Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique

We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of m...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 33; no. 4; pp. 1060 - 1065
Main Authors Li, Yu-Nong, Wang, Sha, Zhou, Yuan, Bai, Xiao-Jue, Song, Guo-Shuai, Zhao, Xue-Ying, Wang, Tie-Qiang, Qi, Xuan, Zhang, Xue-Min, Fu, Yu
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 31.01.2017
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/acs.langmuir.6b04353

Cover

Loading…
Abstract We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.
AbstractList We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.
We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.
We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO₂ to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.
We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.
Author Zhang, Xue-Min
Li, Yu-Nong
Wang, Sha
Bai, Xiao-Jue
Song, Guo-Shuai
Zhao, Xue-Ying
Fu, Yu
Qi, Xuan
Zhou, Yuan
Wang, Tie-Qiang
AuthorAffiliation College of Sciences
AuthorAffiliation_xml – name: College of Sciences
Author_xml – sequence: 1
  givenname: Yu-Nong
  orcidid: 0000-0002-0872-5976
  surname: Li
  fullname: Li, Yu-Nong
  email: liyunong@mail.neu.edu.cn
– sequence: 2
  givenname: Sha
  surname: Wang
  fullname: Wang, Sha
– sequence: 3
  givenname: Yuan
  surname: Zhou
  fullname: Zhou, Yuan
– sequence: 4
  givenname: Xiao-Jue
  surname: Bai
  fullname: Bai, Xiao-Jue
– sequence: 5
  givenname: Guo-Shuai
  surname: Song
  fullname: Song, Guo-Shuai
– sequence: 6
  givenname: Xue-Ying
  surname: Zhao
  fullname: Zhao, Xue-Ying
– sequence: 7
  givenname: Tie-Qiang
  surname: Wang
  fullname: Wang, Tie-Qiang
– sequence: 8
  givenname: Xuan
  surname: Qi
  fullname: Qi, Xuan
– sequence: 9
  givenname: Xue-Min
  surname: Zhang
  fullname: Zhang, Xue-Min
– sequence: 10
  givenname: Yu
  surname: Fu
  fullname: Fu, Yu
  email: fuyu@mail.neu.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28064489$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1u1DAURi1URKeFN0DISzYZ_BfHYYdGDFQqFImyjm6cm45LYg-2IzQ73qFv2Cchw0xZsKArS9fn3Ct93xk58cEjIS85W3Im-BuwaTmAvxknF5e6ZUqW8glZ8FKwojSiOiELVilZVErLU3KW0i1jrJaqfkZOhWFaKVMvyLCGNjoL2QVPQ08_YYbh_tfdVbwB7yxdRxjxZ4jfKfiOXvjeeZeRrkKInfMH7UsYdiNG-hl8SBvEnGi7o3mD9Os2wo5eo91492PC5-RpD0PCF8f3nHxbv79efSwurz5crN5dFqCMykWrqp5VUFsUQnKDBjrgJZMCcT_TWGItsJasapntsK_RYC8kMx1nfSmMPCevD3u3McxnU25GlywOc1wYptSIOYlSSyn4oyg3pTZaa1HP6KsjOrUjds02uhHirnkIcwbUAbAxpBSx_4tw1uw7a-bOmofOmmNns_b2H826_CfZHMENj8nsIO9_b8MU_Rzs_5XfetOz2A
CitedBy_id crossref_primary_10_1002_cjoc_201800144
crossref_primary_10_1016_j_ccr_2022_214650
crossref_primary_10_1016_j_cjche_2024_06_031
crossref_primary_10_1021_acs_inorgchem_3c03425
crossref_primary_10_1021_acs_inorgchem_3c00118
crossref_primary_10_1039_C8TA03159B
crossref_primary_10_1016_j_jssc_2020_121635
crossref_primary_10_1039_D0NR09064F
crossref_primary_10_1021_acs_cgd_9b01545
crossref_primary_10_1016_j_memsci_2019_03_055
crossref_primary_10_1021_acs_langmuir_7b01987
crossref_primary_10_1021_acs_jpcc_8b00999
crossref_primary_10_1016_j_micromeso_2022_112379
crossref_primary_10_1007_s41061_019_0269_9
crossref_primary_10_1016_j_apsusc_2022_154088
crossref_primary_10_1246_bcsj_20180237
crossref_primary_10_3390_nano7090237
crossref_primary_10_3390_polym15041055
crossref_primary_10_3390_inorganics11100376
crossref_primary_10_1021_acs_langmuir_2c02360
crossref_primary_10_1002_chem_201803221
crossref_primary_10_3390_bios13010123
crossref_primary_10_1002_adfm_202207723
crossref_primary_10_1002_advs_201802373
crossref_primary_10_1039_C8CS00268A
crossref_primary_10_1039_D0SC05889K
crossref_primary_10_1039_C9NJ05562B
crossref_primary_10_1039_C9CS00594C
crossref_primary_10_1246_bcsj_20190209
crossref_primary_10_1021_acsami_0c14639
crossref_primary_10_1016_j_cjac_2023_100251
crossref_primary_10_1088_1361_6528_ab30f6
crossref_primary_10_3390_polym13050829
crossref_primary_10_1021_acsami_1c11373
crossref_primary_10_1039_D0CC02982C
crossref_primary_10_1002_admi_201901514
crossref_primary_10_1007_s40820_020_00470_w
crossref_primary_10_1016_j_micromeso_2020_110254
crossref_primary_10_1016_j_micromeso_2020_110771
crossref_primary_10_1021_acs_langmuir_0c00919
crossref_primary_10_1039_D1MA00389E
crossref_primary_10_1039_D3NJ01245J
crossref_primary_10_1039_C9CC02614B
crossref_primary_10_1088_1361_6528_ab79ae
crossref_primary_10_1002_adfm_202103723
crossref_primary_10_1016_j_ccr_2019_05_018
crossref_primary_10_1021_acsapm_3c01132
crossref_primary_10_1016_j_memsci_2018_03_003
crossref_primary_10_1142_S1793292021501216
crossref_primary_10_1071_CH19312
crossref_primary_10_1002_aenm_202003990
crossref_primary_10_1002_smll_202305688
Cites_doi 10.1038/nmat4113
10.1039/b902550b
10.1016/j.matlet.2008.01.119
10.1016/B978-0-12-420221-4.00009-3
10.1039/C6CE00885B
10.1016/j.jpowsour.2012.02.071
10.1039/b919647a
10.1016/j.powtec.2011.06.024
10.1039/b807083k
10.1038/nature04191
10.1021/nn204054k
10.1039/b807085g
10.1016/j.cherd.2009.11.012
10.1021/cr068357u
10.1038/nmat2769
10.1002/anie.201208501
10.1039/C5RA11182J
10.1021/ja803383k
10.1002/cplu.201402150
10.1016/j.poly.2015.12.022
10.1039/c4ce00145a
10.1039/b807080f
10.1002/ange.201406484
10.1126/science.1102896
10.2109/jcersj2.119.180
10.1039/C6TA03687B
10.1038/nchem.1569
10.1016/j.jcis.2016.02.021
10.1039/C4CS00094C
10.1038/nchem.1026
10.1002/anie.200803387
10.1039/C6CC05366A
10.1016/j.jcis.2014.03.066
10.1002/ange.200601918
10.1039/C6DT00332J
10.1002/ange.201506888
10.1126/science.1254227
10.1021/ja0534809
10.1039/c3dt52130c
10.1039/B514368C
10.1039/C5GC03007B
10.1016/j.micromeso.2014.03.023
10.1039/c1cc12510a
10.1039/C6CC05154E
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
Copyright_xml – notice: Copyright © 2017 American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.6b04353
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 1065
ExternalDocumentID 28064489
10_1021_acs_langmuir_6b04353
a343110613
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a484t-b47f07a9ce22318e8ada15032ee9ce26e5e92e9307b0cdef9e8ef2308d10f5283
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 16:05:00 EDT 2025
Fri Jul 11 15:53:40 EDT 2025
Thu Jan 02 23:09:15 EST 2025
Tue Jul 01 02:30:55 EDT 2025
Thu Apr 24 23:03:11 EDT 2025
Thu Aug 27 13:43:22 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a484t-b47f07a9ce22318e8ada15032ee9ce26e5e92e9307b0cdef9e8ef2308d10f5283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0872-5976
PMID 28064489
PQID 1856866629
PQPubID 23479
PageCount 6
ParticipantIDs proquest_miscellaneous_2000563321
proquest_miscellaneous_1856866629
pubmed_primary_28064489
crossref_primary_10_1021_acs_langmuir_6b04353
crossref_citationtrail_10_1021_acs_langmuir_6b04353
acs_journals_10_1021_acs_langmuir_6b04353
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-31
PublicationDateYYYYMMDD 2017-01-31
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-31
  day: 31
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref39/cit39
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref43/cit43
ref34/cit34
ref37/cit37
ref28/cit28
ref40/cit40
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref42/cit42
ref41/cit41
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref44/cit44
ref7/cit7
References_xml – ident: ref7/cit7
  doi: 10.1038/nmat4113
– ident: ref41/cit41
  doi: 10.1039/b902550b
– ident: ref29/cit29
  doi: 10.1016/j.matlet.2008.01.119
– ident: ref43/cit43
  doi: 10.1016/B978-0-12-420221-4.00009-3
– ident: ref10/cit10
  doi: 10.1039/C6CE00885B
– ident: ref30/cit30
  doi: 10.1016/j.jpowsour.2012.02.071
– ident: ref23/cit23
  doi: 10.1039/b919647a
– ident: ref34/cit34
  doi: 10.1016/j.powtec.2011.06.024
– ident: ref1/cit1
  doi: 10.1039/b807083k
– ident: ref21/cit21
  doi: 10.1038/nature04191
– ident: ref24/cit24
  doi: 10.1021/nn204054k
– ident: ref2/cit2
  doi: 10.1039/b807085g
– ident: ref32/cit32
  doi: 10.1016/j.cherd.2009.11.012
– ident: ref44/cit44
  doi: 10.1021/cr068357u
– ident: ref39/cit39
  doi: 10.1038/nmat2769
– ident: ref19/cit19
  doi: 10.1002/anie.201208501
– ident: ref38/cit38
  doi: 10.1039/C5RA11182J
– ident: ref15/cit15
  doi: 10.1021/ja803383k
– ident: ref26/cit26
  doi: 10.1002/cplu.201402150
– ident: ref37/cit37
  doi: 10.1016/j.poly.2015.12.022
– ident: ref36/cit36
  doi: 10.1039/c4ce00145a
– ident: ref11/cit11
  doi: 10.1039/b807080f
– ident: ref12/cit12
  doi: 10.1002/ange.201406484
– ident: ref4/cit4
  doi: 10.1126/science.1102896
– ident: ref33/cit33
  doi: 10.2109/jcersj2.119.180
– ident: ref9/cit9
  doi: 10.1039/C6TA03687B
– ident: ref31/cit31
  doi: 10.1038/nchem.1569
– ident: ref35/cit35
  doi: 10.1016/j.jcis.2016.02.021
– ident: ref13/cit13
  doi: 10.1039/C4CS00094C
– ident: ref40/cit40
  doi: 10.1038/nchem.1026
– ident: ref14/cit14
  doi: 10.1002/anie.200803387
– ident: ref16/cit16
  doi: 10.1039/C6CC05366A
– ident: ref18/cit18
  doi: 10.1016/j.jcis.2014.03.066
– ident: ref22/cit22
  doi: 10.1002/ange.200601918
– ident: ref17/cit17
  doi: 10.1039/C6DT00332J
– ident: ref3/cit3
  doi: 10.1002/ange.201506888
– ident: ref6/cit6
  doi: 10.1126/science.1254227
– ident: ref20/cit20
  doi: 10.1021/ja0534809
– ident: ref25/cit25
  doi: 10.1039/c3dt52130c
– ident: ref28/cit28
  doi: 10.1039/B514368C
– ident: ref42/cit42
  doi: 10.1039/C5GC03007B
– ident: ref8/cit8
  doi: 10.1016/j.micromeso.2014.03.023
– ident: ref5/cit5
  doi: 10.1039/c1cc12510a
– ident: ref27/cit27
  doi: 10.1039/C6CC05154E
SSID ssj0009349
Score 2.4474921
Snippet We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying...
We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1060
SubjectTerms atomic force microscopy
atomization
carbon dioxide
catalytic activity
coordination polymers
crystals
Fourier transform infrared spectroscopy
industrialization
ligands
metal ions
nanosheets
scanning electron microscopy
spraying
X-ray diffraction
zinc
Title Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique
URI http://dx.doi.org/10.1021/acs.langmuir.6b04353
https://www.ncbi.nlm.nih.gov/pubmed/28064489
https://www.proquest.com/docview/1856866629
https://www.proquest.com/docview/2000563321
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHODC_8-2gIzEhUOWxI4T-1itWBWkAlJbqbdo7IzFqtukSrKH5cQ78IZ9EsabpBWgVeFq2U5sjz3fzHg-M_bW2NxYUUKkNJiIDjyIQIKLFAirQXvty-DvOPycHZykn07V6bWh-GcEXyTvwbXT4Ls7Xy2aaWZj0u_yNrsjMpK0AIVmR9cku7KHu4F2M08zOabKbeklKCTX_q6QtqDMjbaZP2Bfxpyd_pLJ2XTV2an7_jeF4z8O5CG7PwBPvt9LyiN2C6vH7O5sfO_tCVvOwTaDB4_Xnh8i4fLLHz_7bE3H5-M1Lg5VyT9WfhHgKp_VZL4uep8i_1ov1-fYcDqz6_YbYtdyu-aEMfnRRQNrfjwyxj5lJ_MPx7ODaHiLIYJUp11k09zHORiHhCcSjRpKICwpBWIoy1ChEWjoxLCxK9Eb1OjJvNFlEvtAIPOM7VR1hS8Yt97p4D_NpZep9g6UysjoUnFZgkWBE_aOpqoY9lJbbMLkIilC4Th_xTB_EybHxSvcQGoe3tZY3tAqump10ZN63FD_zSgXBS1KCKlAhfWK_k2rTJMFKMz2OiEZSmVSimTCnvdCdfXVENcmA9ns_seY99g9EbBFnJACfcl2umaFrwgZdfb1Zjv8AhZMDmY
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9JBeui_uygK99CBXIkWJPAZGDaeNgwJxitwEkhoiRh0pkOSDe-o_9A_7JR1qcdACRpArQVHc580M5w0hH5RJlWG5DoTUKsALTweaaxsIzYzU0kmXe3vH_CSZncVfzsX5HhFDLAx2osaW6taJf80uEH3yZd6Ed7leVuPEhCjm-R1yF_EI8xkbDien11y7vEO9nn0zjRM-RMztaMXLJVv_K5d2gM1W6EwfkO_b7rZvTX6M140Z25__MTneejwPyf0ehtLDbt88IntQPCYHkyH72xOymmpT9fY8Wjo6B0Tpf3797mI3LZ0Oj7qoLnJ6VLilB690UqIyu-wsjPRbudpcQkXxBi_rC4CmpmZDEXHS06tKb-hi4I99Ss6mnxeTWdBnZgh0LOMmMHHqwlQrC4guIglS5xqRJWcAviwBAYqBwvvDhDYHp0CCQ2VH5lHoPJ3MM7JflAW8INQ4K701NeWOx9JZLUSCKpgI81wbYDAiH3Gqsv5k1VnrNGdR5guH-cv6-RsRPqxhZnuKc59pY3XDV8H2q6uO4uOG-u-H7ZHhongHiy6gXGPfpEgk6oNM7a7jQ6NEwjmLRuR5t7e2f_VeblSX1ctbjPkdOZgt5sfZ8dHJ11fkHvOoI4xQtL4m-021hjeImRrztj0hfwFXahbH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxELUgSMCFfRlWI3Hh0JNuuxf7GA20EiBRpCRSxKXlpSxGTLpH3T2H4cQ_8Id8CeVehkUaRXC1vG_1qsp-RchrqTOpmVVBIpQM8MJTgeLKBIliWijhhLPe3nF4lO6fxe_Pk_PfQn1hJxqsqemc-P5UL60bGAaiXZ_uzXgXq3k9TXWIop5fJde8585Hbdibnfzi2-U98vUMnFmc8vHX3JZavGwyzZ-yaQvg7ARPfpt82nS5e2_yZbpq9dR8_YvN8b_GdIfcGuAo3ev3z11yBcp75MZsjAJ3nyxypevBrkcrRw8B0fqPb9_7P5yG5uPjLqpKSw9KN_cgls4qVGrnvaWRHleL9QXUFG_yqvkM0DZUrykiT3qyrNWano48sg_IWf7udLYfDBEaAhWLuA10nLkwU9IAooxIgFBWIcLkDMCnpZCAZCDxHtGhseAkCHCo9Agbhc7TyjwkO2VVwmNCtTPCW1Uz7ngsnFFJkqIqloTWKg0MJuQNTlUxnLCm6JznLCp84jh_xTB_E8LHdSzMQHXuI24sLikVbEote6qPS_K_GrdIgYviHS2qhGqFfRNJKlAvZHJ7Hv9FKkk5Z9GEPOr316ZV7-1GtVk--YcxvyTXj9_mxceDow9PyU3mwUcYoYR9RnbaegXPETq1-kV3SH4CKHEZSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Metal%E2%80%93Organic+Framework+and+Infinite+Coordination+Polymer+Nanosheets+by+the+Spray+Technique&rft.jtitle=Langmuir&rft.au=Li%2C+Yu-Nong&rft.au=Wang%2C+Sha&rft.au=Zhou%2C+Yuan&rft.au=Bai%2C+Xiao-Jue&rft.date=2017-01-31&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=33&rft.issue=4&rft.spage=1060&rft.epage=1065&rft_id=info:doi/10.1021%2Facs.langmuir.6b04353&rft.externalDocID=a343110613
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon