Bio-inspired materials and sensing systems

This unique book provides an overview of bio-inspired sensors and systems together with examples of how they are being implemented. Readers gain an awareness of the complexity and versatility of bio-inspired components and an understanding of how these technologies can be applied in a variety of ope...

Full description

Saved in:
Bibliographic Details
Main Authors Biggins, Peter, Hiltz, John, Kusterbeck, Anne
Format eBook Book
LanguageEnglish
Published Cambridge, UK NBN International 2011
Royal Society of Chemistry
Royal Society of Chemistry, The
Edition1
Subjects
Online AccessGet full text

Cover

Loading…
Table of Contents:
  • Bio-inspired materials and sensing systems -- Preface -- Contents -- Chapter 1: A View on Bio-inspiration -- Chapter 2: Investment Approaches -- Chapter 3: Conceptual Approach -- Chapter 4: Structure -- Chapter 5: Collection and Sampling -- Chapter 6: Receptors and Surfaces -- Chapter 7: Sensing and Transduction -- Chapter 8: Energy and Power -- Chapter 9: Processing and Communications -- Chapter 10: The SASS Approach -- Subject Index
  • 5.5 Bio-inspired Materials for Collection and Sampling -- 5.5.1 Molecularly Imprinted Polymers -- 5.5.2 High Surface Area, Highly Porous Materials -- 5.5.3 Polysilsesquioxanes -- 5.5.4 Dendrimers -- 5.5.5 Polymer Nanofibres -- 5.6 Bio-inspired/Biomimetic Collection and Sampling Systems -- 5.6.1 Biomimetic Air Sampling -- 5.6.2 Water Collection and Transport (Thorny Devil) -- 5.6.3 Optimized/Controlled Fluid Flow -- 5.7 Conclusion -- References -- Chapter 6 Receptors and Surfaces -- 6.1 Introduction -- 6.2 Natural Receptors -- 6.2.1 Antibodies -- 6.2.2 Other Bio-derived Molecular Bioprobes -- 6.2.3 Synthetic Ligands -- 6.3 Functionalized Surfaces -- 6.3.1 Virus Particles as Scaffolds -- 6.3.2 Lipid Bilayers -- 6.3.3 Hydrogels -- 6.3.4 Nanoarrays with Bio-inspired Nanocorals -- 6.4 On the Horizon: Molecular Biomimetics -- 6.5 Conclusion -- References -- Chapter 7 Sensing and Transduction -- 7.1 Introduction -- 7.2 Transduction Defined -- 7.3 Select Examples of Sensing and Transduction Approaches -- 7.3.1 Optical -- 7.3.2 Mass-based and Spectroscopic Methods -- 7.3.3 Piezoelectric -- 7.3.4 Electrochemical -- 7.3.5 Micro-electromechanical Systems (MEMS) -- 7.3.6 Magnetic -- 7.3.7 Emerging Transduction Technologies -- 7.3.8 Microfabrication and Lab on a Chip Technologies -- 7.5 Biomimetic and Bio-inspired Sensing Technologies -- 7.5.1 SMART Materials in Sensing and Transduction -- 7.5.2 Sensing Technologies -- 7.6 Conclusion -- References -- Chapter 8 Energy and Power -- 8.1 Introduction -- 8.2 Energy Sources -- 8.2.1 Energy in a Natural System -- 8.2.2 Solar Energy -- 8.2.3 Photosynthesis -- 8.2.4 Artificial Photosynthesis -- 8.2.5 Fuel Cells -- 8.3 Towards Autonomy: Self-sustaining Systems -- 8.4 Space Exploration -- 8.5 Conclusion -- References -- Chapter 9 Processing and Communications -- 9.1 Introduction -- 9.2 Processing and Communication
  • Bio-inspired Materials and Sensing Systems -- Contents -- Chapter 1 A View on Bio-inspiration -- 1.1 Introduction -- 1.2 Context/Motivation -- 1.2.1 Bio-inspiration -- 1.2.2 Biotechnology vs. Bio-inspiration -- 1.3 Challenges for Science and Technology -- 1.4 The Need for a Framework -- 1.4.1 Biological Principles -- 1.5 Science and Technology to Mission Capability -- 1.6 Conclusion -- References -- Chapter 2 Investment Approaches -- 2.1 Introduction -- 2.2 Effect of Globalization on Investment -- 2.3 Overview of Investment by Key Countries -- 2.3.1 United States -- 2.3.2 United Kingdom -- 2.3.3 European Union -- 2.3.4 China -- 2.3.5 India -- 2.3.6 Japan -- 2.3.7 Russia -- 2.4 Future Trends -- 2.5 Conclusion -- References -- Chapter 3 Conceptual Approach -- 3.1 Introduction -- 3.2 Operational Requirements and Concepts of Operation -- 3.3 Conceptual Goal -- 3.4 Enabling Technologies -- 3.4.1 Collection and Sampling -- 3.4.2 Structures -- 3.4.3 Receptors and Surfaces -- 3.4.4 Sensing and Transduction -- 3.4.5 Processing and Communication -- 3.4.6 Power and Energy -- 3.5 A Larger Vision of the SASS Concept -- 3.6 Conclusion -- References -- Chapter 4 Structure -- 4.1 Introduction -- 4.2 Themes in Biological Systems -- 4.2.1 Hierarchical Structures -- 4.2.2 Bottom-up vs. Top-down Approach to Fabrication -- 4.2.3 Multifunctional Materials -- 4.3 Structural Parameters -- 4.3.1 Scale -- 4.3.2 Function -- 4.4 Biological Joining Technologies -- 4.4.1 Velcro -- 4.4.2 Toe Pad Adhesion -- 4.5 Self-healing Materials -- 4.6 Superhydrophobic Surfaces -- 4.7 Materials -- 4.8 Conclusion -- References -- Chapter 5 Collection and Sampling -- 5.1 Introduction -- 5.2 Approaches to Collection and Sampling -- 5.2.1 Collection and Sampling Tools -- 5.3 Natural Sampling System - Olfaction -- 5.4 Bio-inspired Sampling System - Electronic Nose
  • 9.2.1 Parallel Computing -- 9.2.2 Natural Computing -- 9.3 Molecular Computing -- 9.4 Cognition -- 9.5 Applications -- 9.5.1 Sensor Networks -- 9.6 Insect Sensory Systems -- 9.6.1 Collision Avoidance/Motion Detection Systems -- 9.7 Bio-inspired Networking -- 9.7.1 Bio-inspired Network Routing Protocols -- 9.8 Issues -- 9.9 Conclusion -- References -- Chapter 10 The SASS Approach -- 10.1 Introduction -- 10.2 Design and Manufacture -- 10.2.1 Bioengineering -- 10.2.2 Additive Manufacturing -- 10.3 The SASS Approach -- 10.3.1 Component Level -- 10.3.2 System Level -- 10.3.3 System of Systems Level -- 10.3.4 Range of Applications -- 10.4 Societal Implications -- 10.5 Concluding Remarks -- References -- Subject Index