Bio-inspired materials and sensing systems
This unique book provides an overview of bio-inspired sensors and systems together with examples of how they are being implemented. Readers gain an awareness of the complexity and versatility of bio-inspired components and an understanding of how these technologies can be applied in a variety of ope...
Saved in:
Main Authors | , , |
---|---|
Format | eBook Book |
Language | English |
Published |
Cambridge, UK
NBN International
2011
Royal Society of Chemistry Royal Society of Chemistry, The |
Edition | 1 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Table of Contents:
- Bio-inspired materials and sensing systems -- Preface -- Contents -- Chapter 1: A View on Bio-inspiration -- Chapter 2: Investment Approaches -- Chapter 3: Conceptual Approach -- Chapter 4: Structure -- Chapter 5: Collection and Sampling -- Chapter 6: Receptors and Surfaces -- Chapter 7: Sensing and Transduction -- Chapter 8: Energy and Power -- Chapter 9: Processing and Communications -- Chapter 10: The SASS Approach -- Subject Index
- 5.5 Bio-inspired Materials for Collection and Sampling -- 5.5.1 Molecularly Imprinted Polymers -- 5.5.2 High Surface Area, Highly Porous Materials -- 5.5.3 Polysilsesquioxanes -- 5.5.4 Dendrimers -- 5.5.5 Polymer Nanofibres -- 5.6 Bio-inspired/Biomimetic Collection and Sampling Systems -- 5.6.1 Biomimetic Air Sampling -- 5.6.2 Water Collection and Transport (Thorny Devil) -- 5.6.3 Optimized/Controlled Fluid Flow -- 5.7 Conclusion -- References -- Chapter 6 Receptors and Surfaces -- 6.1 Introduction -- 6.2 Natural Receptors -- 6.2.1 Antibodies -- 6.2.2 Other Bio-derived Molecular Bioprobes -- 6.2.3 Synthetic Ligands -- 6.3 Functionalized Surfaces -- 6.3.1 Virus Particles as Scaffolds -- 6.3.2 Lipid Bilayers -- 6.3.3 Hydrogels -- 6.3.4 Nanoarrays with Bio-inspired Nanocorals -- 6.4 On the Horizon: Molecular Biomimetics -- 6.5 Conclusion -- References -- Chapter 7 Sensing and Transduction -- 7.1 Introduction -- 7.2 Transduction Defined -- 7.3 Select Examples of Sensing and Transduction Approaches -- 7.3.1 Optical -- 7.3.2 Mass-based and Spectroscopic Methods -- 7.3.3 Piezoelectric -- 7.3.4 Electrochemical -- 7.3.5 Micro-electromechanical Systems (MEMS) -- 7.3.6 Magnetic -- 7.3.7 Emerging Transduction Technologies -- 7.3.8 Microfabrication and Lab on a Chip Technologies -- 7.5 Biomimetic and Bio-inspired Sensing Technologies -- 7.5.1 SMART Materials in Sensing and Transduction -- 7.5.2 Sensing Technologies -- 7.6 Conclusion -- References -- Chapter 8 Energy and Power -- 8.1 Introduction -- 8.2 Energy Sources -- 8.2.1 Energy in a Natural System -- 8.2.2 Solar Energy -- 8.2.3 Photosynthesis -- 8.2.4 Artificial Photosynthesis -- 8.2.5 Fuel Cells -- 8.3 Towards Autonomy: Self-sustaining Systems -- 8.4 Space Exploration -- 8.5 Conclusion -- References -- Chapter 9 Processing and Communications -- 9.1 Introduction -- 9.2 Processing and Communication
- Bio-inspired Materials and Sensing Systems -- Contents -- Chapter 1 A View on Bio-inspiration -- 1.1 Introduction -- 1.2 Context/Motivation -- 1.2.1 Bio-inspiration -- 1.2.2 Biotechnology vs. Bio-inspiration -- 1.3 Challenges for Science and Technology -- 1.4 The Need for a Framework -- 1.4.1 Biological Principles -- 1.5 Science and Technology to Mission Capability -- 1.6 Conclusion -- References -- Chapter 2 Investment Approaches -- 2.1 Introduction -- 2.2 Effect of Globalization on Investment -- 2.3 Overview of Investment by Key Countries -- 2.3.1 United States -- 2.3.2 United Kingdom -- 2.3.3 European Union -- 2.3.4 China -- 2.3.5 India -- 2.3.6 Japan -- 2.3.7 Russia -- 2.4 Future Trends -- 2.5 Conclusion -- References -- Chapter 3 Conceptual Approach -- 3.1 Introduction -- 3.2 Operational Requirements and Concepts of Operation -- 3.3 Conceptual Goal -- 3.4 Enabling Technologies -- 3.4.1 Collection and Sampling -- 3.4.2 Structures -- 3.4.3 Receptors and Surfaces -- 3.4.4 Sensing and Transduction -- 3.4.5 Processing and Communication -- 3.4.6 Power and Energy -- 3.5 A Larger Vision of the SASS Concept -- 3.6 Conclusion -- References -- Chapter 4 Structure -- 4.1 Introduction -- 4.2 Themes in Biological Systems -- 4.2.1 Hierarchical Structures -- 4.2.2 Bottom-up vs. Top-down Approach to Fabrication -- 4.2.3 Multifunctional Materials -- 4.3 Structural Parameters -- 4.3.1 Scale -- 4.3.2 Function -- 4.4 Biological Joining Technologies -- 4.4.1 Velcro -- 4.4.2 Toe Pad Adhesion -- 4.5 Self-healing Materials -- 4.6 Superhydrophobic Surfaces -- 4.7 Materials -- 4.8 Conclusion -- References -- Chapter 5 Collection and Sampling -- 5.1 Introduction -- 5.2 Approaches to Collection and Sampling -- 5.2.1 Collection and Sampling Tools -- 5.3 Natural Sampling System - Olfaction -- 5.4 Bio-inspired Sampling System - Electronic Nose
- 9.2.1 Parallel Computing -- 9.2.2 Natural Computing -- 9.3 Molecular Computing -- 9.4 Cognition -- 9.5 Applications -- 9.5.1 Sensor Networks -- 9.6 Insect Sensory Systems -- 9.6.1 Collision Avoidance/Motion Detection Systems -- 9.7 Bio-inspired Networking -- 9.7.1 Bio-inspired Network Routing Protocols -- 9.8 Issues -- 9.9 Conclusion -- References -- Chapter 10 The SASS Approach -- 10.1 Introduction -- 10.2 Design and Manufacture -- 10.2.1 Bioengineering -- 10.2.2 Additive Manufacturing -- 10.3 The SASS Approach -- 10.3.1 Component Level -- 10.3.2 System Level -- 10.3.3 System of Systems Level -- 10.3.4 Range of Applications -- 10.4 Societal Implications -- 10.5 Concluding Remarks -- References -- Subject Index