sD2ZFX0ZmpKToM-Z2fIXikm3-iUvDGv1rN-b0sWf2HH5uWu23nNyOV60Z29__CTo-ulsvYL9Do2yyNp-XMHDVK9j7S6PwNfyYsGmN5ojBia0TNy2b9Tu6GEJeNsubltOy_Y1jeVWwL6t7ysdiiEh9ob9Y3LAl0nucvQ7gavb1cjrn3TEMPEc20_II59JSmqTIwigXwpReUCdxoZLGKuMQc4VZIJFKZgbxnyhVEYhYIBTNVCDCID6EYVVX7g0wZUMjhAvT1KQiTQOsAPGBlMhBTWyLdASfcUB050aN9ivkUaipsB8l3Y3SCOL-h2nb6ZnTsRq_HniLb966W-t5PPD8MdmCRjxCorqWdh_ZVpOOnkjw7sfeRDS6Ja215JWrV432ynIZYiM5gqO17WzqixFTk9TY20f09gSezi8X5_r828XZMTyLiPWThmz8Dobt_cq9R2jUmg_eEf4AAnQHCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLamTkLswMZg0AHDk7hwcJcfTmIfq5aI8UtIUAlxsWLH6QGUVE164a_fe25SYBJC2zFO7NjOe3nfp2d_JuRIa2miyGomI8MZz72EZUUsmREQD4QoApvjbuTLq_h0ws_uorsXR31BJ2poqXZJfPTqWV60CgP-Lywvs7KCETUDzyCVALb-ETN3yLuGo5tnvd3QHc4K_gzsSAre7Zp7oxWMTaZ-FZt6FfjY27jTxZ_0M7lf9dwtO3kYLBo9ME9_iTr-19C-kI0WldLh0ow2yQdbfiWfXmgVbpHrIR1VYJYQpOhyA6ehabeyiwL0pWlWNwzT91NLszKn48Uc92VRQKau0F1cTukN0Hz4i22TSXpyOzpl7XEMLANW07AA_qmF0FGe-EHGuS6csE5kfSm0kdoC9vITTwClTDTgQF7I3OMhB0iaSI_7XviN9MqqtLuESuNrzq0fxzrmcezBCwAnCAFcVIcmj_vkGCZEte5UK5cpD3yFhd0sqXaW-iTsPpoyra45Hq_x-E4ttqo1W-p6vPP8HtqDAlyC4roGVyGZRqGeHo_g7s_OTBS4J-ZcstJWi1o5hbkEMJLok52l_azeFwK2Rsmx7_8w2kOydj1O1cXvq_M9sh4g-Ucp2XCf9Jr5wh4AQmr0D-cLfwCW-QmN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Covalent+Organic+Framework+for+Fast-Charge+and+Durable+Rechargeable+Mg+Storage&rft.jtitle=Nano+letters&rft.au=Sun%2C+Ruimin&rft.au=Hou%2C+Singyuk&rft.au=Luo%2C+Chao&rft.au=Ji%2C+Xiao&rft.date=2020-05-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=5&rft_id=info:doi/10.1021%2Facs.nanolett.0c01040&rft.externalDocID=1799450
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon