High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science & technology Vol. 58; no. 4; pp. 2027 - 2037
Main Authors Rogers, Jesse D., Leusch, Frederic D.L., Chambers, Bryant, Daniels, Kevin D., Everett, Logan J., Judson, Richard, Maruya, Keith, Mehinto, Alvine C., Neale, Peta A., Paul-Friedman, Katie, Thomas, Russell, Snyder, Shane A., Harrill, Joshua
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 30.01.2024
American Chemical Society (ACS)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
AbstractList The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
Not provided.
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.
Author Thomas, Russell
Daniels, Kevin D.
Harrill, Joshua
Leusch, Frederic D.L.
Rogers, Jesse D.
Chambers, Bryant
Snyder, Shane A.
Mehinto, Alvine C.
Maruya, Keith
Neale, Peta A.
Paul-Friedman, Katie
Everett, Logan J.
Judson, Richard
AuthorAffiliation Stantec Inc
Oak Ridge Institute for Science and Education
Australian Rivers Institute, School of Environment and Science
Center for Computational Toxicology and Exposure, Office of Research and Development
Nanyang Environment & Water Research Institute (NEWRI)
Griffith University
AuthorAffiliation_xml – name: Center for Computational Toxicology and Exposure, Office of Research and Development
– name: Oak Ridge Institute for Science and Education
– name: Stantec Inc
– name: Griffith University
– name: Nanyang Environment & Water Research Institute (NEWRI)
– name: Australian Rivers Institute, School of Environment and Science
– name: 5 Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA
– name: 6 Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
– name: 1 Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
– name: 2 Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
– name: 4 Stantec Inc., 3133 W Frye Rd Suite 300, Chandler, AZ 85226, USA
– name: 3 Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia
Author_xml – sequence: 1
  givenname: Jesse D.
  orcidid: 0000-0001-6667-2342
  surname: Rogers
  fullname: Rogers, Jesse D.
  email: rogers.jesse@epa.gov
  organization: Oak Ridge Institute for Science and Education
– sequence: 2
  givenname: Frederic D.L.
  orcidid: 0000-0002-6934-4587
  surname: Leusch
  fullname: Leusch, Frederic D.L.
  organization: Griffith University
– sequence: 3
  givenname: Bryant
  surname: Chambers
  fullname: Chambers, Bryant
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
– sequence: 4
  givenname: Kevin D.
  surname: Daniels
  fullname: Daniels, Kevin D.
  organization: Stantec Inc
– sequence: 5
  givenname: Logan J.
  orcidid: 0000-0002-9713-6099
  surname: Everett
  fullname: Everett, Logan J.
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
– sequence: 6
  givenname: Richard
  surname: Judson
  fullname: Judson, Richard
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
– sequence: 7
  givenname: Keith
  surname: Maruya
  fullname: Maruya, Keith
– sequence: 8
  givenname: Alvine C.
  surname: Mehinto
  fullname: Mehinto, Alvine C.
– sequence: 9
  givenname: Peta A.
  orcidid: 0000-0002-4418-1654
  surname: Neale
  fullname: Neale, Peta A.
  organization: Griffith University
– sequence: 10
  givenname: Katie
  orcidid: 0000-0002-2710-1691
  surname: Paul-Friedman
  fullname: Paul-Friedman, Katie
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
– sequence: 11
  givenname: Russell
  orcidid: 0000-0002-2340-0301
  surname: Thomas
  fullname: Thomas, Russell
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
– sequence: 12
  givenname: Shane A.
  orcidid: 0000-0003-2709-9840
  surname: Snyder
  fullname: Snyder, Shane A.
  organization: Nanyang Environment & Water Research Institute (NEWRI)
– sequence: 13
  givenname: Joshua
  orcidid: 0000-0003-4317-6391
  surname: Harrill
  fullname: Harrill, Joshua
  organization: Center for Computational Toxicology and Exposure, Office of Research and Development
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38235672$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/2581448$$D View this record in Osti.gov
BookMark eNp1Ul1rFDEUDVKx2-qzbxLsiyCzzcckm3mStlZbKCiyom8hm0l2UmaSNclU6683w25LLfTpQnLOueeeew_Ang_eAPAaozlGBB8rneYm5TnVaMEIewZmmBFUMcHwHpghhGnVUP5zHxykdI0QIhSJF2CfCkIZX5AZ-Hvh1l217GIY191mzHAZlU86uk0Og9MJBgt_qGwiPP-To9I5wY8mm6l-M-2osws-QefhqQt9WDutenhSXm9cvoW_Xe527GU0Kg_GZ_g1Bm1SMukleG5Vn8yrXT0E3z-dL88uqqsvny_PTq4qVQuWK1NbpRva8kZRUyvMVpwLbJtGE0EIQsKqMnpr-YoqjPmqVVa3pCa6QLVllh6CD1vdzbgaTKuLiah6uYluUPFWBuXk_z_edXIdbiTGCJWYaFF4u1UIKTuZtCsBdDp4X3KQhAlc16KA3u3axPBrLEuRg0va9L3yJoxJkgbzGjUYT3pHj6DXYYy-hFBQBHFeiwUpqDcPfd8bvlteAbAtQMeQUjRWFmdq2kgZw_USIzkdiSxHIqcmuyMpvONHvDvppxnvt4zp497rU-h_00_R7g
CitedBy_id crossref_primary_10_1002_bdr2_2395
crossref_primary_10_1093_etojnl_vgaf022
crossref_primary_10_1016_j_jece_2024_112879
crossref_primary_10_1093_etojnl_vgaf050
Cites_doi 10.1039/C5EW00115C
10.1016/j.envpol.2021.117928
10.1038/nature08460
10.1016/j.jenvman.2021.113549
10.1016/j.canlet.2019.03.043
10.1021/acs.est.7b00012
10.1016/j.jhazmat.2019.121712
10.1016/j.watres.2011.05.032
10.1002/ieam.1702
10.1186/s12302-019-0192-2
10.1016/j.watres.2013.08.024
10.1016/j.ecoenv.2010.11.010
10.1038/s41598-019-43671-z
10.2166/wst.2012.520
10.1016/j.envpol.2017.10.033
10.1002/em.22378
10.1016/j.scitotenv.2020.144750
10.1002/ieam.1483
10.1021/acs.est.9b06379
10.1016/j.watres.2017.12.078
10.1021/acs.est.0c00662
10.1016/j.envint.2016.12.014
10.1021/acs.est.8b05304
10.1021/es403899t
10.1016/j.scitotenv.2019.134297
10.1016/j.envint.2014.05.025
10.1016/j.envint.2021.107033
10.1016/j.celrep.2021.109015
10.1038/onc.2017.199
10.1007/s12672-011-0082-6
10.3389/fonc.2022.861807
10.1016/j.chemosphere.2011.02.017
10.1016/j.scitotenv.2010.09.026
10.1186/s12302-018-0148-y
10.1016/j.watres.2015.06.050
10.1021/acs.est.7b02648
10.1016/j.scitotenv.2020.136748
10.1016/j.watres.2018.11.039
10.1016/j.reprotox.2019.07.007
10.1074/jbc.M109.075770
10.1021/es302126t
10.1093/toxsci/kfab009
10.1073/pnas.2113947119
10.1016/j.watres.2013.10.056
10.1021/es0101227
10.1101/cshperspect.a034017
10.1126/sciadv.add9468
10.1016/j.watres.2015.05.020
10.1016/j.watres.2013.11.030
10.1021/acs.est.9b02990
10.1371/journal.pone.0178302
10.1016/j.watres.2018.04.009
10.1016/j.watres.2014.04.043
10.2147/OTT.S248492
ContentType Journal Article
Copyright 2024 American Chemical Society
Copyright American Chemical Society Jan 30, 2024
Copyright_xml – notice: 2024 American Chemical Society
– notice: Copyright American Chemical Society Jan 30, 2024
CorporateAuthor Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
CorporateAuthor_xml – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
OTOTI
5PM
DOI 10.1021/acs.est.3c07525
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environment Abstracts
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE


Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 2037
ExternalDocumentID PMC11003563
2581448
38235672
10_1021_acs_est_3c07525
a712171975
Genre Journal Article
GrantInformation_xml – fundername: Intramural EPA
  grantid: EPA999999
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
55A
5GY
5VS
63O
6TJ
7~N
85S
AABXI
ABFRP
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
AEESW
AENEX
AFEFF
AFRAH
AGHSJ
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CS3
EBS
ED~
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YZZ
ZCA
53G
AAHBH
AAYXX
ABBLG
ABLBI
ADUKH
CITATION
CUPRZ
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7ST
7T7
7U7
8FD
C1K
FR3
P64
SOI
7X8
OTOTI
5PM
ID FETCH-LOGICAL-a485t-e4fac93d69a3e4a15b6681f99c2822008fa752df6b3a116bdafcd242ca15cf5f3
IEDL.DBID ACS
ISSN 0013-936X
1520-5851
IngestDate Thu Aug 21 18:38:14 EDT 2025
Mon Aug 25 02:20:59 EDT 2025
Fri Jul 11 06:09:55 EDT 2025
Mon Jun 30 12:08:02 EDT 2025
Mon Jul 21 05:52:41 EDT 2025
Tue Jul 01 04:11:34 EDT 2025
Thu Apr 24 23:06:56 EDT 2025
Wed Jan 31 06:55:20 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords differentially expressed genes
recycled water
MCF7
water cycle
water quality
high throughput transcriptomics
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a485t-e4fac93d69a3e4a15b6681f99c2822008fa752df6b3a116bdafcd242ca15cf5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0014664
None
USDOE Office of Science (SC)
ORCID 0000-0002-9713-6099
0000-0003-4317-6391
0000-0002-2340-0301
0000-0002-2710-1691
0000-0003-2709-9840
0000-0002-4418-1654
0000-0001-6667-2342
0000-0002-6934-4587
0000000327099840
0000000343176391
0000000244181654
0000000223400301
0000000166672342
0000000269344587
0000000297136099
0000000227101691
OpenAccessLink https://doi.org/10.5281/zenodo.15120010
PMID 38235672
PQID 2920664872
PQPubID 45412
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11003563
osti_scitechconnect_2581448
proquest_miscellaneous_2916409113
proquest_journals_2920664872
pubmed_primary_38235672
crossref_citationtrail_10_1021_acs_est_3c07525
crossref_primary_10_1021_acs_est_3c07525
acs_journals_10_1021_acs_est_3c07525
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-30
PublicationDateYYYYMMDD 2024-01-30
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Easton
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ. Sci. Technol
PublicationYear 2024
Publisher American Chemical Society
American Chemical Society (ACS)
Publisher_xml – name: American Chemical Society
– name: American Chemical Society (ACS)
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
(ref1/cit1) 2019
ref44/cit44
ref7/cit7
References_xml – ident: ref24/cit24
  doi: 10.1039/C5EW00115C
– ident: ref17/cit17
  doi: 10.1016/j.envpol.2021.117928
– ident: ref29/cit29
  doi: 10.1038/nature08460
– volume-title: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420)
  year: 2019
  ident: ref1/cit1
– ident: ref51/cit51
  doi: 10.1016/j.jenvman.2021.113549
– ident: ref32/cit32
  doi: 10.1016/j.canlet.2019.03.043
– ident: ref39/cit39
  doi: 10.1021/acs.est.7b00012
– ident: ref3/cit3
  doi: 10.1016/j.jhazmat.2019.121712
– ident: ref19/cit19
  doi: 10.1016/j.watres.2011.05.032
– ident: ref11/cit11
  doi: 10.1002/ieam.1702
– ident: ref9/cit9
  doi: 10.1186/s12302-019-0192-2
– ident: ref38/cit38
  doi: 10.1016/j.watres.2013.08.024
– ident: ref53/cit53
  doi: 10.1016/j.ecoenv.2010.11.010
– ident: ref18/cit18
  doi: 10.1038/s41598-019-43671-z
– ident: ref10/cit10
  doi: 10.2166/wst.2012.520
– ident: ref45/cit45
  doi: 10.1016/j.envpol.2017.10.033
– ident: ref47/cit47
  doi: 10.1002/em.22378
– ident: ref52/cit52
  doi: 10.1016/j.scitotenv.2020.144750
– ident: ref12/cit12
  doi: 10.1002/ieam.1483
– ident: ref6/cit6
  doi: 10.1021/acs.est.9b06379
– ident: ref50/cit50
  doi: 10.1016/j.watres.2017.12.078
– ident: ref25/cit25
  doi: 10.1021/acs.est.0c00662
– ident: ref42/cit42
  doi: 10.1016/j.envint.2016.12.014
– ident: ref20/cit20
  doi: 10.1021/acs.est.8b05304
– ident: ref16/cit16
  doi: 10.1021/es403899t
– ident: ref21/cit21
  doi: 10.1016/j.scitotenv.2019.134297
– ident: ref2/cit2
  doi: 10.1016/j.envint.2014.05.025
– ident: ref7/cit7
  doi: 10.1016/j.envint.2021.107033
– ident: ref36/cit36
  doi: 10.1016/j.celrep.2021.109015
– ident: ref33/cit33
  doi: 10.1038/onc.2017.199
– ident: ref31/cit31
  doi: 10.1007/s12672-011-0082-6
– ident: ref34/cit34
  doi: 10.3389/fonc.2022.861807
– ident: ref48/cit48
  doi: 10.1016/j.chemosphere.2011.02.017
– ident: ref43/cit43
  doi: 10.1016/j.scitotenv.2010.09.026
– ident: ref15/cit15
  doi: 10.1186/s12302-018-0148-y
– ident: ref41/cit41
  doi: 10.1016/j.watres.2015.06.050
– ident: ref26/cit26
  doi: 10.1021/acs.est.7b02648
– ident: ref5/cit5
  doi: 10.1016/j.scitotenv.2020.136748
– ident: ref54/cit54
  doi: 10.1016/j.watres.2018.11.039
– ident: ref40/cit40
  doi: 10.1016/j.reprotox.2019.07.007
– ident: ref55/cit55
  doi: 10.1074/jbc.M109.075770
– ident: ref49/cit49
  doi: 10.1021/es302126t
– ident: ref27/cit27
  doi: 10.1093/toxsci/kfab009
– ident: ref4/cit4
  doi: 10.1073/pnas.2113947119
– ident: ref22/cit22
  doi: 10.1016/j.watres.2013.10.056
– ident: ref8/cit8
  doi: 10.1021/es0101227
– ident: ref30/cit30
  doi: 10.1101/cshperspect.a034017
– ident: ref37/cit37
  doi: 10.1126/sciadv.add9468
– ident: ref14/cit14
  doi: 10.1016/j.watres.2015.05.020
– ident: ref46/cit46
  doi: 10.1016/j.watres.2013.11.030
– ident: ref44/cit44
  doi: 10.1021/acs.est.9b02990
– ident: ref28/cit28
  doi: 10.1371/journal.pone.0178302
– ident: ref13/cit13
  doi: 10.1016/j.watres.2018.04.009
– ident: ref23/cit23
  doi: 10.1016/j.watres.2014.04.043
– ident: ref35/cit35
  doi: 10.2147/OTT.S248492
SSID ssj0002308
Score 2.4736779
Snippet The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and...
Not provided.
SourceID pubmedcentral
osti
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2027
SubjectTerms Bioassays
Biological activity
Biological Assay
Breast carcinoma
Cell proliferation
Chemical pollution
Contaminants
Cost analysis
Drinking water
Ecological risk assessment
Engineering
Environmental Monitoring
Environmental Sciences & Ecology
Gene expression
Gene Expression Profiling
Humans
Industrial pollution
Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants
Quality assessment
Reclaimed water
Surface water
Transcriptomics
Water monitoring
Water Pollutants, Chemical - analysis
Water Purification
Water Quality
Water quality management
Water supply
Water treatment
Xenoestrogens
Title High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes
URI http://dx.doi.org/10.1021/acs.est.3c07525
https://www.ncbi.nlm.nih.gov/pubmed/38235672
https://www.proquest.com/docview/2920664872
https://www.proquest.com/docview/2916409113
https://www.osti.gov/biblio/2581448
https://pubmed.ncbi.nlm.nih.gov/PMC11003563
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgucCBR6EQWpCReuCSUMePOMdV2ariwAG2Ym-R7diiKspWdVaq-us7k2Sz3ZYKrhvPKnFmPN9kZr4h5ICVEnC5V9gcgwFK4VJrDUuVFrbkoci966otvquTU_FtIRcbsui7GfycfTEuZnBAZtyBd8vlY_IkV7rAOGt69HM8dAFJ6_WwgpKrxcjic-8P0A25uOWGJkswp79BzLuVkrdcz_GLvmgrdoyFWHFynq1am7nr-3yO_36ql-T5AEDptNeYV-SRb3bIs1u0hDtkd7bpfoOlg_nH1-Qaq0LSeT_a52LV0s7TdecONjdHugz0F4DXSzq7arH9KtKvHrMUkf5AithOx-lZQ_sJmKgfdOr6-RUUvwgP0vN19Tsd-hh8fENOj2fzo5N0GN6QGqFlm3oRjCt5rUrDvTBMWqU0C2XpsHAVkEcw8OB1UJYbxpStTXA14AUHS12Qge-SSbNs_DtCkXWtlsJYobgoABRa7C0qvRYmHBpWJOQAtrMajC9WXV49ZxX-CHtcDXuckGz9yis3EKDjHI4_Dwt8HgUueu6Ph5fuoQ5VAFuQe9dhkZJrq1xqCFh1QvbXqrW5SxwTphTEi3lCPo2XwbgxY2Mav1zhGohmAdExnpC3vSaOd4IJXKlQWm_p6LgAicO3rzRnvzsCcaQJBFn-_v82bo88zQHK4YcnfrhPJu3lyn8AKNbaj50R3gDP7DFn
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8gB74GMwCBtgpD3wklLHiZs8VqNTgTEJ6ETfItuxxcSUTksqof313DkfXQeT4DXxRY5z9v0ud_c7gAOeJYjLraTiGHJQxibUWvFQprHOhBtH1vhsixM5O40_LpLFFoy6WhicRIVPqnwQf80uwN_RNTwnh8KgkYuSO3AXoUhE7tbk8Ft_9iKgTrueBZmQi57M548HkDUy1YY1GixxV_0Nad5MmLxmgY4ewpd-7j7x5OdwVeuhubpB6_g_L_cIHrRwlE0a_XkMW7bcge1rJIU7sDtd18Lh0PYwqJ7AFeWIhPOm0c_Fqmbe7vlTiEqdK7Z07DtC2Us2_VVTMVbF3luKWVTsKxHGeo1nZyVr-mGStrCJabpZMPo_3ErPu1x41lY12OopnB5N54ezsG3lEKo4TerQxk6ZTBQyU8LGiidaypS7LDOUxoo4xCl88cJJLRTnUhfKmQLRg8GhxiVO7MKgXJb2OTDiYCuSWOlYiniMEFFTpVFm01i5keLjAA5wOfN2K1a5j7JHPKeLuMZ5u8YBDLsvn5uWDp26cpzfLvC2F7homEBuH7pHqpQjiCEmXkMpS6bOoyRF9zUNYL_TsPUsqWmYlOg9RgG86W_jVqf4jSrtckVj0LdFfMdFAM8ahexnQuHcRJJ0uqGq_QCiEd-8U5798HTiRBqIsuLFvy3ca7g3m38-zo8_nHzag_sRgjz6JSVG-zCoL1f2JYK0Wr_y-_I3AJQ5yA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BkRA88DEYhA0w0h54SZnj2E0eq63V-NCEoBV9i2zHFhMorZZUQvvruUvcbB1MgtfEFznOne_n3N3vAA54LhGXO0XFMXRAGdnYGM1jlaUmF36UONtmW5yqk3n6YSEXoSiMamFwEjU-qW6D-GTVq9IHhgH-jq7jXjkUFh1dIm_DHQra0ZFrfPS1338RVGebvgW5UIue0OePB5BHsvWWRxos0bL-hjavJ01e8ULThzDv598mn_wYrhsztBfXqB3_9wUfwYMAS9m406PHcMtVO3D_ClnhDuxOLmvicGjYFOoncEG5IvGsa_izWjes9X_tbkQlzzVbevYNIe05m_xqqCirZseOYhc1-0LEsa3ms7OKdX0xSWvY2HZdLRj9Jw7Ss01OPAvVDa5-CvPpZHZ0EoeWDrFOM9nELvXa5qJUuRYu1VwapTLu89xSOiviEa_xxUuvjNCcK1Nqb0tEERaHWi-92IVBtazcc2DExVbKVJtUiXSEUNFQxVHuslT7Q81HERzgchbBJOuijbYnvKCLuMZFWOMIhpuvX9hAi07dOX7eLPC2F1h1jCA3D90jdSoQzBAjr6XUJdsUiczwGJtFsL_RsstZUvMwpfAUmUTwpr-NJk9xHF255ZrG4BkXcR4XETzrlLKfCYV1pSLpbEtd-wFEJ759pzr73tKKE3kgyooX_7Zwr-Hu5-Np8en96cc9uJcg1qM_U-JwHwbN-dq9RKzWmFetaf4G45o8Sw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Throughput+Transcriptomics+of+Water+Extracts+Detects+Reductions+in+Biological+Activity+with+Water+Treatment+Processes&rft.jtitle=Environmental+science+%26+technology&rft.au=Rogers%2C+Jesse+D.&rft.au=Leusch%2C+Frederic+D.L.&rft.au=Chambers%2C+Bryant&rft.au=Daniels%2C+Kevin+D.&rft.date=2024-01-30&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=4&rft.spage=2027&rft.epage=2037&rft_id=info:doi/10.1021%2Facs.est.3c07525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_3c07525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon