Influence of Renal Function Estimation on Pharmacokinetic Modeling of Vancomycin in Elderly Patients
Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal functi...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 59; no. 6; pp. 2986 - 2994 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.06.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m
2
), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (
P
= 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. |
---|---|
AbstractList | Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m2), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m 2 ), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models ( P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: CockcroftGault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG-and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients. |
Author | Neely, Michael N. Glatard, Anaïs Jelliffe, Roger W. Bourguignon, Laurent Maire, Pascal Goutelle, Sylvain |
Author_xml | – sequence: 1 givenname: Anaïs surname: Glatard fullname: Glatard, Anaïs organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France – sequence: 2 givenname: Laurent surname: Bourguignon fullname: Bourguignon, Laurent organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France – sequence: 3 givenname: Roger W. surname: Jelliffe fullname: Jelliffe, Roger W. organization: Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, California, USA – sequence: 4 givenname: Pascal surname: Maire fullname: Maire, Pascal organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France – sequence: 5 givenname: Michael N. surname: Neely fullname: Neely, Michael N. organization: Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, California, USA – sequence: 6 givenname: Sylvain surname: Goutelle fullname: Goutelle, Sylvain organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France, Faculté de Pharmacie de Lyon—ISPB, Université Lyon 1, Lyon, France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25753640$$D View this record in MEDLINE/PubMed https://univ-lyon1.hal.science/hal-02044772$$DView record in HAL |
BookMark | eNqNkd9rFDEQx4NU7PX0zWfZRwW3Jtkkm30RjuNqCycWUV9DNpntpWaTdrNbuP_e3F2tWhSEgfz6fGcm8z1BRyEGQOglwaeEUPlusVieYkYqWhL2BM0IbmQpeCOO0AxjIUomMTtGJyld43zmDX6GjimveSUYniF7ETo_QTBQxK74DEH74mwKZnQxFKs0ul7vtzkuN3rotYnfXYDRmeJjtOBduNoJv-lgYr81LhQ5Vt7C4LfFZdZCGNNz9LTTPsGL-3WOvp6tvizPy_WnDxfLxbrUTPKxlLhucSugYbauWost1FxgbVlneVNTqDg3AqTWwIygleGWtAazWmgpQJCqmqP3h7w3U9uDNbn2oL26GfIvhq2K2qk_X4LbqKt4pxirKGG7BG8OCTaPZOeLtdrdYYoZq2t6RzL7-r7YEG8nSKPqXTLgvQ4Qp6RIjUmevRT_gQpJqMgo_dWBTj1V13EasiOZwGpntspmq73ZKrc7R69-_-5Dwz_dzcDbA2CGmNIA3QPyj3z0EW7cuLc_D8v5v4t-AHY_xIg |
CitedBy_id | crossref_primary_10_1053_j_ackd_2017_10_003 crossref_primary_10_1080_17425255_2018_1528226 crossref_primary_10_1080_17512433_2023_2295009 crossref_primary_10_1097_FTD_0000000000000359 crossref_primary_10_1093_ageing_afz135 crossref_primary_10_1097_FTD_0000000000000644 crossref_primary_10_3390_antibiotics9070393 crossref_primary_10_3343_alm_2024_0218 crossref_primary_10_1080_17512433_2019_1637253 crossref_primary_10_4103_sjhs_sjhs_72_20 crossref_primary_10_1128_AAC_02408_20 crossref_primary_10_1038_s41598_024_78558_1 crossref_primary_10_1111_jcpt_12995 crossref_primary_10_1177_1179559X18777767 crossref_primary_10_1007_s40266_016_0420_z crossref_primary_10_1111_fcp_12241 crossref_primary_10_1016_j_pedneo_2021_06_018 crossref_primary_10_1002_cpt_2341 |
Cites_doi | 10.2165/11596390-000000000-00000 10.1128/AAC.05634-11 10.1159/000180580 10.1053/j.ajkd.2012.06.016 10.1097/00007691-199410000-00013 10.1128/AAC.25.4.433 10.1111/imj.12036 10.1093/ndt/gfm289 10.2146/ajhp080071 10.1016/j.addr.2014.05.016 10.1002/phar.1282 10.1002/j.1552-4604.1993.tb01922.x 10.1111/j.1365-2710.2008.01015.x 10.1681/ASN.2004070549 10.1159/000065221 10.7326/0003-4819-94-3-343 10.7326/0003-4819-150-9-200905050-00006 10.1136/bmjopen-2013-003343 10.5414/CPP48525 10.1097/00007691-199804000-00003 10.1177/0310057X1404200203 10.1345/aph.1Q757 10.1097/00007691-199003000-00017 10.7326/0003-4819-145-4-200608150-00004 10.1046/j.1365-2389.2003.51330.x 10.1128/AAC.01653-13 10.2146/ajhp060047 10.1373/clinchem.2006.077180 10.7326/0003-4819-130-6-199903160-00002 10.1136/bmjopen-2013-002686 10.1038/ki.2011.322 10.1128/AAC.34.6.1165 10.1007/s10928-013-9302-8 10.1128/AAC.32.6.848 10.2146/ajhp080434 10.1053/j.ajkd.2009.03.008 10.1038/clpt.1991.208 |
ContentType | Journal Article |
Copyright | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T7 8FD C1K FR3 P64 1XC 5PM |
DOI | 10.1128/AAC.04132-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Vancomycin Kinetics and Renal Function Estimation, Glatard et al Vancomycin Kinetics and Renal Function Estimation |
EISSN | 1098-6596 |
EndPage | 2994 |
ExternalDocumentID | PMC4432143 oai_HAL_hal_02044772v1 04132-14 25753640 10_1128_AAC_04132_14 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM068968 |
GroupedDBID | --- .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAGFI AAYXX ACGFO ADBBV AENEX AGNAY AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 J5H K-O KQ8 L7B LSO MVM NEJ O9- OK1 P2P RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZGI ZXP ~A~ CGR CUY CVF ECM EIF NPM - 0R 55 AAPBV ABFLS ADACO BXI HZ RHF ZA5 7X8 7T7 8FD C1K FR3 P64 1XC 5PM |
ID | FETCH-LOGICAL-a485t-807b0b6e94d73bd0de7560ad4fd5972e355c6e8aae4c623c5d1bc0476a86e6133 |
ISSN | 0066-4804 1098-6596 |
IngestDate | Thu Aug 21 14:10:15 EDT 2025 Fri May 09 12:19:10 EDT 2025 Thu Jul 10 22:52:12 EDT 2025 Fri Jul 11 15:14:32 EDT 2025 Tue Dec 28 13:59:16 EST 2021 Thu Apr 03 07:09:13 EDT 2025 Thu Apr 24 23:00:00 EDT 2025 Tue Jul 01 04:32:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Copyright © 2015, American Society for Microbiology. All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a485t-807b0b6e94d73bd0de7560ad4fd5972e355c6e8aae4c623c5d1bc0476a86e6133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC4432143 Citation Glatard A, Bourguignon L, Jelliffe RW, Maire P, Neely MN, Goutelle S. 2015. Influence of renal function estimation on pharmacokinetic modeling of vancomycin in elderly patients. Antimicrob Agents Chemother 59:2986–2994. doi:10.1128/AAC.04132-14. |
ORCID | 0000-0002-1853-2932 0000-0002-0226-0346 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4432143 |
PMID | 25753640 |
PQID | 1681260862 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4432143 hal_primary_oai_HAL_hal_02044772v1 proquest_miscellaneous_1701480861 proquest_miscellaneous_1681260862 asm2_journals_10_1128_AAC_04132_14 pubmed_primary_25753640 crossref_primary_10_1128_AAC_04132_14 crossref_citationtrail_10_1128_AAC_04132_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Gehan EA (e_1_3_3_19_2) 1970; 54 Du Bois D (e_1_3_3_21_2) 1989; 5 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 Conil JM (e_1_3_3_36_2) 2014; 42 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 Haute Autorité de Santé (e_1_3_3_43_2) 2011 e_1_3_3_24_2 e_1_3_3_23_2 National Kidney Disease Education Program (e_1_3_3_41_2) 2010 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 Capitano B (e_1_3_3_2_2) 2008 e_1_3_3_3_2 e_1_3_3_42_2 12834524 - J Am Geriatr Soc. 2003 Jul;51(7):1012-7 6732213 - Antimicrob Agents Chemother. 1984 Apr;25(4):433-7 21918498 - Kidney Int. 2011 Dec;80(11):1122-37 2393277 - Antimicrob Agents Chemother. 1990 Jun;34(6):1165-71 8227461 - J Clin Pharmacol. 1993 Oct;33(10):918-22 17332152 - Clin Chem. 2007 Apr;53(4):766-72 19139480 - Am J Health Syst Pharm. 2009 Jan 15;66(2):154-61 17106010 - Am J Health Syst Pharm. 2006 Dec 1;63(23):2365-70 16908915 - Ann Intern Med. 2006 Aug 15;145(4):247-54 24910345 - Adv Drug Deliv Rev. 2014 Nov 20;77:50-7 1752113 - Clin Pharmacol Ther. 1991 Dec;50(6):688-94 24580382 - Anaesth Intensive Care. 2014 Mar;42(2):178-84 24078751 - BMJ Open. 2013 Sep 27;3(9):e003343 22889713 - Am J Kidney Dis. 2013 Jan;61(1):57-66 19446939 - Am J Kidney Dis. 2009 Jul;54(1):33-42 22149255 - Clin Pharmacokinet. 2012 Jan 1;51(1):1-13 7846752 - Ther Drug Monit. 1994 Oct;16(5):513-8 10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70 19414839 - Ann Intern Med. 2009 May 5;150(9):604-12 15659562 - J Am Soc Nephrol. 2005 Mar;16(3):763-73 20650044 - Int J Clin Pharmacol Ther. 2010 Aug;48(8):525-33 1244564 - Nephron. 1976;16(1):31-41 12169862 - Am J Nephrol. 2002 Jul-Aug;22(4):320-4 5527019 - Cancer Chemother Rep. 1970 Aug;54(4):225-35 6101256 - Ann Intern Med. 1981 Mar;94(3):343-6 23404393 - J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99 24165176 - Antimicrob Agents Chemother. 2014;58(1):309-16 9558127 - Ther Drug Monit. 1998 Apr;20(2):139-48 17575316 - Nephrol Dial Transplant. 2007 Oct;22(10):2894-9 19583680 - J Clin Pharm Ther. 2009 Aug;34(4):465-72 23185970 - Intern Med J. 2013 Feb;43(2):110-9 19106348 - Am J Health Syst Pharm. 2009 Jan 1;66(1):82-98 2520314 - Nutrition. 1989 Sep-Oct;5(5):303-11; discussion 312-3 22932303 - Ann Pharmacother. 2012 Sep;46(9):1174-87 23585393 - BMJ Open. 2013 Apr 11;3(4):null 3415206 - Antimicrob Agents Chemother. 1988 Jun;32(6):848-52 2315979 - Ther Drug Monit. 1990 Mar;12(2):206-9 22290966 - Antimicrob Agents Chemother. 2012 Apr;56(4):1862-9 23625813 - Pharmacotherapy. 2013 Sep;33(9):912-21 Birt, JK, Chandler, MH (B9) 1990; 12 Pai, MP, Neely, M, Rodvold, KA, Lodise, TP (B25) 2014 Sánchez, JL, Dominguez, AR, Lane, JR, Anderson, PO, Capparelli, EV, Cornejo-Bravo, JM (B36) 2010; 48 Cockcroft, DW, Gault, MH (B16) 1976; 16 Ducharme, MP, Slaughter, RL, Edwards, DJ (B8) 1994; 16 Neely, MN, Youn, G, Jones, B, Jelliffe, RW, Drusano, GL, Rodvold, KA, Lodise, TP (B4) 2014; 58 Charhon, N, Neely, MN, Bourguignon, L, Maire, P, Jelliffe, RW, Goutelle, S (B26) 2012; 56 Moellering, RC, Krogstad, DJ, Greenblatt, DJ (B6) 1981; 94 Dowling, TC, Wang, ES, Ferrucci, L, Sorkin, JD (B31) 2013; 33 Matzke, GR, McGory, RW, Halstenson, CE, Keane, WF (B5) 1984; 25 Lamb, EJ, Webb, MC, Simpson, DE, Coakley, AJ, Newman, DJ, O'Riordan, SE (B27) 2003; 51 Murphy, JE, Gillespie, DE, Bateman, CV (B10) 2006; 63 Gehan, EA, George, SL (B18) 1970; 54 Guay, DR, Vance-Bryan, K, Gilliland, S, Rodvold, K, Rotschafer, J (B2) 1993; 33 Levey, AS, Stevens, LA, Schmid, CH, Zhang, YL, Castro, AF, Feldman, HI, Kusek, JW, Eggers, P, Van Lente, F, Greene, T, Coresh, J (B13) 2009; 150 Maccallum, PK, Mathur, R, Hull, SA, Saja, K, Green, L, Morris, JK, Ashman, N (B30) 2013; 3 Helldén, A, Odar-Cederlof, I, Nilsson, G, Sjoviker, S, Soderstrom, A, Euler, M, Ohlen, G, Bergman, U (B29) 2013; 3 (B40) 2010 Gill, J, Malyuk, R, Djurdjev, O, Levin, A (B28) 2007; 22 Rodvold, KA, Blum, RA, Fischer, JH, Zokufa, HZ, Rotschafer, JC, Crossley, KB, Riff, LJ (B7) 1988; 32 Rybak, M, Lomaestro, B, Rotschafer, JC, Moellering, R, Craig, W, Billeter, M, Dalovisio, JR, Levine, DP (B24) 2009; 66 Levey, AS, Bosch, JP, Lewis, JB, Greene, T, Rogers, N, Roth, D (B11) 1999; 130 Du Bois, D, Du Bois, EF (B20) 1989; 5 Capitano, B, Frye, RF, Matzke, GR, Murphy, JE (B1) 2008 Levey, AS, Coresh, J, Greene, T, Stevens, LA, Zhang, YL, Hendriksen, S, Kusek, JW, Van Lente, F (B12) 2006; 145 Jelliffe, R (B17) 2002; 22 Matzke, GR, Aronoff, GR, Atkinson, AJ, Bennett, WM, Decker, BS, Eckardt, KU, Golper, T, Grabe, DW, Kasiske, B, Keller, F, Kielstein, JT, Mehta, R, Mueller, BA, Pasko, DA, Schaefer, F, Sica, DA, Inker, LA, Umans, JG, Murray, P (B39) 2011; 80 Yasuhara, M, Iga, T, Zenda, H, Okumura, K, Oguma, T, Yano, Y, Hori, R (B38) 1998; 20 Moranville, MP, Jennings, HR (B32) 2009; 66 Froissart, M, Rossert, J, Jacquot, C, Paillard, M, Houillier, P (B15) 2005; 16 (B42) 2011 Kilbride, HS, Stevens, PE, Eaglestone, G, Knight, S, Carter, JL, Delaney, MP, Farmer, CK, Irving, J, O'Riordan, SE, Dalton, RN, Lamb, EJ (B14) 2013; 61 Conil, JM, Georges, B, Breden, A, Ruiz, S, Cougot, P, Fourcade, O, Saivin, S (B35) 2014; 42 Macias, WL, Mueller, BA, Scarim, SK (B37) 1991; 50 Avent, ML, Vaska, VL, Rogers, BA, Cheng, AC, van Hal, SJ, Holmes, NE, Howden, BP, Paterson, DL (B3) 2013; 43 Tsuji, Y, Hiraki, Y, Mizoguchi, A, Sadoh, S, Sonemoto, E, Kamimura, H, Karube, Y (B34) 2009; 34 Tatarinova, T, Neely, M, Bartroff, J, van Guilder, M, Yamada, W, Bayard, D, Jelliffe, R, Leary, R, Chubatiuk, A, Schumitzky, A (B21) 2013; 40 Levey, AS, Coresh, J, Greene, T, Marsh, J, Stevens, LA, Kusek, JW, Van Lente, F (B19) 2007; 53 Marsot, A, Boulamery, A, Bruguerolle, B, Simon, N (B23) 2012; 51 Stevens, LA, Nolin, TD, Richardson, MM, Feldman, HI, Lewis, JB, Rodby, R, Townsend, R, Okparavero, A, Zhang, YL, Schmid, CH, Levey, AS (B41) 2009; 54 Hurst, AK, Yoshinaga, MA, Mitani, GH, Foo, KA, Jelliffe, RW, Harrison, EC (B22) 1990; 34 Park, EJ, Wu, K, Mi, Z, Dong, T, Lawrence, JP, Ko, CW, Huang, SM, Zhang, L, Crentsil, V, Zhang, J, Xu, NN (B33) 2012; 46 |
References_xml | – start-page: 329 volume-title: Clinical pharmacokinetics year: 2008 ident: e_1_3_3_2_2 – volume: 5 start-page: 303 year: 1989 ident: e_1_3_3_21_2 article-title: A formula to estimate the approximate surface area if height and weight be known. 1916 publication-title: Nutrition – ident: e_1_3_3_24_2 doi: 10.2165/11596390-000000000-00000 – ident: e_1_3_3_27_2 doi: 10.1128/AAC.05634-11 – ident: e_1_3_3_17_2 doi: 10.1159/000180580 – ident: e_1_3_3_15_2 doi: 10.1053/j.ajkd.2012.06.016 – ident: e_1_3_3_9_2 doi: 10.1097/00007691-199410000-00013 – ident: e_1_3_3_6_2 doi: 10.1128/AAC.25.4.433 – ident: e_1_3_3_4_2 doi: 10.1111/imj.12036 – ident: e_1_3_3_29_2 doi: 10.1093/ndt/gfm289 – ident: e_1_3_3_33_2 doi: 10.2146/ajhp080071 – ident: e_1_3_3_26_2 doi: 10.1016/j.addr.2014.05.016 – volume-title: Chronic kidney disease and drug dosing: information for providers year: 2010 ident: e_1_3_3_41_2 – ident: e_1_3_3_32_2 doi: 10.1002/phar.1282 – ident: e_1_3_3_3_2 doi: 10.1002/j.1552-4604.1993.tb01922.x – ident: e_1_3_3_35_2 doi: 10.1111/j.1365-2710.2008.01015.x – ident: e_1_3_3_16_2 doi: 10.1681/ASN.2004070549 – ident: e_1_3_3_18_2 doi: 10.1159/000065221 – ident: e_1_3_3_7_2 doi: 10.7326/0003-4819-94-3-343 – ident: e_1_3_3_14_2 doi: 10.7326/0003-4819-150-9-200905050-00006 – ident: e_1_3_3_31_2 doi: 10.1136/bmjopen-2013-003343 – ident: e_1_3_3_37_2 doi: 10.5414/CPP48525 – ident: e_1_3_3_39_2 doi: 10.1097/00007691-199804000-00003 – volume: 42 start-page: 178 year: 2014 ident: e_1_3_3_36_2 article-title: Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: superiority of the Chronic Kidney Disease Epidemiology Collaboration equation? publication-title: Anaesth Intensive Care doi: 10.1177/0310057X1404200203 – ident: e_1_3_3_34_2 doi: 10.1345/aph.1Q757 – ident: e_1_3_3_10_2 doi: 10.1097/00007691-199003000-00017 – ident: e_1_3_3_13_2 doi: 10.7326/0003-4819-145-4-200608150-00004 – ident: e_1_3_3_28_2 doi: 10.1046/j.1365-2389.2003.51330.x – ident: e_1_3_3_5_2 doi: 10.1128/AAC.01653-13 – ident: e_1_3_3_11_2 doi: 10.2146/ajhp060047 – ident: e_1_3_3_20_2 doi: 10.1373/clinchem.2006.077180 – volume-title: Evaluation du débit de filtration glomérulaire et du dosage de la créatininémie dans le diagnostic de la maladie rénale chronique chez l'adulte year: 2011 ident: e_1_3_3_43_2 – ident: e_1_3_3_12_2 doi: 10.7326/0003-4819-130-6-199903160-00002 – ident: e_1_3_3_30_2 doi: 10.1136/bmjopen-2013-002686 – ident: e_1_3_3_40_2 doi: 10.1038/ki.2011.322 – ident: e_1_3_3_23_2 doi: 10.1128/AAC.34.6.1165 – ident: e_1_3_3_22_2 doi: 10.1007/s10928-013-9302-8 – ident: e_1_3_3_8_2 doi: 10.1128/AAC.32.6.848 – ident: e_1_3_3_25_2 doi: 10.2146/ajhp080434 – ident: e_1_3_3_42_2 doi: 10.1053/j.ajkd.2009.03.008 – volume: 54 start-page: 225 year: 1970 ident: e_1_3_3_19_2 article-title: Estimation of human body surface area from height and weight publication-title: Cancer Chemother Rep – ident: e_1_3_3_38_2 doi: 10.1038/clpt.1991.208 – reference: 8227461 - J Clin Pharmacol. 1993 Oct;33(10):918-22 – reference: 17575316 - Nephrol Dial Transplant. 2007 Oct;22(10):2894-9 – reference: 2520314 - Nutrition. 1989 Sep-Oct;5(5):303-11; discussion 312-3 – reference: 12169862 - Am J Nephrol. 2002 Jul-Aug;22(4):320-4 – reference: 5527019 - Cancer Chemother Rep. 1970 Aug;54(4):225-35 – reference: 22290966 - Antimicrob Agents Chemother. 2012 Apr;56(4):1862-9 – reference: 19139480 - Am J Health Syst Pharm. 2009 Jan 15;66(2):154-61 – reference: 19583680 - J Clin Pharm Ther. 2009 Aug;34(4):465-72 – reference: 23185970 - Intern Med J. 2013 Feb;43(2):110-9 – reference: 23404393 - J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99 – reference: 22889713 - Am J Kidney Dis. 2013 Jan;61(1):57-66 – reference: 23625813 - Pharmacotherapy. 2013 Sep;33(9):912-21 – reference: 17332152 - Clin Chem. 2007 Apr;53(4):766-72 – reference: 9558127 - Ther Drug Monit. 1998 Apr;20(2):139-48 – reference: 19446939 - Am J Kidney Dis. 2009 Jul;54(1):33-42 – reference: 2393277 - Antimicrob Agents Chemother. 1990 Jun;34(6):1165-71 – reference: 19414839 - Ann Intern Med. 2009 May 5;150(9):604-12 – reference: 6732213 - Antimicrob Agents Chemother. 1984 Apr;25(4):433-7 – reference: 7846752 - Ther Drug Monit. 1994 Oct;16(5):513-8 – reference: 16908915 - Ann Intern Med. 2006 Aug 15;145(4):247-54 – reference: 12834524 - J Am Geriatr Soc. 2003 Jul;51(7):1012-7 – reference: 23585393 - BMJ Open. 2013 Apr 11;3(4):null – reference: 17106010 - Am J Health Syst Pharm. 2006 Dec 1;63(23):2365-70 – reference: 15659562 - J Am Soc Nephrol. 2005 Mar;16(3):763-73 – reference: 20650044 - Int J Clin Pharmacol Ther. 2010 Aug;48(8):525-33 – reference: 24910345 - Adv Drug Deliv Rev. 2014 Nov 20;77:50-7 – reference: 6101256 - Ann Intern Med. 1981 Mar;94(3):343-6 – reference: 1244564 - Nephron. 1976;16(1):31-41 – reference: 21918498 - Kidney Int. 2011 Dec;80(11):1122-37 – reference: 19106348 - Am J Health Syst Pharm. 2009 Jan 1;66(1):82-98 – reference: 24580382 - Anaesth Intensive Care. 2014 Mar;42(2):178-84 – reference: 2315979 - Ther Drug Monit. 1990 Mar;12(2):206-9 – reference: 1752113 - Clin Pharmacol Ther. 1991 Dec;50(6):688-94 – reference: 22932303 - Ann Pharmacother. 2012 Sep;46(9):1174-87 – reference: 10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70 – reference: 24078751 - BMJ Open. 2013 Sep 27;3(9):e003343 – reference: 24165176 - Antimicrob Agents Chemother. 2014;58(1):309-16 – reference: 22149255 - Clin Pharmacokinet. 2012 Jan 1;51(1):1-13 – reference: 3415206 - Antimicrob Agents Chemother. 1988 Jun;32(6):848-52 – volume: 43 start-page: 110 year: 2013 end-page: 119 ident: B3 article-title: Vancomycin therapeutics and monitoring: a contemporary approach publication-title: Intern Med J doi: 10.1111/imj.12036 – volume: 61 start-page: 57 year: 2013 end-page: 66 ident: B14 article-title: Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2012.06.016 – volume: 33 start-page: 912 year: 2013 end-page: 921 ident: B31 article-title: Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore longitudinal study on aging: impact on renal drug dosing publication-title: Pharmacotherapy doi: 10.1002/phar.1282 – volume: 51 start-page: 1012 year: 2003 end-page: 1017 ident: B27 article-title: Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement? publication-title: J Am Geriatr Soc doi: 10.1046/j.1365-2389.2003.51330.x – start-page: 329 year: 2008 end-page: 344 ident: B1 article-title: Vancomycin publication-title: Clinical pharmacokinetics ;American Society of Health-System Pharmacists ;Bethesda, MD – year: 2014 ident: B25 article-title: Innovative approaches to optimizing the delivery of vancomycin in individual patients publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2014.05.016 – volume: 48 start-page: 525 year: 2010 end-page: 533 ident: B36 article-title: Population pharmacokinetics of vancomycin in adult and geriatric patients: comparison of eleven approaches publication-title: Int J Clin Pharmacol Ther doi: 10.5414/CPP48525 – volume: 25 start-page: 433 year: 1984 end-page: 437 ident: B5 article-title: Pharmacokinetics of vancomycin in patients with various degrees of renal function publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.25.4.433 – volume: 54 start-page: 33 year: 2009 end-page: 42 ident: B41 article-title: Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations publication-title: Am J Kidney Dis doi: 10.1053/j.ajkd.2009.03.008 – volume: 22 start-page: 320 year: 2002 end-page: 324 ident: B17 article-title: Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen publication-title: Am J Nephrol doi: 10.1159/000065221 – volume: 53 start-page: 766 year: 2007 end-page: 772 ident: B19 article-title: Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values publication-title: Clin Chem doi: 10.1373/clinchem.2006.077180 – volume: 5 start-page: 303 year: 1989 end-page: 311; discussion, 312–313 ident: B20 article-title: A formula to estimate the approximate surface area if height and weight be known. 1916 publication-title: Nutrition – volume: 150 start-page: 604 year: 2009 end-page: 612 ident: B13 article-title: A new equation to estimate glomerular filtration rate publication-title: Ann Intern Med doi: 10.7326/0003-4819-150-9-200905050-00006 – volume: 130 start-page: 461 year: 1999 end-page: 470 ident: B11 article-title: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group publication-title: Ann Intern Med – volume: 51 start-page: 1 year: 2012 end-page: 13 ident: B23 article-title: Vancomycin: a review of population pharmacokinetic analyses publication-title: Clin Pharmacokinet doi: 10.2165/11596390-000000000-00000 – volume: 46 start-page: 1174 year: 2012 end-page: 1187 ident: B33 article-title: A systematic comparison of Cockcroft-Gault and modification of diet in renal disease equations for classification of kidney dysfunction and dosage adjustment publication-title: Ann Pharmacother doi: 10.1345/aph.1Q757 – volume: 22 start-page: 2894 year: 2007 end-page: 2899 ident: B28 article-title: Use of GFR equations to adjust drug doses in an elderly multi-ethnic group—a cautionary tale publication-title: Nephrol Dial Transplant doi: 10.1093/ndt/gfm289 – year: 2010 ident: B40 publication-title: Chronic kidney disease and drug dosing: information for providers ;http://nkdep.nih.gov/resources/ckd-drug-dosing-508.pdf ;National Institute of Diabetes and Digestive and Kidney Diseases ;Bethesda, MD – volume: 16 start-page: 513 year: 1994 end-page: 518 ident: B8 article-title: Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight publication-title: Ther Drug Monit doi: 10.1097/00007691-199410000-00013 – volume: 34 start-page: 465 year: 2009 end-page: 472 ident: B34 article-title: Effect of various estimates of renal function on prediction of vancomycin concentration by the population mean and Bayesian methods publication-title: J Clin Pharm Ther doi: 10.1111/j.1365-2710.2008.01015.x – volume: 80 start-page: 1122 year: 2011 end-page: 1137 ident: B39 article-title: Drug dosing consideration in patients with acute and chronic kidney disease—a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO) publication-title: Kidney Int doi: 10.1038/ki.2011.322 – volume: 66 start-page: 154 year: 2009 end-page: 161 ident: B32 article-title: Implications of using modification of diet in renal disease versus Cockcroft-Gault equations for renal dosing adjustments publication-title: Am J Health Syst Pharm doi: 10.2146/ajhp080071 – volume: 16 start-page: 763 year: 2005 end-page: 773 ident: B15 article-title: Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2004070549 – year: 2011 ident: B42 publication-title: Evaluation du débit de filtration glomérulaire et du dosage de la créatininémie dans le diagnostic de la maladie rénale chronique chez l'adulte ;http://www.has-sante.fr/portail/upload/docs/application/pdf/2011-12/rapport_dfg_creatininemie.pdf ;Saint-Denis La Plaine ;France – volume: 16 start-page: 31 year: 1976 end-page: 41 ident: B16 article-title: Prediction of creatinine clearance from serum creatinine publication-title: Nephron doi: 10.1159/000180580 – volume: 58 start-page: 309 year: 2014 end-page: 316 ident: B4 article-title: Are vancomycin trough concentrations adequate for optimal dosing? publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01653-13 – volume: 54 start-page: 225 year: 1970 end-page: 235 ident: B18 article-title: Estimation of human body surface area from height and weight publication-title: Cancer Chemother Rep – volume: 56 start-page: 1862 year: 2012 end-page: 1869 ident: B26 article-title: Comparison of four renal function estimation equations for pharmacokinetic modeling of gentamicin in geriatric patients publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.05634-11 – volume: 20 start-page: 139 year: 1998 end-page: 148 ident: B38 article-title: Population pharmacokinetics of vancomycin in Japanese adult patients publication-title: Ther Drug Monit doi: 10.1097/00007691-199804000-00003 – volume: 50 start-page: 688 year: 1991 end-page: 694 ident: B37 article-title: Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance publication-title: Clin Pharmacol Ther doi: 10.1038/clpt.1991.208 – volume: 40 start-page: 189 year: 2013 end-page: 199 ident: B21 article-title: Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian publication-title: J Pharmacokinet Pharmacodyn doi: 10.1007/s10928-013-9302-8 – volume: 145 start-page: 247 year: 2006 end-page: 254 ident: B12 article-title: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate publication-title: Ann Intern Med doi: 10.7326/0003-4819-145-4-200608150-00004 – volume: 63 start-page: 2365 year: 2006 end-page: 2370 ident: B10 article-title: Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters publication-title: Am J Health Syst Pharm doi: 10.2146/ajhp060047 – volume: 34 start-page: 1165 year: 1990 end-page: 1171 ident: B22 article-title: Application of a Bayesian method to monitor and adjust vancomycin dosage regimens publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.34.6.1165 – volume: 66 start-page: 82 year: 2009 end-page: 98 ident: B24 article-title: Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists publication-title: Am J Health Syst Pharm doi: 10.2146/ajhp080434 – volume: 42 start-page: 178 year: 2014 end-page: 184 ident: B35 article-title: Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: superiority of the Chronic Kidney Disease Epidemiology Collaboration equation? publication-title: Anaesth Intensive Care – volume: 12 start-page: 206 year: 1990 end-page: 209 ident: B9 article-title: Using clinical data to determine vancomycin dosing parameters publication-title: Ther Drug Monit doi: 10.1097/00007691-199003000-00017 – volume: 33 start-page: 918 year: 1993 end-page: 922 ident: B2 article-title: Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster publication-title: J Clin Pharmacol doi: 10.1002/j.1552-4604.1993.tb01922.x – volume: 3 start-page: e003343 year: 2013 ident: B30 article-title: Patient safety and estimation of renal function in patients prescribed new oral anticoagulants for stroke prevention in atrial fibrillation: a cross-sectional study publication-title: BMJ Open doi: 10.1136/bmjopen-2013-003343 – volume: 32 start-page: 848 year: 1988 end-page: 852 ident: B7 article-title: Vancomycin pharmacokinetics in patients with various degrees of renal function publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.32.6.848 – volume: 3 start-page: e002686 year: 2013 ident: B29 article-title: Renal function estimations and dose recommendations for dabigatran, gabapentin and valaciclovir: a data simulation study focused on the elderly publication-title: BMJ Open doi: 10.1136/bmjopen-2013-002686 – volume: 94 start-page: 343 year: 1981 end-page: 346 ident: B6 article-title: Vancomycin therapy in patients with impaired renal function: a nomogram for dosage publication-title: Ann Intern Med doi: 10.7326/0003-4819-94-3-343 |
SSID | ssj0006590 |
Score | 2.290759 |
Snippet | Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best... |
SourceID | pubmedcentral hal proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2986 |
SubjectTerms | Aged Aged, 80 and over Female Glomerular Filtration Rate - physiology Humans Kidney Function Tests Life Sciences Male Models, Theoretical Pharmacology Retrospective Studies Vancomycin Vancomycin - pharmacokinetics |
Title | Influence of Renal Function Estimation on Pharmacokinetic Modeling of Vancomycin in Elderly Patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25753640 https://journals.asm.org/doi/10.1128/AAC.04132-14 https://www.proquest.com/docview/1681260862 https://www.proquest.com/docview/1701480861 https://univ-lyon1.hal.science/hal-02044772 https://pubmed.ncbi.nlm.nih.gov/PMC4432143 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6lRSBeEIQrXFoq6Evr4GN9PUYVVagI6kMq9c1a2-skgjhRDqTwyC9nZg_bSQgCJMuK7M3ayXze_XY88w0h74CDFG4Y-pbr5rHFRMasOPY9K8oKJ3NCXrAUXQODL0H_hl3d-ret1s9G1NJ6lXazH7_NK_kfq8IxsCtmyf6DZatO4QB8BvvCHiwM-7-y8SdTYQQp30IgscR5SpoU1TOmmg-WZ3OtUP0VSCVKtMoCODrgGYMAZtNNNpFBjwLLdqPLQwmuLpvstVdCnxMp3YQSAyOZHScT48ZiqlO5GtGhfMUXOmqSyxfyl7VPHn7eaD0ZleqlP2ZnNyJwrlAltCiECv3GvOTKEzTgJi-NLzP9_2inhePXwVVdoQZa1DENfFXN1ozEWht8sj-sxkove3-8dzGHode76NowG7uWSkhtmH4-lbaHgcn3AiUMtaOvbU4dkTsAWtc1Hh89m8M92iZhwo0-NC-FQtL6yzCh8-XU3SI3R2MMrd1ft-yG3zb4zPAheaAXIrSnUPWItETZJndVadJNm9wb6KCLNjm9VuDZnNNhna23PKen9LoWPt88JnmFRzorqMQjNXikNR4pbDt4pAaP-MUajxQ2jUdq8PiE3Fx-HF70LV3Fw-Is8leodp3aaSBilodemtu5CIFl85wVOSxmXQGENwtExLlgGXDxzM-dNLNZGPAoEEA2vafkGMAonhMKM6LjpC6LYZHNPBFzJ3c4EO4AeC6zPdYhJ2iFRD-iy0SucN0oAasl0mqw0u2QM2OjJNM6-FiO5duB1u-r1nOl_3Kg3QmYu2qCou393ucEj2H6OQNkfXc65K1BQwKjOL6a46WYreFGUQYwQPfCH9qE6P2HNtDPM4Wg6noGhx0SbmFr64a2z5STsVSTZwxrlXkvDvb5ktyvH-FX5Hi1WIvXwMRX6Rv5qPwCut7ehA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+renal+function+estimation+on+pharmacokinetic+modeling+of+vancomycin+in+elderly+patients&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Glatard%2C+Ana%C3%AFs&rft.au=Bourguignon%2C+Laurent&rft.au=Jelliffe%2C+Roger+W&rft.au=Maire%2C+Pascal&rft.date=2015-06-01&rft.eissn=1098-6596&rft.volume=59&rft.issue=6&rft.spage=2986&rft_id=info:doi/10.1128%2FAAC.04132-14&rft_id=info%3Apmid%2F25753640&rft.externalDocID=25753640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |