A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage
High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and su...
Saved in:
Published in | Nano letters Vol. 20; no. 5; pp. 3880 - 3888 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
13.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg–1, a high specific energy density of 146 Wh kg–1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs. |
---|---|
AbstractList | High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg
, a high specific energy density of 146 Wh kg
, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs. High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs.High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs. High safety, low cost and high volumetric capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high power, high energy and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low cost and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg-1, a high specific energy density of 146 Wh kg-1, and ultra-long cycle life of 3000 cycles with very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in COF are redox centers for reversible reaction with magnesium ions, and the ultra-fast reaction kinetic is mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of COF offers new opportunities for the development of ultra-stable and fast charge RMBs. High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack of high-power, high-energy, and stable cathodes for RMBs hinders their commercialization. Herein, an environmentally benign, low-cost, and sustainable covalent organic framework (COF) cathode for Mg storage is reported for the first time. It delivers a high power density of 2.8 kW kg–1, a high specific energy density of 146 Wh kg–1, and an ultralong cycle life of 3000 cycles with a very slow capacity decay rate of 0.0196% per cycle, representing one of the best cathodes to date. The comprehensive electrochemical analysis proves that triazine ring sites in the COF are redox centers for reversible reaction with magnesium ions, and the ultrafast reaction kinetics are mainly attributed to pseudocapacitive behavior. The high-rate Mg storage of the COF offers new opportunities for the development of ultrastable and fast-charge RMBs. |
Author | Wang, Chunsheng Mai, Liqiang Sun, Ruimin Hou, Singyuk Ji, Xiao Wang, Luning Luo, Chao |
AuthorAffiliation | Department of Chemistry and Biochemistry George Mason University State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Department of Chemical and Biomolecular Engineering |
AuthorAffiliation_xml | – name: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing – name: Department of Chemical and Biomolecular Engineering – name: George Mason University – name: Department of Chemistry and Biochemistry |
Author_xml | – sequence: 1 givenname: Ruimin surname: Sun fullname: Sun, Ruimin organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing – sequence: 2 givenname: Singyuk surname: Hou fullname: Hou, Singyuk organization: Department of Chemical and Biomolecular Engineering – sequence: 3 givenname: Chao orcidid: 0000-0001-8497-8548 surname: Luo fullname: Luo, Chao email: cluo@gmu.edu organization: George Mason University – sequence: 4 givenname: Xiao surname: Ji fullname: Ji, Xiao organization: Department of Chemical and Biomolecular Engineering – sequence: 5 givenname: Luning orcidid: 0000-0002-3785-1787 surname: Wang fullname: Wang, Luning organization: Department of Chemical and Biomolecular Engineering – sequence: 6 givenname: Liqiang orcidid: 0000-0003-4259-7725 surname: Mai fullname: Mai, Liqiang email: mlq518@whut.edu.cn organization: State Key Laboratory of Advanced Technology for Materials Synthesis and Processing – sequence: 7 givenname: Chunsheng orcidid: 0000-0002-8626-6381 surname: Wang fullname: Wang, Chunsheng email: cswang@umd.edu organization: Department of Chemical and Biomolecular Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32319781$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1799450$$D View this record in Osti.gov |
BookMark | eNqFkUtvEzEURi1URB_wDxCyWHUz4XrGjm12VSCAVNSKx9q649wJUyZ2sT1F_fedNGkXLOjKr3Osq-87ZgchBmLstYCZgFq8Q59nAUMcqJQZeBAg4Rk7EqqBam5tffC4N_KQHed8BQC2UfCCHTZ1I6w24ohdnvFFvMGBQuEXaY2h93yZcEN_Y_rNu5j4EnOpFr8wrYljWPEPY8J2IP6N_P3l_eHrmn8vMeGaXrLnHQ6ZXu3XE_Zz-fHH4nN1fvHpy-LsvEJpdKlqOdedadVKixqlbDs7t3OjSFjTetuSUkJoMLoWulUSZGdXIBsJBrQFKaA5YW93_8Zcepd9X6Z5fAyBfHFCWyvVFjrdQdcp_hkpF7fps6dhwEBxzK5upkC0qoWZ0Dd7dGw3tHLXqd9gunUPUU2A3AE-xZwTdY-IALdtxE2NuIdG3L6RSXv_jzaNiqWPoSTsh6dk2Mnb16s4pjBF-n_lDgRQosw |
CitedBy_id | crossref_primary_10_1002_adma_202104150 crossref_primary_10_1021_jacs_3c01131 crossref_primary_10_3390_polym16050687 crossref_primary_10_1002_adma_202309339 crossref_primary_10_1002_sus2_180 crossref_primary_10_1007_s12274_024_6509_5 crossref_primary_10_1039_D3TA05190K crossref_primary_10_1016_j_ensm_2022_03_033 crossref_primary_10_1021_acsami_2c04831 crossref_primary_10_1039_D4TA04464A crossref_primary_10_1002_batt_202400537 crossref_primary_10_1039_D0CC03099F crossref_primary_10_1016_j_micromeso_2020_110713 crossref_primary_10_1021_acsnano_3c13028 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_1016_j_cej_2025_160145 crossref_primary_10_1016_j_ensm_2021_06_010 crossref_primary_10_1007_s11426_022_1454_0 crossref_primary_10_1039_D2CC00373B crossref_primary_10_1002_cssc_202100340 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1002_adfm_202423533 crossref_primary_10_1039_D2TA05185K crossref_primary_10_20517_energymater_2024_39 crossref_primary_10_1002_aenm_202400521 crossref_primary_10_1021_acs_energyfuels_1c00860 crossref_primary_10_1002_smtd_202100036 crossref_primary_10_1039_D3CC04322C crossref_primary_10_1002_advs_202002298 crossref_primary_10_1016_j_mattod_2022_04_010 crossref_primary_10_1002_batt_202200545 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1039_D1TA09194H crossref_primary_10_1016_j_est_2023_108006 crossref_primary_10_1021_acsami_3c17710 crossref_primary_10_1021_acsenergylett_1c01780 crossref_primary_10_1039_D2EE03270H crossref_primary_10_1016_j_ccr_2021_214152 crossref_primary_10_1021_acsaem_3c01892 crossref_primary_10_1002_adma_202305755 crossref_primary_10_1002_adma_202307736 crossref_primary_10_1021_acs_jpclett_1c02004 crossref_primary_10_1039_D2TA02795J crossref_primary_10_1002_idm2_12070 crossref_primary_10_1002_aenm_202100177 crossref_primary_10_1021_acsnano_4c06653 crossref_primary_10_1016_j_cej_2023_141925 crossref_primary_10_1002_aenm_202100172 crossref_primary_10_1002_ange_202300158 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1016_j_jma_2023_11_008 crossref_primary_10_1002_aenm_202403934 crossref_primary_10_1007_s12274_021_3950_6 crossref_primary_10_1007_s12274_022_5366_3 crossref_primary_10_1002_chem_202101587 crossref_primary_10_1007_s40242_022_1494_2 crossref_primary_10_1002_sstr_202000021 crossref_primary_10_1038_s41467_021_27127_5 crossref_primary_10_1021_acsenergylett_1c00285 crossref_primary_10_1016_j_mtsust_2022_100174 crossref_primary_10_1021_acsami_1c00170 crossref_primary_10_1002_marc_202200198 crossref_primary_10_1021_acsami_1c14973 crossref_primary_10_1039_D3TA01293J crossref_primary_10_1016_j_cej_2022_139570 crossref_primary_10_1016_j_pnsc_2023_12_018 crossref_primary_10_1002_adfm_202105027 crossref_primary_10_1002_adma_202200662 crossref_primary_10_1039_D3TA01794J crossref_primary_10_1039_D4CS01072H crossref_primary_10_6023_A22090385 crossref_primary_10_1002_batt_202200160 crossref_primary_10_1021_jacs_4c04044 crossref_primary_10_1016_j_matlet_2023_134994 crossref_primary_10_1039_D0EE02111C crossref_primary_10_1039_D1TA03842G crossref_primary_10_1039_D3CC02652C crossref_primary_10_1002_smtd_202401195 crossref_primary_10_1021_acsami_3c11270 crossref_primary_10_1002_anie_202300158 crossref_primary_10_1021_acsami_3c00904 crossref_primary_10_1039_D1CP01209F |
Cites_doi | 10.1002/smll.201701744 10.1002/chem.201303345 10.1021/acsnano.8b00959 10.1149/2.061404jes 10.1016/j.nanoen.2014.12.032 10.1002/anie.201713417 10.1016/j.carbon.2017.02.057 10.1016/j.electacta.2018.06.142 10.1038/nchem.2085 10.1126/science.aak9991 10.1021/acs.chemrev.6b00614 10.1021/acsnano.8b09634 10.1002/celc.201800932 10.1038/s41560-018-0312-z 10.1021/acs.langmuir.7b02929 10.1021/acs.chemmater.8b00462 10.1002/anie.201902009 10.1002/aenm.201501937 10.1002/anie.201510686 10.1002/anie.201202476 10.1016/j.ensm.2019.05.028 10.1039/C4TA03438D 10.1126/science.1120411 10.1002/anie.201803703 10.1021/acsami.7b08930 10.1016/j.jpowsour.2018.05.051 10.1016/j.joule.2018.12.005 10.1002/eem2.12012 10.1016/j.joule.2018.11.022 10.1002/anie.201105006 10.1016/j.carbon.2016.07.017 10.1016/j.nanoen.2017.03.036 10.1038/nmat4810 10.1016/S0169-4332(03)00579-8 10.1002/aenm.201600140 10.1002/anie.201910916 10.1002/anie.201711169 10.1016/j.ensm.2017.11.012 10.1002/anie.201700673 10.1038/ncomms2481 10.1002/anie.201801128 10.1021/acsami.5b06385 10.1149/2.0021605jes 10.1002/anie.200705710 10.1016/j.jpowsour.2012.11.074 |
ContentType | Journal Article |
CorporateAuthor | Univ. of Maryland, College Park, MD (United States) |
CorporateAuthor_xml | – name: Univ. of Maryland, College Park, MD (United States) |
DBID | AAYXX CITATION NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acs.nanolett.0c01040 |
DatabaseName | CrossRef PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1530-6992 |
EndPage | 3888 |
ExternalDocumentID | 1799450 32319781 10_1021_acs_nanolett_0c01040 a842729142 |
Genre | Journal Article |
GroupedDBID | - .K2 123 55A 5VS 7~N AABXI ABMVS ABPTK ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ F5P GNL IH9 IHE JG JG~ K2 PK8 RNS ROL TN5 UI2 VF5 VG9 W1F X --- -~X 4.4 6P2 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ACBEA ADHLV AHGAQ CITATION CUPRZ GGK NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a487t-2467f8b5d712a44bf969685e198bc9be55117087217b5404f9d04340807904103 |
IEDL.DBID | ACS |
ISSN | 1530-6984 1530-6992 |
IngestDate | Mon Apr 17 04:47:07 EDT 2023 Fri Jul 11 11:35:12 EDT 2025 Thu Jan 02 22:58:08 EST 2025 Thu Apr 24 23:08:34 EDT 2025 Tue Jul 01 04:09:45 EDT 2025 Thu Aug 27 22:10:37 EDT 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Mg storage high energy density cathode porous covalent organic framework fast charge |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a487t-2467f8b5d712a44bf969685e198bc9be55117087217b5404f9d04340807904103 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 George Mason University Fundamental Research Funds for the Central Universities China Postdoctoral Science Foundation USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0008202; 183904; 2018M642938; 2019T120691; 3120619324 |
ORCID | 0000-0002-8626-6381 0000-0002-3785-1787 0000-0003-4259-7725 0000-0001-8497-8548 0000000286266381 0000000184978548 0000000342597725 0000000237851787 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1799450 |
PMID | 32319781 |
PQID | 2393575218 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | osti_scitechconnect_1799450 proquest_miscellaneous_2393575218 pubmed_primary_32319781 crossref_primary_10_1021_acs_nanolett_0c01040 crossref_citationtrail_10_1021_acs_nanolett_0c01040 acs_journals_10_1021_acs_nanolett_0c01040 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-13 |
PublicationDateYYYYMMDD | 2020-05-13 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Nano letters |
PublicationTitleAlternate | Nano Lett |
PublicationYear | 2020 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref38/cit38 doi: 10.1002/smll.201701744 – ident: ref45/cit45 doi: 10.1002/chem.201303345 – ident: ref5/cit5 doi: 10.1021/acsnano.8b00959 – ident: ref32/cit32 doi: 10.1149/2.061404jes – ident: ref33/cit33 doi: 10.1016/j.nanoen.2014.12.032 – ident: ref34/cit34 doi: 10.1002/anie.201713417 – ident: ref18/cit18 doi: 10.1016/j.carbon.2017.02.057 – ident: ref31/cit31 doi: 10.1016/j.electacta.2018.06.142 – ident: ref1/cit1 doi: 10.1038/nchem.2085 – ident: ref2/cit2 doi: 10.1126/science.aak9991 – ident: ref10/cit10 doi: 10.1021/acs.chemrev.6b00614 – ident: ref29/cit29 doi: 10.1021/acsnano.8b09634 – ident: ref9/cit9 doi: 10.1002/celc.201800932 – ident: ref39/cit39 doi: 10.1038/s41560-018-0312-z – ident: ref40/cit40 doi: 10.1021/acs.langmuir.7b02929 – ident: ref4/cit4 doi: 10.1021/acs.chemmater.8b00462 – ident: ref22/cit22 doi: 10.1002/anie.201902009 – ident: ref35/cit35 doi: 10.1002/aenm.201501937 – ident: ref43/cit43 doi: 10.1002/anie.201510686 – ident: ref17/cit17 doi: 10.1002/anie.201202476 – ident: ref23/cit23 doi: 10.1016/j.ensm.2019.05.028 – ident: ref19/cit19 doi: 10.1039/C4TA03438D – ident: ref27/cit27 doi: 10.1126/science.1120411 – ident: ref12/cit12 doi: 10.1002/anie.201803703 – ident: ref20/cit20 doi: 10.1021/acsami.7b08930 – ident: ref13/cit13 doi: 10.1016/j.jpowsour.2018.05.051 – ident: ref8/cit8 doi: 10.1016/j.joule.2018.12.005 – ident: ref11/cit11 doi: 10.1002/eem2.12012 – ident: ref16/cit16 doi: 10.1016/j.joule.2018.11.022 – ident: ref3/cit3 doi: 10.1002/anie.201105006 – ident: ref30/cit30 doi: 10.1016/j.carbon.2016.07.017 – ident: ref37/cit37 doi: 10.1016/j.nanoen.2017.03.036 – ident: ref36/cit36 doi: 10.1038/nmat4810 – ident: ref44/cit44 doi: 10.1016/S0169-4332(03)00579-8 – ident: ref14/cit14 doi: 10.1002/aenm.201600140 – ident: ref42/cit42 doi: 10.1002/anie.201910916 – ident: ref21/cit21 doi: 10.1002/anie.201711169 – ident: ref6/cit6 doi: 10.1016/j.ensm.2017.11.012 – ident: ref7/cit7 doi: 10.1002/anie.201700673 – ident: ref24/cit24 doi: 10.1038/ncomms2481 – ident: ref26/cit26 doi: 10.1002/anie.201801128 – ident: ref28/cit28 doi: 10.1021/acsami.5b06385 – ident: ref15/cit15 doi: 10.1149/2.0021605jes – ident: ref25/cit25 doi: 10.1002/anie.200705710 – ident: ref41/cit41 doi: 10.1016/j.jpowsour.2012.11.074 |
SSID | ssj0009350 |
Score | 2.5856261 |
Snippet | High-safety, low-cost, and high-volumetric-capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack... High safety, low cost and high volumetric capacity rechargeable magnesium batteries (RMBs) are promising alternatives to lithium ion batteries. However, lack... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3880 |
SubjectTerms | cathode CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS fast charge high energy density INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY MATERIALS SCIENCE mg storage porous covalent organic framework |
Title | A Covalent Organic Framework for Fast-Charge and Durable Rechargeable Mg Storage |
URI | http://dx.doi.org/10.1021/acs.nanolett.0c01040 https://www.ncbi.nlm.nih.gov/pubmed/32319781 https://www.proquest.com/docview/2393575218 https://www.osti.gov/servlets/purl/1799450 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8QwFA4yXvTgvoyjEsGLh9QuaZoch9EyCC6ggrfQpKkHpZVpe_HX-9LFcUHUY9OmJel7ed_Hy_uC0LFSQoehUUSEmhKauhFJMiaI5hAPOM98k9pq5MsrNr2nFw_hw5wofs3g-95poksnT_IChlE5rrb8ASj6os94ZMnWeHI7F9kNmhNZwYmBEglO-1K5H95iA5IuPwWkQQGO9TPYbIJOvIqu-9Kddq_Jk1NXytGv35Uc_zieNbTS4U88bg1mHS2YfAMtf1Al3EQ3YzwpwAAhHOG2VFPjuN_DhQHk4jgpK2IT9Y8GJ3mKz-qZrcDCgEGbxubi8hHfAqGH9WoL3cfnd5Mp6Q5eIAnwl4r4sHpmXIVp5PkJpSprJHRC4wmutFAGUJYXuRzIY6QA8dFMpC4NKIDPSLjUc4NtNMiL3OwiLLSnKDUeY4pRxlz4ACACzoF1qkCnbIhOYEJk5zilbHLividtYz9LspulIQr6PyV1p2BuD9J4_qUXee_10ip4_PL8yBqBBARiZXS13W-kK2mV82gId49625DgiDa7kuSmqEvZaMlFgIb4EO20RvP-vQBQtBUX2_vHaEdoybfc3irFBvtoUM1qcwAAqFKHjdW_ARA3_po |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07b9swED4Y7tBmSF9J6qZtWKBLBzp6UBI5Gm4Nt4mDAk6KbIRIURlSSEEkL_31vaMluy1gBBlFPfjQHe_7QN5HgE_GKJskznCVWMFFEWQ8L1PFrcR4IGUZuYKykRcX6fxKfL9OrgeQ9Lkw2IgGv9T4RfytukB4SmVVXtXYm3YcWKIRyNSfIB6JiHNNpsut1m7sD2ZFX0ZmpKToM-Z2fIXikm3-iUvDGv1rN-b0sWf2HH5uWu23nNyOV60Z29__CTo-ulsvYL9Do2yyNp-XMHDVK9j7S6PwNfyYsGmN5ojBia0TNy2b9Tu6GEJeNsubltOy_Y1jeVWwL6t7ysdiiEh9ob9Y3LAl0nucvQ7gavb1cjrn3TEMPEc20_II59JSmqTIwigXwpReUCdxoZLGKuMQc4VZIJFKZgbxnyhVEYhYIBTNVCDCID6EYVVX7g0wZUMjhAvT1KQiTQOsAPGBlMhBTWyLdASfcUB050aN9ivkUaipsB8l3Y3SCOL-h2nb6ZnTsRq_HniLb966W-t5PPD8MdmCRjxCorqWdh_ZVpOOnkjw7sfeRDS6Ja215JWrV432ynIZYiM5gqO17WzqixFTk9TY20f09gSezi8X5_r828XZMTyLiPWThmz8Dobt_cq9R2jUmg_eEf4AAnQHCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLamTkLswMZg0AHDk7hwcJcfTmIfq5aI8UtIUAlxsWLH6QGUVE164a_fe25SYBJC2zFO7NjOe3nfp2d_JuRIa2miyGomI8MZz72EZUUsmREQD4QoApvjbuTLq_h0ws_uorsXR31BJ2poqXZJfPTqWV60CgP-Lywvs7KCETUDzyCVALb-ETN3yLuGo5tnvd3QHc4K_gzsSAre7Zp7oxWMTaZ-FZt6FfjY27jTxZ_0M7lf9dwtO3kYLBo9ME9_iTr-19C-kI0WldLh0ow2yQdbfiWfXmgVbpHrIR1VYJYQpOhyA6ehabeyiwL0pWlWNwzT91NLszKn48Uc92VRQKau0F1cTukN0Hz4i22TSXpyOzpl7XEMLANW07AA_qmF0FGe-EHGuS6csE5kfSm0kdoC9vITTwClTDTgQF7I3OMhB0iaSI_7XviN9MqqtLuESuNrzq0fxzrmcezBCwAnCAFcVIcmj_vkGCZEte5UK5cpD3yFhd0sqXaW-iTsPpoyra45Hq_x-E4ttqo1W-p6vPP8HtqDAlyC4roGVyGZRqGeHo_g7s_OTBS4J-ZcstJWi1o5hbkEMJLok52l_azeFwK2Rsmx7_8w2kOydj1O1cXvq_M9sh4g-Ucp2XCf9Jr5wh4AQmr0D-cLfwCW-QmN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Covalent+Organic+Framework+for+Fast-Charge+and+Durable+Rechargeable+Mg+Storage&rft.jtitle=Nano+letters&rft.au=Sun%2C+Ruimin&rft.au=Hou%2C+Singyuk&rft.au=Luo%2C+Chao&rft.au=Ji%2C+Xiao&rft.date=2020-05-13&rft.pub=American+Chemical+Society&rft.issn=1530-6984&rft.eissn=1530-6992&rft.volume=20&rft.issue=5&rft_id=info:doi/10.1021%2Facs.nanolett.0c01040&rft.externalDocID=1799450 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1530-6984&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1530-6984&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1530-6984&client=summon |