Influence of Renal Function Estimation on Pharmacokinetic Modeling of Vancomycin in Elderly Patients

Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal functi...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 59; no. 6; pp. 2986 - 2994
Main Authors Glatard, Anaïs, Bourguignon, Laurent, Jelliffe, Roger W., Maire, Pascal, Neely, Michael N., Goutelle, Sylvain
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.06.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m 2 ), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models ( P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
AbstractList Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m2), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m 2 ), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models ( P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: CockcroftGault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG-and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best predicts vancomycin clearance has not been established yet. The objective of this study was to compare the abilities of different renal function estimation equations to describe vancomycin pharmacokinetics in elderly patients. The NPAG algorithm was used to perform population pharmacokinetic analysis of vancomycin concentrations in 78 elderly patients. Six pharmacokinetic models of vancomycin clearance were built, based on the following equations: Cockcroft-Gault (CG), Jelliffe (JEL), Modification of Diet in Renal Disease (MDRD), Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) (both in milliliters per minute per 1.73 m(2)), and modified MDRD and CKD-EPI equations (both in milliliters per minute). Goodness-of-fit and predictive performances of the six PK models were compared in a learning set (58 subjects) and a validation set (20 patients). Final analysis was performed to estimate population parameters in the entire population. In the learning step, the MDRD-based model best described the data, but the CG- and JEL-based models were the least biased. The mean weighted errors of prediction were significantly different between the six models (P = 0.0071). In the validation group, predictive performances were not significantly different. However, the use of a renal function estimation equation different from that used in the model building could significantly alter predictive performance. The final analysis showed important differences in parameter distributions and AUC estimation across the six models. This study shows that methods used to estimate renal function should not be considered interchangeable for pharmacokinetic modeling and model-based estimation of vancomycin concentrations in elderly patients.
Author Neely, Michael N.
Glatard, Anaïs
Jelliffe, Roger W.
Bourguignon, Laurent
Maire, Pascal
Goutelle, Sylvain
Author_xml – sequence: 1
  givenname: Anaïs
  surname: Glatard
  fullname: Glatard, Anaïs
  organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France
– sequence: 2
  givenname: Laurent
  surname: Bourguignon
  fullname: Bourguignon, Laurent
  organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
– sequence: 3
  givenname: Roger W.
  surname: Jelliffe
  fullname: Jelliffe, Roger W.
  organization: Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, California, USA
– sequence: 4
  givenname: Pascal
  surname: Maire
  fullname: Maire, Pascal
  organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France
– sequence: 5
  givenname: Michael N.
  surname: Neely
  fullname: Neely, Michael N.
  organization: Laboratory of Applied Pharmacokinetics, USC School of Medicine, Los Angeles, California, USA
– sequence: 6
  givenname: Sylvain
  surname: Goutelle
  fullname: Goutelle, Sylvain
  organization: Service pharmaceutique—ADCAPT, Groupement Hospitalier de Gériatrie, Hospices Civils de Lyon, Lyon, France, Laboratoire de Biométrie et Biologie Evolutive, CNRS UMR 5558, Université Lyon 1, Villeurbanne, France, Faculté de Pharmacie de Lyon—ISPB, Université Lyon 1, Lyon, France
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25753640$$D View this record in MEDLINE/PubMed
https://univ-lyon1.hal.science/hal-02044772$$DView record in HAL
BookMark eNqNkd9rFDEQx4NU7PX0zWfZRwW3Jtkkm30RjuNqCycWUV9DNpntpWaTdrNbuP_e3F2tWhSEgfz6fGcm8z1BRyEGQOglwaeEUPlusVieYkYqWhL2BM0IbmQpeCOO0AxjIUomMTtGJyld43zmDX6GjimveSUYniF7ETo_QTBQxK74DEH74mwKZnQxFKs0ul7vtzkuN3rotYnfXYDRmeJjtOBduNoJv-lgYr81LhQ5Vt7C4LfFZdZCGNNz9LTTPsGL-3WOvp6tvizPy_WnDxfLxbrUTPKxlLhucSugYbauWost1FxgbVlneVNTqDg3AqTWwIygleGWtAazWmgpQJCqmqP3h7w3U9uDNbn2oL26GfIvhq2K2qk_X4LbqKt4pxirKGG7BG8OCTaPZOeLtdrdYYoZq2t6RzL7-r7YEG8nSKPqXTLgvQ4Qp6RIjUmevRT_gQpJqMgo_dWBTj1V13EasiOZwGpntspmq73ZKrc7R69-_-5Dwz_dzcDbA2CGmNIA3QPyj3z0EW7cuLc_D8v5v4t-AHY_xIg
CitedBy_id crossref_primary_10_1053_j_ackd_2017_10_003
crossref_primary_10_1080_17425255_2018_1528226
crossref_primary_10_1080_17512433_2023_2295009
crossref_primary_10_1097_FTD_0000000000000359
crossref_primary_10_1093_ageing_afz135
crossref_primary_10_1097_FTD_0000000000000644
crossref_primary_10_3390_antibiotics9070393
crossref_primary_10_3343_alm_2024_0218
crossref_primary_10_1080_17512433_2019_1637253
crossref_primary_10_4103_sjhs_sjhs_72_20
crossref_primary_10_1128_AAC_02408_20
crossref_primary_10_1038_s41598_024_78558_1
crossref_primary_10_1111_jcpt_12995
crossref_primary_10_1177_1179559X18777767
crossref_primary_10_1007_s40266_016_0420_z
crossref_primary_10_1111_fcp_12241
crossref_primary_10_1016_j_pedneo_2021_06_018
crossref_primary_10_1002_cpt_2341
Cites_doi 10.2165/11596390-000000000-00000
10.1128/AAC.05634-11
10.1159/000180580
10.1053/j.ajkd.2012.06.016
10.1097/00007691-199410000-00013
10.1128/AAC.25.4.433
10.1111/imj.12036
10.1093/ndt/gfm289
10.2146/ajhp080071
10.1016/j.addr.2014.05.016
10.1002/phar.1282
10.1002/j.1552-4604.1993.tb01922.x
10.1111/j.1365-2710.2008.01015.x
10.1681/ASN.2004070549
10.1159/000065221
10.7326/0003-4819-94-3-343
10.7326/0003-4819-150-9-200905050-00006
10.1136/bmjopen-2013-003343
10.5414/CPP48525
10.1097/00007691-199804000-00003
10.1177/0310057X1404200203
10.1345/aph.1Q757
10.1097/00007691-199003000-00017
10.7326/0003-4819-145-4-200608150-00004
10.1046/j.1365-2389.2003.51330.x
10.1128/AAC.01653-13
10.2146/ajhp060047
10.1373/clinchem.2006.077180
10.7326/0003-4819-130-6-199903160-00002
10.1136/bmjopen-2013-002686
10.1038/ki.2011.322
10.1128/AAC.34.6.1165
10.1007/s10928-013-9302-8
10.1128/AAC.32.6.848
10.2146/ajhp080434
10.1053/j.ajkd.2009.03.008
10.1038/clpt.1991.208
ContentType Journal Article
Copyright Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
Copyright_xml – notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: Copyright © 2015, American Society for Microbiology. All Rights Reserved. 2015 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T7
8FD
C1K
FR3
P64
1XC
5PM
DOI 10.1128/AAC.04132-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
CrossRef


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Vancomycin Kinetics and Renal Function Estimation, Glatard et al
Vancomycin Kinetics and Renal Function Estimation
EISSN 1098-6596
EndPage 2994
ExternalDocumentID PMC4432143
oai_HAL_hal_02044772v1
04132-14
25753640
10_1128_AAC_04132_14
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM068968
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
RHF
ZA5
7X8
7T7
8FD
C1K
FR3
P64
1XC
5PM
ID FETCH-LOGICAL-a485t-807b0b6e94d73bd0de7560ad4fd5972e355c6e8aae4c623c5d1bc0476a86e6133
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 14:10:15 EDT 2025
Fri May 09 12:19:10 EDT 2025
Thu Jul 10 22:52:12 EDT 2025
Fri Jul 11 15:14:32 EDT 2025
Tue Dec 28 13:59:16 EST 2021
Thu Apr 03 07:09:13 EDT 2025
Thu Apr 24 23:00:00 EDT 2025
Tue Jul 01 04:32:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a485t-807b0b6e94d73bd0de7560ad4fd5972e355c6e8aae4c623c5d1bc0476a86e6133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC4432143
Citation Glatard A, Bourguignon L, Jelliffe RW, Maire P, Neely MN, Goutelle S. 2015. Influence of renal function estimation on pharmacokinetic modeling of vancomycin in elderly patients. Antimicrob Agents Chemother 59:2986–2994. doi:10.1128/AAC.04132-14.
ORCID 0000-0002-1853-2932
0000-0002-0226-0346
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4432143
PMID 25753640
PQID 1681260862
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4432143
hal_primary_oai_HAL_hal_02044772v1
proquest_miscellaneous_1701480861
proquest_miscellaneous_1681260862
asm2_journals_10_1128_AAC_04132_14
pubmed_primary_25753640
crossref_primary_10_1128_AAC_04132_14
crossref_citationtrail_10_1128_AAC_04132_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References Gehan EA (e_1_3_3_19_2) 1970; 54
Du Bois D (e_1_3_3_21_2) 1989; 5
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
Conil JM (e_1_3_3_36_2) 2014; 42
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
Haute Autorité de Santé (e_1_3_3_43_2) 2011
e_1_3_3_24_2
e_1_3_3_23_2
National Kidney Disease Education Program (e_1_3_3_41_2) 2010
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
Capitano B (e_1_3_3_2_2) 2008
e_1_3_3_3_2
e_1_3_3_42_2
12834524 - J Am Geriatr Soc. 2003 Jul;51(7):1012-7
6732213 - Antimicrob Agents Chemother. 1984 Apr;25(4):433-7
21918498 - Kidney Int. 2011 Dec;80(11):1122-37
2393277 - Antimicrob Agents Chemother. 1990 Jun;34(6):1165-71
8227461 - J Clin Pharmacol. 1993 Oct;33(10):918-22
17332152 - Clin Chem. 2007 Apr;53(4):766-72
19139480 - Am J Health Syst Pharm. 2009 Jan 15;66(2):154-61
17106010 - Am J Health Syst Pharm. 2006 Dec 1;63(23):2365-70
16908915 - Ann Intern Med. 2006 Aug 15;145(4):247-54
24910345 - Adv Drug Deliv Rev. 2014 Nov 20;77:50-7
1752113 - Clin Pharmacol Ther. 1991 Dec;50(6):688-94
24580382 - Anaesth Intensive Care. 2014 Mar;42(2):178-84
24078751 - BMJ Open. 2013 Sep 27;3(9):e003343
22889713 - Am J Kidney Dis. 2013 Jan;61(1):57-66
19446939 - Am J Kidney Dis. 2009 Jul;54(1):33-42
22149255 - Clin Pharmacokinet. 2012 Jan 1;51(1):1-13
7846752 - Ther Drug Monit. 1994 Oct;16(5):513-8
10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70
19414839 - Ann Intern Med. 2009 May 5;150(9):604-12
15659562 - J Am Soc Nephrol. 2005 Mar;16(3):763-73
20650044 - Int J Clin Pharmacol Ther. 2010 Aug;48(8):525-33
1244564 - Nephron. 1976;16(1):31-41
12169862 - Am J Nephrol. 2002 Jul-Aug;22(4):320-4
5527019 - Cancer Chemother Rep. 1970 Aug;54(4):225-35
6101256 - Ann Intern Med. 1981 Mar;94(3):343-6
23404393 - J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99
24165176 - Antimicrob Agents Chemother. 2014;58(1):309-16
9558127 - Ther Drug Monit. 1998 Apr;20(2):139-48
17575316 - Nephrol Dial Transplant. 2007 Oct;22(10):2894-9
19583680 - J Clin Pharm Ther. 2009 Aug;34(4):465-72
23185970 - Intern Med J. 2013 Feb;43(2):110-9
19106348 - Am J Health Syst Pharm. 2009 Jan 1;66(1):82-98
2520314 - Nutrition. 1989 Sep-Oct;5(5):303-11; discussion 312-3
22932303 - Ann Pharmacother. 2012 Sep;46(9):1174-87
23585393 - BMJ Open. 2013 Apr 11;3(4):null
3415206 - Antimicrob Agents Chemother. 1988 Jun;32(6):848-52
2315979 - Ther Drug Monit. 1990 Mar;12(2):206-9
22290966 - Antimicrob Agents Chemother. 2012 Apr;56(4):1862-9
23625813 - Pharmacotherapy. 2013 Sep;33(9):912-21
Birt, JK, Chandler, MH (B9) 1990; 12
Pai, MP, Neely, M, Rodvold, KA, Lodise, TP (B25) 2014
Sánchez, JL, Dominguez, AR, Lane, JR, Anderson, PO, Capparelli, EV, Cornejo-Bravo, JM (B36) 2010; 48
Cockcroft, DW, Gault, MH (B16) 1976; 16
Ducharme, MP, Slaughter, RL, Edwards, DJ (B8) 1994; 16
Neely, MN, Youn, G, Jones, B, Jelliffe, RW, Drusano, GL, Rodvold, KA, Lodise, TP (B4) 2014; 58
Charhon, N, Neely, MN, Bourguignon, L, Maire, P, Jelliffe, RW, Goutelle, S (B26) 2012; 56
Moellering, RC, Krogstad, DJ, Greenblatt, DJ (B6) 1981; 94
Dowling, TC, Wang, ES, Ferrucci, L, Sorkin, JD (B31) 2013; 33
Matzke, GR, McGory, RW, Halstenson, CE, Keane, WF (B5) 1984; 25
Lamb, EJ, Webb, MC, Simpson, DE, Coakley, AJ, Newman, DJ, O'Riordan, SE (B27) 2003; 51
Murphy, JE, Gillespie, DE, Bateman, CV (B10) 2006; 63
Gehan, EA, George, SL (B18) 1970; 54
Guay, DR, Vance-Bryan, K, Gilliland, S, Rodvold, K, Rotschafer, J (B2) 1993; 33
Levey, AS, Stevens, LA, Schmid, CH, Zhang, YL, Castro, AF, Feldman, HI, Kusek, JW, Eggers, P, Van Lente, F, Greene, T, Coresh, J (B13) 2009; 150
Maccallum, PK, Mathur, R, Hull, SA, Saja, K, Green, L, Morris, JK, Ashman, N (B30) 2013; 3
Helldén, A, Odar-Cederlof, I, Nilsson, G, Sjoviker, S, Soderstrom, A, Euler, M, Ohlen, G, Bergman, U (B29) 2013; 3
(B40) 2010
Gill, J, Malyuk, R, Djurdjev, O, Levin, A (B28) 2007; 22
Rodvold, KA, Blum, RA, Fischer, JH, Zokufa, HZ, Rotschafer, JC, Crossley, KB, Riff, LJ (B7) 1988; 32
Rybak, M, Lomaestro, B, Rotschafer, JC, Moellering, R, Craig, W, Billeter, M, Dalovisio, JR, Levine, DP (B24) 2009; 66
Levey, AS, Bosch, JP, Lewis, JB, Greene, T, Rogers, N, Roth, D (B11) 1999; 130
Du Bois, D, Du Bois, EF (B20) 1989; 5
Capitano, B, Frye, RF, Matzke, GR, Murphy, JE (B1) 2008
Levey, AS, Coresh, J, Greene, T, Stevens, LA, Zhang, YL, Hendriksen, S, Kusek, JW, Van Lente, F (B12) 2006; 145
Jelliffe, R (B17) 2002; 22
Matzke, GR, Aronoff, GR, Atkinson, AJ, Bennett, WM, Decker, BS, Eckardt, KU, Golper, T, Grabe, DW, Kasiske, B, Keller, F, Kielstein, JT, Mehta, R, Mueller, BA, Pasko, DA, Schaefer, F, Sica, DA, Inker, LA, Umans, JG, Murray, P (B39) 2011; 80
Yasuhara, M, Iga, T, Zenda, H, Okumura, K, Oguma, T, Yano, Y, Hori, R (B38) 1998; 20
Moranville, MP, Jennings, HR (B32) 2009; 66
Froissart, M, Rossert, J, Jacquot, C, Paillard, M, Houillier, P (B15) 2005; 16
(B42) 2011
Kilbride, HS, Stevens, PE, Eaglestone, G, Knight, S, Carter, JL, Delaney, MP, Farmer, CK, Irving, J, O'Riordan, SE, Dalton, RN, Lamb, EJ (B14) 2013; 61
Conil, JM, Georges, B, Breden, A, Ruiz, S, Cougot, P, Fourcade, O, Saivin, S (B35) 2014; 42
Macias, WL, Mueller, BA, Scarim, SK (B37) 1991; 50
Avent, ML, Vaska, VL, Rogers, BA, Cheng, AC, van Hal, SJ, Holmes, NE, Howden, BP, Paterson, DL (B3) 2013; 43
Tsuji, Y, Hiraki, Y, Mizoguchi, A, Sadoh, S, Sonemoto, E, Kamimura, H, Karube, Y (B34) 2009; 34
Tatarinova, T, Neely, M, Bartroff, J, van Guilder, M, Yamada, W, Bayard, D, Jelliffe, R, Leary, R, Chubatiuk, A, Schumitzky, A (B21) 2013; 40
Levey, AS, Coresh, J, Greene, T, Marsh, J, Stevens, LA, Kusek, JW, Van Lente, F (B19) 2007; 53
Marsot, A, Boulamery, A, Bruguerolle, B, Simon, N (B23) 2012; 51
Stevens, LA, Nolin, TD, Richardson, MM, Feldman, HI, Lewis, JB, Rodby, R, Townsend, R, Okparavero, A, Zhang, YL, Schmid, CH, Levey, AS (B41) 2009; 54
Hurst, AK, Yoshinaga, MA, Mitani, GH, Foo, KA, Jelliffe, RW, Harrison, EC (B22) 1990; 34
Park, EJ, Wu, K, Mi, Z, Dong, T, Lawrence, JP, Ko, CW, Huang, SM, Zhang, L, Crentsil, V, Zhang, J, Xu, NN (B33) 2012; 46
References_xml – start-page: 329
  volume-title: Clinical pharmacokinetics
  year: 2008
  ident: e_1_3_3_2_2
– volume: 5
  start-page: 303
  year: 1989
  ident: e_1_3_3_21_2
  article-title: A formula to estimate the approximate surface area if height and weight be known. 1916
  publication-title: Nutrition
– ident: e_1_3_3_24_2
  doi: 10.2165/11596390-000000000-00000
– ident: e_1_3_3_27_2
  doi: 10.1128/AAC.05634-11
– ident: e_1_3_3_17_2
  doi: 10.1159/000180580
– ident: e_1_3_3_15_2
  doi: 10.1053/j.ajkd.2012.06.016
– ident: e_1_3_3_9_2
  doi: 10.1097/00007691-199410000-00013
– ident: e_1_3_3_6_2
  doi: 10.1128/AAC.25.4.433
– ident: e_1_3_3_4_2
  doi: 10.1111/imj.12036
– ident: e_1_3_3_29_2
  doi: 10.1093/ndt/gfm289
– ident: e_1_3_3_33_2
  doi: 10.2146/ajhp080071
– ident: e_1_3_3_26_2
  doi: 10.1016/j.addr.2014.05.016
– volume-title: Chronic kidney disease and drug dosing: information for providers
  year: 2010
  ident: e_1_3_3_41_2
– ident: e_1_3_3_32_2
  doi: 10.1002/phar.1282
– ident: e_1_3_3_3_2
  doi: 10.1002/j.1552-4604.1993.tb01922.x
– ident: e_1_3_3_35_2
  doi: 10.1111/j.1365-2710.2008.01015.x
– ident: e_1_3_3_16_2
  doi: 10.1681/ASN.2004070549
– ident: e_1_3_3_18_2
  doi: 10.1159/000065221
– ident: e_1_3_3_7_2
  doi: 10.7326/0003-4819-94-3-343
– ident: e_1_3_3_14_2
  doi: 10.7326/0003-4819-150-9-200905050-00006
– ident: e_1_3_3_31_2
  doi: 10.1136/bmjopen-2013-003343
– ident: e_1_3_3_37_2
  doi: 10.5414/CPP48525
– ident: e_1_3_3_39_2
  doi: 10.1097/00007691-199804000-00003
– volume: 42
  start-page: 178
  year: 2014
  ident: e_1_3_3_36_2
  article-title: Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: superiority of the Chronic Kidney Disease Epidemiology Collaboration equation?
  publication-title: Anaesth Intensive Care
  doi: 10.1177/0310057X1404200203
– ident: e_1_3_3_34_2
  doi: 10.1345/aph.1Q757
– ident: e_1_3_3_10_2
  doi: 10.1097/00007691-199003000-00017
– ident: e_1_3_3_13_2
  doi: 10.7326/0003-4819-145-4-200608150-00004
– ident: e_1_3_3_28_2
  doi: 10.1046/j.1365-2389.2003.51330.x
– ident: e_1_3_3_5_2
  doi: 10.1128/AAC.01653-13
– ident: e_1_3_3_11_2
  doi: 10.2146/ajhp060047
– ident: e_1_3_3_20_2
  doi: 10.1373/clinchem.2006.077180
– volume-title: Evaluation du débit de filtration glomérulaire et du dosage de la créatininémie dans le diagnostic de la maladie rénale chronique chez l'adulte
  year: 2011
  ident: e_1_3_3_43_2
– ident: e_1_3_3_12_2
  doi: 10.7326/0003-4819-130-6-199903160-00002
– ident: e_1_3_3_30_2
  doi: 10.1136/bmjopen-2013-002686
– ident: e_1_3_3_40_2
  doi: 10.1038/ki.2011.322
– ident: e_1_3_3_23_2
  doi: 10.1128/AAC.34.6.1165
– ident: e_1_3_3_22_2
  doi: 10.1007/s10928-013-9302-8
– ident: e_1_3_3_8_2
  doi: 10.1128/AAC.32.6.848
– ident: e_1_3_3_25_2
  doi: 10.2146/ajhp080434
– ident: e_1_3_3_42_2
  doi: 10.1053/j.ajkd.2009.03.008
– volume: 54
  start-page: 225
  year: 1970
  ident: e_1_3_3_19_2
  article-title: Estimation of human body surface area from height and weight
  publication-title: Cancer Chemother Rep
– ident: e_1_3_3_38_2
  doi: 10.1038/clpt.1991.208
– reference: 8227461 - J Clin Pharmacol. 1993 Oct;33(10):918-22
– reference: 17575316 - Nephrol Dial Transplant. 2007 Oct;22(10):2894-9
– reference: 2520314 - Nutrition. 1989 Sep-Oct;5(5):303-11; discussion 312-3
– reference: 12169862 - Am J Nephrol. 2002 Jul-Aug;22(4):320-4
– reference: 5527019 - Cancer Chemother Rep. 1970 Aug;54(4):225-35
– reference: 22290966 - Antimicrob Agents Chemother. 2012 Apr;56(4):1862-9
– reference: 19139480 - Am J Health Syst Pharm. 2009 Jan 15;66(2):154-61
– reference: 19583680 - J Clin Pharm Ther. 2009 Aug;34(4):465-72
– reference: 23185970 - Intern Med J. 2013 Feb;43(2):110-9
– reference: 23404393 - J Pharmacokinet Pharmacodyn. 2013 Apr;40(2):189-99
– reference: 22889713 - Am J Kidney Dis. 2013 Jan;61(1):57-66
– reference: 23625813 - Pharmacotherapy. 2013 Sep;33(9):912-21
– reference: 17332152 - Clin Chem. 2007 Apr;53(4):766-72
– reference: 9558127 - Ther Drug Monit. 1998 Apr;20(2):139-48
– reference: 19446939 - Am J Kidney Dis. 2009 Jul;54(1):33-42
– reference: 2393277 - Antimicrob Agents Chemother. 1990 Jun;34(6):1165-71
– reference: 19414839 - Ann Intern Med. 2009 May 5;150(9):604-12
– reference: 6732213 - Antimicrob Agents Chemother. 1984 Apr;25(4):433-7
– reference: 7846752 - Ther Drug Monit. 1994 Oct;16(5):513-8
– reference: 16908915 - Ann Intern Med. 2006 Aug 15;145(4):247-54
– reference: 12834524 - J Am Geriatr Soc. 2003 Jul;51(7):1012-7
– reference: 23585393 - BMJ Open. 2013 Apr 11;3(4):null
– reference: 17106010 - Am J Health Syst Pharm. 2006 Dec 1;63(23):2365-70
– reference: 15659562 - J Am Soc Nephrol. 2005 Mar;16(3):763-73
– reference: 20650044 - Int J Clin Pharmacol Ther. 2010 Aug;48(8):525-33
– reference: 24910345 - Adv Drug Deliv Rev. 2014 Nov 20;77:50-7
– reference: 6101256 - Ann Intern Med. 1981 Mar;94(3):343-6
– reference: 1244564 - Nephron. 1976;16(1):31-41
– reference: 21918498 - Kidney Int. 2011 Dec;80(11):1122-37
– reference: 19106348 - Am J Health Syst Pharm. 2009 Jan 1;66(1):82-98
– reference: 24580382 - Anaesth Intensive Care. 2014 Mar;42(2):178-84
– reference: 2315979 - Ther Drug Monit. 1990 Mar;12(2):206-9
– reference: 1752113 - Clin Pharmacol Ther. 1991 Dec;50(6):688-94
– reference: 22932303 - Ann Pharmacother. 2012 Sep;46(9):1174-87
– reference: 10075613 - Ann Intern Med. 1999 Mar 16;130(6):461-70
– reference: 24078751 - BMJ Open. 2013 Sep 27;3(9):e003343
– reference: 24165176 - Antimicrob Agents Chemother. 2014;58(1):309-16
– reference: 22149255 - Clin Pharmacokinet. 2012 Jan 1;51(1):1-13
– reference: 3415206 - Antimicrob Agents Chemother. 1988 Jun;32(6):848-52
– volume: 43
  start-page: 110
  year: 2013
  end-page: 119
  ident: B3
  article-title: Vancomycin therapeutics and monitoring: a contemporary approach
  publication-title: Intern Med J
  doi: 10.1111/imj.12036
– volume: 61
  start-page: 57
  year: 2013
  end-page: 66
  ident: B14
  article-title: Accuracy of the MDRD (Modification of Diet in Renal Disease) study and CKD-EPI (CKD Epidemiology Collaboration) equations for estimation of GFR in the elderly
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2012.06.016
– volume: 33
  start-page: 912
  year: 2013
  end-page: 921
  ident: B31
  article-title: Glomerular filtration rate equations overestimate creatinine clearance in older individuals enrolled in the Baltimore longitudinal study on aging: impact on renal drug dosing
  publication-title: Pharmacotherapy
  doi: 10.1002/phar.1282
– volume: 51
  start-page: 1012
  year: 2003
  end-page: 1017
  ident: B27
  article-title: Estimation of glomerular filtration rate in older patients with chronic renal insufficiency: is the modification of diet in renal disease formula an improvement?
  publication-title: J Am Geriatr Soc
  doi: 10.1046/j.1365-2389.2003.51330.x
– start-page: 329
  year: 2008
  end-page: 344
  ident: B1
  article-title: Vancomycin
  publication-title: Clinical pharmacokinetics ;American Society of Health-System Pharmacists ;Bethesda, MD
– year: 2014
  ident: B25
  article-title: Innovative approaches to optimizing the delivery of vancomycin in individual patients
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2014.05.016
– volume: 48
  start-page: 525
  year: 2010
  end-page: 533
  ident: B36
  article-title: Population pharmacokinetics of vancomycin in adult and geriatric patients: comparison of eleven approaches
  publication-title: Int J Clin Pharmacol Ther
  doi: 10.5414/CPP48525
– volume: 25
  start-page: 433
  year: 1984
  end-page: 437
  ident: B5
  article-title: Pharmacokinetics of vancomycin in patients with various degrees of renal function
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.25.4.433
– volume: 54
  start-page: 33
  year: 2009
  end-page: 42
  ident: B41
  article-title: Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations
  publication-title: Am J Kidney Dis
  doi: 10.1053/j.ajkd.2009.03.008
– volume: 22
  start-page: 320
  year: 2002
  end-page: 324
  ident: B17
  article-title: Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen
  publication-title: Am J Nephrol
  doi: 10.1159/000065221
– volume: 53
  start-page: 766
  year: 2007
  end-page: 772
  ident: B19
  article-title: Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values
  publication-title: Clin Chem
  doi: 10.1373/clinchem.2006.077180
– volume: 5
  start-page: 303
  year: 1989
  end-page: 311; discussion, 312–313
  ident: B20
  article-title: A formula to estimate the approximate surface area if height and weight be known. 1916
  publication-title: Nutrition
– volume: 150
  start-page: 604
  year: 2009
  end-page: 612
  ident: B13
  article-title: A new equation to estimate glomerular filtration rate
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-150-9-200905050-00006
– volume: 130
  start-page: 461
  year: 1999
  end-page: 470
  ident: B11
  article-title: A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group
  publication-title: Ann Intern Med
– volume: 51
  start-page: 1
  year: 2012
  end-page: 13
  ident: B23
  article-title: Vancomycin: a review of population pharmacokinetic analyses
  publication-title: Clin Pharmacokinet
  doi: 10.2165/11596390-000000000-00000
– volume: 46
  start-page: 1174
  year: 2012
  end-page: 1187
  ident: B33
  article-title: A systematic comparison of Cockcroft-Gault and modification of diet in renal disease equations for classification of kidney dysfunction and dosage adjustment
  publication-title: Ann Pharmacother
  doi: 10.1345/aph.1Q757
– volume: 22
  start-page: 2894
  year: 2007
  end-page: 2899
  ident: B28
  article-title: Use of GFR equations to adjust drug doses in an elderly multi-ethnic group—a cautionary tale
  publication-title: Nephrol Dial Transplant
  doi: 10.1093/ndt/gfm289
– year: 2010
  ident: B40
  publication-title: Chronic kidney disease and drug dosing: information for providers ;http://nkdep.nih.gov/resources/ckd-drug-dosing-508.pdf ;National Institute of Diabetes and Digestive and Kidney Diseases ;Bethesda, MD
– volume: 16
  start-page: 513
  year: 1994
  end-page: 518
  ident: B8
  article-title: Vancomycin pharmacokinetics in a patient population: effect of age, gender, and body weight
  publication-title: Ther Drug Monit
  doi: 10.1097/00007691-199410000-00013
– volume: 34
  start-page: 465
  year: 2009
  end-page: 472
  ident: B34
  article-title: Effect of various estimates of renal function on prediction of vancomycin concentration by the population mean and Bayesian methods
  publication-title: J Clin Pharm Ther
  doi: 10.1111/j.1365-2710.2008.01015.x
– volume: 80
  start-page: 1122
  year: 2011
  end-page: 1137
  ident: B39
  article-title: Drug dosing consideration in patients with acute and chronic kidney disease—a clinical update from Kidney Disease: Improving Global Outcomes (KDIGO)
  publication-title: Kidney Int
  doi: 10.1038/ki.2011.322
– volume: 66
  start-page: 154
  year: 2009
  end-page: 161
  ident: B32
  article-title: Implications of using modification of diet in renal disease versus Cockcroft-Gault equations for renal dosing adjustments
  publication-title: Am J Health Syst Pharm
  doi: 10.2146/ajhp080071
– volume: 16
  start-page: 763
  year: 2005
  end-page: 773
  ident: B15
  article-title: Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.2004070549
– year: 2011
  ident: B42
  publication-title: Evaluation du débit de filtration glomérulaire et du dosage de la créatininémie dans le diagnostic de la maladie rénale chronique chez l'adulte ;http://www.has-sante.fr/portail/upload/docs/application/pdf/2011-12/rapport_dfg_creatininemie.pdf ;Saint-Denis La Plaine ;France
– volume: 16
  start-page: 31
  year: 1976
  end-page: 41
  ident: B16
  article-title: Prediction of creatinine clearance from serum creatinine
  publication-title: Nephron
  doi: 10.1159/000180580
– volume: 58
  start-page: 309
  year: 2014
  end-page: 316
  ident: B4
  article-title: Are vancomycin trough concentrations adequate for optimal dosing?
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01653-13
– volume: 54
  start-page: 225
  year: 1970
  end-page: 235
  ident: B18
  article-title: Estimation of human body surface area from height and weight
  publication-title: Cancer Chemother Rep
– volume: 56
  start-page: 1862
  year: 2012
  end-page: 1869
  ident: B26
  article-title: Comparison of four renal function estimation equations for pharmacokinetic modeling of gentamicin in geriatric patients
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.05634-11
– volume: 20
  start-page: 139
  year: 1998
  end-page: 148
  ident: B38
  article-title: Population pharmacokinetics of vancomycin in Japanese adult patients
  publication-title: Ther Drug Monit
  doi: 10.1097/00007691-199804000-00003
– volume: 50
  start-page: 688
  year: 1991
  end-page: 694
  ident: B37
  article-title: Vancomycin pharmacokinetics in acute renal failure: preservation of nonrenal clearance
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1991.208
– volume: 40
  start-page: 189
  year: 2013
  end-page: 199
  ident: B21
  article-title: Two general methods for population pharmacokinetic modeling: non-parametric adaptive grid and non-parametric Bayesian
  publication-title: J Pharmacokinet Pharmacodyn
  doi: 10.1007/s10928-013-9302-8
– volume: 145
  start-page: 247
  year: 2006
  end-page: 254
  ident: B12
  article-title: Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-145-4-200608150-00004
– volume: 63
  start-page: 2365
  year: 2006
  end-page: 2370
  ident: B10
  article-title: Predictability of vancomycin trough concentrations using seven approaches for estimating pharmacokinetic parameters
  publication-title: Am J Health Syst Pharm
  doi: 10.2146/ajhp060047
– volume: 34
  start-page: 1165
  year: 1990
  end-page: 1171
  ident: B22
  article-title: Application of a Bayesian method to monitor and adjust vancomycin dosage regimens
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.34.6.1165
– volume: 66
  start-page: 82
  year: 2009
  end-page: 98
  ident: B24
  article-title: Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists
  publication-title: Am J Health Syst Pharm
  doi: 10.2146/ajhp080434
– volume: 42
  start-page: 178
  year: 2014
  end-page: 184
  ident: B35
  article-title: Estimation of glomerular filtration rate to adjust vancomycin dosage in critically ill patients: superiority of the Chronic Kidney Disease Epidemiology Collaboration equation?
  publication-title: Anaesth Intensive Care
– volume: 12
  start-page: 206
  year: 1990
  end-page: 209
  ident: B9
  article-title: Using clinical data to determine vancomycin dosing parameters
  publication-title: Ther Drug Monit
  doi: 10.1097/00007691-199003000-00017
– volume: 33
  start-page: 918
  year: 1993
  end-page: 922
  ident: B2
  article-title: Comparison of vancomycin pharmacokinetics in hospitalized elderly and young patients using a Bayesian forecaster
  publication-title: J Clin Pharmacol
  doi: 10.1002/j.1552-4604.1993.tb01922.x
– volume: 3
  start-page: e003343
  year: 2013
  ident: B30
  article-title: Patient safety and estimation of renal function in patients prescribed new oral anticoagulants for stroke prevention in atrial fibrillation: a cross-sectional study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-003343
– volume: 32
  start-page: 848
  year: 1988
  end-page: 852
  ident: B7
  article-title: Vancomycin pharmacokinetics in patients with various degrees of renal function
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.32.6.848
– volume: 3
  start-page: e002686
  year: 2013
  ident: B29
  article-title: Renal function estimations and dose recommendations for dabigatran, gabapentin and valaciclovir: a data simulation study focused on the elderly
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2013-002686
– volume: 94
  start-page: 343
  year: 1981
  end-page: 346
  ident: B6
  article-title: Vancomycin therapy in patients with impaired renal function: a nomogram for dosage
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-94-3-343
SSID ssj0006590
Score 2.290759
Snippet Vancomycin is a renally excreted drug, and its body clearance correlates with creatinine clearance. However, the renal function estimation equation that best...
SourceID pubmedcentral
hal
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2986
SubjectTerms Aged
Aged, 80 and over
Female
Glomerular Filtration Rate - physiology
Humans
Kidney Function Tests
Life Sciences
Male
Models, Theoretical
Pharmacology
Retrospective Studies
Vancomycin
Vancomycin - pharmacokinetics
Title Influence of Renal Function Estimation on Pharmacokinetic Modeling of Vancomycin in Elderly Patients
URI https://www.ncbi.nlm.nih.gov/pubmed/25753640
https://journals.asm.org/doi/10.1128/AAC.04132-14
https://www.proquest.com/docview/1681260862
https://www.proquest.com/docview/1701480861
https://univ-lyon1.hal.science/hal-02044772
https://pubmed.ncbi.nlm.nih.gov/PMC4432143
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9NAEF6lRSBeEIQrXFoq6Evr4GN9PUYVVagI6kMq9c1a2-skgjhRDqTwyC9nZg_bSQgCJMuK7M3ayXze_XY88w0h74CDFG4Y-pbr5rHFRMasOPY9K8oKJ3NCXrAUXQODL0H_hl3d-ret1s9G1NJ6lXazH7_NK_kfq8IxsCtmyf6DZatO4QB8BvvCHiwM-7-y8SdTYQQp30IgscR5SpoU1TOmmg-WZ3OtUP0VSCVKtMoCODrgGYMAZtNNNpFBjwLLdqPLQwmuLpvstVdCnxMp3YQSAyOZHScT48ZiqlO5GtGhfMUXOmqSyxfyl7VPHn7eaD0ZleqlP2ZnNyJwrlAltCiECv3GvOTKEzTgJi-NLzP9_2inhePXwVVdoQZa1DENfFXN1ozEWht8sj-sxkove3-8dzGHode76NowG7uWSkhtmH4-lbaHgcn3AiUMtaOvbU4dkTsAWtc1Hh89m8M92iZhwo0-NC-FQtL6yzCh8-XU3SI3R2MMrd1ft-yG3zb4zPAheaAXIrSnUPWItETZJndVadJNm9wb6KCLNjm9VuDZnNNhna23PKen9LoWPt88JnmFRzorqMQjNXikNR4pbDt4pAaP-MUajxQ2jUdq8PiE3Fx-HF70LV3Fw-Is8leodp3aaSBilodemtu5CIFl85wVOSxmXQGENwtExLlgGXDxzM-dNLNZGPAoEEA2vafkGMAonhMKM6LjpC6LYZHNPBFzJ3c4EO4AeC6zPdYhJ2iFRD-iy0SucN0oAasl0mqw0u2QM2OjJNM6-FiO5duB1u-r1nOl_3Kg3QmYu2qCou393ucEj2H6OQNkfXc65K1BQwKjOL6a46WYreFGUQYwQPfCH9qE6P2HNtDPM4Wg6noGhx0SbmFr64a2z5STsVSTZwxrlXkvDvb5ktyvH-FX5Hi1WIvXwMRX6Rv5qPwCut7ehA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+renal+function+estimation+on+pharmacokinetic+modeling+of+vancomycin+in+elderly+patients&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Glatard%2C+Ana%C3%AFs&rft.au=Bourguignon%2C+Laurent&rft.au=Jelliffe%2C+Roger+W&rft.au=Maire%2C+Pascal&rft.date=2015-06-01&rft.eissn=1098-6596&rft.volume=59&rft.issue=6&rft.spage=2986&rft_id=info:doi/10.1128%2FAAC.04132-14&rft_id=info%3Apmid%2F25753640&rft.externalDocID=25753640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon