Systematic analyses uncover robust salivary microbial signatures and host-microbiome perturbations in oral squamous cell carcinoma
The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of or...
Saved in:
Published in | mSystems Vol. 10; no. 2; p. e0124724 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
18.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. |
---|---|
AbstractList | The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. ABSTRACT Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus, Lactobacillus, Prevotella, Bulleidia moorei, and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.IMPORTANCEThe oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. ABSTRACTOral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus, Lactobacillus, Prevotella, Bulleidia moorei, and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.IMPORTANCEThe oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus , Lactobacillus , Prevotella , Bulleidia moorei , and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus, Lactobacillus, Prevotella, Bulleidia moorei, and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.IMPORTANCEThe oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus, Lactobacillus, Prevotella, Bulleidia moorei, and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as Streptococcus, Lactobacillus, Prevotella, Bulleidia moorei, and Haemophilus in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection.The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions.IMPORTANCEThe oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in the pathogenesis of this disease. However, findings from individual studies have been inconsistent, and a comprehensive understanding of OSCC-associated microbiome dysbiosis remains elusive. Here, we conducted a large-scale meta-analysis by integrating 11 publicly available data sets comprising salivary microbiome profiles of OSCC patients and healthy controls. After correcting for batch effects, we observed significantly elevated alpha diversity and distinct beta-diversity patterns in the OSCC salivary microbiome compared to healthy controls. Leveraging random effects models, we identified robust microbial signatures associated with OSCC across data sets, including enrichment of taxa such as , , , , and in OSCC samples. The machine learning models constructed from these microbial markers accurately predicted OSCC status, highlighting their potential as non-invasive diagnostic biomarkers. Intriguingly, our analyses revealed that the age- and gender-associated signatures in normal saliva microbiome were disrupted in the OSCC, suggesting perturbations in the intricate host-microbe interactions. Collectively, our findings uncovered complex alterations in the oral microbiome in OSCC, providing novel insights into disease etiology and paving the way for microbiome-based diagnostic and therapeutic strategies. Given that the salivary microbiome can reflect the overall health status of the host and that saliva sampling is a safe, non-invasive approach, it may be worthwhile to conduct broader screening of the salivary microbiome in high-risk OSCC populations as implications for early detection. The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant differences in the saliva microbiota associated with oral cancer, suggesting that microbiome dysbiosis may contribute to the pathogenesis of oral squamous cell carcinoma (OSCC). However, the specific microbial alterations linked to OSCC remain controversial. This meta-analysis reveals robust salivary microbiome alterations. Machine learning models using differential operational taxonomic units accurately predicted OSCC status, highlighting the potential of the salivary microbiome as a non-invasive diagnostic biomarker. Interestingly, age- and gender-associated signatures in the normal salivary microbiome were disrupted in OSCC, suggesting perturbations in host-microbe interactions. |
Author | Hu, Yichen Lin, Xin Liu, Xuan Wu, Buling Han, Zewen Dong, Biao Cheng, Hongyu Xu, Zhenjiang Zech |
Author_xml | – sequence: 1 givenname: Zewen orcidid: 0009-0008-0316-2140 surname: Han fullname: Han, Zewen – sequence: 2 givenname: Yichen orcidid: 0009-0008-0142-8144 surname: Hu fullname: Hu, Yichen – sequence: 3 givenname: Xin surname: Lin fullname: Lin, Xin – sequence: 4 givenname: Hongyu surname: Cheng fullname: Cheng, Hongyu – sequence: 5 givenname: Biao surname: Dong fullname: Dong, Biao – sequence: 6 givenname: Xuan surname: Liu fullname: Liu, Xuan – sequence: 7 givenname: Buling orcidid: 0000-0002-9678-6962 surname: Wu fullname: Wu, Buling – sequence: 8 givenname: Zhenjiang Zech orcidid: 0000-0003-1080-024X surname: Xu fullname: Xu, Zhenjiang Zech |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39873508$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktv1DAQgCNURB_0B3BBlrhwyeK34xNCFZRKlTgAZ2uS2FuvEntrJyvttb8c76OlReJiW57Pn2bGc16dhBhsVb0jeEEIbT6NeZsnO-YFJpSrmvJX1RllStcCK3Xy7HxaXea8whgTyRSh-k11ynSjmMDNWfXwc2-ByXcIAgzbbDOaQxc3NqEU2zlPKMPgN5C2aPRdufIwoOyXAaY5FRhCj-5inupjNI4WrW0qwbZYY8jIBxTT7tH9DGOcM-rsMKAOUudDHOFt9drBkO3lcb-ofn_7-uvqe3374_rm6sttDbwRU81l73QrJAcnraatZVI3oIVURPaYAekZEYQy1smmAaEdOM40cNFDpxtn2UV1c_D2EVZmnfxYajIRvNlfxLQ0kEofBmuEU5gI1nDcKe40b6ltpVKqdRa4drS4Ph9c67kdbd_ZMJUKX0hfRoK_M8u4MYQ0jHPMi-Hj0ZDi_WzzZEafd42BYEuPDCMSc1kWVtAP_6CrOKfyWYWiuGSpGyEKtThQkEf6lyDY7MbFPI6L2Y-LobsM3j-v4Sn5x-EoADkA5V9zTtY9If-X_gHqF9Nu |
Cites_doi | 10.1016/j.chom.2019.06.013 10.1371/journal.pone.0194729 10.18632/oncotarget.20677 10.1001/jamaoncol.2017.4777 10.1038/s41591-019-0405-7 10.1136/gutjnl-2016-313189 10.3389/fmicb.2022.895537 10.1128/AEM.03006-05 10.1099/jmm.0.001417 10.1016/j.heliyon.2023.e13198 10.1128/mSystems.00191-16 10.1186/s12903-023-03760-y 10.1007/s00248-020-01596-5 10.1002/cre2.139 10.1001/jamanetworkopen.2020.17357 10.3389/fmicb.2018.00862 10.3322/caac.21660 10.1038/s41522-022-00279-y 10.1080/19490976.2023.2197835 10.1038/s41368-023-00249-w 10.1038/s41598-017-16418-x 10.1111/apm.13315 10.1186/s12866-020-01801-y 10.3389/fcimb.2021.728933 10.3389/fmicb.2021.719601 10.1111/jre.12691 10.1371/journal.pcbi.1004977 10.1016/B978-0-7020-3468-8.50201-7 10.1128/mSystems.00323-19 10.1186/s40168-023-01613-y 10.1016/j.jri.2021.103293 10.1038/s41388-021-02137-1 10.1186/gb-2010-11-10-r106 10.3390/ijms242015456 10.1038/s41392-022-00974-4 10.1177/21925682221110527 10.1080/20002297.2022.2051352 10.1038/s41598-020-59016-0 10.3389/fonc.2021.737843 10.3390/cancers15133270 10.1038/s41587-019-0209-9 10.5555/1953048.2078195 10.18637/jss.v036.i03 10.1111/jop.13546 10.18632/aging.103108 10.1038/s41579-023-00963-6 10.1128/mSystems.00630-19 10.1038/s41591-019-0406-6 10.1128/msystems.00738-22 10.1177/0022034520968750 10.1038/s41598-019-46790-9 10.1002/ijc.34460 10.1101/gr.276482.121 10.1038/s41467-022-33071-9 10.3389/fcimb.2022.942328 10.1128/spectrum.02737-22 10.1016/j.ctarc.2024.100831 10.1007/s42770-022-00721-5 10.1111/jop.13492 10.1007/s00784-020-03592-y 10.1002/advs.201902054 10.1016/j.isci.2022.105839 10.1128/mBio.03281-20 10.1038/s41598-019-52445-6 10.1007/s00253-022-11980-5 10.3389/fcimb.2021.663068 10.1016/j.bbapap.2021.140659 10.3389/fmicb.2022.968304 10.1111/odi.12341 10.1111/prd.12366 |
ContentType | Journal Article |
Copyright | Copyright © 2025 Han et al. Copyright © 2025 Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Copyright © 2025 Han et al. 2025 Han et al. |
Copyright_xml | – notice: Copyright © 2025 Han et al. – notice: Copyright © 2025 Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Copyright © 2025 Han et al. 2025 Han et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1128/msystems.01247-24 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2379-5077 |
Editor | Chia, Nicholas |
Editor_xml | – sequence: 1 givenname: Nicholas surname: Chia fullname: Chia, Nicholas |
ExternalDocumentID | oai_doaj_org_article_5f70153840c74f94b2eb6777bfea49f2 PMC11834404 msystems01247-24 39873508 10_1128_msystems_01247_24 |
Genre | Meta-Analysis Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: Grant No. 2022YFA1304202 – fundername: National Key R&D Program of China grantid: Grant No. 2022YFA1304202 funderid: http://dx.doi.org/10.13039/501100012166 – fundername: ; grantid: Grant No. 2022YFA1304202 |
GroupedDBID | 0R~ 53G 5VS 7X7 8FE 8FH 8FI 8FJ AAFWJ AAGFI AAUOK AAYXX ABUWG ACPRK ADBBV AFKRA AFPKN AHMBA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION EBS FRP FYUFA GROUPED_DOAJ H13 HCIFZ HMCUK HYE KQ8 LK8 M48 M7P M~E O9- OK1 PHGZM PHGZT PIMPY PQQKQ PROAC RHI RPM RSF UKHRP CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-a485t-46df9b564af6e92be3698a956716d03a1d3151233c688a59faf439a45dac98fe3 |
IEDL.DBID | M48 |
ISSN | 2379-5077 |
IngestDate | Wed Aug 27 01:16:34 EDT 2025 Thu Aug 21 18:28:33 EDT 2025 Fri Jul 11 06:28:04 EDT 2025 Sun Jul 13 05:39:10 EDT 2025 Tue Feb 18 18:20:48 EST 2025 Sat Jun 21 01:31:05 EDT 2025 Tue Jul 01 05:29:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | meta-analysis oral squamous cell carcinoma gender salivary microbiome age |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a485t-46df9b564af6e92be3698a956716d03a1d3151233c688a59faf439a45dac98fe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The authors declare no conflict of interest. Zewen Han and Yichen Hu contributed equally to this article. Author order was determined by drawing straws. |
ORCID | 0000-0003-1080-024X 0009-0008-0316-2140 0009-0008-0142-8144 0000-0002-9678-6962 |
OpenAccessLink | https://doaj.org/article/5f70153840c74f94b2eb6777bfea49f2 |
PMID | 39873508 |
PQID | 3203849855 |
PQPubID | 2045591 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5f70153840c74f94b2eb6777bfea49f2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11834404 proquest_miscellaneous_3160461603 proquest_journals_3203849855 asm2_journals_10_1128_msystems_01247_24 pubmed_primary_39873508 crossref_primary_10_1128_msystems_01247_24 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-18 |
PublicationDateYYYYMMDD | 2025-02-18 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC – name: Washington |
PublicationTitle | mSystems |
PublicationTitleAbbrev | mSystems |
PublicationTitleAlternate | mSystems |
PublicationYear | 2025 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_69_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_65_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_70_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_60_2 e_1_3_4_62_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_28_2 e_1_3_4_71_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 e_1_3_4_18_2 e_1_3_4_39_2 Sousa‐Neto, SS, Martins, AFL, Moreira, VHL de O, Pereira, JGB, Freitas, NMA, Curado, MP, Leles, CR, Mendonça, EF (B8) 2024; 53 Ling, W, Lu, J, Zhao, N, Lulla, A, Plantinga, AM, Fu, W, Zhang, A, Liu, H, Song, H, Li, Z, Chen, J, Randolph, TW, Koay, WLA, White, JR, Launer, LJ, Fodor, AA, Meyer, KA, Wu, MC (B39) 2022; 13 Hamada, M, Inaba, H, Nishiyama, K, Yoshida, S, Yura, Y, Matsumoto-Nakano, M, Uzawa, N (B66) 2023; 24 Tan, Y, Wang, Z, Xu, M, Li, B, Huang, Z, Qin, S, Nice, EC, Tang, J, Huang, C (B5) 2023; 15 González-Ruiz, I, Ramos-García, P, Ruiz-Ávila, I, González-Moles, MÁ (B9) 2023; 15 Lee, W-H, Chen, H-M, Yang, S-F, Liang, C, Peng, C-Y, Lin, F-M, Tsai, L-L, Wu, B-C, Hsin, C-H, Chuang, C-Y, Yang, T, Yang, T-L, Ho, S-Y, Chen, W-L, Ueng, K-C, Huang, H-D, Huang, C-N, Jong, Y-J (B20) 2017; 7 Tagaino, R, Washio, J, Abiko, Y, Tanda, N, Sasaki, K, Takahashi, N (B59) 2019; 9 Sawant, S, Dugad, J, Parikh, D, Srinivasan, S, Singh, H (B15) 2021; 70 Ye, E, Sun, H, Leone, MJ, Paixao, L, Thomas, RJ, Lam, AD, Westover, MB (B46) 2020; 3 Omori, M, Kato-Kogoe, N, Sakaguchi, S, Fukui, N, Yamamoto, K, Nakajima, Y, Inoue, K, Nakano, H, Motooka, D, Nakano, T, Nakamura, S, Ueno, T (B49) 2021; 25 Bolyen, E, Rideout, JR, Dillon, MR, Bokulich, NA, Abnet, CC, Al-Ghalith, GA, Alexander, H, Alm, EJ, Arumugam, M, Asnicar, F (B36) 2019; 37 Fan, X, Peters, BA, Min, D, Ahn, J, Hayes, RB (B48) 2018; 13 Stashenko, P, Yost, S, Choi, Y, Danciu, T, Chen, T, Yoganathan, S, Kressirer, C, Ruiz-Tourrella, M, Das, B, Kokaras, A, Frias-Lopez, J (B10) 2019; 4 Torralba, MG, Aleti, G, Li, W, Moncera, KJ, Lin, Y-H, Yu, Y, Masternak, MM, Golusinski, W, Golusinski, P, Lamperska, K, Edlund, A, Freire, M, Nelson, KE (B63) 2021; 82 Huang, S, Haiminen, N, Carrieri, A-P, Hu, R, Jiang, L, Parida, L, Russell, B, Allaband, C, Zarrinpar, A, Vázquez-Baeza, Y, Belda-Ferre, P, Zhou, H, Kim, H-C, Swafford, AD, Knight, R, Xu, ZZ (B31) 2020; 5 Viechtbauer, W (B43) 2010; 36 Pedregosa, F, Varoquaux, G, Gramfort, A, Michel, V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer, P, Weiss, R, Dubourg, V, Vanderplas, J, Passos, A, Cournapeau, D, Brucher, M, Perrot, M, Duchesnay, E (B44) 2011; 12 Li, Y, Hu, YC, Zhan, X, Song, Y, Xu, M, Wang, SJ, Huang, XC, Xu, ZZ (B53) 2023; 15 Moritani, K, Takeshita, T, Shibata, Y, Ninomiya, T, Kiyohara, Y, Yamashita, Y (B58) 2015; 21 Hayes, RB, Ahn, J, Fan, X, Peters, BA, Ma, Y, Yang, L, Agalliu, I, Burk, RD, Ganly, I, Purdue, MP, Freedman, ND, Gapstur, SM, Pei, Z (B64) 2018; 4 Sung, H, Ferlay, J, Siegel, RL, Laversanne, M, Soerjomataram, I, Jemal, A, Bray, F (B6) 2021; 71 Pasolli, E, Truong, DT, Malik, F, Waldron, L, Segata, N (B45) 2016; 12 Zhou, X, Hao, Y, Peng, X, Li, B, Han, Q, Ren, B, Li, M, Li, L, Li, Y, Cheng, G, Li, J, Ma, Y, Zhou, X, Cheng, L (B22) 2021; 11 Jo, R, Nishimoto, Y, Umezawa, K, Yama, K, Aita, Y, Ichiba, Y, Murakami, S, Kakizawa, Y, Kumagai, T, Yamada, T, Fukuda, S (B47) 2019; 9 Zeng, B, Tan, J, Guo, G, Li, Z, Yang, L, Lao, X, Wang, D, Ma, J, Zhang, S, Liao, G, Liang, Y (B34) 2022; 12 Guerrero-Preston, R, White, JR, Godoy-Vitorino, F, Rodríguez-Hilario, A, Navarro, K, González, H, Michailidi, C, Jedlicka, A, Canapp, S, Bondy, J, Dziedzic, A, Mora-Lagos, B, Rivera-Alvarez, G, Ili-Gangas, C, Brebi-Mieville, P, Westra, W, Koch, W, Kang, H, Marchionni, L, Kim, Y, Sidransky, D (B60) 2017; 8 Kaan, AMM, Kahharova, D, Zaura, E (B26) 2021; 86 Wirbel, J, Pyl, PT, Kartal, E, Zych, K, Kashani, A, Milanese, A, Fleck, JS, Voigt, AY, Palleja, A, Ponnudurai, R (B54) 2019; 25 Hu, Y, Amir, A, Huang, X, Li, Y, Huang, S, Wolfe, E, Weiss, S, Knight, R, Xu, ZZ (B1) 2022; 32 Chan, JYK, Ng, CWK, Lan, L, Fung, S, Li, J-W, Cai, L, Lei, P, Mou, Q, Meehan, K, Lau, EHL, Yeung, Z, Chan, KCA, Wong, EWY, Chan, PKS, Chen, Z (B18) 2021; 11 Delaney, C, Veena, CLR, Butcher, MC, McLean, W, Shaban, SMA, Nile, CJ, Ramage, G (B69) 2023; 131 Baker, JL, Mark Welch, JL, Kauffman, KM, McLean, JS, He, X (B2) 2024; 22 Xu, H, Tian, B, Shi, W, Tian, J, Wang, W, Qin, M (B27) 2022; 14 Frank, DN, Qiu, Y, Cao, Y, Zhang, S, Lu, L, Kofonow, JM, Robertson, CE, Liu, Y, Wang, H, Levens, CL, Kuhn, KA, Song, J, Ramakrishnan, VR, Lu, S-L (B61) 2022; 41 Brook, I, Long, SS (B62) 2008 Yang, C-Y, Yeh, Y-M, Yu, H-Y, Chin, C-Y, Hsu, C-W, Liu, H, Huang, P-J, Hu, S-N, Liao, C-T, Chang, K-P, Chang, Y-L (B21) 2018; 9 Caselli, E, Fabbri, C, D’Accolti, M, Soffritti, I, Bassi, C, Mazzacane, S, Franchi, M (B50) 2020; 20 Burcham, ZM, Garneau, NL, Comstock, SS, Tucker, RM, Knight, R, Metcalf, JL, Miranda, A, Reinhart, B, Meyers, D, Woltkamp, D, Boxer, E, Hutchens, J, Kim, K, Archer, M, McAteer, M, Huss, P, Defonseka, R, Stahle, S, Babu, S, Nuessle, T, Schowinsky, V, Covert, W, Truman, W, Reusser, W (B28) 2020; 10 Liu, F, Lu, H, Dong, B, Huang, X, Cheng, H, Qu, R, Hu, Y, Zhong, L, Guo, Z, You, Y, Xu, ZZ (B70) 2023; 8 Vesty, A, Gear, K, Biswas, K, Radcliff, FJ, Taylor, MW, Douglas, RG (B19) 2018; 4 DeSantis, TZ, Hugenholtz, P, Larsen, N, Rojas, M, Brodie, EL, Keller, K, Huber, T, Dalevi, D, Hu, P, Andersen, GL (B38) 2006; 72 Huang, S, He, T, Yue, F, Xu, X, Wang, L, Zhu, P, Teng, F, Sun, Z, Liu, X, Jing, G, Su, X, Jin, L, Liu, J, Xu, J (B52) 2021; 12 Anders, S, Huber, W (B42) 2010; 11 Willis, JR, Saus, E, Iraola-Guzmán, S, Ksiezopolska, E, Cozzuto, L, Bejarano, LA, Andreu-Somavilla, N, Alloza-Trabado, M, Blanco, A, Puig-Sola, A, Broglio, E, Carolis, C, Ponomarenko, J, Hecht, J, Gabaldón, T (B51) 2022; 8 Bisanz, JE, Upadhyay, V, Turnbaugh, JA, Ly, K, Turnbaugh, PJ (B40) 2019; 26 Yang, K, Wang, Y, Zhang, S, Zhang, D, Hu, L, Zhao, T, Zheng, H (B17) 2021; 12 Wang, X, Mi, Q, Yang, J, Guan, Y, Zeng, W, Xiang, H, Liu, X, Yang, W, Yang, G, Li, X, Cui, Y, Gao, Q (B57) 2022; 53 Chen, MY, Chen, JW, Wu, LW, Huang, KC, Chen, JY, Wu, WS, Chiang, WF, Shih, CJ, Tsai, KN, Hsieh, WT, Ho, YH, Wong, TY, Wu, JH, Chen, YL (B35) 2021; 100 Lan, QY, Zhang, C, Hua, H, Hu, XS (B24) 2023; 23 Hou, K, Wu, Z-X, Chen, X-Y, Wang, J-Q, Zhang, D, Xiao, C, Zhu, D, Koya, JB, Wei, L, Li, J, Chen, Z-S (B3) 2022; 7 Thomas, AM, Manghi, P, Asnicar, F, Pasolli, E, Armanini, F, Zolfo, M, Beghini, F, Manara, S, Karcher, N, Pozzi, C (B55) 2019; 25 Chen, J-W, Wu, J-H, Chiang, W-F, Chen, Y-L, Wu, W-S, Wu, L-W (B14) 2021; 11 Srivastava, A, Mishra, S, Garg, PK, Dubey, AK, Deo, SVS, Verma, D (B13) 2022; 106 Liu, S, Wang, Y, Zhao, L, Sun, X, Feng, Q (B30) 2020; 12 Peter, TK, Withanage, MHH, Comnick, CL, Pendleton, C, Dabdoub, S, Ganesan, S, Drake, D, Banas, J, Xie, XJ, Zeng, E (B67) 2022; 13 Heng, W, Wang, W, Dai, T, Jiang, P, Lu, Y, Li, R, Zhang, M, Xie, R, Zhou, Y, Zhao, M, Duan, N, Ye, Z, Yan, F, Wang, X (B23) 2022; 10 Ma, ZS, Li, W (B33) 2019; 6 Saadaoui, M, Singh, P, Al Khodor, S (B29) 2021; 145 Mäkinen, AI, Pappalardo, VY, Buijs, MJ, Brandt, BW, Mäkitie, AA, Meurman, JH, Zaura, E (B25) 2023; 11 Frey‐Furtado, L, Magalhães, I, Sampaio‐Maia, B, Azevedo, MJ (B65) 2023; 52 Dettori, JR, Norvell, DC, Chapman, JR (B56) 2022; 12 Lafuente Ibáñez de Mendoza, I, Maritxalar Mendia, X, García de la Fuente, AM, Quindós Andrés, G, Aguirre Urizar, JM (B11) 2020; 55 Zhu, H, Yip, HC, Cheung, MK, Chan, HC, Ng, C, Lau, EHL, Yeung, ZWC, Wong, EWY, Leung, L, Qu, X, Wang, D, Cai, L, Chan, PKS, Chan, JYK, Chen, Z (B12) 2023; 152 Li, X, Liu, Y, Yang, X, Li, C, Song, Z (B4) 2022; 13 Swaminathan, D, George, NA, Thomas, S, Iype, EM (B7) 2024; 40 Granato, DC, Neves, LX, Trino, LD, Carnielli, CM, Lopes, AFB, Yokoo, S, Pauletti, BA, Domingues, RR, Sá, JO, Persinoti, G, Paixão, DAA, Rivera, C, de Sá Patroni, FM, Tommazetto, G, Santos-Silva, AR, Lopes, MA, de Castro, G, Brandão, TB, Prado-Ribeiro, AC, Squina, FM, Telles, GP, Paes Leme, AF (B16) 2021; 1869 Liu, X, Tong, X, Jie, Z, Zhu, J, Tian, L, Sun, Q, Ju, Y, Zou, L, Lu, H, Qiu, X (B32) 2023; 26 Amir, A, McDonald, D, Navas-Molina, JA, Kopylova, E, Morton, JT, Zech Xu, Z, Kightley, EP, Thompson, LR, Hyde, ER, Gonzalez, A, Knight, R (B37) 2017; 2 Yu, X, Shi, Y, Yuan, R, Chen, Z, Dong, Q, Han, L, Wang, L, Zhou, J (B68) 2023; 9 Shah, MS, DeSantis, TZ, Weinmaier, T, McMurdie, PJ, Cope, JL, Altrichter, A, Yamal, JM, Hollister, EB (B41) 2018; 67 |
References_xml | – ident: e_1_3_4_41_2 doi: 10.1016/j.chom.2019.06.013 – ident: e_1_3_4_49_2 doi: 10.1371/journal.pone.0194729 – ident: e_1_3_4_61_2 doi: 10.18632/oncotarget.20677 – ident: e_1_3_4_65_2 doi: 10.1001/jamaoncol.2017.4777 – ident: e_1_3_4_56_2 doi: 10.1038/s41591-019-0405-7 – ident: e_1_3_4_42_2 doi: 10.1136/gutjnl-2016-313189 – ident: e_1_3_4_5_2 doi: 10.3389/fmicb.2022.895537 – ident: e_1_3_4_39_2 doi: 10.1128/AEM.03006-05 – ident: e_1_3_4_16_2 doi: 10.1099/jmm.0.001417 – ident: e_1_3_4_69_2 doi: 10.1016/j.heliyon.2023.e13198 – ident: e_1_3_4_38_2 doi: 10.1128/mSystems.00191-16 – ident: e_1_3_4_25_2 doi: 10.1186/s12903-023-03760-y – ident: e_1_3_4_64_2 doi: 10.1007/s00248-020-01596-5 – ident: e_1_3_4_20_2 doi: 10.1002/cre2.139 – ident: e_1_3_4_47_2 doi: 10.1001/jamanetworkopen.2020.17357 – ident: e_1_3_4_22_2 doi: 10.3389/fmicb.2018.00862 – ident: e_1_3_4_7_2 doi: 10.3322/caac.21660 – ident: e_1_3_4_52_2 doi: 10.1038/s41522-022-00279-y – ident: e_1_3_4_54_2 doi: 10.1080/19490976.2023.2197835 – ident: e_1_3_4_6_2 doi: 10.1038/s41368-023-00249-w – ident: e_1_3_4_21_2 doi: 10.1038/s41598-017-16418-x – ident: e_1_3_4_70_2 doi: 10.1111/apm.13315 – ident: e_1_3_4_51_2 doi: 10.1186/s12866-020-01801-y – ident: e_1_3_4_23_2 doi: 10.3389/fcimb.2021.728933 – ident: e_1_3_4_18_2 doi: 10.3389/fmicb.2021.719601 – ident: e_1_3_4_12_2 doi: 10.1111/jre.12691 – ident: e_1_3_4_46_2 doi: 10.1371/journal.pcbi.1004977 – ident: e_1_3_4_63_2 doi: 10.1016/B978-0-7020-3468-8.50201-7 – ident: e_1_3_4_11_2 doi: 10.1128/mSystems.00323-19 – ident: e_1_3_4_26_2 doi: 10.1186/s40168-023-01613-y – ident: e_1_3_4_30_2 doi: 10.1016/j.jri.2021.103293 – ident: e_1_3_4_62_2 doi: 10.1038/s41388-021-02137-1 – ident: e_1_3_4_43_2 doi: 10.1186/gb-2010-11-10-r106 – ident: e_1_3_4_67_2 doi: 10.3390/ijms242015456 – ident: e_1_3_4_4_2 doi: 10.1038/s41392-022-00974-4 – ident: e_1_3_4_57_2 doi: 10.1177/21925682221110527 – ident: e_1_3_4_28_2 doi: 10.1080/20002297.2022.2051352 – ident: e_1_3_4_29_2 doi: 10.1038/s41598-020-59016-0 – ident: e_1_3_4_19_2 doi: 10.3389/fonc.2021.737843 – ident: e_1_3_4_10_2 doi: 10.3390/cancers15133270 – ident: e_1_3_4_37_2 doi: 10.1038/s41587-019-0209-9 – ident: e_1_3_4_45_2 doi: 10.5555/1953048.2078195 – ident: e_1_3_4_44_2 doi: 10.18637/jss.v036.i03 – ident: e_1_3_4_9_2 doi: 10.1111/jop.13546 – ident: e_1_3_4_31_2 doi: 10.18632/aging.103108 – ident: e_1_3_4_3_2 doi: 10.1038/s41579-023-00963-6 – ident: e_1_3_4_32_2 doi: 10.1128/mSystems.00630-19 – ident: e_1_3_4_55_2 doi: 10.1038/s41591-019-0406-6 – ident: e_1_3_4_71_2 doi: 10.1128/msystems.00738-22 – ident: e_1_3_4_36_2 doi: 10.1177/0022034520968750 – ident: e_1_3_4_60_2 doi: 10.1038/s41598-019-46790-9 – ident: e_1_3_4_13_2 doi: 10.1002/ijc.34460 – ident: e_1_3_4_2_2 doi: 10.1101/gr.276482.121 – ident: e_1_3_4_40_2 doi: 10.1038/s41467-022-33071-9 – ident: e_1_3_4_35_2 doi: 10.3389/fcimb.2022.942328 – ident: e_1_3_4_24_2 doi: 10.1128/spectrum.02737-22 – ident: e_1_3_4_8_2 doi: 10.1016/j.ctarc.2024.100831 – ident: e_1_3_4_58_2 doi: 10.1007/s42770-022-00721-5 – ident: e_1_3_4_66_2 doi: 10.1111/jop.13492 – ident: e_1_3_4_50_2 doi: 10.1007/s00784-020-03592-y – ident: e_1_3_4_34_2 doi: 10.1002/advs.201902054 – ident: e_1_3_4_33_2 doi: 10.1016/j.isci.2022.105839 – ident: e_1_3_4_53_2 doi: 10.1128/mBio.03281-20 – ident: e_1_3_4_48_2 doi: 10.1038/s41598-019-52445-6 – ident: e_1_3_4_14_2 doi: 10.1007/s00253-022-11980-5 – ident: e_1_3_4_15_2 doi: 10.3389/fcimb.2021.663068 – ident: e_1_3_4_17_2 doi: 10.1016/j.bbapap.2021.140659 – ident: e_1_3_4_68_2 doi: 10.3389/fmicb.2022.968304 – ident: e_1_3_4_59_2 doi: 10.1111/odi.12341 – ident: e_1_3_4_27_2 doi: 10.1111/prd.12366 – volume: 12 year: 2016 ident: B45 article-title: Machine learning meta-analysis of large metagenomic datasets: tools and biological insights publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004977 – volume: 23 year: 2023 ident: B24 article-title: Compositional and functional changes in the salivary microbiota related to oral leukoplakia and oral squamous cell carcinoma: a case control study publication-title: BMC Oral Health doi: 10.1186/s12903-023-03760-y – volume: 7 start-page: 16540 year: 2017 ident: B20 article-title: Bacterial alterations in salivary microbiota and their association in oral cancer publication-title: Sci Rep doi: 10.1038/s41598-017-16418-x – volume: 22 start-page: 89 year: 2024 end-page: 104 ident: B2 article-title: The oral microbiome: diversity, biogeography and human health publication-title: Nat Rev Microbiol doi: 10.1038/s41579-023-00963-6 – volume: 26 year: 2023 ident: B32 article-title: Sex differences in the oral microbiome, host traits, and their causal relationships publication-title: i Sci doi: 10.1016/j.isci.2022.105839 – volume: 4 start-page: 255 year: 2018 end-page: 262 ident: B19 article-title: Microbial and inflammatory-based salivary biomarkers of head and neck squamous cell carcinoma publication-title: Clin Exp Dent Res doi: 10.1002/cre2.139 – volume: 10 start-page: 2133 year: 2020 ident: B28 article-title: Patterns of oral microbiota diversity in adults and children: a crowdsourced population study publication-title: Sci Rep doi: 10.1038/s41598-020-59016-0 – volume: 36 start-page: 1 year: 2010 end-page: 48 ident: B43 article-title: Conducting meta-analyses in R with the metafor package publication-title: J Stat Softw doi: 10.18637/jss.v036.i03 – volume: 11 start-page: 1 year: 2010 end-page: 12 ident: B42 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol doi: 10.1186/gb-2010-11-10-r106 – volume: 8 start-page: 110931 year: 2017 end-page: 110948 ident: B60 article-title: High-resolution microbiome profiling uncovers Fusobacterium nucleatum, Lactobacillus gasseri/johnsonii, and Lactobacillus vaginalis associated to oral and oropharyngeal cancer in saliva from HPV positive and HPV negative patients treated with surgery and chemo-radiation publication-title: Oncotarget doi: 10.18632/oncotarget.20677 – volume: 15 start-page: 1 year: 2023 end-page: 24 ident: B9 article-title: Early diagnosis of oral cancer: a complex polyhedral problem with a difficult solution publication-title: Cancers (Basel) doi: 10.3390/cancers15133270 – volume: 3 year: 2020 ident: B46 article-title: Association of sleep electroencephalography-based brain age index with dementia publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2020.17357 – volume: 13 start-page: 968304 year: 2022 ident: B67 article-title: Systematic review and meta-analysis of oral squamous cell carcinoma associated oral microbiome publication-title: Front Microbiol doi: 10.3389/fmicb.2022.968304 – volume: 53 start-page: 991 year: 2022 end-page: 1000 ident: B57 article-title: Effect of electronic cigarette and tobacco smoking on the human saliva microbial community publication-title: Braz J Microbiol doi: 10.1007/s42770-022-00721-5 – volume: 7 start-page: 1 year: 2022 end-page: 28 ident: B3 article-title: Microbiota in health and diseases publication-title: Sig Transduct Target Ther doi: 10.1038/s41392-022-00974-4 – volume: 4 start-page: 358 year: 2018 end-page: 365 ident: B64 article-title: Association of oral microbiome with risk for incident head and neck squamous cell cancer publication-title: JAMA Oncol doi: 10.1001/jamaoncol.2017.4777 – volume: 40 start-page: 100831 year: 2024 ident: B7 article-title: Factors associated with delay in diagnosis of oral cancers publication-title: Cancer Treat Res Commun doi: 10.1016/j.ctarc.2024.100831 – volume: 14 start-page: 2051352 year: 2022 ident: B27 article-title: Maturation of the oral microbiota during primary teeth eruption: a longitudinal, preliminary study publication-title: J Oral Microbiol doi: 10.1080/20002297.2022.2051352 – volume: 12 start-page: 1624 year: 2022 end-page: 1626 ident: B56 article-title: Fixed-effect vs random-effects models for meta-analysis: 3 points to consider publication-title: Global Spine J doi: 10.1177/21925682221110527 – volume: 21 start-page: 748 year: 2015 end-page: 754 ident: B58 article-title: Acetaldehyde production by major oral microbes publication-title: Oral Dis doi: 10.1111/odi.12341 – volume: 152 start-page: 1903 year: 2023 end-page: 1915 ident: B12 article-title: Convergent dysbiosis of upper aerodigestive microbiota between patients with esophageal and oral cavity squamous cell carcinoma publication-title: Int J Cancer doi: 10.1002/ijc.34460 – volume: 26 start-page: 265 year: 2019 end-page: 272 ident: B40 article-title: Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet publication-title: Cell Host Microbe doi: 10.1016/j.chom.2019.06.013 – volume: 6 start-page: 1902054 year: 2019 ident: B33 article-title: How and why men and women differ in their microbiomes: medical ecology and network analyses of the microgenderome publication-title: Adv Sci (Weinh) doi: 10.1002/advs.201902054 – volume: 15 start-page: 44 year: 2023 ident: B5 article-title: Oral squamous cell carcinomas: state of the field and emerging directions publication-title: Int J Oral Sci doi: 10.1038/s41368-023-00249-w – volume: 10 year: 2022 ident: B23 article-title: Oral bacteriome and mycobiome across stages of oral carcinogenesis publication-title: Microbiol Spectr doi: 10.1128/spectrum.02737-22 – volume: 1869 start-page: 140659 year: 2021 ident: B16 article-title: Meta-omics analysis indicates the saliva microbiome and its proteins associated with the prognosis of oral cancer patients publication-title: Biochim Biophysica Acta (BBA) Proteins Proteom doi: 10.1016/j.bbapap.2021.140659 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: B44 article-title: Scikit-learn: machine learning in Python publication-title: J Mach Learn Res doi: 10.5555/1953048.2078195 – volume: 53 start-page: 358 year: 2024 end-page: 365 ident: B8 article-title: The association between referral by specialists in oral diagnosis on survival rates of patients with oral cancer: a retrospective cohort study publication-title: J Oral Pathol Med doi: 10.1111/jop.13546 – volume: 41 start-page: 1269 year: 2022 end-page: 1280 ident: B61 article-title: A dysbiotic microbiome promotes head and neck squamous cell carcinoma publication-title: Oncogene doi: 10.1038/s41388-021-02137-1 – volume: 9 start-page: 1 year: 2019 end-page: 7 ident: B47 article-title: Comparison of oral microbiome profiles in stimulated and unstimulated saliva, tongue, and mouth-rinsed water publication-title: Sci Rep doi: 10.1038/s41598-019-52445-6 – volume: 11 start-page: 728933 year: 2021 ident: B22 article-title: The clinical potential of oral microbiota as a screening tool for oral squamous cell carcinomas publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.728933 – volume: 86 start-page: 123 year: 2021 end-page: 141 ident: B26 article-title: Acquisition and establishment of the oral microbiota publication-title: Periodontol 2000 doi: 10.1111/prd.12366 – volume: 12 start-page: 7874 year: 2020 end-page: 7907 ident: B30 article-title: Microbiome succession with increasing age in three oral sites publication-title: Aging (Milano) doi: 10.18632/aging.103108 – volume: 25 start-page: 679 year: 2019 end-page: 689 ident: B54 article-title: Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer publication-title: Nat Med doi: 10.1038/s41591-019-0406-6 – volume: 70 start-page: 1 year: 2021 end-page: 11 ident: B15 article-title: Identification & correlation of bacterial diversity in oral cancer and long-term tobacco chewers- a case-control pilot study publication-title: J Med Microbiol doi: 10.1099/jmm.0.001417 – volume: 71 start-page: 209 year: 2021 end-page: 249 ident: B6 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA A Cancer J Clinicians doi: 10.3322/caac.21660 – volume: 82 start-page: 1030 year: 2021 end-page: 1046 ident: B63 article-title: Oral microbial species and virulence factors associated with oral squamous cell carcinoma publication-title: Microb Ecol doi: 10.1007/s00248-020-01596-5 – volume: 55 start-page: 13 year: 2020 end-page: 22 ident: B11 article-title: Role of Porphyromonas gingivalis in oral squamous cell carcinoma development: a systematic review publication-title: J Periodont Res doi: 10.1111/jre.12691 – volume: 15 start-page: 2197835 year: 2023 ident: B53 article-title: Meta-analysis reveals Helicobacter pylori mutual exclusivity and reproducible gastric microbiome alterations during gastric carcinoma progression publication-title: Gut Microbes doi: 10.1080/19490976.2023.2197835 – volume: 131 start-page: 262 year: 2023 end-page: 276 ident: B69 article-title: Limitations of using 16S rRNA microbiome sequencing to predict oral squamous cell carcinoma publication-title: APMIS doi: 10.1111/apm.13315 – volume: 145 start-page: 103293 year: 2021 ident: B29 article-title: Oral microbiome and pregnancy: a bidirectional relationship publication-title: J Reprod Immunol doi: 10.1016/j.jri.2021.103293 – volume: 11 start-page: 171 year: 2023 ident: B25 article-title: Salivary microbiome profiles of oral cancer patients analyzed before and after treatment publication-title: Microbiome doi: 10.1186/s40168-023-01613-y – volume: 9 year: 2023 ident: B68 article-title: Microbial dysbiosis in oral squamous cell carcinoma: a systematic review and meta-analysis publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e13198 – volume: 32 start-page: 1112 year: 2022 end-page: 1123 ident: B1 article-title: Diurnal and eating-associated microbial patterns revealed via high-frequency saliva sampling publication-title: Genome Res doi: 10.1101/gr.276482.121 – volume: 4 year: 2019 ident: B10 article-title: The oral mouse microbiome promotes tumorigenesis in oral squamous cell carcinoma publication-title: mSystems doi: 10.1128/mSystems.00323-19 – volume: 13 year: 2018 ident: B48 article-title: Comparison of the oral microbiome in mouthwash and whole saliva samples publication-title: PLoS One doi: 10.1371/journal.pone.0194729 – volume: 12 year: 2021 ident: B52 article-title: Longitudinal multi-omics and microbiome meta-analysis identify an asymptomatic gingival state that links gingivitis, periodontitis, and aging publication-title: mBio doi: 10.1128/mBio.03281-20 – volume: 37 start-page: 852 year: 2019 end-page: 857 ident: B36 article-title: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 publication-title: Nat Biotechnol doi: 10.1038/s41587-019-0209-9 – volume: 25 start-page: 2779 year: 2021 end-page: 2789 ident: B49 article-title: Comparative evaluation of microbial profiles of oral samples obtained at different collection time points and using different methods publication-title: Clin Oral Investig doi: 10.1007/s00784-020-03592-y – volume: 2 year: 2017 ident: B37 article-title: Deblur rapidly resolves single-nucleotide community sequence patterns publication-title: mSystems doi: 10.1128/mSystems.00191-16 – volume: 25 start-page: 667 year: 2019 end-page: 678 ident: B55 article-title: Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation publication-title: Nat Med doi: 10.1038/s41591-019-0405-7 – volume: 106 start-page: 4115 year: 2022 end-page: 4128 ident: B13 article-title: Comparative and analytical characterization of the oral bacteriome of smokeless tobacco users with oral squamous cell carcinoma publication-title: Appl Microbiol Biotechnol doi: 10.1007/s00253-022-11980-5 – volume: 20 year: 2020 ident: B50 article-title: Defining the oral microbiome by whole-genome sequencing and resistome analysis: the complexity of the healthy picture publication-title: BMC Microbiol doi: 10.1186/s12866-020-01801-y – start-page: 977 year: 2008 end-page: 979 ident: B62 article-title: Anaerobic Gram-positive, nonsporulating bacilli (including actinomycosis) publication-title: Principles and practice of pediatric infectious disease ;3rd ed ;p In ;W.B. Saunders ;Edinburgh, Scotland – volume: 12 start-page: 942328 year: 2022 ident: B34 article-title: The oral cancer microbiome contains tumor space-specific and clinicopathology-specific bacteria publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2022.942328 – volume: 11 start-page: 737843 year: 2021 ident: B18 article-title: Restoration of the oral microbiota after surgery for head and neck squamous cell carcinoma is associated with patient outcomes publication-title: Front Oncol doi: 10.3389/fonc.2021.737843 – volume: 5 year: 2020 ident: B31 article-title: Human skin, oral, and gut microbiomes predict chronological age publication-title: mSystems doi: 10.1128/mSystems.00630-19 – volume: 13 start-page: 895537 year: 2022 end-page: 895555 ident: B4 article-title: The oral microbiota: community composition, influencing factors, pathogenesis, and interventions publication-title: Front Microbiol doi: 10.3389/fmicb.2022.895537 – volume: 72 start-page: 5069 year: 2006 end-page: 5072 ident: B38 article-title: Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB publication-title: Appl Environ Microbiol doi: 10.1128/AEM.03006-05 – volume: 13 start-page: 1 year: 2022 end-page: 14 ident: B39 article-title: Batch effects removal for microbiome data via conditional quantile regression publication-title: Nat Commun doi: 10.1038/s41467-022-33071-9 – volume: 8 year: 2023 ident: B70 article-title: Systematic evaluation of the viable microbiome in the human oral and gut samples with spike-in Gram+/- bacteria publication-title: mSystems doi: 10.1128/msystems.00738-22 – volume: 52 start-page: 911 year: 2023 end-page: 918 ident: B65 article-title: Oral microbiome characterization in oral mucositis patients—a systematic review publication-title: J Oral Pathology Medicine doi: 10.1111/jop.13492 – volume: 12 start-page: 719601 year: 2021 ident: B17 article-title: Oral microbiota analysis of tissue pairs and saliva samples from patients with oral squamous cell carcinoma - a pilot study publication-title: Front Microbiol doi: 10.3389/fmicb.2021.719601 – volume: 67 start-page: 882 year: 2018 end-page: 891 ident: B41 article-title: Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer publication-title: Gut doi: 10.1136/gutjnl-2016-313189 – volume: 24 start-page: 1 year: 2023 end-page: 15 ident: B66 article-title: Potential role of the intratumoral microbiota in prognosis of head and neck cancer publication-title: Int J Mol Sci doi: 10.3390/ijms242015456 – volume: 9 start-page: 10446 year: 2019 ident: B59 article-title: Metabolic property of acetaldehyde production from ethanol and glucose by oral Streptococcus and Neisseria publication-title: Sci Rep doi: 10.1038/s41598-019-46790-9 – volume: 11 start-page: 663068 year: 2021 ident: B14 article-title: Taxonomic and functional dysregulation in salivary microbiomes during oral carcinogenesis publication-title: Front Cell Infect Microbiol doi: 10.3389/fcimb.2021.663068 – volume: 8 start-page: 38 year: 2022 ident: B51 article-title: Citizen-science reveals changes in the oral microbiome in Spain through age and lifestyle factors publication-title: NPJ Biofilms Microbiomes doi: 10.1038/s41522-022-00279-y – volume: 9 start-page: 862 year: 2018 ident: B21 article-title: Oral microbiota community dynamics associated with oral squamous cell carcinoma staging publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00862 – volume: 100 start-page: 397 year: 2021 end-page: 405 ident: B35 article-title: Carcinogenesis of male oral submucous fibrosis alters salivary microbiomes publication-title: J Dent Res doi: 10.1177/0022034520968750 |
SSID | ssj0001637129 |
Score | 2.310009 |
SecondaryResourceType | review_article |
Snippet | The oral cavity hosts a diverse microbial community that plays a crucial role in systemic and oral health. Accumulated research has investigated significant... Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential role in... ABSTRACTOral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a potential... ABSTRACT Oral squamous cell carcinoma (OSCC) is a prevalent malignancy in the oral-maxillofacial region with a poor prognosis. Oral microbiomes play a... |
SourceID | doaj pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | e0124724 |
SubjectTerms | age Biomarkers Cancer Carcinoma, Squamous Cell - microbiology Clinical Microbiology Dysbacteriosis Dysbiosis - microbiology Female Gender Host Microbial Interactions Humans Invasiveness Learning algorithms Machine learning Male Malignancy Maxillofacial Meta-analysis Microbiomes Microbiota Microorganisms Mouth Neoplasms - microbiology Oral carcinoma Oral cavity Oral squamous cell carcinoma Pathogenesis Research Article Saliva Saliva - microbiology salivary microbiome Squamous cell carcinoma Squamous Cell Carcinoma of Head and Neck - microbiology |
SummonAdditionalLinks | – databaseName: American Society for Microbiology Open Access dbid: AAUOK link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbKVkhcEO-GFmQkJCSklKxfsY8LoqpAwAFW6i2yY1vsIdmy2T30yi_vjPMoiyrENRMn1ozHMx7PfEPI6xrzJufe5J5hSU60MdfO8dxxpwsZdF2krMovX9X5Uny6kBcHRI21MAMHu1PbNekif9Jspt81Pbpxdwq7KgIMiDvkUDIjihk5XCyW3z7fRFcUL8GSDdeYt46FPRj-wfbsUYLtv83X_Dtl8g8bdPaA3B-cR7ropf2QHIT2Ebnbt5O8ekx-f59gmalNYCOho2C3MEuTbtZu121pZ_HuZ3NFm1WCYILPYQpHgvfsYJSnWPaRD9R1E-hl2ADR9ZE9umop1vTT7tfOYtSAYuSf1tiRqF039glZnn388eE8H3os5FZouc2F8tE4qYSNKhjmAldGWzg0wTnKF9zOPUefgPNaaW2lAWGCC2OF9LY2Ogb-lMzadRuOCPXgHIUIWlcbL7zlTjrwFmIsCq-kK2NG3iDDq1HEVTp_MF2NoqmSaComMvJ2lEl12YNu_Ovl9yi16UXEy04PYPVUg_pVMpYF7u2iqEsRjXAsOFWWpYvBChNZRk5Gmd_Mj7MCRhgtZUZeTWRQP-SsbQMwueJzhZD1quAZedYvkWkm3OiSgwOcEb23ePamuk9pVz8TxDcc-zgiNz7_b54dk3sMWxNjrxp9QmbbzS68AH9p614OynENvfUY4Q priority: 102 providerName: American Society for Microbiology – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhUOilNH2kbtKiQqBQcKK1HpaOTWgIhebSBnITkiXRPdibrncPueaXZ0b2bnZLSC-9eiwz1sxoZqTRN4QcNVg3OQmmDBVeyUkuldp7XnruNZNRNyxXVf64VBdX4vu1vN5o9YU1YQM88DBxJzLVDK1SsKYWyQhfRa_quvYpOmFSXn3B520kU3l3RfEaPNl4jAlr8Ek7ICP3x7AiIzgBopm6vq22_FGG7X8s1vy7ZHLDB52_JC_G4JF-HZjeIzuxe0WeDe0kb1-Tu59rWGbqMthI7Cn4LazSpPOZX_YL2js8-5nf0naaIZjgc1jCkeE9exgVKF77KEfqrI30Js6B6IedPTrtKN7pp_2fpcNdA4o7_7TBjkTdrHVvyNX5t19nF-XYY6F0QstFKVRIxkslXFLRVD5yZbSDpAnyqMC4mwSOMQHnjdLaSQPChBDGCRlcY3SK_C3Z7WZdfEdogOAoJrC6xgQRHPfSQ7SQEmNBSV-ngnzGCbejkfQ25x-VtivR2CwaW4mCfFnJxN4MoBtPvXyKUlu_iHjZ-QFokR21yP5LiwpyuJL5A3-8YjDCaCkL8mlNBvPDmXVdhEm2fKIQsl4xXpD9QUXWnHCjaw4BcEH0lvJssbpN6aa_M8Q3pH0ckRvf_4-fOyDPK-xajG1s9CHZXcyX8QOEUgv_MVvNPVPfIRM priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9RAFB-0IniR-h1bZQRBEGKzme9TacVSBL1oYW9hJjOje0iyTXYPvfqX971JdtcV6TUvCY958z7nze8R8r7GvsmZN7kv8UpOtDHXzrHcMacLEXRdpK7Kb9_l5RX_OhfzqeA2TG2VG5uYDLXvaqyRn7CyYJobLcTp8jrHqVF4ujqN0LhPHiB0GbZ0qbna1VgkU-DPpsNMsMQnzYiPPHwCu4wQBYhpaoem3PNKCbz_fxHnv42Tf3mii0PyeAoh6dko8yfkXmifkofjUMmbZ-TPjy04M7UJciQMFLwX9mrSvnPrYUUHiydA_Q1tFgmICX6HjRwJ5HOArzzFyx_5RO2aQJehB6Ib63t00VK82U-H67XF2gHF-j-tcS5R2zX2Obm6-PLz82U-TVrILddilXPpo3FCchtlMKULTBptIXWCbMoXzM48w8iAsVpqbYUBkUIgY7nwtjY6BvaCHLRdG14R6iFEChF0rzaee8uccBAzxFgUXgqnYkY-4IJXk6oMVcpCSl1tRFMl0VQlz8jHjUyq5Qi9cdfL5yi17YuImp0edP2valLCSkRVoIXnRa14NNyVwUmllIvBchPLjBxvZL7jb7fxMvJuSwYlxJW1bYBFrthMInC9LFhGXo5bZMsJM1oxCIMzovc2zx6r-5R28TsBfUPyxxC_8fXdfB2RRyVOJcYxNfqYHKz6dXgDodLKvU36cAsNUhjK priority: 102 providerName: ProQuest |
Title | Systematic analyses uncover robust salivary microbial signatures and host-microbiome perturbations in oral squamous cell carcinoma |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39873508 https://journals.asm.org/doi/10.1128/msystems.01247-24 https://www.proquest.com/docview/3203849855 https://www.proquest.com/docview/3160461603 https://pubmed.ncbi.nlm.nih.gov/PMC11834404 https://doaj.org/article/5f70153840c74f94b2eb6777bfea49f2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3di9QwEA_3geCL-G31XCIIgtCz2yRN8iCyJ3ccyp2iLuxbSZpEF9zuXbsL7qt_uTNpd3VlEZ8KTdKGTCb5zWTyG0KeVxg3OXQ6dTleyQkmpMpallpmVSa8qrIYVXlxWZyP-buJmOyRdXqrfgDbnaYd5pMaN9-Pf1yv3oDCv-4uwKhXs470uD2GxRZ5B_g-OYSNSaKeXvRoP7pcCiaHMW9ZzqROAQnJ_pxz51dgkTbtLN_asCKv_y4w-ndM5R-b1NltcqtHl3TUTYc7ZM_Xd8mNLt_k6h75-XnD20xNZCPxLYWNDcM4aTO3y3ZBW4OHQ82KzqaRowk-hzEekf-zhVaO4r2QtC-dzzy98g0U2s71R6c1xUv_tL1eGnQrUDwaoBWmLKrnM3OfjM9Ov7w9T_skDKnhSixSXrigrSi4CYXXufWs0MqAVQWGlsuYGTqGoIGxqlDKCA3SBoxjuHCm0ip49oAc1PPaPyLUAXryAdSy0o47w6ywACdCyDJXCCtDQl7ggJfrSVBGAyVX5Vo0ZRRNmfOEvFzLpLzqWDn-VfkEpbapiITa8cW8-Vr2-lmKIDNc_HlWSR40t7m3hZTSBm-4DnlCjtYy_90_lmfQQishEvJsUwz6iSNrag-DXLJhgZz2RcYS8rCbIpueMK0kA4ScELU1eba6ul1ST79FDnCwCxlSOz7-jx8_ITdzzFqMaWzUETlYNEv_FKDUwg7IvpzIATkcjcYf3sPz5PTy46dBdEwMovL8AoLnJkw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CA4wEQkLKltqO4zwgxGBTx7YKwSbtLdixvfWhSde0Qn3lD-Jv5C4fLUVob3uNHevku_Pd-c6_I-R1jnWTfZuGluGTHK99qIzhoeFGRbFTeVRXVR4P5eBUfDmLzzbI7-4tDJZVdmdifVDbMsc78h3OIq5EquL4w-QyxK5RmF3tWmg0YnHoFj8hZKveH3wG_r5hbH_v5NMgbLsKhFqoeBYKaX1qYim0ly5lxnGZKg1hAkQONuK6bzlaQc5zqZSOUyAfjLYWsdV5qrzjsO4Nsik4hDI9srm7N_z6bXWrI3kCFrRNn8LZvzNuEJmrbbAECIqAKKq6GrM1O1i3C_ifj_tvqeZftm__LrnTOq30YyNl98iGK-6Tm00by8UD8uv7Eg6a6hrkxFUU7CVWh9JpaebVjFYac07TBR2PaugnWA5LR2pY0Qr-shSfm4TtaDl2dOKmMGiaG0U6KihiCdDqcq7xtoJixoHm2AmpKMf6ITm9Fi48Ir2iLNwTQi04Zc6DtuepFVZzExvwUryPIitjk_iAvMUNz1rlrLI67mEq61iT1azJmAjIu44n2aQB-7hq8i5ybTkRcbrrD-X0PGvVPot9EqFNEVGeCJ8Kw5yRSZIY77RIPQvIVsfzFX0rUQ_Iq-UwqD3urC4cbHLG-xKh8mXEA_K4EZElJTxVCQfHOyBqTXjWSF0fKUYXNbQ4hJscESOfXk3XS3JrcHJ8lB0dDA-fkdsMeyJjkxy1RXqz6dw9B0dtZl602kHJj-tWyD-evVat |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRSAuiDeBBYwEQkIKTf2Kc0AIWKpdFlZIsFJvWTu2oYcm3aYV6pWfxa9jJo-WIrS3vcaJ5Xhm_M3Y428IeVZg3uTQZbFjeCUnmBBra3lsudWJ9LpImqzKz8fq4ER8HMvxDvnd34XBtMp-TWwWalcVuEc-4CzhWmRaykHo0iK-7I_ezM5irCCFJ619OY1WRY786ieEb_Xrw32Q9XPGRh--vT-IuwoDsRFaLmKhXMisVMIE5TNmPVeZNhAyQBThEm6GjiMicl4orY3M4FcAwI2QzhSZDp5Dv5fI5ZTLIdpYOk43-zuKp4Cl3UEqoMBg2nIz168AE5AeAflUTT1lW4jYFA74n7f7b9LmXyg4ukGud-4rfdvq202y48tb5Epb0HJ1m_z6uiaGpqahO_E1BeTEPFE6r-yyXtDa4OnTfEWnk4YECrrDJJKGYLSGrxzFiydx11pNPZ35OTTadm-RTkqKrAK0Plsa3LegePZAC6yJVFZTc4ecXIgM7pLdsir9fUIduGc-gN0XmRPOcCst-CshJIlT0qYhIi9wwvPOTOu8iYCYznvR5I1ociYi8rKXST5raT_Oe_kdSm39IjJ2Nw-q-fe8WwByGdIE0UUkRSpCJizzVqVpaoM3IgssInu9zDfj2yh9RJ6um2EBwJk1pYdJzvlQIWm-SnhE7rUqsh4JzzToZqIjoreUZ2uo2y3l5EdDMg6BJ0fuyAfnj-sJuQpmmH86PD56SK4xLI6M1XL0HtldzJf-EXhsC_u4MQ1KTi_aFv8AeGpZfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+analyses+uncover+robust+salivary+microbial+signatures+and+host-microbiome+perturbations+in+oral+squamous+cell+carcinoma&rft.jtitle=mSystems&rft.au=Han%2C+Zewen&rft.au=Hu%2C+Yichen&rft.au=Lin%2C+Xin&rft.au=Cheng%2C+Hongyu&rft.date=2025-02-18&rft.issn=2379-5077&rft.eissn=2379-5077&rft.volume=10&rft.issue=2&rft.spage=e0124724&rft_id=info:doi/10.1128%2Fmsystems.01247-24&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-5077&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-5077&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-5077&client=summon |