Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique
We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of m...
Saved in:
Published in | Langmuir Vol. 33; no. 4; pp. 1060 - 1065 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
31.01.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7463 1520-5827 1520-5827 |
DOI | 10.1021/acs.langmuir.6b04353 |
Cover
Loading…
Abstract | We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets. |
---|---|
AbstractList | We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets.We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets. We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO2 to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets. We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer–Emmett–Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO₂ to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid–liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets. We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying the atomized solution of metal ions onto the organic ligand solution. Nanosheet formation could be attributed to the anisotropic diffusion of metal ions in the ligand solution, which may give rise to a lateral interface of metal ions and organic ligands, where the crystals tend to grow laterally in the form of nanosheets. Three kinds of Zn- and Cu-based MOF nanosheets and two kinds of Co-based ICP nanosheets have been successfully obtained by spraying under mild conditions. The two-dimensional structures of nanosheets with a nanometer thickness and a homogeneous size can be evidenced by scanning electron microscopy, atomic force microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy measurements. Furthermore, the fabricated ICP nanosheets have exhibited efficient catalytic performance for the conversion of CO to high-value-added chemicals. This spray technique simplifies the nanosheet production process by industrialized means and enhances its controllability by the fast liquid-liquid interfacial fabrication, thus allowing access to the industrialized fabrication of MOF and ICP nanosheets. |
Author | Zhang, Xue-Min Li, Yu-Nong Wang, Sha Bai, Xiao-Jue Song, Guo-Shuai Zhao, Xue-Ying Fu, Yu Qi, Xuan Zhou, Yuan Wang, Tie-Qiang |
AuthorAffiliation | College of Sciences |
AuthorAffiliation_xml | – name: College of Sciences |
Author_xml | – sequence: 1 givenname: Yu-Nong orcidid: 0000-0002-0872-5976 surname: Li fullname: Li, Yu-Nong email: liyunong@mail.neu.edu.cn – sequence: 2 givenname: Sha surname: Wang fullname: Wang, Sha – sequence: 3 givenname: Yuan surname: Zhou fullname: Zhou, Yuan – sequence: 4 givenname: Xiao-Jue surname: Bai fullname: Bai, Xiao-Jue – sequence: 5 givenname: Guo-Shuai surname: Song fullname: Song, Guo-Shuai – sequence: 6 givenname: Xue-Ying surname: Zhao fullname: Zhao, Xue-Ying – sequence: 7 givenname: Tie-Qiang surname: Wang fullname: Wang, Tie-Qiang – sequence: 8 givenname: Xuan surname: Qi fullname: Qi, Xuan – sequence: 9 givenname: Xue-Min surname: Zhang fullname: Zhang, Xue-Min – sequence: 10 givenname: Yu surname: Fu fullname: Fu, Yu email: fuyu@mail.neu.edu.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28064489$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKeFN0DISzYZ_BfHYYdGDFQqFImyjm6cm45LYg-2IzQ73qFv2Cchw0xZsKArS9fn3Ct93xk58cEjIS85W3Im-BuwaTmAvxknF5e6ZUqW8glZ8FKwojSiOiELVilZVErLU3KW0i1jrJaqfkZOhWFaKVMvyLCGNjoL2QVPQ08_YYbh_tfdVbwB7yxdRxjxZ4jfKfiOXvjeeZeRrkKInfMH7UsYdiNG-hl8SBvEnGi7o3mD9Os2wo5eo91492PC5-RpD0PCF8f3nHxbv79efSwurz5crN5dFqCMykWrqp5VUFsUQnKDBjrgJZMCcT_TWGItsJasapntsK_RYC8kMx1nfSmMPCevD3u3McxnU25GlywOc1wYptSIOYlSSyn4oyg3pTZaa1HP6KsjOrUjds02uhHirnkIcwbUAbAxpBSx_4tw1uw7a-bOmofOmmNns_b2H826_CfZHMENj8nsIO9_b8MU_Rzs_5XfetOz2A |
CitedBy_id | crossref_primary_10_1002_cjoc_201800144 crossref_primary_10_1016_j_ccr_2022_214650 crossref_primary_10_1016_j_cjche_2024_06_031 crossref_primary_10_1021_acs_inorgchem_3c03425 crossref_primary_10_1021_acs_inorgchem_3c00118 crossref_primary_10_1039_C8TA03159B crossref_primary_10_1016_j_jssc_2020_121635 crossref_primary_10_1039_D0NR09064F crossref_primary_10_1021_acs_cgd_9b01545 crossref_primary_10_1016_j_memsci_2019_03_055 crossref_primary_10_1021_acs_langmuir_7b01987 crossref_primary_10_1021_acs_jpcc_8b00999 crossref_primary_10_1016_j_micromeso_2022_112379 crossref_primary_10_1007_s41061_019_0269_9 crossref_primary_10_1016_j_apsusc_2022_154088 crossref_primary_10_1246_bcsj_20180237 crossref_primary_10_3390_nano7090237 crossref_primary_10_3390_polym15041055 crossref_primary_10_3390_inorganics11100376 crossref_primary_10_1021_acs_langmuir_2c02360 crossref_primary_10_1002_chem_201803221 crossref_primary_10_3390_bios13010123 crossref_primary_10_1002_adfm_202207723 crossref_primary_10_1002_advs_201802373 crossref_primary_10_1039_C8CS00268A crossref_primary_10_1039_D0SC05889K crossref_primary_10_1039_C9NJ05562B crossref_primary_10_1039_C9CS00594C crossref_primary_10_1246_bcsj_20190209 crossref_primary_10_1021_acsami_0c14639 crossref_primary_10_1016_j_cjac_2023_100251 crossref_primary_10_1088_1361_6528_ab30f6 crossref_primary_10_3390_polym13050829 crossref_primary_10_1021_acsami_1c11373 crossref_primary_10_1039_D0CC02982C crossref_primary_10_1002_admi_201901514 crossref_primary_10_1007_s40820_020_00470_w crossref_primary_10_1016_j_micromeso_2020_110254 crossref_primary_10_1016_j_micromeso_2020_110771 crossref_primary_10_1021_acs_langmuir_0c00919 crossref_primary_10_1039_D1MA00389E crossref_primary_10_1039_D3NJ01245J crossref_primary_10_1039_C9CC02614B crossref_primary_10_1088_1361_6528_ab79ae crossref_primary_10_1002_adfm_202103723 crossref_primary_10_1016_j_ccr_2019_05_018 crossref_primary_10_1021_acsapm_3c01132 crossref_primary_10_1016_j_memsci_2018_03_003 crossref_primary_10_1142_S1793292021501216 crossref_primary_10_1071_CH19312 crossref_primary_10_1002_aenm_202003990 crossref_primary_10_1002_smll_202305688 |
Cites_doi | 10.1038/nmat4113 10.1039/b902550b 10.1016/j.matlet.2008.01.119 10.1016/B978-0-12-420221-4.00009-3 10.1039/C6CE00885B 10.1016/j.jpowsour.2012.02.071 10.1039/b919647a 10.1016/j.powtec.2011.06.024 10.1039/b807083k 10.1038/nature04191 10.1021/nn204054k 10.1039/b807085g 10.1016/j.cherd.2009.11.012 10.1021/cr068357u 10.1038/nmat2769 10.1002/anie.201208501 10.1039/C5RA11182J 10.1021/ja803383k 10.1002/cplu.201402150 10.1016/j.poly.2015.12.022 10.1039/c4ce00145a 10.1039/b807080f 10.1002/ange.201406484 10.1126/science.1102896 10.2109/jcersj2.119.180 10.1039/C6TA03687B 10.1038/nchem.1569 10.1016/j.jcis.2016.02.021 10.1039/C4CS00094C 10.1038/nchem.1026 10.1002/anie.200803387 10.1039/C6CC05366A 10.1016/j.jcis.2014.03.066 10.1002/ange.200601918 10.1039/C6DT00332J 10.1002/ange.201506888 10.1126/science.1254227 10.1021/ja0534809 10.1039/c3dt52130c 10.1039/B514368C 10.1039/C5GC03007B 10.1016/j.micromeso.2014.03.023 10.1039/c1cc12510a 10.1039/C6CC05154E |
ContentType | Journal Article |
Copyright | Copyright © 2017 American Chemical Society |
Copyright_xml | – notice: Copyright © 2017 American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.6b04353 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 1065 |
ExternalDocumentID | 28064489 10_1021_acs_langmuir_6b04353 a343110613 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a484t-b47f07a9ce22318e8ada15032ee9ce26e5e92e9307b0cdef9e8ef2308d10f5283 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 16:05:00 EDT 2025 Fri Jul 11 15:53:40 EDT 2025 Thu Jan 02 23:09:15 EST 2025 Tue Jul 01 02:30:55 EDT 2025 Thu Apr 24 23:03:11 EDT 2025 Thu Aug 27 13:43:22 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a484t-b47f07a9ce22318e8ada15032ee9ce26e5e92e9307b0cdef9e8ef2308d10f5283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0872-5976 |
PMID | 28064489 |
PQID | 1856866629 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2000563321 proquest_miscellaneous_1856866629 pubmed_primary_28064489 crossref_primary_10_1021_acs_langmuir_6b04353 crossref_citationtrail_10_1021_acs_langmuir_6b04353 acs_journals_10_1021_acs_langmuir_6b04353 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-01-31 |
PublicationDateYYYYMMDD | 2017-01-31 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2017 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref39/cit39 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref43/cit43 ref34/cit34 ref37/cit37 ref28/cit28 ref40/cit40 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref42/cit42 ref41/cit41 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref7/cit7 doi: 10.1038/nmat4113 – ident: ref41/cit41 doi: 10.1039/b902550b – ident: ref29/cit29 doi: 10.1016/j.matlet.2008.01.119 – ident: ref43/cit43 doi: 10.1016/B978-0-12-420221-4.00009-3 – ident: ref10/cit10 doi: 10.1039/C6CE00885B – ident: ref30/cit30 doi: 10.1016/j.jpowsour.2012.02.071 – ident: ref23/cit23 doi: 10.1039/b919647a – ident: ref34/cit34 doi: 10.1016/j.powtec.2011.06.024 – ident: ref1/cit1 doi: 10.1039/b807083k – ident: ref21/cit21 doi: 10.1038/nature04191 – ident: ref24/cit24 doi: 10.1021/nn204054k – ident: ref2/cit2 doi: 10.1039/b807085g – ident: ref32/cit32 doi: 10.1016/j.cherd.2009.11.012 – ident: ref44/cit44 doi: 10.1021/cr068357u – ident: ref39/cit39 doi: 10.1038/nmat2769 – ident: ref19/cit19 doi: 10.1002/anie.201208501 – ident: ref38/cit38 doi: 10.1039/C5RA11182J – ident: ref15/cit15 doi: 10.1021/ja803383k – ident: ref26/cit26 doi: 10.1002/cplu.201402150 – ident: ref37/cit37 doi: 10.1016/j.poly.2015.12.022 – ident: ref36/cit36 doi: 10.1039/c4ce00145a – ident: ref11/cit11 doi: 10.1039/b807080f – ident: ref12/cit12 doi: 10.1002/ange.201406484 – ident: ref4/cit4 doi: 10.1126/science.1102896 – ident: ref33/cit33 doi: 10.2109/jcersj2.119.180 – ident: ref9/cit9 doi: 10.1039/C6TA03687B – ident: ref31/cit31 doi: 10.1038/nchem.1569 – ident: ref35/cit35 doi: 10.1016/j.jcis.2016.02.021 – ident: ref13/cit13 doi: 10.1039/C4CS00094C – ident: ref40/cit40 doi: 10.1038/nchem.1026 – ident: ref14/cit14 doi: 10.1002/anie.200803387 – ident: ref16/cit16 doi: 10.1039/C6CC05366A – ident: ref18/cit18 doi: 10.1016/j.jcis.2014.03.066 – ident: ref22/cit22 doi: 10.1002/ange.200601918 – ident: ref17/cit17 doi: 10.1039/C6DT00332J – ident: ref3/cit3 doi: 10.1002/ange.201506888 – ident: ref6/cit6 doi: 10.1126/science.1254227 – ident: ref20/cit20 doi: 10.1021/ja0534809 – ident: ref25/cit25 doi: 10.1039/c3dt52130c – ident: ref28/cit28 doi: 10.1039/B514368C – ident: ref42/cit42 doi: 10.1039/C5GC03007B – ident: ref8/cit8 doi: 10.1016/j.micromeso.2014.03.023 – ident: ref5/cit5 doi: 10.1039/c1cc12510a – ident: ref27/cit27 doi: 10.1039/C6CC05154E |
SSID | ssj0009349 |
Score | 2.4474921 |
Snippet | We have developed a rapid and convenient method for fabricating metal–organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying... We have developed a rapid and convenient method for fabricating metal-organic framework (MOF) and infinite coordination polymer (ICP) nanosheets by spraying... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1060 |
SubjectTerms | atomic force microscopy atomization carbon dioxide catalytic activity coordination polymers crystals Fourier transform infrared spectroscopy industrialization ligands metal ions nanosheets scanning electron microscopy spraying X-ray diffraction zinc |
Title | Fabrication of Metal–Organic Framework and Infinite Coordination Polymer Nanosheets by the Spray Technique |
URI | http://dx.doi.org/10.1021/acs.langmuir.6b04353 https://www.ncbi.nlm.nih.gov/pubmed/28064489 https://www.proquest.com/docview/1856866629 https://www.proquest.com/docview/2000563321 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagHODC_8-2gIzEhUOWxI4T-1itWBWkAlJbqbdo7IzFqtukSrKH5cQ78IZ9EsabpBWgVeFq2U5sjz3fzHg-M_bW2NxYUUKkNJiIDjyIQIKLFAirQXvty-DvOPycHZykn07V6bWh-GcEXyTvwbXT4Ls7Xy2aaWZj0u_yNrsjMpK0AIVmR9cku7KHu4F2M08zOabKbeklKCTX_q6QtqDMjbaZP2Bfxpyd_pLJ2XTV2an7_jeF4z8O5CG7PwBPvt9LyiN2C6vH7O5sfO_tCVvOwTaDB4_Xnh8i4fLLHz_7bE3H5-M1Lg5VyT9WfhHgKp_VZL4uep8i_1ov1-fYcDqz6_YbYtdyu-aEMfnRRQNrfjwyxj5lJ_MPx7ODaHiLIYJUp11k09zHORiHhCcSjRpKICwpBWIoy1ChEWjoxLCxK9Eb1OjJvNFlEvtAIPOM7VR1hS8Yt97p4D_NpZep9g6UysjoUnFZgkWBE_aOpqoY9lJbbMLkIilC4Th_xTB_EybHxSvcQGoe3tZY3tAqump10ZN63FD_zSgXBS1KCKlAhfWK_k2rTJMFKMz2OiEZSmVSimTCnvdCdfXVENcmA9ns_seY99g9EbBFnJACfcl2umaFrwgZdfb1Zjv8AhZMDmY |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswECXS9JBeui_uygK99CBXIkWJPAZGDaeNgwJxitwEkhoiRh0pkOSDe-o_9A_7JR1qcdACRpArQVHc580M5w0hH5RJlWG5DoTUKsALTweaaxsIzYzU0kmXe3vH_CSZncVfzsX5HhFDLAx2osaW6taJf80uEH3yZd6Ed7leVuPEhCjm-R1yF_EI8xkbDien11y7vEO9nn0zjRM-RMztaMXLJVv_K5d2gM1W6EwfkO_b7rZvTX6M140Z25__MTneejwPyf0ehtLDbt88IntQPCYHkyH72xOymmpT9fY8Wjo6B0Tpf3797mI3LZ0Oj7qoLnJ6VLilB690UqIyu-wsjPRbudpcQkXxBi_rC4CmpmZDEXHS06tKb-hi4I99Ss6mnxeTWdBnZgh0LOMmMHHqwlQrC4guIglS5xqRJWcAviwBAYqBwvvDhDYHp0CCQ2VH5lHoPJ3MM7JflAW8INQ4K701NeWOx9JZLUSCKpgI81wbYDAiH3Gqsv5k1VnrNGdR5guH-cv6-RsRPqxhZnuKc59pY3XDV8H2q6uO4uOG-u-H7ZHhongHiy6gXGPfpEgk6oNM7a7jQ6NEwjmLRuR5t7e2f_VeblSX1ctbjPkdOZgt5sfZ8dHJ11fkHvOoI4xQtL4m-021hjeImRrztj0hfwFXahbH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbhQxELUgSMCFfRlWI3Hh0JNuuxf7GA20EiBRpCRSxKXlpSxGTLpH3T2H4cQ_8Id8CeVehkUaRXC1vG_1qsp-RchrqTOpmVVBIpQM8MJTgeLKBIliWijhhLPe3nF4lO6fxe_Pk_PfQn1hJxqsqemc-P5UL60bGAaiXZ_uzXgXq3k9TXWIop5fJde8585Hbdibnfzi2-U98vUMnFmc8vHX3JZavGwyzZ-yaQvg7ARPfpt82nS5e2_yZbpq9dR8_YvN8b_GdIfcGuAo3ev3z11yBcp75MZsjAJ3nyxypevBrkcrRw8B0fqPb9_7P5yG5uPjLqpKSw9KN_cgls4qVGrnvaWRHleL9QXUFG_yqvkM0DZUrykiT3qyrNWano48sg_IWf7udLYfDBEaAhWLuA10nLkwU9IAooxIgFBWIcLkDMCnpZCAZCDxHtGhseAkCHCo9Agbhc7TyjwkO2VVwmNCtTPCW1Uz7ngsnFFJkqIqloTWKg0MJuQNTlUxnLCm6JznLCp84jh_xTB_E8LHdSzMQHXuI24sLikVbEote6qPS_K_GrdIgYviHS2qhGqFfRNJKlAvZHJ7Hv9FKkk5Z9GEPOr316ZV7-1GtVk--YcxvyTXj9_mxceDow9PyU3mwUcYoYR9RnbaegXPETq1-kV3SH4CKHEZSg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+Metal%E2%80%93Organic+Framework+and+Infinite+Coordination+Polymer+Nanosheets+by+the+Spray+Technique&rft.jtitle=Langmuir&rft.au=Li%2C+Yu-Nong&rft.au=Wang%2C+Sha&rft.au=Zhou%2C+Yuan&rft.au=Bai%2C+Xiao-Jue&rft.date=2017-01-31&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=33&rft.issue=4&rft.spage=1060&rft.epage=1065&rft_id=info:doi/10.1021%2Facs.langmuir.6b04353&rft.externalDocID=a343110613 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |