Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil Particle Size
Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic...
Saved in:
Published in | Vadose zone journal Vol. 17; no. 1; pp. 1 - 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Madison
The Soil Science Society of America, Inc
2018
John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Core Ideas
We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.
Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils.
Coarse soils require higher mucilage concentration to increase water content.
Upscaling to macroscopic soil hydraulic properties remains challenging.
The model was validated on measured water retention and saturated hydraulic conductivity
Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging. |
---|---|
AbstractList | CORE IDEAS: We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic properties remains challenging. The model was validated on measured water retention and saturated hydraulic conductivity Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–¹ at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging. Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore-scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore-scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g at low matric potentials. This study shows how pore-scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging. Core IdeasWe propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils.Coarse soils require higher mucilage concentration to increase water content.Upscaling to macroscopic soil hydraulic properties remains challenging.The model was validated on measured water retention and saturated hydraulic conductivityMucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging. Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic properties remains challenging. The model was validated on measured water retention and saturated hydraulic conductivity Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging. |
Author | Kroener, Eva Zarebanadkouki, Mohsen Ahmed, Mutez Carminati, Andrea Holz, Maire |
Author_xml | – sequence: 1 givenname: Eva surname: Kroener fullname: Kroener, Eva email: kroener@uni‐landau.de organization: Geophysics, Institute for Environmental Sciences, Univ. of Koblenz‐Landau – sequence: 2 givenname: Maire surname: Holz fullname: Holz, Maire organization: Univ. of Goettingen – sequence: 3 givenname: Mohsen surname: Zarebanadkouki fullname: Zarebanadkouki, Mohsen organization: Bayreuth Univ – sequence: 4 givenname: Mutez surname: Ahmed fullname: Ahmed, Mutez organization: Univ. of Khartoum – sequence: 5 givenname: Andrea surname: Carminati fullname: Carminati, Andrea organization: Bayreuth Univ |
BookMark | eNqFkc1v1DAQxSNUJPrBmWskLlx264_Yji9IqLS0qBUVCxy4WBNn3Hrlxls7odr965t0Vwj1QA-WrdF7v5nxOyj2uthhUbyjZM4ol8d_NktGqJoTPidEyFfFPhVcz6iUfO-f95viIOclIVRXFdsvFqfOoe1zGV15NVgf4AbL2JXfb_0m5tUtJizP122CIXhbng2d7X3scvkZV9i1k3IRfSivIfXeBiwXfoNHxWsHIePb3X1Y_Dw7_XFyPrv89uXi5NPlDKpayRlSqytBGbeNgAp0hQgKLAM37kEEMMGV0wKUlKh1S1G1jEPTaFXXTteMHxYXW24bYWlWyd9BWpsI3jwVYroxu7GMqJVrpGybhqnKWakbQphSDSWMNKyaWB-2rFWK9wPm3tz5bDEE6DAO2TBFay6o1HKUvn8mXcYhdeOmo4ozUWkmJuDxVmVTzDmh-zsgJWYKzOwCM4SbKbDRIZ45rO9h-u4-gQ__8X3c-h58wPVLbcyv31_ZdMYa4U-AR_ynrOg |
CitedBy_id | crossref_primary_10_1029_2018WR022656 crossref_primary_10_2136_vzj2019_02_0021 crossref_primary_10_1111_tpj_14781 crossref_primary_10_1093_insilicoplants_diab028 crossref_primary_10_2136_vzj2018_12_0211 crossref_primary_10_3390_w14071110 crossref_primary_10_3389_fsoil_2023_1155889 crossref_primary_10_1002_jpln_202000496 crossref_primary_10_1007_s11104_022_05306_7 crossref_primary_10_1016_j_soilbio_2023_108987 crossref_primary_10_1007_s11104_024_06840_2 crossref_primary_10_1016_j_rhisph_2021_100451 crossref_primary_10_1016_j_geoderma_2019_01_013 crossref_primary_10_1016_j_advwatres_2022_104364 crossref_primary_10_1071_SR18182 crossref_primary_10_1016_j_geoderma_2020_114827 crossref_primary_10_2136_vzj2018_01_0002 crossref_primary_10_1007_s00572_023_01106_8 crossref_primary_10_1002_vzj2_20071 crossref_primary_10_1093_jxb_ery183 crossref_primary_10_1029_2021WR029976 crossref_primary_10_1002_pld3_519 crossref_primary_10_1016_j_geoderma_2023_116576 crossref_primary_10_1002_jpln_202000545 crossref_primary_10_1007_s10533_019_00626_w crossref_primary_10_1007_s11104_020_04723_w crossref_primary_10_1016_j_advwatres_2025_104915 crossref_primary_10_1016_j_jcis_2024_12_216 crossref_primary_10_1029_2022WR032845 crossref_primary_10_1007_s10265_019_01089_8 crossref_primary_10_1016_j_scitotenv_2020_138760 crossref_primary_10_1093_aob_mcae193 crossref_primary_10_1016_j_jplph_2022_153658 crossref_primary_10_1016_j_scitotenv_2023_167524 crossref_primary_10_1007_s11104_022_05577_0 crossref_primary_10_1007_s11104_023_06353_4 crossref_primary_10_3390_su13063303 crossref_primary_10_1093_jxb_erad312 crossref_primary_10_1111_nph_16144 crossref_primary_10_1111_ejss_13189 crossref_primary_10_1007_s12298_018_0621_5 crossref_primary_10_1038_s41598_020_73890_8 crossref_primary_10_1002_jpln_201800042 crossref_primary_10_1016_j_soilbio_2021_108404 crossref_primary_10_1007_s11104_024_06883_5 crossref_primary_10_3390_soilsystems7040106 crossref_primary_10_1002_vzj2_20218 crossref_primary_10_3390_plants13141981 crossref_primary_10_3389_fenvs_2018_00016 crossref_primary_10_1111_ejss_13576 crossref_primary_10_3389_fagro_2021_622367 crossref_primary_10_5194_bg_17_5787_2020 |
Cites_doi | 10.1093/aob/mcw154 10.1016/j.ecolmodel.2014.10.028 10.2136/vzj2006.0080 10.1007/s11104‐010‐0283‐8 10.1016/0016‐7061(93)90106‐U 10.1016/j.advwatres.2015.09.014 10.1186/1472‐6904‐10‐6 10.1046/j.1469‐8137.1997.00859.x 10.1016/S0309‐1708(02)00023‐4 10.2136/vzj2016.09.0090 10.1002/2013WR014756 10.3390/e9030118 10.1007/s11104‐013‐1946‐z 10.1103/PhysRevE.91.042706 10.1017/S0022112094003368 10.1063/1.864050 10.1007/s11104‐015‐2749‐1 10.2136/sssabookser5.4 10.1007/s11104‐017‐3227‐8 10.1002/2016WR018866 10.1128/AEM.58.5.1690-1698.1992 10.1002/2015WR018150 10.1061/JRCEA4.0000425 10.2136/vzj2011.0106 10.2136/sssaj1992.03615995005600010001x 10.1002/2015WR018579 10.1034/j.1399‐3054.1997.990123.x 10.1111/j.1745‐6584.1996.tb02088.x 10.2136/sssaj2011.0155 10.1063/1.866465 10.1002/jpln.201500511 10.1071/FP13330 10.1080/00031305.1985.10479448 10.2136/vzj2011.0120 10.1080/08927019509378281 10.1093/acprof:oso/9780199683093.001.0001 10.1016/j.advwatres.2006.05.025 |
ContentType | Journal Article |
Copyright | 2018 The Authors. 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2018 The Authors. – notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7UA C1K F1W H96 L.G 7S9 L.6 DOA |
DOI | 10.2136/vzj2017.03.0056 |
DatabaseName | Wiley Online Library Open Access CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1539-1663 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_587fb66dbb274fc69b00277b1020b242 10_2136_vzj2017_03_0056 VZJ2VZJ2017030056 |
Genre | article |
GroupedDBID | .~0 0R~ 123 18M 1OB 1OC 24P 2WC 6KN AAHBH AAHHS AAWFE ABJNI ACAWQ ACCFJ ACCMX ACGFO ACXQS ADBBV ADKYN ADZMN AEEZP AENEX AEQDE AFRAH AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU BCNDV C1A CS3 DDYGU DU5 E3Z EBS ECGQY EJD GOHGZ GROUPED_DOAJ GX1 H13 IAO IGS ITC MV1 M~E NHAZY O9- OK1 P2P RAK RGW SAMSI TR2 WIN WOQ WXSBR ~02 ~KM AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 7UA C1K F1W H96 L.G 7S9 L.6 |
ID | FETCH-LOGICAL-a4876-e1c945123cb5a4a94eea7ac2af20105a2537f95a766e99d1e7d23abb9788f9823 |
IEDL.DBID | 24P |
ISSN | 1539-1663 |
IngestDate | Wed Aug 27 01:10:11 EDT 2025 Fri Jul 11 18:28:07 EDT 2025 Fri Jul 25 08:38:45 EDT 2025 Thu Apr 24 22:56:50 EDT 2025 Fri Jul 04 03:42:01 EDT 2025 Wed Jan 22 16:41:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a4876-e1c945123cb5a4a94eea7ac2af20105a2537f95a766e99d1e7d23abb9788f9823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.03.0056 |
PQID | 2732549252 |
PQPubID | 2046224 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_587fb66dbb274fc69b00277b1020b242 proquest_miscellaneous_2718351696 proquest_journals_2732549252 crossref_primary_10_2136_vzj2017_03_0056 crossref_citationtrail_10_2136_vzj2017_03_0056 wiley_primary_10_2136_vzj2017_03_0056_VZJ2VZJ2017030056 |
PublicationCentury | 2000 |
PublicationDate | 2018 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – year: 2018 text: 2018 |
PublicationDecade | 2010 |
PublicationPlace | Madison |
PublicationPlace_xml | – name: Madison |
PublicationTitle | Vadose zone journal |
PublicationYear | 2018 |
Publisher | The Soil Science Society of America, Inc John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: The Soil Science Society of America, Inc – name: John Wiley & Sons, Inc – name: Wiley |
References | 2017; 417 1997; 137 2010; 10 2007b; 30 1987; 30 1994; 258 2016; 407 1966; 92 2016; 52 2016; 95 2007a; 6 2014; 41 2012; 11 2012; 76 2014; 376 1996; 34 1995; 8 1985; 39 2002; 25 2018; 17 1993; 56 1997; 99 1992a; 58 2016; 118 2015; 298 2010; 332 2016; 179 2007; 9 2015 2002b 1992b; 56 2002a 1983; 26 2014; 50 2015; E 91 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 41 start-page: 1129 year: 2014 end-page: 1137 article-title: Mucilage exudation facilitates root water uptake in dry soils publication-title: Funct. Plant Biol. – volume: 332 start-page: 163 year: 2010 end-page: 176 article-title: Dynamics of soil water content in the rhizosphere publication-title: Plant Soil – volume: 52 start-page: 5755 year: 2016 end-page: 5770 article-title: Simulation of root water uptake under consideration of nonequilibrium dynamics in the rhizosphere publication-title: Water Resour. Res. – volume: 179 start-page: 294 year: 2016 end-page: 302 article-title: An efficient method for the collection of root mucilage from different plant species: A case study on the effect of mucilage on soil water repellency publication-title: J. Plant Nutr. Soil Sci. – volume: 99 start-page: 169 year: 1997 end-page: 177 article-title: The expansion of maize root‐cap mucilage during hydration: 3. Changes in water potential and water content publication-title: Physiol. Plant. – volume: 30 start-page: 1505 year: 2007b end-page: 1527 article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media: A review publication-title: Adv. Water Resour. – start-page: 680 year: 2002a end-page: 683 – volume: 39 start-page: 279 year: 1985 end-page: 285 article-title: Cautionary note about publication-title: Am. Stat. – volume: E 91 start-page: 042706 year: 2015 article-title: Roots at the percolation threshold publication-title: Phys. Rev. – volume: 6 start-page: 298 year: 2007a end-page: 305 article-title: Extracellular polymeric substances affecting pore‐scale hydrologic conditions for bacterial activity in unsaturated soils publication-title: Vadose Zone J. – volume: 30 start-page: 3329 year: 1987 end-page: 3341 article-title: Analysis of the Brinkman equation as a model for flow in porous media publication-title: Phys. Fluids – volume: 17 start-page: 160090 year: 2018 article-title: Engineering rhizosphere hydraulics: Pathways to improve plant adaptation to drought publication-title: Vadose Zone J. – volume: 56 start-page: 1 year: 1992b end-page: 13 article-title: Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns publication-title: Soil Sci. Soc. Am. J. – volume: 11 issue: 3 year: 2012 article-title: A model of root water uptake coupled with rhizosphere dynamics publication-title: Vadose Zone J. – volume: 26 start-page: 2864 year: 1983 end-page: 2870 article-title: Viscosity renormalization in the Brinkman equation publication-title: Phys. Fluids – volume: 11 issue: 3 year: 2012 article-title: Is the rhizosphere temporarily water repellent? publication-title: Vadose Zone J. – volume: 58 start-page: 1690 year: 1992a end-page: 1698 article-title: Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns publication-title: Appl. Environ. Microbiol. – volume: 52 start-page: 5813 year: 2016 end-page: 5828 article-title: Biofilm effect on soil hydraulic properties: Experimental investigation using soil‐grown real biofilm publication-title: Water Resour. Res. – volume: 407 start-page: 161 year: 2016 end-page: 171 article-title: Drying of mucilage causes water repellency in the rhizosphere of maize: Measurements and modelling publication-title: Plant Soil – volume: 376 start-page: 95 year: 2014 end-page: 110 article-title: Quantifying coupled deformation and water flow in the rhizosphere using X‐ray microtomography and numerical simulations publication-title: Plant Soil – volume: 118 start-page: 853 year: 2016 end-page: 864 article-title: Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high‐resolution measurements of root water uptake publication-title: Ann. Bot. – volume: 95 start-page: 190 year: 2016 end-page: 198 article-title: Water percolation through the root–soil interface publication-title: Adv. Water Resour. – volume: 76 start-page: 61 year: 2012 end-page: 69 article-title: Water retention curves of biofilm‐affected soils using xanthan as an analogue publication-title: Soil Sci. Soc. Am. J. – volume: 50 start-page: 6479 year: 2014 end-page: 6495 article-title: Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils publication-title: Water Resour. Res. – volume: 417 start-page: 1 year: 2017 end-page: 15 article-title: Liquid bridges at the root–soil interface publication-title: Plant Soil – volume: 9 start-page: 118 year: 2007 end-page: 131 article-title: On Darcy–Brinkman equation: Viscous flow between two parallel plates packed with regular square arrays of cylinders publication-title: Entropy – volume: 258 start-page: 355 year: 1994 end-page: 370 article-title: A determination of the effective viscosity for the Brinkman–Forchheimer flow model publication-title: J. Fluid Mech. – volume: 52 start-page: 264 year: 2016 end-page: 277 article-title: The impact of mucilage on root water uptake: A numerical study publication-title: Water Resour. Res. – volume: 25 start-page: 477 year: 2002 end-page: 495 article-title: Considerations for modeling bacterial‐induced changes in hydraulic properties of variably saturated porous media publication-title: Adv. Water Resour. – volume: 8 start-page: 281 year: 1995 end-page: 291 article-title: Bacterial clogging of porous media: A new modelling approach publication-title: Biofouling – volume: 92 start-page: 61 year: 1966 end-page: 90 article-title: Properties of porous media affecting fluid flow publication-title: J. Irrig. Drain. Div. – volume: 34 start-page: 934 year: 1996 end-page: 942 article-title: Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth publication-title: Ground Water – volume: 56 start-page: 143 year: 1993 end-page: 156 article-title: Clay– or sand–polysaccharide associations as models for the interface between micro‐organisms and soil: Water related properties and microstructure publication-title: Geoderma – volume: 10 start-page: 6 year: 2010 article-title: An evaluation of as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach publication-title: BMC Pharmacol. – start-page: 684 year: 2002b end-page: 688 – year: 2015 – volume: 298 start-page: 53 year: 2015 end-page: 63 article-title: Spatial distribution of rhizodeposits provides built‐in water potential gradient in the rhizosphere publication-title: Ecol. Modell. – volume: 137 start-page: 623 year: 1997 end-page: 628 article-title: Surface tension and viscosity of axenic maize and lupin root mucilages publication-title: New Phytol. – ident: e_1_2_8_38_1 doi: 10.1093/aob/mcw154 – ident: e_1_2_8_17_1 doi: 10.1016/j.ecolmodel.2014.10.028 – ident: e_1_2_8_27_1 doi: 10.2136/vzj2006.0080 – ident: e_1_2_8_11_1 doi: 10.1007/s11104‐010‐0283‐8 – ident: e_1_2_8_13_1 doi: 10.1016/0016‐7061(93)90106‐U – ident: e_1_2_8_6_1 doi: 10.1016/j.advwatres.2015.09.014 – ident: e_1_2_8_33_1 doi: 10.1186/1472‐6904‐10‐6 – ident: e_1_2_8_29_1 doi: 10.1046/j.1469‐8137.1997.00859.x – ident: e_1_2_8_30_1 doi: 10.1016/S0309‐1708(02)00023‐4 – ident: e_1_2_8_4_1 doi: 10.2136/vzj2016.09.0090 – ident: e_1_2_8_22_1 doi: 10.1002/2013WR014756 – ident: e_1_2_8_24_1 doi: 10.3390/e9030118 – ident: e_1_2_8_5_1 doi: 10.1007/s11104‐013‐1946‐z – ident: e_1_2_8_20_1 doi: 10.1103/PhysRevE.91.042706 – ident: e_1_2_8_18_1 doi: 10.1017/S0022112094003368 – ident: e_1_2_8_19_1 doi: 10.1063/1.864050 – ident: e_1_2_8_2_1 doi: 10.1007/s11104‐015‐2749‐1 – ident: e_1_2_8_14_1 doi: 10.2136/sssabookser5.4 – ident: e_1_2_8_10_1 doi: 10.1007/s11104‐017‐3227‐8 – ident: e_1_2_8_37_1 doi: 10.1002/2016WR018866 – ident: e_1_2_8_35_1 doi: 10.1128/AEM.58.5.1690-1698.1992 – ident: e_1_2_8_32_1 doi: 10.1002/2015WR018150 – ident: e_1_2_8_8_1 doi: 10.1061/JRCEA4.0000425 – ident: e_1_2_8_9_1 doi: 10.2136/vzj2011.0106 – ident: e_1_2_8_36_1 doi: 10.2136/sssaj1992.03615995005600010001x – ident: e_1_2_8_21_1 doi: 10.1002/2015WR018579 – ident: e_1_2_8_25_1 doi: 10.1034/j.1399‐3054.1997.990123.x – ident: e_1_2_8_12_1 doi: 10.1111/j.1745‐6584.1996.tb02088.x – ident: e_1_2_8_31_1 doi: 10.2136/sssaj2011.0155 – ident: e_1_2_8_16_1 doi: 10.1063/1.866465 – ident: e_1_2_8_15_1 doi: 10.2136/sssabookser5.4 – ident: e_1_2_8_39_1 doi: 10.1002/jpln.201500511 – ident: e_1_2_8_3_1 doi: 10.1071/FP13330 – ident: e_1_2_8_23_1 doi: 10.1080/00031305.1985.10479448 – ident: e_1_2_8_26_1 doi: 10.2136/vzj2011.0120 – ident: e_1_2_8_34_1 doi: 10.1080/08927019509378281 – ident: e_1_2_8_7_1 doi: 10.1093/acprof:oso/9780199683093.001.0001 – ident: e_1_2_8_28_1 doi: 10.1016/j.advwatres.2006.05.025 |
SSID | ssj0019442 |
Score | 2.4008222 |
Snippet | Core Ideas
We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.
Effect of mucilage on saturated hydraulic conductivity is... Core IdeasWe propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.Effect of mucilage on saturated hydraulic conductivity is... CORE IDEAS: We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is... Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Flow velocity Hydraulic properties Hydraulics Hypotheses Microorganisms Moisture content Mucilage Mucilages Particle size Permeability Pore size porosity Properties Retention Rhizosphere Roots Sand saturated hydraulic conductivity Seeds Silt Soil Soil properties Soil water Soils Uptake vadose zone Viscosity Water Water content Water uptake |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-kjJtmlRoYdc3Kz1tI7pY1kCKSHblJCLkOxR2bLYZTdbaH59Z2ztsj2UXHrwxR4b-dNI34wlf8PYO0gYxkMyhQ5JFEpFU1RIfEWF3JiSASsl_eB88cVMr9X5jb7ZKfVFe8IGeeABuFNd2RSNaWLE_CnVhjT8hLURiXEckV9o9kXO2yRTef3Aqb5sDg5nV5RIqoOojyilOf11_wNJzw7SplS3eoePetn-v2LN3Yi1p5zJE_Y4x4r8bGjjU7YH7TN2cPZ9mfUy4DmbDerDK94lfrGu5wucHnjX8ivaSrciyQDg09_NMqwX85pPkMR6P-Of-tq3ZDnr5gt-mXHgs_k9HLLryeevH6dFrpNQBEw3TAFl7RQSt6yjDio4BRBsqAWiT_Uvg9DSJqeDNQaca0qwjZAhRkwgq-QqIV-w_bZr4YhxQ-o_oYKm0VJpC1GlGG0qQdmxs86M2PsNWr7OIuJUy2LhMZkgeH2G14-lJ3hH7GR7w89BP-Pfph8I_q0ZCV_3J9AdfIbBP-QOI3a86TyfR-PKY4hGebDQePnt9jKOI1ocCS10a7LByY0WDbEdtu_0h9rrv92eCzpIgohU_83L__EGr9gjfGI1fOY5Zvt3yzW8xsDnLr7pffwPDt35JA priority: 102 providerName: Directory of Open Access Journals |
Title | Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil Particle Size |
URI | https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.03.0056 https://www.proquest.com/docview/2732549252 https://www.proquest.com/docview/2718351696 https://doaj.org/article/587fb66dbb274fc69b00277b1020b242 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1fdGHolXxtJYUfPBl9S6bj81j1R5H4Urx2iK-hGR3Uq4cu3LXK9gH_3ZnsnuLFUTowy7sZhLCTCYzk4_fMPYOIrrxEHWmfBSZlEFnBRq-rEDbGKMGk-d0wXl6qicX8uSb2pwmpLswLT5Ev-BGmpHma1JwH1IWEtFmIbm9u0bjZVqIUqUfsR26YEun-oQ86zcSrEz5c1CvbTZC69qi-1ATH_9q4J5hSvj995zOP13XZHvGT9lu5zTyo1bKz9gW1HvsydHVsgPOgOds1sIQr3gT-XRdzhc4T_Cm5l_pTN2KsAOAT35WS79ezEs-RmuWBhz_kpLgEuWsmS_4WTeS-Gx-By_Yxfj4_PMk6xImZB7jDp3BqLQSLXheBuWltxLAG18KFAMlwvRC5SZa5Y3WYG01AlOJ3IeAkWQRbSHyl2y7bmp4xbgmGCBfQFWpXCoDQcYQTByBNENrrB6wDxtuubJDE6ekFguHUQWx13XsdcPcEXsH7H1f4UcLpPFv0k_E_p6MELDTj2Z55To2OFWYGLSuQsC4OpaasB2FMQEdpmFAv2PA9jfCc51arhz6ahQQC4XFh30xKhTtkvgamjXR4CxHu4fYD5OE_r_-usvvJ4IewiIi-H_9-sE137DH-FG0izz7bPtmuYa36PbchIM0sA_SogG-p7-OfwM-xvio |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAcEE8RKGAkkLgsJLt-rA8cAiVKH6kQaaqqF2PvjqugaBclDaj9WfxCZnadiCIhJKQe9rK2pdHYM_ONH98w9hICwngIKpEupIkQXiU5Br4kx9gYggKdZfTAeXSohhOxdyJPNtjP1VuYlh9iveFGltH4azJw2pBu7i63ZUi-X37F6KVbjlKp4sXKfbj4gWnb4t3uDs7xqzQdfDz6MExiZYHEIUBXCfQKIzDUZYWXTjgjAJx2RYryUsVIl8pMByOdVgqMKXugyzRz3mPKlQeTE9kBuv0twlJoSVv948npZH12YURTsgddiUl6GNBbQiES-u0fIl-JhU3JgCs493e03IS7wR12O-JU3m8X1l22AdU9dqt_No9cHXCfjVvm4wWvAx8ti-kMXROvK_6ZrvEtiK4A-PCinLvlbFrwAQbQZo3znabuLvUc19MZ_xQXLx9PL-EBm1yLJh-yzaqu4BHjipiHXA5lKTMhNXgRvNehB0J3jTaqw96stGWLSGBOdTRmFhMZUq-N6rXdzJJ6O-z1esC3lrvj713fk_rX3Yh0u_lRz89sVIOVuQ5eqdJ7TOVDoYhOMtXaI0breoQ6Hba9mjwbPcHCIjykHDyV2Pxi3Yw2TAczroJ6SX3QsdKBJcqhm0n_l7z2-HQvpY_oj6jigHr83yOfsxvDo9GBPdg93H_CbmJD3u4xbbPN8_kSniLqOvfP4jLn7Mt1W9YvWjs1RA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFA1lC6IPUr9wbdUICr6M7s7kY_Lgw-q6bFtbiuuW0peYzCRlZZkpu12l_Vf-Q-_NZAcriCD0YV4yGbjcJPecm2TOJeSl80DjnRcJNz5NGLMiyQH4khyw0XvhZJbhD84Hh2I8ZXsn_GSD_Fz_C9PoQ7QbbrgyQrzGBX5e-nB1ualC8v3qG4CXbCRKuYj3Kvfd5Q_I2pbvdocwxK_SdPTxy4dxEgsLJAb4uUhcv1AMkC4rLDfMKOackaZIwVwsGGlSnkmvuJFCOKXKvpNlmhlrIePKvcpR6wCi_iYHLOx1yObgeHo6bY8uFAsVeyCSqKQPeN7oCaHRb_8w-RoUhooB12ju72Q5oN1oi9yNNJUOmnl1j2y46j65MzhbRKkO94BMGuHjJa09PVgVszlEJlpX9DPe4luiWoGj48tyYVbzWUFHgJ9hitNhKLuLPSf1bE6P4tylk9mVe0imN-LJR6RT1ZV7TKhA4SGTu7LkGePSWeatlb7vmOwpqUSXvFl7SxdRvxzLaMw15DHoXh3dq3uZRvd2yev2g_NGuuPvXd-j-9tuqLkdGurFmY5u0DyX3gpRWguZvC8EqkmmUlqgaD0LTKdLdtaDp2MgWGpgh5iCpxxev2hfwxLGcxlTuXqFfSCu4nkl2CHDoP_LXn18upfig-pHWHBAPPnvL5-TW0fDkf60e7i_TW5De97sMO2QzsVi5Z4C57qwz-Isp-TrTS-sX_1TNGQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Mucilage+on+Rhizosphere+Hydraulic+Functions+Depend+on+Soil+Particle+Size&rft.jtitle=Vadose+zone+journal&rft.au=Kroener%2C+Eva&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Mutez+Ahmed&rft.date=2018&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.2136%2Fvzj2017.03.0056&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon |