High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes
The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro...
Saved in:
Published in | Environmental science & technology Vol. 58; no. 4; pp. 2027 - 2037 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
30.01.2024
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality. |
---|---|
AbstractList | The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality. The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality. The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality. Not provided. The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality. |
Author | Thomas, Russell Daniels, Kevin D. Harrill, Joshua Leusch, Frederic D.L. Rogers, Jesse D. Chambers, Bryant Snyder, Shane A. Mehinto, Alvine C. Maruya, Keith Neale, Peta A. Paul-Friedman, Katie Everett, Logan J. Judson, Richard |
AuthorAffiliation | Stantec Inc Oak Ridge Institute for Science and Education Australian Rivers Institute, School of Environment and Science Center for Computational Toxicology and Exposure, Office of Research and Development Nanyang Environment & Water Research Institute (NEWRI) Griffith University |
AuthorAffiliation_xml | – name: Center for Computational Toxicology and Exposure, Office of Research and Development – name: Oak Ridge Institute for Science and Education – name: Stantec Inc – name: Griffith University – name: Nanyang Environment & Water Research Institute (NEWRI) – name: Australian Rivers Institute, School of Environment and Science – name: 5 Southern California Coastal Water Research Project Authority, 3535 Harbor Boulevard, Suite 110, Costa Mesa, CA 92626, USA – name: 6 Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore – name: 1 Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA – name: 2 Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA – name: 4 Stantec Inc., 3133 W Frye Rd Suite 300, Chandler, AZ 85226, USA – name: 3 Australian Rivers Institute, School of Environment and Science, Griffith University, Southport Qld 4222, Australia |
Author_xml | – sequence: 1 givenname: Jesse D. orcidid: 0000-0001-6667-2342 surname: Rogers fullname: Rogers, Jesse D. email: rogers.jesse@epa.gov organization: Oak Ridge Institute for Science and Education – sequence: 2 givenname: Frederic D.L. orcidid: 0000-0002-6934-4587 surname: Leusch fullname: Leusch, Frederic D.L. organization: Griffith University – sequence: 3 givenname: Bryant surname: Chambers fullname: Chambers, Bryant organization: Center for Computational Toxicology and Exposure, Office of Research and Development – sequence: 4 givenname: Kevin D. surname: Daniels fullname: Daniels, Kevin D. organization: Stantec Inc – sequence: 5 givenname: Logan J. orcidid: 0000-0002-9713-6099 surname: Everett fullname: Everett, Logan J. organization: Center for Computational Toxicology and Exposure, Office of Research and Development – sequence: 6 givenname: Richard surname: Judson fullname: Judson, Richard organization: Center for Computational Toxicology and Exposure, Office of Research and Development – sequence: 7 givenname: Keith surname: Maruya fullname: Maruya, Keith – sequence: 8 givenname: Alvine C. surname: Mehinto fullname: Mehinto, Alvine C. – sequence: 9 givenname: Peta A. orcidid: 0000-0002-4418-1654 surname: Neale fullname: Neale, Peta A. organization: Griffith University – sequence: 10 givenname: Katie orcidid: 0000-0002-2710-1691 surname: Paul-Friedman fullname: Paul-Friedman, Katie organization: Center for Computational Toxicology and Exposure, Office of Research and Development – sequence: 11 givenname: Russell orcidid: 0000-0002-2340-0301 surname: Thomas fullname: Thomas, Russell organization: Center for Computational Toxicology and Exposure, Office of Research and Development – sequence: 12 givenname: Shane A. orcidid: 0000-0003-2709-9840 surname: Snyder fullname: Snyder, Shane A. organization: Nanyang Environment & Water Research Institute (NEWRI) – sequence: 13 givenname: Joshua orcidid: 0000-0003-4317-6391 surname: Harrill fullname: Harrill, Joshua organization: Center for Computational Toxicology and Exposure, Office of Research and Development |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38235672$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/2581448$$D View this record in Osti.gov |
BookMark | eNp1Ul1rFDEUDVKx2-qzbxLsiyCzzcckm3mStlZbKCiyom8hm0l2UmaSNclU6683w25LLfTpQnLOueeeew_Ang_eAPAaozlGBB8rneYm5TnVaMEIewZmmBFUMcHwHpghhGnVUP5zHxykdI0QIhSJF2CfCkIZX5AZ-Hvh1l217GIY191mzHAZlU86uk0Og9MJBgt_qGwiPP-To9I5wY8mm6l-M-2osws-QefhqQt9WDutenhSXm9cvoW_Xe527GU0Kg_GZ_g1Bm1SMukleG5Vn8yrXT0E3z-dL88uqqsvny_PTq4qVQuWK1NbpRva8kZRUyvMVpwLbJtGE0EIQsKqMnpr-YoqjPmqVVa3pCa6QLVllh6CD1vdzbgaTKuLiah6uYluUPFWBuXk_z_edXIdbiTGCJWYaFF4u1UIKTuZtCsBdDp4X3KQhAlc16KA3u3axPBrLEuRg0va9L3yJoxJkgbzGjUYT3pHj6DXYYy-hFBQBHFeiwUpqDcPfd8bvlteAbAtQMeQUjRWFmdq2kgZw_USIzkdiSxHIqcmuyMpvONHvDvppxnvt4zp497rU-h_00_R7g |
CitedBy_id | crossref_primary_10_1002_bdr2_2395 crossref_primary_10_1093_etojnl_vgaf022 crossref_primary_10_1016_j_jece_2024_112879 crossref_primary_10_1093_etojnl_vgaf050 |
Cites_doi | 10.1039/C5EW00115C 10.1016/j.envpol.2021.117928 10.1038/nature08460 10.1016/j.jenvman.2021.113549 10.1016/j.canlet.2019.03.043 10.1021/acs.est.7b00012 10.1016/j.jhazmat.2019.121712 10.1016/j.watres.2011.05.032 10.1002/ieam.1702 10.1186/s12302-019-0192-2 10.1016/j.watres.2013.08.024 10.1016/j.ecoenv.2010.11.010 10.1038/s41598-019-43671-z 10.2166/wst.2012.520 10.1016/j.envpol.2017.10.033 10.1002/em.22378 10.1016/j.scitotenv.2020.144750 10.1002/ieam.1483 10.1021/acs.est.9b06379 10.1016/j.watres.2017.12.078 10.1021/acs.est.0c00662 10.1016/j.envint.2016.12.014 10.1021/acs.est.8b05304 10.1021/es403899t 10.1016/j.scitotenv.2019.134297 10.1016/j.envint.2014.05.025 10.1016/j.envint.2021.107033 10.1016/j.celrep.2021.109015 10.1038/onc.2017.199 10.1007/s12672-011-0082-6 10.3389/fonc.2022.861807 10.1016/j.chemosphere.2011.02.017 10.1016/j.scitotenv.2010.09.026 10.1186/s12302-018-0148-y 10.1016/j.watres.2015.06.050 10.1021/acs.est.7b02648 10.1016/j.scitotenv.2020.136748 10.1016/j.watres.2018.11.039 10.1016/j.reprotox.2019.07.007 10.1074/jbc.M109.075770 10.1021/es302126t 10.1093/toxsci/kfab009 10.1073/pnas.2113947119 10.1016/j.watres.2013.10.056 10.1021/es0101227 10.1101/cshperspect.a034017 10.1126/sciadv.add9468 10.1016/j.watres.2015.05.020 10.1016/j.watres.2013.11.030 10.1021/acs.est.9b02990 10.1371/journal.pone.0178302 10.1016/j.watres.2018.04.009 10.1016/j.watres.2014.04.043 10.2147/OTT.S248492 |
ContentType | Journal Article |
Copyright | 2024 American Chemical Society Copyright American Chemical Society Jan 30, 2024 |
Copyright_xml | – notice: 2024 American Chemical Society – notice: Copyright American Chemical Society Jan 30, 2024 |
CorporateAuthor | Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) |
CorporateAuthor_xml | – name: Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 OTOTI 5PM |
DOI | 10.1021/acs.est.3c07525 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
EISSN | 1520-5851 |
EndPage | 2037 |
ExternalDocumentID | PMC11003563 2581448 38235672 10_1021_acs_est_3c07525 a712171975 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Intramural EPA grantid: EPA999999 |
GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 55A 5GY 5VS 63O 6TJ 7~N 85S AABXI ABFRP ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV AEESW AENEX AFEFF AFRAH AGHSJ AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 EBS ED~ F5P GGK GNL IH9 JG~ LG6 MS~ MW2 PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YZZ ZCA 53G AAHBH AAYXX ABBLG ABLBI ADUKH CITATION CUPRZ CGR CUY CVF ECM EIF NPM 7QO 7ST 7T7 7U7 8FD C1K FR3 P64 SOI 7X8 OTOTI 5PM |
ID | FETCH-LOGICAL-a485t-e4fac93d69a3e4a15b6681f99c2822008fa752df6b3a116bdafcd242ca15cf5f3 |
IEDL.DBID | ACS |
ISSN | 0013-936X 1520-5851 |
IngestDate | Thu Aug 21 18:38:14 EDT 2025 Mon Aug 25 02:20:59 EDT 2025 Fri Jul 11 06:09:55 EDT 2025 Mon Jun 30 12:08:02 EDT 2025 Mon Jul 21 05:52:41 EDT 2025 Tue Jul 01 04:11:34 EDT 2025 Thu Apr 24 23:06:56 EDT 2025 Wed Jan 31 06:55:20 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | differentially expressed genes recycled water MCF7 water cycle water quality high throughput transcriptomics |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a485t-e4fac93d69a3e4a15b6681f99c2822008fa752df6b3a116bdafcd242ca15cf5f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0014664 None USDOE Office of Science (SC) |
ORCID | 0000-0002-9713-6099 0000-0003-4317-6391 0000-0002-2340-0301 0000-0002-2710-1691 0000-0003-2709-9840 0000-0002-4418-1654 0000-0001-6667-2342 0000-0002-6934-4587 0000000327099840 0000000343176391 0000000244181654 0000000223400301 0000000166672342 0000000269344587 0000000297136099 0000000227101691 |
OpenAccessLink | https://doi.org/10.5281/zenodo.15120010 |
PMID | 38235672 |
PQID | 2920664872 |
PQPubID | 45412 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_11003563 osti_scitechconnect_2581448 proquest_miscellaneous_2916409113 proquest_journals_2920664872 pubmed_primary_38235672 crossref_citationtrail_10_1021_acs_est_3c07525 crossref_primary_10_1021_acs_est_3c07525 acs_journals_10_1021_acs_est_3c07525 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-30 |
PublicationDateYYYYMMDD | 2024-01-30 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Easton |
PublicationTitle | Environmental science & technology |
PublicationTitleAlternate | Environ. Sci. Technol |
PublicationYear | 2024 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 (ref1/cit1) 2019 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref24/cit24 doi: 10.1039/C5EW00115C – ident: ref17/cit17 doi: 10.1016/j.envpol.2021.117928 – ident: ref29/cit29 doi: 10.1038/nature08460 – volume-title: World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) year: 2019 ident: ref1/cit1 – ident: ref51/cit51 doi: 10.1016/j.jenvman.2021.113549 – ident: ref32/cit32 doi: 10.1016/j.canlet.2019.03.043 – ident: ref39/cit39 doi: 10.1021/acs.est.7b00012 – ident: ref3/cit3 doi: 10.1016/j.jhazmat.2019.121712 – ident: ref19/cit19 doi: 10.1016/j.watres.2011.05.032 – ident: ref11/cit11 doi: 10.1002/ieam.1702 – ident: ref9/cit9 doi: 10.1186/s12302-019-0192-2 – ident: ref38/cit38 doi: 10.1016/j.watres.2013.08.024 – ident: ref53/cit53 doi: 10.1016/j.ecoenv.2010.11.010 – ident: ref18/cit18 doi: 10.1038/s41598-019-43671-z – ident: ref10/cit10 doi: 10.2166/wst.2012.520 – ident: ref45/cit45 doi: 10.1016/j.envpol.2017.10.033 – ident: ref47/cit47 doi: 10.1002/em.22378 – ident: ref52/cit52 doi: 10.1016/j.scitotenv.2020.144750 – ident: ref12/cit12 doi: 10.1002/ieam.1483 – ident: ref6/cit6 doi: 10.1021/acs.est.9b06379 – ident: ref50/cit50 doi: 10.1016/j.watres.2017.12.078 – ident: ref25/cit25 doi: 10.1021/acs.est.0c00662 – ident: ref42/cit42 doi: 10.1016/j.envint.2016.12.014 – ident: ref20/cit20 doi: 10.1021/acs.est.8b05304 – ident: ref16/cit16 doi: 10.1021/es403899t – ident: ref21/cit21 doi: 10.1016/j.scitotenv.2019.134297 – ident: ref2/cit2 doi: 10.1016/j.envint.2014.05.025 – ident: ref7/cit7 doi: 10.1016/j.envint.2021.107033 – ident: ref36/cit36 doi: 10.1016/j.celrep.2021.109015 – ident: ref33/cit33 doi: 10.1038/onc.2017.199 – ident: ref31/cit31 doi: 10.1007/s12672-011-0082-6 – ident: ref34/cit34 doi: 10.3389/fonc.2022.861807 – ident: ref48/cit48 doi: 10.1016/j.chemosphere.2011.02.017 – ident: ref43/cit43 doi: 10.1016/j.scitotenv.2010.09.026 – ident: ref15/cit15 doi: 10.1186/s12302-018-0148-y – ident: ref41/cit41 doi: 10.1016/j.watres.2015.06.050 – ident: ref26/cit26 doi: 10.1021/acs.est.7b02648 – ident: ref5/cit5 doi: 10.1016/j.scitotenv.2020.136748 – ident: ref54/cit54 doi: 10.1016/j.watres.2018.11.039 – ident: ref40/cit40 doi: 10.1016/j.reprotox.2019.07.007 – ident: ref55/cit55 doi: 10.1074/jbc.M109.075770 – ident: ref49/cit49 doi: 10.1021/es302126t – ident: ref27/cit27 doi: 10.1093/toxsci/kfab009 – ident: ref4/cit4 doi: 10.1073/pnas.2113947119 – ident: ref22/cit22 doi: 10.1016/j.watres.2013.10.056 – ident: ref8/cit8 doi: 10.1021/es0101227 – ident: ref30/cit30 doi: 10.1101/cshperspect.a034017 – ident: ref37/cit37 doi: 10.1126/sciadv.add9468 – ident: ref14/cit14 doi: 10.1016/j.watres.2015.05.020 – ident: ref46/cit46 doi: 10.1016/j.watres.2013.11.030 – ident: ref44/cit44 doi: 10.1021/acs.est.9b02990 – ident: ref28/cit28 doi: 10.1371/journal.pone.0178302 – ident: ref13/cit13 doi: 10.1016/j.watres.2018.04.009 – ident: ref23/cit23 doi: 10.1016/j.watres.2014.04.043 – ident: ref35/cit35 doi: 10.2147/OTT.S248492 |
SSID | ssj0002308 |
Score | 2.4736779 |
Snippet | The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and... Not provided. |
SourceID | pubmedcentral osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2027 |
SubjectTerms | Bioassays Biological activity Biological Assay Breast carcinoma Cell proliferation Chemical pollution Contaminants Cost analysis Drinking water Ecological risk assessment Engineering Environmental Monitoring Environmental Sciences & Ecology Gene expression Gene Expression Profiling Humans Industrial pollution Occurrence, Fate, and Transport of Aquatic and Terrestrial Contaminants Quality assessment Reclaimed water Surface water Transcriptomics Water monitoring Water Pollutants, Chemical - analysis Water Purification Water Quality Water quality management Water supply Water treatment Xenoestrogens |
Title | High-Throughput Transcriptomics of Water Extracts Detects Reductions in Biological Activity with Water Treatment Processes |
URI | http://dx.doi.org/10.1021/acs.est.3c07525 https://www.ncbi.nlm.nih.gov/pubmed/38235672 https://www.proquest.com/docview/2920664872 https://www.proquest.com/docview/2916409113 https://www.osti.gov/biblio/2581448 https://pubmed.ncbi.nlm.nih.gov/PMC11003563 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZgucCBR6EQWpCReuCSUMePOMdV2ariwAG2Ym-R7diiKspWdVaq-us7k2Sz3ZYKrhvPKnFmPN9kZr4h5ICVEnC5V9gcgwFK4VJrDUuVFrbkoci966otvquTU_FtIRcbsui7GfycfTEuZnBAZtyBd8vlY_IkV7rAOGt69HM8dAFJ6_WwgpKrxcjic-8P0A25uOWGJkswp79BzLuVkrdcz_GLvmgrdoyFWHFynq1am7nr-3yO_36ql-T5AEDptNeYV-SRb3bIs1u0hDtkd7bpfoOlg_nH1-Qaq0LSeT_a52LV0s7TdecONjdHugz0F4DXSzq7arH9KtKvHrMUkf5AithOx-lZQ_sJmKgfdOr6-RUUvwgP0vN19Tsd-hh8fENOj2fzo5N0GN6QGqFlm3oRjCt5rUrDvTBMWqU0C2XpsHAVkEcw8OB1UJYbxpStTXA14AUHS12Qge-SSbNs_DtCkXWtlsJYobgoABRa7C0qvRYmHBpWJOQAtrMajC9WXV49ZxX-CHtcDXuckGz9yis3EKDjHI4_Dwt8HgUueu6Ph5fuoQ5VAFuQe9dhkZJrq1xqCFh1QvbXqrW5SxwTphTEi3lCPo2XwbgxY2Mav1zhGohmAdExnpC3vSaOd4IJXKlQWm_p6LgAicO3rzRnvzsCcaQJBFn-_v82bo88zQHK4YcnfrhPJu3lyn8AKNbaj50R3gDP7DFn |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8gB74GMwCBtgpD3wklLHiZs8VqNTgTEJ6ETfItuxxcSUTksqof313DkfXQeT4DXxRY5z9v0ud_c7gAOeJYjLraTiGHJQxibUWvFQprHOhBtH1vhsixM5O40_LpLFFoy6WhicRIVPqnwQf80uwN_RNTwnh8KgkYuSO3AXoUhE7tbk8Ft_9iKgTrueBZmQi57M548HkDUy1YY1GixxV_0Nad5MmLxmgY4ewpd-7j7x5OdwVeuhubpB6_g_L_cIHrRwlE0a_XkMW7bcge1rJIU7sDtd18Lh0PYwqJ7AFeWIhPOm0c_Fqmbe7vlTiEqdK7Z07DtC2Us2_VVTMVbF3luKWVTsKxHGeo1nZyVr-mGStrCJabpZMPo_3ErPu1x41lY12OopnB5N54ezsG3lEKo4TerQxk6ZTBQyU8LGiidaypS7LDOUxoo4xCl88cJJLRTnUhfKmQLRg8GhxiVO7MKgXJb2OTDiYCuSWOlYiniMEFFTpVFm01i5keLjAA5wOfN2K1a5j7JHPKeLuMZ5u8YBDLsvn5uWDp26cpzfLvC2F7homEBuH7pHqpQjiCEmXkMpS6bOoyRF9zUNYL_TsPUsqWmYlOg9RgG86W_jVqf4jSrtckVj0LdFfMdFAM8ahexnQuHcRJJ0uqGq_QCiEd-8U5798HTiRBqIsuLFvy3ca7g3m38-zo8_nHzag_sRgjz6JSVG-zCoL1f2JYK0Wr_y-_I3AJQ5yA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9BkRA88DEYhA0w0h54SZnj2E0eq63V-NCEoBV9i2zHFhMorZZUQvvruUvcbB1MgtfEFznOne_n3N3vAA54LhGXO0XFMXRAGdnYGM1jlaUmF36UONtmW5yqk3n6YSEXoSiMamFwEjU-qW6D-GTVq9IHhgH-jq7jXjkUFh1dIm_DHQra0ZFrfPS1338RVGebvgW5UIue0OePB5BHsvWWRxos0bL-hjavJ01e8ULThzDv598mn_wYrhsztBfXqB3_9wUfwYMAS9m406PHcMtVO3D_ClnhDuxOLmvicGjYFOoncEG5IvGsa_izWjes9X_tbkQlzzVbevYNIe05m_xqqCirZseOYhc1-0LEsa3ms7OKdX0xSWvY2HZdLRj9Jw7Ss01OPAvVDa5-CvPpZHZ0EoeWDrFOM9nELvXa5qJUuRYu1VwapTLu89xSOiviEa_xxUuvjNCcK1Nqb0tEERaHWi-92IVBtazcc2DExVbKVJtUiXSEUNFQxVHuslT7Q81HERzgchbBJOuijbYnvKCLuMZFWOMIhpuvX9hAi07dOX7eLPC2F1h1jCA3D90jdSoQzBAjr6XUJdsUiczwGJtFsL_RsstZUvMwpfAUmUTwpr-NJk9xHF255ZrG4BkXcR4XETzrlLKfCYV1pSLpbEtd-wFEJ759pzr73tKKE3kgyooX_7Zwr-Hu5-Np8en96cc9uJcg1qM_U-JwHwbN-dq9RKzWmFetaf4G45o8Sw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Throughput+Transcriptomics+of+Water+Extracts+Detects+Reductions+in+Biological+Activity+with+Water+Treatment+Processes&rft.jtitle=Environmental+science+%26+technology&rft.au=Rogers%2C+Jesse+D.&rft.au=Leusch%2C+Frederic+D.L.&rft.au=Chambers%2C+Bryant&rft.au=Daniels%2C+Kevin+D.&rft.date=2024-01-30&rft.issn=0013-936X&rft.eissn=1520-5851&rft.volume=58&rft.issue=4&rft.spage=2027&rft.epage=2037&rft_id=info:doi/10.1021%2Facs.est.3c07525&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_est_3c07525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-936X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-936X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-936X&client=summon |