Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil Particle Size

Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic...

Full description

Saved in:
Bibliographic Details
Published inVadose zone journal Vol. 17; no. 1; pp. 1 - 11
Main Authors Kroener, Eva, Holz, Maire, Zarebanadkouki, Mohsen, Ahmed, Mutez, Carminati, Andrea
Format Journal Article
LanguageEnglish
Published Madison The Soil Science Society of America, Inc 2018
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic properties remains challenging. The model was validated on measured water retention and saturated hydraulic conductivity Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging.
AbstractList CORE IDEAS: We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic properties remains challenging. The model was validated on measured water retention and saturated hydraulic conductivity Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–¹ at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging.
Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore-scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore-scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g at low matric potentials. This study shows how pore-scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging.
Core IdeasWe propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils.Coarse soils require higher mucilage concentration to increase water content.Upscaling to macroscopic soil hydraulic properties remains challenging.The model was validated on measured water retention and saturated hydraulic conductivityMucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging.
Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is stronger in coarse soils. Coarse soils require higher mucilage concentration to increase water content. Upscaling to macroscopic soil hydraulic properties remains challenging. The model was validated on measured water retention and saturated hydraulic conductivity Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil hydraulic properties for specific soils, it has not yet been explored how the effects of mucilage on macroscopic soil hydraulic properties depend on soil particle size. We propose a conceptual model of how mechanistic pore‐scale interactions of mucilage, water, and soil depend on pore size and mucilage concentration and how these pore‐scale characteristics result in changes of macroscopic soil hydraulic properties. Water retention and saturated hydraulic conductivity of soils with different ranges of particle sizes mixed with various mucilage concentrations were measured and used to validate the conceptual model. We found that (i) at low mucilage concentrations, the saturated conductivity of a coarse sand was a few orders of magnitude higher than that of a silt, (ii) at an intermediate concentration, the hydraulic conductivity of a fine sand was lower than of a coarse sand or a silt, and (iii) at a high concentration, all soils had a hydraulic conductivity of the same magnitude. At low matric potentials, mucilage increased the water content in all soilsin all soils. In coarser soils, higher mucilage concentrations were needed to induce an increase in water content of >0.05 g g–1 at low matric potentials. This study shows how pore‐scale interactions between mucilage, water, and soil particles affect bulk soil hydraulic properties in a way that depends on soil particle size. Including such effects in quantitative models of root water uptake remains challenging.
Author Kroener, Eva
Zarebanadkouki, Mohsen
Ahmed, Mutez
Carminati, Andrea
Holz, Maire
Author_xml – sequence: 1
  givenname: Eva
  surname: Kroener
  fullname: Kroener, Eva
  email: kroener@uni‐landau.de
  organization: Geophysics, Institute for Environmental Sciences, Univ. of Koblenz‐Landau
– sequence: 2
  givenname: Maire
  surname: Holz
  fullname: Holz, Maire
  organization: Univ. of Goettingen
– sequence: 3
  givenname: Mohsen
  surname: Zarebanadkouki
  fullname: Zarebanadkouki, Mohsen
  organization: Bayreuth Univ
– sequence: 4
  givenname: Mutez
  surname: Ahmed
  fullname: Ahmed, Mutez
  organization: Univ. of Khartoum
– sequence: 5
  givenname: Andrea
  surname: Carminati
  fullname: Carminati, Andrea
  organization: Bayreuth Univ
BookMark eNqFkc1v1DAQxSNUJPrBmWskLlx264_Yji9IqLS0qBUVCxy4WBNn3Hrlxls7odr965t0Vwj1QA-WrdF7v5nxOyj2uthhUbyjZM4ol8d_NktGqJoTPidEyFfFPhVcz6iUfO-f95viIOclIVRXFdsvFqfOoe1zGV15NVgf4AbL2JXfb_0m5tUtJizP122CIXhbng2d7X3scvkZV9i1k3IRfSivIfXeBiwXfoNHxWsHIePb3X1Y_Dw7_XFyPrv89uXi5NPlDKpayRlSqytBGbeNgAp0hQgKLAM37kEEMMGV0wKUlKh1S1G1jEPTaFXXTteMHxYXW24bYWlWyd9BWpsI3jwVYroxu7GMqJVrpGybhqnKWakbQphSDSWMNKyaWB-2rFWK9wPm3tz5bDEE6DAO2TBFay6o1HKUvn8mXcYhdeOmo4ozUWkmJuDxVmVTzDmh-zsgJWYKzOwCM4SbKbDRIZ45rO9h-u4-gQ__8X3c-h58wPVLbcyv31_ZdMYa4U-AR_ynrOg
CitedBy_id crossref_primary_10_1029_2018WR022656
crossref_primary_10_2136_vzj2019_02_0021
crossref_primary_10_1111_tpj_14781
crossref_primary_10_1093_insilicoplants_diab028
crossref_primary_10_2136_vzj2018_12_0211
crossref_primary_10_3390_w14071110
crossref_primary_10_3389_fsoil_2023_1155889
crossref_primary_10_1002_jpln_202000496
crossref_primary_10_1007_s11104_022_05306_7
crossref_primary_10_1016_j_soilbio_2023_108987
crossref_primary_10_1007_s11104_024_06840_2
crossref_primary_10_1016_j_rhisph_2021_100451
crossref_primary_10_1016_j_geoderma_2019_01_013
crossref_primary_10_1016_j_advwatres_2022_104364
crossref_primary_10_1071_SR18182
crossref_primary_10_1016_j_geoderma_2020_114827
crossref_primary_10_2136_vzj2018_01_0002
crossref_primary_10_1007_s00572_023_01106_8
crossref_primary_10_1002_vzj2_20071
crossref_primary_10_1093_jxb_ery183
crossref_primary_10_1029_2021WR029976
crossref_primary_10_1002_pld3_519
crossref_primary_10_1016_j_geoderma_2023_116576
crossref_primary_10_1002_jpln_202000545
crossref_primary_10_1007_s10533_019_00626_w
crossref_primary_10_1007_s11104_020_04723_w
crossref_primary_10_1016_j_advwatres_2025_104915
crossref_primary_10_1016_j_jcis_2024_12_216
crossref_primary_10_1029_2022WR032845
crossref_primary_10_1007_s10265_019_01089_8
crossref_primary_10_1016_j_scitotenv_2020_138760
crossref_primary_10_1093_aob_mcae193
crossref_primary_10_1016_j_jplph_2022_153658
crossref_primary_10_1016_j_scitotenv_2023_167524
crossref_primary_10_1007_s11104_022_05577_0
crossref_primary_10_1007_s11104_023_06353_4
crossref_primary_10_3390_su13063303
crossref_primary_10_1093_jxb_erad312
crossref_primary_10_1111_nph_16144
crossref_primary_10_1111_ejss_13189
crossref_primary_10_1007_s12298_018_0621_5
crossref_primary_10_1038_s41598_020_73890_8
crossref_primary_10_1002_jpln_201800042
crossref_primary_10_1016_j_soilbio_2021_108404
crossref_primary_10_1007_s11104_024_06883_5
crossref_primary_10_3390_soilsystems7040106
crossref_primary_10_1002_vzj2_20218
crossref_primary_10_3390_plants13141981
crossref_primary_10_3389_fenvs_2018_00016
crossref_primary_10_1111_ejss_13576
crossref_primary_10_3389_fagro_2021_622367
crossref_primary_10_5194_bg_17_5787_2020
Cites_doi 10.1093/aob/mcw154
10.1016/j.ecolmodel.2014.10.028
10.2136/vzj2006.0080
10.1007/s11104‐010‐0283‐8
10.1016/0016‐7061(93)90106‐U
10.1016/j.advwatres.2015.09.014
10.1186/1472‐6904‐10‐6
10.1046/j.1469‐8137.1997.00859.x
10.1016/S0309‐1708(02)00023‐4
10.2136/vzj2016.09.0090
10.1002/2013WR014756
10.3390/e9030118
10.1007/s11104‐013‐1946‐z
10.1103/PhysRevE.91.042706
10.1017/S0022112094003368
10.1063/1.864050
10.1007/s11104‐015‐2749‐1
10.2136/sssabookser5.4
10.1007/s11104‐017‐3227‐8
10.1002/2016WR018866
10.1128/AEM.58.5.1690-1698.1992
10.1002/2015WR018150
10.1061/JRCEA4.0000425
10.2136/vzj2011.0106
10.2136/sssaj1992.03615995005600010001x
10.1002/2015WR018579
10.1034/j.1399‐3054.1997.990123.x
10.1111/j.1745‐6584.1996.tb02088.x
10.2136/sssaj2011.0155
10.1063/1.866465
10.1002/jpln.201500511
10.1071/FP13330
10.1080/00031305.1985.10479448
10.2136/vzj2011.0120
10.1080/08927019509378281
10.1093/acprof:oso/9780199683093.001.0001
10.1016/j.advwatres.2006.05.025
ContentType Journal Article
Copyright 2018 The Authors.
2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 The Authors.
– notice: 2018. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
DOA
DOI 10.2136/vzj2017.03.0056
DatabaseName Wiley Online Library Open Access
CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1539-1663
EndPage 11
ExternalDocumentID oai_doaj_org_article_587fb66dbb274fc69b00277b1020b242
10_2136_vzj2017_03_0056
VZJ2VZJ2017030056
Genre article
GroupedDBID .~0
0R~
123
18M
1OB
1OC
24P
2WC
6KN
AAHBH
AAHHS
AAWFE
ABJNI
ACAWQ
ACCFJ
ACCMX
ACGFO
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AENEX
AEQDE
AFRAH
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
BCNDV
C1A
CS3
DDYGU
DU5
E3Z
EBS
ECGQY
EJD
GOHGZ
GROUPED_DOAJ
GX1
H13
IAO
IGS
ITC
MV1
M~E
NHAZY
O9-
OK1
P2P
RAK
RGW
SAMSI
TR2
WIN
WOQ
WXSBR
~02
~KM
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
7UA
C1K
F1W
H96
L.G
7S9
L.6
ID FETCH-LOGICAL-a4876-e1c945123cb5a4a94eea7ac2af20105a2537f95a766e99d1e7d23abb9788f9823
IEDL.DBID 24P
ISSN 1539-1663
IngestDate Wed Aug 27 01:10:11 EDT 2025
Fri Jul 11 18:28:07 EDT 2025
Fri Jul 25 08:38:45 EDT 2025
Thu Apr 24 22:56:50 EDT 2025
Fri Jul 04 03:42:01 EDT 2025
Wed Jan 22 16:41:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4876-e1c945123cb5a4a94eea7ac2af20105a2537f95a766e99d1e7d23abb9788f9823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.03.0056
PQID 2732549252
PQPubID 2046224
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_587fb66dbb274fc69b00277b1020b242
proquest_miscellaneous_2718351696
proquest_journals_2732549252
crossref_primary_10_2136_vzj2017_03_0056
crossref_citationtrail_10_2136_vzj2017_03_0056
wiley_primary_10_2136_vzj2017_03_0056_VZJ2VZJ2017030056
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Madison
PublicationPlace_xml – name: Madison
PublicationTitle Vadose zone journal
PublicationYear 2018
Publisher The Soil Science Society of America, Inc
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: The Soil Science Society of America, Inc
– name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 417
1997; 137
2010; 10
2007b; 30
1987; 30
1994; 258
2016; 407
1966; 92
2016; 52
2016; 95
2007a; 6
2014; 41
2012; 11
2012; 76
2014; 376
1996; 34
1995; 8
1985; 39
2002; 25
2018; 17
1993; 56
1997; 99
1992a; 58
2016; 118
2015; 298
2010; 332
2016; 179
2007; 9
2015
2002b
1992b; 56
2002a
1983; 26
2014; 50
2015; E 91
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 41
  start-page: 1129
  year: 2014
  end-page: 1137
  article-title: Mucilage exudation facilitates root water uptake in dry soils
  publication-title: Funct. Plant Biol.
– volume: 332
  start-page: 163
  year: 2010
  end-page: 176
  article-title: Dynamics of soil water content in the rhizosphere
  publication-title: Plant Soil
– volume: 52
  start-page: 5755
  year: 2016
  end-page: 5770
  article-title: Simulation of root water uptake under consideration of nonequilibrium dynamics in the rhizosphere
  publication-title: Water Resour. Res.
– volume: 179
  start-page: 294
  year: 2016
  end-page: 302
  article-title: An efficient method for the collection of root mucilage from different plant species: A case study on the effect of mucilage on soil water repellency
  publication-title: J. Plant Nutr. Soil Sci.
– volume: 99
  start-page: 169
  year: 1997
  end-page: 177
  article-title: The expansion of maize root‐cap mucilage during hydration: 3. Changes in water potential and water content
  publication-title: Physiol. Plant.
– volume: 30
  start-page: 1505
  year: 2007b
  end-page: 1527
  article-title: Physical constraints affecting bacterial habitats and activity in unsaturated porous media: A review
  publication-title: Adv. Water Resour.
– start-page: 680
  year: 2002a
  end-page: 683
– volume: 39
  start-page: 279
  year: 1985
  end-page: 285
  article-title: Cautionary note about
  publication-title: Am. Stat.
– volume: E 91
  start-page: 042706
  year: 2015
  article-title: Roots at the percolation threshold
  publication-title: Phys. Rev.
– volume: 6
  start-page: 298
  year: 2007a
  end-page: 305
  article-title: Extracellular polymeric substances affecting pore‐scale hydrologic conditions for bacterial activity in unsaturated soils
  publication-title: Vadose Zone J.
– volume: 30
  start-page: 3329
  year: 1987
  end-page: 3341
  article-title: Analysis of the Brinkman equation as a model for flow in porous media
  publication-title: Phys. Fluids
– volume: 17
  start-page: 160090
  year: 2018
  article-title: Engineering rhizosphere hydraulics: Pathways to improve plant adaptation to drought
  publication-title: Vadose Zone J.
– volume: 56
  start-page: 1
  year: 1992b
  end-page: 13
  article-title: Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns
  publication-title: Soil Sci. Soc. Am. J.
– volume: 11
  issue: 3
  year: 2012
  article-title: A model of root water uptake coupled with rhizosphere dynamics
  publication-title: Vadose Zone J.
– volume: 26
  start-page: 2864
  year: 1983
  end-page: 2870
  article-title: Viscosity renormalization in the Brinkman equation
  publication-title: Phys. Fluids
– volume: 11
  issue: 3
  year: 2012
  article-title: Is the rhizosphere temporarily water repellent?
  publication-title: Vadose Zone J.
– volume: 58
  start-page: 1690
  year: 1992a
  end-page: 1698
  article-title: Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns
  publication-title: Appl. Environ. Microbiol.
– volume: 52
  start-page: 5813
  year: 2016
  end-page: 5828
  article-title: Biofilm effect on soil hydraulic properties: Experimental investigation using soil‐grown real biofilm
  publication-title: Water Resour. Res.
– volume: 407
  start-page: 161
  year: 2016
  end-page: 171
  article-title: Drying of mucilage causes water repellency in the rhizosphere of maize: Measurements and modelling
  publication-title: Plant Soil
– volume: 376
  start-page: 95
  year: 2014
  end-page: 110
  article-title: Quantifying coupled deformation and water flow in the rhizosphere using X‐ray microtomography and numerical simulations
  publication-title: Plant Soil
– volume: 118
  start-page: 853
  year: 2016
  end-page: 864
  article-title: Estimation of the hydraulic conductivities of lupine roots by inverse modelling of high‐resolution measurements of root water uptake
  publication-title: Ann. Bot.
– volume: 95
  start-page: 190
  year: 2016
  end-page: 198
  article-title: Water percolation through the root–soil interface
  publication-title: Adv. Water Resour.
– volume: 76
  start-page: 61
  year: 2012
  end-page: 69
  article-title: Water retention curves of biofilm‐affected soils using xanthan as an analogue
  publication-title: Soil Sci. Soc. Am. J.
– volume: 50
  start-page: 6479
  year: 2014
  end-page: 6495
  article-title: Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils
  publication-title: Water Resour. Res.
– volume: 417
  start-page: 1
  year: 2017
  end-page: 15
  article-title: Liquid bridges at the root–soil interface
  publication-title: Plant Soil
– volume: 9
  start-page: 118
  year: 2007
  end-page: 131
  article-title: On Darcy–Brinkman equation: Viscous flow between two parallel plates packed with regular square arrays of cylinders
  publication-title: Entropy
– volume: 258
  start-page: 355
  year: 1994
  end-page: 370
  article-title: A determination of the effective viscosity for the Brinkman–Forchheimer flow model
  publication-title: J. Fluid Mech.
– volume: 52
  start-page: 264
  year: 2016
  end-page: 277
  article-title: The impact of mucilage on root water uptake: A numerical study
  publication-title: Water Resour. Res.
– volume: 25
  start-page: 477
  year: 2002
  end-page: 495
  article-title: Considerations for modeling bacterial‐induced changes in hydraulic properties of variably saturated porous media
  publication-title: Adv. Water Resour.
– volume: 8
  start-page: 281
  year: 1995
  end-page: 291
  article-title: Bacterial clogging of porous media: A new modelling approach
  publication-title: Biofouling
– volume: 92
  start-page: 61
  year: 1966
  end-page: 90
  article-title: Properties of porous media affecting fluid flow
  publication-title: J. Irrig. Drain. Div.
– volume: 34
  start-page: 934
  year: 1996
  end-page: 942
  article-title: Macroscopic models for predicting changes in saturated porous media properties caused by microbial growth
  publication-title: Ground Water
– volume: 56
  start-page: 143
  year: 1993
  end-page: 156
  article-title: Clay– or sand–polysaccharide associations as models for the interface between micro‐organisms and soil: Water related properties and microstructure
  publication-title: Geoderma
– volume: 10
  start-page: 6
  year: 2010
  article-title: An evaluation of as an inadequate measure for nonlinear models in pharmacological and biochemical research: A Monte Carlo approach
  publication-title: BMC Pharmacol.
– start-page: 684
  year: 2002b
  end-page: 688
– year: 2015
– volume: 298
  start-page: 53
  year: 2015
  end-page: 63
  article-title: Spatial distribution of rhizodeposits provides built‐in water potential gradient in the rhizosphere
  publication-title: Ecol. Modell.
– volume: 137
  start-page: 623
  year: 1997
  end-page: 628
  article-title: Surface tension and viscosity of axenic maize and lupin root mucilages
  publication-title: New Phytol.
– ident: e_1_2_8_38_1
  doi: 10.1093/aob/mcw154
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ecolmodel.2014.10.028
– ident: e_1_2_8_27_1
  doi: 10.2136/vzj2006.0080
– ident: e_1_2_8_11_1
  doi: 10.1007/s11104‐010‐0283‐8
– ident: e_1_2_8_13_1
  doi: 10.1016/0016‐7061(93)90106‐U
– ident: e_1_2_8_6_1
  doi: 10.1016/j.advwatres.2015.09.014
– ident: e_1_2_8_33_1
  doi: 10.1186/1472‐6904‐10‐6
– ident: e_1_2_8_29_1
  doi: 10.1046/j.1469‐8137.1997.00859.x
– ident: e_1_2_8_30_1
  doi: 10.1016/S0309‐1708(02)00023‐4
– ident: e_1_2_8_4_1
  doi: 10.2136/vzj2016.09.0090
– ident: e_1_2_8_22_1
  doi: 10.1002/2013WR014756
– ident: e_1_2_8_24_1
  doi: 10.3390/e9030118
– ident: e_1_2_8_5_1
  doi: 10.1007/s11104‐013‐1946‐z
– ident: e_1_2_8_20_1
  doi: 10.1103/PhysRevE.91.042706
– ident: e_1_2_8_18_1
  doi: 10.1017/S0022112094003368
– ident: e_1_2_8_19_1
  doi: 10.1063/1.864050
– ident: e_1_2_8_2_1
  doi: 10.1007/s11104‐015‐2749‐1
– ident: e_1_2_8_14_1
  doi: 10.2136/sssabookser5.4
– ident: e_1_2_8_10_1
  doi: 10.1007/s11104‐017‐3227‐8
– ident: e_1_2_8_37_1
  doi: 10.1002/2016WR018866
– ident: e_1_2_8_35_1
  doi: 10.1128/AEM.58.5.1690-1698.1992
– ident: e_1_2_8_32_1
  doi: 10.1002/2015WR018150
– ident: e_1_2_8_8_1
  doi: 10.1061/JRCEA4.0000425
– ident: e_1_2_8_9_1
  doi: 10.2136/vzj2011.0106
– ident: e_1_2_8_36_1
  doi: 10.2136/sssaj1992.03615995005600010001x
– ident: e_1_2_8_21_1
  doi: 10.1002/2015WR018579
– ident: e_1_2_8_25_1
  doi: 10.1034/j.1399‐3054.1997.990123.x
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1745‐6584.1996.tb02088.x
– ident: e_1_2_8_31_1
  doi: 10.2136/sssaj2011.0155
– ident: e_1_2_8_16_1
  doi: 10.1063/1.866465
– ident: e_1_2_8_15_1
  doi: 10.2136/sssabookser5.4
– ident: e_1_2_8_39_1
  doi: 10.1002/jpln.201500511
– ident: e_1_2_8_3_1
  doi: 10.1071/FP13330
– ident: e_1_2_8_23_1
  doi: 10.1080/00031305.1985.10479448
– ident: e_1_2_8_26_1
  doi: 10.2136/vzj2011.0120
– ident: e_1_2_8_34_1
  doi: 10.1080/08927019509378281
– ident: e_1_2_8_7_1
  doi: 10.1093/acprof:oso/9780199683093.001.0001
– ident: e_1_2_8_28_1
  doi: 10.1016/j.advwatres.2006.05.025
SSID ssj0019442
Score 2.4008222
Snippet Core Ideas We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is...
Core IdeasWe propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil.Effect of mucilage on saturated hydraulic conductivity is...
CORE IDEAS: We propose a model of mechanistic pore‐scale interactions of mucilage, water, and soil. Effect of mucilage on saturated hydraulic conductivity is...
Mucilage secreted by roots alters hydraulic properties of soil close to the roots. Although existing models are able to mimic the effect of mucilage on soil...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Flow velocity
Hydraulic properties
Hydraulics
Hypotheses
Microorganisms
Moisture content
Mucilage
Mucilages
Particle size
Permeability
Pore size
porosity
Properties
Retention
Rhizosphere
Roots
Sand
saturated hydraulic conductivity
Seeds
Silt
Soil
Soil properties
Soil water
Soils
Uptake
vadose zone
Viscosity
Water
Water content
Water uptake
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp-ZQ-kjJtmlRoYdc3Kz1tI7pY1kCKSHblJCLkOxR2bLYZTdbaH59Z2ztsj2UXHrwxR4b-dNI34wlf8PYO0gYxkMyhQ5JFEpFU1RIfEWF3JiSASsl_eB88cVMr9X5jb7ZKfVFe8IGeeABuFNd2RSNaWLE_CnVhjT8hLURiXEckV9o9kXO2yRTef3Aqb5sDg5nV5RIqoOojyilOf11_wNJzw7SplS3eoePetn-v2LN3Yi1p5zJE_Y4x4r8bGjjU7YH7TN2cPZ9mfUy4DmbDerDK94lfrGu5wucHnjX8ivaSrciyQDg09_NMqwX85pPkMR6P-Of-tq3ZDnr5gt-mXHgs_k9HLLryeevH6dFrpNQBEw3TAFl7RQSt6yjDio4BRBsqAWiT_Uvg9DSJqeDNQaca0qwjZAhRkwgq-QqIV-w_bZr4YhxQ-o_oYKm0VJpC1GlGG0qQdmxs86M2PsNWr7OIuJUy2LhMZkgeH2G14-lJ3hH7GR7w89BP-Pfph8I_q0ZCV_3J9AdfIbBP-QOI3a86TyfR-PKY4hGebDQePnt9jKOI1ocCS10a7LByY0WDbEdtu_0h9rrv92eCzpIgohU_83L__EGr9gjfGI1fOY5Zvt3yzW8xsDnLr7pffwPDt35JA
  priority: 102
  providerName: Directory of Open Access Journals
Title Effects of Mucilage on Rhizosphere Hydraulic Functions Depend on Soil Particle Size
URI https://onlinelibrary.wiley.com/doi/abs/10.2136%2Fvzj2017.03.0056
https://www.proquest.com/docview/2732549252
https://www.proquest.com/docview/2718351696
https://doaj.org/article/587fb66dbb274fc69b00277b1020b242
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-1fdGHolXxtJYUfPBl9S6bj81j1R5H4Urx2iK-hGR3Uq4cu3LXK9gH_3ZnsnuLFUTowy7sZhLCTCYzk4_fMPYOIrrxEHWmfBSZlEFnBRq-rEDbGKMGk-d0wXl6qicX8uSb2pwmpLswLT5Ev-BGmpHma1JwH1IWEtFmIbm9u0bjZVqIUqUfsR26YEun-oQ86zcSrEz5c1CvbTZC69qi-1ATH_9q4J5hSvj995zOP13XZHvGT9lu5zTyo1bKz9gW1HvsydHVsgPOgOds1sIQr3gT-XRdzhc4T_Cm5l_pTN2KsAOAT35WS79ezEs-RmuWBhz_kpLgEuWsmS_4WTeS-Gx-By_Yxfj4_PMk6xImZB7jDp3BqLQSLXheBuWltxLAG18KFAMlwvRC5SZa5Y3WYG01AlOJ3IeAkWQRbSHyl2y7bmp4xbgmGCBfQFWpXCoDQcYQTByBNENrrB6wDxtuubJDE6ekFguHUQWx13XsdcPcEXsH7H1f4UcLpPFv0k_E_p6MELDTj2Z55To2OFWYGLSuQsC4OpaasB2FMQEdpmFAv2PA9jfCc51arhz6ahQQC4XFh30xKhTtkvgamjXR4CxHu4fYD5OE_r_-usvvJ4IewiIi-H_9-sE137DH-FG0izz7bPtmuYa36PbchIM0sA_SogG-p7-OfwM-xvio
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELaq9gAcEE8RKGAkkLgsJLt-rA8cAiVKH6kQaaqqF2PvjqugaBclDaj9WfxCZnadiCIhJKQe9rK2pdHYM_ONH98w9hICwngIKpEupIkQXiU5Br4kx9gYggKdZfTAeXSohhOxdyJPNtjP1VuYlh9iveFGltH4azJw2pBu7i63ZUi-X37F6KVbjlKp4sXKfbj4gWnb4t3uDs7xqzQdfDz6MExiZYHEIUBXCfQKIzDUZYWXTjgjAJx2RYryUsVIl8pMByOdVgqMKXugyzRz3mPKlQeTE9kBuv0twlJoSVv948npZH12YURTsgddiUl6GNBbQiES-u0fIl-JhU3JgCs493e03IS7wR12O-JU3m8X1l22AdU9dqt_No9cHXCfjVvm4wWvAx8ti-kMXROvK_6ZrvEtiK4A-PCinLvlbFrwAQbQZo3znabuLvUc19MZ_xQXLx9PL-EBm1yLJh-yzaqu4BHjipiHXA5lKTMhNXgRvNehB0J3jTaqw96stGWLSGBOdTRmFhMZUq-N6rXdzJJ6O-z1esC3lrvj713fk_rX3Yh0u_lRz89sVIOVuQ5eqdJ7TOVDoYhOMtXaI0breoQ6Hba9mjwbPcHCIjykHDyV2Pxi3Yw2TAczroJ6SX3QsdKBJcqhm0n_l7z2-HQvpY_oj6jigHr83yOfsxvDo9GBPdg93H_CbmJD3u4xbbPN8_kSniLqOvfP4jLn7Mt1W9YvWjs1RA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1daxQxFA1lC6IPUr9wbdUICr6M7s7kY_Lgw-q6bFtbiuuW0peYzCRlZZkpu12l_Vf-Q-_NZAcriCD0YV4yGbjcJPecm2TOJeSl80DjnRcJNz5NGLMiyQH4khyw0XvhZJbhD84Hh2I8ZXsn_GSD_Fz_C9PoQ7QbbrgyQrzGBX5e-nB1ualC8v3qG4CXbCRKuYj3Kvfd5Q_I2pbvdocwxK_SdPTxy4dxEgsLJAb4uUhcv1AMkC4rLDfMKOackaZIwVwsGGlSnkmvuJFCOKXKvpNlmhlrIePKvcpR6wCi_iYHLOx1yObgeHo6bY8uFAsVeyCSqKQPeN7oCaHRb_8w-RoUhooB12ju72Q5oN1oi9yNNJUOmnl1j2y46j65MzhbRKkO94BMGuHjJa09PVgVszlEJlpX9DPe4luiWoGj48tyYVbzWUFHgJ9hitNhKLuLPSf1bE6P4tylk9mVe0imN-LJR6RT1ZV7TKhA4SGTu7LkGePSWeatlb7vmOwpqUSXvFl7SxdRvxzLaMw15DHoXh3dq3uZRvd2yev2g_NGuuPvXd-j-9tuqLkdGurFmY5u0DyX3gpRWguZvC8EqkmmUlqgaD0LTKdLdtaDp2MgWGpgh5iCpxxev2hfwxLGcxlTuXqFfSCu4nkl2CHDoP_LXn18upfig-pHWHBAPPnvL5-TW0fDkf60e7i_TW5De97sMO2QzsVi5Z4C57qwz-Isp-TrTS-sX_1TNGQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+Mucilage+on+Rhizosphere+Hydraulic+Functions+Depend+on+Soil+Particle+Size&rft.jtitle=Vadose+zone+journal&rft.au=Kroener%2C+Eva&rft.au=Holz%2C+Maire&rft.au=Zarebanadkouki%2C+Mohsen&rft.au=Mutez+Ahmed&rft.date=2018&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.eissn=1539-1663&rft.volume=17&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.2136%2Fvzj2017.03.0056&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1539-1663&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1539-1663&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1539-1663&client=summon