Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects

The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg...

Full description

Saved in:
Bibliographic Details
Published inAntimicrobial agents and chemotherapy Vol. 61; no. 9
Main Authors Gotfried, Mark H., Horn, Karolyn, Garrity-Ryan, Lynne, Villano, Stephen, Tzanis, Evan, Chitra, Surya, Manley, Amy, Tanaka, S. Ken, Rodvold, Keith A.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.09.2017
Subjects
Online AccessGet full text
ISSN0066-4804
1098-6596
1098-6596
DOI10.1128/AAC.01135-17

Cover

Loading…
Abstract The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC 0–24 ) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC 0–24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC 0–24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC 0–12 ) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC 0–12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.
AbstractList The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC ) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC values were 17.23 mg · h/liter and 1.47, respectively. The AUC value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC ) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.
The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC 0–24 ) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC 0–24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC 0–24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC 0–12 ) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC 0–12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.
The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0–24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0–24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0–24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0–12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0–12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.
The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0-24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0-24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0-24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0-12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0-12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0-24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0-24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0-24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0-12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0-12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.
Author Horn, Karolyn
Garrity-Ryan, Lynne
Villano, Stephen
Tanaka, S. Ken
Gotfried, Mark H.
Tzanis, Evan
Manley, Amy
Rodvold, Keith A.
Chitra, Surya
Author_xml – sequence: 1
  givenname: Mark H.
  surname: Gotfried
  fullname: Gotfried, Mark H.
  organization: Pulmonary Associates, Phoenix, Arizona, USA
– sequence: 2
  givenname: Karolyn
  surname: Horn
  fullname: Horn, Karolyn
  organization: College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
– sequence: 3
  givenname: Lynne
  surname: Garrity-Ryan
  fullname: Garrity-Ryan, Lynne
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 4
  givenname: Stephen
  surname: Villano
  fullname: Villano, Stephen
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 5
  givenname: Evan
  surname: Tzanis
  fullname: Tzanis, Evan
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 6
  givenname: Surya
  surname: Chitra
  fullname: Chitra, Surya
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 7
  givenname: Amy
  surname: Manley
  fullname: Manley, Amy
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 8
  givenname: S. Ken
  surname: Tanaka
  fullname: Tanaka, S. Ken
  organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA
– sequence: 9
  givenname: Keith A.
  surname: Rodvold
  fullname: Rodvold, Keith A.
  organization: College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28696233$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vFCEYxompsdvqzbPhqMlOBWZgZi4mk0lrTTapiXsnDAO7rAyswDTZb-FHlu22jRo9kQd-PO-f5wKcOe8UAG8xusKYNB-7rr9CGJe0wPULsMCobQpGW3YGFggxVlQNqs7BRYw7lDVt0StwThrWMlKWC_Cz99NeBBO9g17Du0mMQh6kNU5B4Ua4Nhv1pL9uRZiE9N-zSEZGaBxM23xvRZzEEl7vTZbWCAtXxhm3gTd2NuPywaiz98pbEWCvrI3HWrdK2LQ9wG6cbYLf5mGnZIqvwUstbFRvHs9LsL65Xve3xeru85e-WxWiaqpUCCTxoLFu8YAH1CKEK9o2hBE1aIqVHktGa01ISephwCXRNdMSjTVluMV0KC_Bp5Ptfh4mNUrlUhCW74OZRDhwLwz_88WZLd_4e05pjUmLs8H7R4Pgf8wqJj6ZKPNswik_R57L1HnHqCwz-uGE5jURvvNzcHkyjhE_BshzgPwhQI7rzL77va_nhp4Sy8DyBMjgYwxKPyP_8SN_4dIkkYw_TmXsvz_9Ap67t8U
CitedBy_id crossref_primary_10_1002_med_21798
crossref_primary_10_1016_j_ejps_2024_106713
crossref_primary_10_1128_AAC_02263_19
crossref_primary_10_1128_aac_01579_22
crossref_primary_10_1080_17425255_2023_2261376
crossref_primary_10_1128_AAC_01704_21
crossref_primary_10_1128_AAC_01722_17
crossref_primary_10_1177_0018578718823730
crossref_primary_10_1093_cid_ciz394
crossref_primary_10_1080_14728214_2019_1685494
crossref_primary_10_1128_msphere_00381_24
crossref_primary_10_1093_jac_dkac068
crossref_primary_10_1080_14656566_2020_1740205
crossref_primary_10_1097_QCO_0000000000000429
crossref_primary_10_3390_antibiotics11010019
crossref_primary_10_1186_s13613_020_00715_2
crossref_primary_10_2217_fmb_2020_0182
crossref_primary_10_1128_AAC_01972_19
crossref_primary_10_1097_QCO_0000000000001101
crossref_primary_10_1093_milmed_usad417
crossref_primary_10_1093_ofid_ofad423
crossref_primary_10_1097_QCO_0000000000000815
crossref_primary_10_1128_AAC_01907_18
crossref_primary_10_1128_aac_01087_24
crossref_primary_10_1093_jac_dkac055
crossref_primary_10_3389_fphar_2025_1559857
crossref_primary_10_1007_s40121_024_01065_3
crossref_primary_10_1002_phar_2607
crossref_primary_10_3390_microorganisms7080270
crossref_primary_10_1093_ofid_ofaa415
crossref_primary_10_1007_s40262_021_01010_4
crossref_primary_10_1016_j_xphs_2018_03_023
crossref_primary_10_1128_aac_02213_21
crossref_primary_10_1007_s40121_022_00750_5
crossref_primary_10_1016_j_clinthera_2024_06_014
crossref_primary_10_1097_QCO_0000000000001089
crossref_primary_10_1093_jac_dkz267
crossref_primary_10_1002_ppul_24939
crossref_primary_10_1093_jacamr_dlad104
crossref_primary_10_1093_jac_dkae333
crossref_primary_10_3390_antibiotics9120905
crossref_primary_10_1177_1060028018818094
crossref_primary_10_1016_j_rmr_2023_10_010
crossref_primary_10_3389_fcimb_2023_1243457
crossref_primary_10_2147_IDR_S322803
crossref_primary_10_3389_fphar_2021_724725
crossref_primary_10_3390_antibiotics11091193
crossref_primary_10_1007_s40262_019_00843_4
crossref_primary_10_3389_fphar_2022_869237
crossref_primary_10_1016_j_jgar_2021_01_018
crossref_primary_10_3390_antibiotics12040761
crossref_primary_10_1002_phar_2185
crossref_primary_10_1128_AAC_02488_19
crossref_primary_10_1093_jac_dkaa520
crossref_primary_10_3390_antibiotics13030261
crossref_primary_10_1128_aac_01065_24
crossref_primary_10_1016_j_idm_2023_05_013
crossref_primary_10_1128_AAC_02058_19
crossref_primary_10_1007_s40265_018_1015_2
crossref_primary_10_1128_msphere_00671_24
crossref_primary_10_1016_j_clinthera_2023_09_004
crossref_primary_10_1128_aac_00824_23
crossref_primary_10_3389_fcimb_2024_1380312
crossref_primary_10_1093_cid_ciz242
crossref_primary_10_3390_ph16091304
crossref_primary_10_1080_14728214_2019_1677607
crossref_primary_10_1007_s40262_024_01440_w
crossref_primary_10_2147_IDR_S384296
crossref_primary_10_1128_AAC_00470_19
crossref_primary_10_3390_ph12020063
crossref_primary_10_1016_j_diagmicrobio_2024_116254
crossref_primary_10_1128_AAC_01208_18
crossref_primary_10_1128_AAC_01947_20
crossref_primary_10_1128_spectrum_00718_23
crossref_primary_10_1186_s12879_022_07857_7
crossref_primary_10_1097_QCO_0000000000000526
crossref_primary_10_1080_13543784_2018_1460354
crossref_primary_10_1056_NEJMoa1800201
crossref_primary_10_3389_fmed_2024_1496402
crossref_primary_10_1186_s12879_024_09097_3
crossref_primary_10_1055_s_0043_1778641
crossref_primary_10_1093_cid_ciz309
crossref_primary_10_1038_s41429_022_00538_2
crossref_primary_10_1128_AAC_02262_18
crossref_primary_10_1016_j_ijantimicag_2023_106847
crossref_primary_10_1016_j_ijantimicag_2021_106487
crossref_primary_10_1016_j_diagmicrobio_2024_116663
crossref_primary_10_1080_1120009X_2024_2339706
crossref_primary_10_3390_antibiotics12020307
crossref_primary_10_1007_s11095_017_2336_7
crossref_primary_10_1093_jac_dkac356
crossref_primary_10_1128_aac_00687_22
crossref_primary_10_1007_s40262_021_01061_7
crossref_primary_10_1007_s40267_019_00634_8
crossref_primary_10_1055_s_0041_1730997
crossref_primary_10_1016_j_ijantimicag_2018_11_011
crossref_primary_10_1007_s40265_020_01257_4
Cites_doi 10.1128/AAC.01066-13
10.1086/653057
10.2165/11594090-000000000-00000
10.1128/AAC.01242-13
10.1128/AAC.02368-16
10.1128/AAC.01734-16
10.1080/00498254.2016.1213465
10.3109/9781420017137.013
10.1128/AAC.00065-07
10.1128/AAC.00766-12
10.1128/AAC.01393-16
10.1128/AAC.00948-12
10.1128/AAC.00018-17
10.1128/AAC.44.4.943-949.2000
10.3390/antibiotics5040032
10.1002/jcph.814
10.1093/jac/dkp301
10.1201/b13787-79
10.1016/j.diagmicrobio.2008.04.009
10.1016/j.ijantimicag.2009.01.015
10.1128/AAC.01536-15
10.26226/morressier.56d6be7ad462b80296c97ddc
10.1128/AAC.02411-16
10.1002/jps.23872
10.1128/AAC.00985-09
10.1128/AAC.01414-09
10.1093/jac/dkn242
10.2217/fmb-2016-0100
10.1128/AAC.41.6.1399
10.1016/S0891-5520(05)70202-6
10.1016/j.diagmicrobio.2008.10.011
10.1128/AAC.02483-12
10.1128/AAC.36.6.1176
10.1093/jac/dkg355
10.1177/0091270007300263
10.1016/j.ijantimicag.2005.02.013
10.1128/AAC.47.8.2450-2457.2003
10.1152/jappl.1986.60.2.532
10.1128/AAC.49.1.220-229.2005
10.1183/09031936.93.03080886
ContentType Journal Article
Copyright Copyright © 2017 Gotfried et al.
Copyright © 2017 Gotfried et al. 2017 Gotfried et al.
Copyright_xml – notice: Copyright © 2017 Gotfried et al.
– notice: Copyright © 2017 Gotfried et al. 2017 Gotfried et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/AAC.01135-17
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
Pharmacy, Therapeutics, & Pharmacology
DocumentTitleAlternate Omadacycline and Tigecycline Pulmonary Concentrations, Gotfried et al
Omadacycline and Tigecycline Pulmonary Concentrations
EISSN 1098-6596
ExternalDocumentID PMC5571291
01135-17
28696233
10_1128_AAC_01135_17
Genre Journal Article
GrantInformation_xml – fundername: Paratek Pharmaceutical
GroupedDBID ---
.55
.GJ
0R~
23M
2WC
39C
3O-
4.4
53G
5GY
5RE
5VS
6J9
AAGFI
AAYXX
ACGFO
ADBBV
AENEX
AGNAY
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
HZ~
H~9
J5H
K-O
KQ8
L7B
LSO
MVM
NEJ
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UHB
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
X7N
XOL
Y6R
ZGI
ZXP
~A~
CGR
CUY
CVF
ECM
EIF
NPM
-
0R
55
AAPBV
ABFLS
ADACO
BXI
HZ
RHF
ZA5
7X8
5PM
ID FETCH-LOGICAL-a484t-a0c1bf1f91b1b090014598262ebf51efd3657f22327bb132f76fc0d7561915b3
ISSN 0066-4804
1098-6596
IngestDate Thu Aug 21 18:00:20 EDT 2025
Fri Jul 11 01:19:27 EDT 2025
Tue Dec 28 13:58:58 EST 2021
Thu Apr 03 07:01:33 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Tue Jul 01 04:32:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords lung
omadacycline
tigecycline
alveolar macrophages
intrapulmonary penetration
pharmacokinetics
epithelial lining fluid
Language English
License Copyright © 2017 Gotfried et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license . https://creativecommons.org/licenses/by/4.0
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a484t-a0c1bf1f91b1b090014598262ebf51efd3657f22327bb132f76fc0d7561915b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, Manley A, Tanaka SK, Rodvold KA. 2017. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother 61:e01135-17. https://doi.org/10.1128/AAC.01135-17.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC5571291
PMID 28696233
PQID 1917962033
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5571291
proquest_miscellaneous_1917962033
asm2_journals_10_1128_AAC_01135_17
pubmed_primary_28696233
crossref_primary_10_1128_AAC_01135_17
crossref_citationtrail_10_1128_AAC_01135_17
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Antimicrobial agents and chemotherapy
PublicationTitleAbbrev Antimicrob Agents Chemother
PublicationTitleAlternate Antimicrob Agents Chemother
PublicationYear 2017
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_25_2
Nabuurs MH (e_1_3_2_37_2) 2010
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
Andes D (e_1_3_2_33_2) 2007
Tanaka SK (e_1_3_2_26_2) 2016
Baldwin DR (e_1_3_2_24_2) 1990; 3
Wyeth Pharmaceuticals Inc (e_1_3_2_32_2) 2010
21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64
9174209 - Antimicrob Agents Chemother. 1997 Jun;41(6):1399-402
28193651 - Antimicrob Agents Chemother. 2017 Apr 24;61(5)
15616299 - Antimicrob Agents Chemother. 2005 Jan;49(1):220-9
9779382 - Infect Dis Clin North Am. 1998 Sep;12(3):631-46, viii
24549736 - J Pharm Sci. 2014 Mar;103(3):1013-9
20921315 - Antimicrob Agents Chemother. 2010 Dec;54(12):5180-6
23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9
1963411 - Eur Respir J. 1990 Sep;3(8):886-90
19278835 - Int J Antimicrob Agents. 2009 Jul;34(1):101-2
17846139 - Antimicrob Agents Chemother. 2007 Nov;51(11):4085-9
27539539 - J Clin Pharmacol. 2017 Mar;57(3):321-327
22802254 - Antimicrob Agents Chemother. 2012 Oct;56(10):5076-81
27539442 - Future Microbiol. 2016 Oct;11:1421-1434
1416817 - Antimicrob Agents Chemother. 1992 Jun;36(6):1176-80
27736760 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7431-7435
12888589 - J Antimicrob Chemother. 2003 Sep;52(3):450-6
28223386 - Antimicrob Agents Chemother. 2017 Apr 24;61(5)
24041885 - Antimicrob Agents Chemother. 2014;58(3):1279-83
20597657 - Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S103-10
27993854 - Antimicrob Agents Chemother. 2017 Feb 23;61(3)
22908151 - Antimicrob Agents Chemother. 2012 Nov;56(11):5650-4
17519399 - J Clin Pharmacol. 2007 Jun;47(6):727-37
19696049 - J Antimicrob Chemother. 2009 Oct;64(4):837-9
19150707 - Diagn Microbiol Infect Dis. 2009 Feb;63(2):155-9
12878504 - Antimicrob Agents Chemother. 2003 Aug;47(8):2450-7
27669321 - Antibiotics (Basel). 2016 Sep 22;5(4):null
27671057 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7502-7504
10722495 - Antimicrob Agents Chemother. 2000 Apr;44(4):943-9
26349824 - Antimicrob Agents Chemother. 2015 Nov;59(11):7044-53
3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8
19738006 - Antimicrob Agents Chemother. 2009 Dec;53(12):5060-3
27499331 - Xenobiotica. 2017 Aug;47(8):682-696
18508226 - Diagn Microbiol Infect Dis. 2008 Jul;61(3):329-38
24295985 - Antimicrob Agents Chemother. 2014;58(2):1127-35
18684702 - J Antimicrob Chemother. 2008 Sep;62 Suppl 1:i11-6
15885987 - Int J Antimicrob Agents. 2005 Jun;25(6):523-9
Koomanachai, P, Crandon, JL, Banevicius, MA, Peng, L, Nicolau, DP (B41) 2009; 53
Honeyman, L, Ismail, M, Nelson, ML, Bhatia, B, Bowser, TE, Chen, J, Mechiche, R, Ohemeng, K, Verma, AK, Cannon, EP, Macone, A, Tanaka, SK, Levy, S (B9) 2015; 59
B25
Ambrose, PG, Bhavnani, SM, Ellis-Grosse, EJ, Drusano, GL (B15) 2010; 51
Rennard, SI, Basset, G, Lecossier, D, O'Donnell, KM, Pinkston, P, Martin, PG, Crystal, RG (B22) 1986; 60
Rubino, CM, Forrest, A, Bhavnani, SM, Dukart, G, Cooper, A, Korth-Bradley, J, Ambrose, PG (B29) 2010; 54
Muralidharan, G, Micalizzi, M, Speth, J, Raible, D, Troy, S (B26) 2005; 49
Conte, JE, Golden, JA, Kelly, MG, Zurlinden, E (B28) 2005; 25
Pfaller, MA, Rhomberg, PR, Huband, MD, Flamm, RK (B6) 2017; 61
MacGowen, A (B30) 2010; 65
van Ogtrop, ML, Andes, D, Stamstad, TJ, Conklin, B, Weiss, WJ, Craig, WA, Vesga, O (B33) 2000; 44
Gotfried, MH, Danziger, LH, Rodvold, KA (B19) 2003; 52
Nabuurs, MH, Mouton, JW, Grayson, ML, Crowe, SM, McCarthy, JS, Mills, J, Mouton, JW, Norrby, SR, Paterson, DL, Pfaller, MA (B36) 2010
Andes, D, Craig, W, Nightingale, CH, Ambrose, PG, Drusano, GL, Murakawa, T (B32) 2007
Villano, S, Steenbergen, J, Loh, E (B1) 2016; 11
Rodvold, KA, Danziger, LH, Gotfried, MH (B20) 2003; 47
Noel, GJ, Draper, MP, Halt, H, Tanaka, SK, Arbeit, RD (B12) 2012; 56
Tenero, D, Bowers, G, Rodvold, KA, Patel, A, Kurtinecz, M, Dumont, E, Tomayko, J, Patel, P (B24) 2013; 57
Pfaller, MA, Rhomberg, PR, Huband, MD, Flamm, RK (B5) 2017
Rodvold, KA, George, JM, Yoo, L (B14) 2011; 50
Draper, MP, Weir, S, Macone, A, Donatelli, J, Trieber, CA, Tanaka, SK, Levy, SB (B3) 2014; 58
Heidrich, CG, Mitova, S, Schedlbauer, A, Connell, SR, Fucini, P, Steenbergen, JN, Berens, C (B2) 2016; 5
Flarakos, J, Du, Y, Gu, H, Wang, L, Einolf, HJ, Chun, DY, Zhu, B, Alexander, N, Natrillo, A, Hanna, I, Ting, L, Zhou, W, Dole, K, Sun, H, Kovacs, SJ, Stein, DS, Tanaka, SK, Villano, S, Mangold, JB (B13) 2017; 47
Rodvold, KA, Gotfried, MH, Still, JG, Clark, K, Fernandes, P (B21) 2012; 56
Tanaseanu, C, Bergallo, C, Teglia, O, Jasovich, A, Oliva, ME, Dukart, G, Darois, N, Cooper, CA, Gandjini, H (B37) 2008; 61
Mukker, JK, Singh, RP, Derendorf, H (B39) 2014; 103
Lepak, AJ, Zhao, M, Marchillo, K, VanHecker, J, Andes, DR (B35) 2017
(B31) 2010
Rubino, CM, Ma, L, Bhavnani, SM, Korth-Bradley, J, Speth, J, Ellis-Grosse, E, Rodvold, KA, Ambrose, PG, Drusano, GL (B38) 2007; 51
Baldwin, DR, Wise, R, Andrews, JM, Ashby, P, Honeybourne, D (B23) 1990; 3
Crandon, JL, Kim, A, Nicolau, DP (B40) 2009; 64
Ambrose, PG, Meagher, AK, Passarell, JA, Van Wart, SA, Cirincione, BB, Bhavnani, SM, Ellis-Grosse, E (B34) 2009; 63
B8
Baldwin, DR, Honeybourne, D, Wise, R (B17) 1992; 36
Rodvold, KA, Gotfried, MH, Danziger, LH, Servi, RJ (B18) 1997; 41
Macone, AB, Caruso, BK, Leahy, RG, Donatelli, J, Weir, S, Draper, MP, Tanaka, SK, Levy, SB (B4) 2014; 58
Waites, KB, Crabb, DM, Liu, Y, Duffy, LB (B7) 2016; 60
Sun, H, Ting, L, Machneni, S, Praestgaard, J, Kuemmell, A, Stein, DS, Sunkara, G, Kovacs, SJ, Villano, S, Tanaka, SK (B10) 2016; 60
Tzanis, E, Manley, A, Villano, S, Tanaka, SK, Bai, S, Loh, E (B11) 2017; 57
Nix, DE (B16) 1998; 12
Van Wart, SA, Cirincione, BB, Ludwig, EA, Meagher, AK, Korth-Bradley, JM, Owen, JS (B27) 2007; 47
Burkhardt, O, Rauch, K, Kaever, V, Hadem, J, Kielstein, JT, Welte, T (B42) 2009; 34
References_xml – ident: e_1_3_2_4_2
  doi: 10.1128/AAC.01066-13
– ident: e_1_3_2_16_2
  doi: 10.1086/653057
– ident: e_1_3_2_15_2
  doi: 10.2165/11594090-000000000-00000
– ident: e_1_3_2_5_2
  doi: 10.1128/AAC.01242-13
– ident: e_1_3_2_36_2
  doi: 10.1128/AAC.02368-16
– ident: e_1_3_2_8_2
  doi: 10.1128/AAC.01734-16
– ident: e_1_3_2_14_2
  doi: 10.1080/00498254.2016.1213465
– start-page: 267
  volume-title: Antimicrobial pharmacodynamics in theory and clinical practice
  year: 2007
  ident: e_1_3_2_33_2
  doi: 10.3109/9781420017137.013
– ident: e_1_3_2_39_2
  doi: 10.1128/AAC.00065-07
– ident: e_1_3_2_22_2
  doi: 10.1128/AAC.00766-12
– ident: e_1_3_2_11_2
  doi: 10.1128/AAC.01393-16
– ident: e_1_3_2_13_2
  doi: 10.1128/AAC.00948-12
– ident: e_1_3_2_6_2
  doi: 10.1128/AAC.00018-17
– ident: e_1_3_2_34_2
  doi: 10.1128/AAC.44.4.943-949.2000
– ident: e_1_3_2_3_2
  doi: 10.3390/antibiotics5040032
– ident: e_1_3_2_12_2
  doi: 10.1002/jcph.814
– ident: e_1_3_2_41_2
  doi: 10.1093/jac/dkp301
– start-page: 881
  volume-title: Kucer's the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs
  year: 2010
  ident: e_1_3_2_37_2
  doi: 10.1201/b13787-79
– ident: e_1_3_2_38_2
  doi: 10.1016/j.diagmicrobio.2008.04.009
– volume-title: Abstr 26th Eur Congr Clin Microbiol Infect Dis
  year: 2016
  ident: e_1_3_2_26_2
– volume-title: Prescribing information for Tygacil®
  year: 2010
  ident: e_1_3_2_32_2
– ident: e_1_3_2_43_2
  doi: 10.1016/j.ijantimicag.2009.01.015
– ident: e_1_3_2_10_2
  doi: 10.1128/AAC.01536-15
– ident: e_1_3_2_9_2
  doi: 10.26226/morressier.56d6be7ad462b80296c97ddc
– ident: e_1_3_2_7_2
  doi: 10.1128/AAC.02411-16
– ident: e_1_3_2_40_2
  doi: 10.1002/jps.23872
– ident: e_1_3_2_42_2
  doi: 10.1128/AAC.00985-09
– ident: e_1_3_2_30_2
  doi: 10.1128/AAC.01414-09
– ident: e_1_3_2_31_2
  doi: 10.1093/jac/dkn242
– ident: e_1_3_2_2_2
  doi: 10.2217/fmb-2016-0100
– ident: e_1_3_2_19_2
  doi: 10.1128/AAC.41.6.1399
– ident: e_1_3_2_17_2
  doi: 10.1016/S0891-5520(05)70202-6
– ident: e_1_3_2_35_2
  doi: 10.1016/j.diagmicrobio.2008.10.011
– ident: e_1_3_2_25_2
  doi: 10.1128/AAC.02483-12
– ident: e_1_3_2_18_2
  doi: 10.1128/AAC.36.6.1176
– ident: e_1_3_2_20_2
  doi: 10.1093/jac/dkg355
– ident: e_1_3_2_28_2
  doi: 10.1177/0091270007300263
– ident: e_1_3_2_29_2
  doi: 10.1016/j.ijantimicag.2005.02.013
– ident: e_1_3_2_21_2
  doi: 10.1128/AAC.47.8.2450-2457.2003
– ident: e_1_3_2_23_2
  doi: 10.1152/jappl.1986.60.2.532
– ident: e_1_3_2_27_2
  doi: 10.1128/AAC.49.1.220-229.2005
– volume: 3
  start-page: 886
  year: 1990
  ident: e_1_3_2_24_2
  article-title: Azithromycin concentrations at the sites of pulmonary infection
  publication-title: Eur Respir J
  doi: 10.1183/09031936.93.03080886
– reference: 15885987 - Int J Antimicrob Agents. 2005 Jun;25(6):523-9
– reference: 23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9
– reference: 3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8
– reference: 10722495 - Antimicrob Agents Chemother. 2000 Apr;44(4):943-9
– reference: 19150707 - Diagn Microbiol Infect Dis. 2009 Feb;63(2):155-9
– reference: 24041885 - Antimicrob Agents Chemother. 2014;58(3):1279-83
– reference: 19278835 - Int J Antimicrob Agents. 2009 Jul;34(1):101-2
– reference: 1963411 - Eur Respir J. 1990 Sep;3(8):886-90
– reference: 9174209 - Antimicrob Agents Chemother. 1997 Jun;41(6):1399-402
– reference: 27993854 - Antimicrob Agents Chemother. 2017 Feb 23;61(3):
– reference: 27499331 - Xenobiotica. 2017 Aug;47(8):682-696
– reference: 28193651 - Antimicrob Agents Chemother. 2017 Apr 24;61(5):
– reference: 26349824 - Antimicrob Agents Chemother. 2015 Nov;59(11):7044-53
– reference: 1416817 - Antimicrob Agents Chemother. 1992 Jun;36(6):1176-80
– reference: 27671057 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7502-7504
– reference: 27736760 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7431-7435
– reference: 21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64
– reference: 20597657 - Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S103-10
– reference: 27669321 - Antibiotics (Basel). 2016 Sep 22;5(4):null
– reference: 19738006 - Antimicrob Agents Chemother. 2009 Dec;53(12):5060-3
– reference: 15616299 - Antimicrob Agents Chemother. 2005 Jan;49(1):220-9
– reference: 27539442 - Future Microbiol. 2016 Oct;11:1421-1434
– reference: 12888589 - J Antimicrob Chemother. 2003 Sep;52(3):450-6
– reference: 18508226 - Diagn Microbiol Infect Dis. 2008 Jul;61(3):329-38
– reference: 22908151 - Antimicrob Agents Chemother. 2012 Nov;56(11):5650-4
– reference: 9779382 - Infect Dis Clin North Am. 1998 Sep;12(3):631-46, viii
– reference: 22802254 - Antimicrob Agents Chemother. 2012 Oct;56(10):5076-81
– reference: 12878504 - Antimicrob Agents Chemother. 2003 Aug;47(8):2450-7
– reference: 20921315 - Antimicrob Agents Chemother. 2010 Dec;54(12):5180-6
– reference: 28223386 - Antimicrob Agents Chemother. 2017 Apr 24;61(5):
– reference: 24549736 - J Pharm Sci. 2014 Mar;103(3):1013-9
– reference: 19696049 - J Antimicrob Chemother. 2009 Oct;64(4):837-9
– reference: 17519399 - J Clin Pharmacol. 2007 Jun;47(6):727-37
– reference: 24295985 - Antimicrob Agents Chemother. 2014;58(2):1127-35
– reference: 17846139 - Antimicrob Agents Chemother. 2007 Nov;51(11):4085-9
– reference: 18684702 - J Antimicrob Chemother. 2008 Sep;62 Suppl 1:i11-6
– reference: 27539539 - J Clin Pharmacol. 2017 Mar;57(3):321-327
– volume: 56
  start-page: 5650
  year: 2012
  end-page: 5654
  ident: B12
  article-title: A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00948-12
– start-page: 267
  year: 2007
  end-page: 278
  ident: B32
  article-title: Pharmacokinetics and pharmacodynamics of tetracyclines
  publication-title: Antimicrobial pharmacodynamics in theory and clinical practice ;2nd ed ;Informa Healthcare USA ;New York, NY
– volume: 53
  start-page: 5060
  year: 2009
  end-page: 5063
  ident: B41
  article-title: Pharmacodynamic profile of tigecycline against methicillin-resistant Staphylococcus aureus in an experimental pneumonia model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00985-09
– volume: 61
  start-page: 329
  year: 2008
  end-page: 338
  ident: B37
  article-title: Integrated results of 2 phase 3 studies comparing tigecycline and levofloxacin in community-acquired pneumonia
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2008.04.009
– volume: 3
  start-page: 886
  year: 1990
  end-page: 890
  ident: B23
  article-title: Azithromycin concentrations at the sites of pulmonary infection
  publication-title: Eur Respir J
– volume: 58
  start-page: 1279
  year: 2014
  end-page: 1283
  ident: B3
  article-title: Mechanism of action of the novel aminomethylcycline antibiotic omadacycline
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01066-13
– volume: 58
  start-page: 1127
  year: 2014
  end-page: 1135
  ident: B4
  article-title: In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01242-13
– volume: 36
  start-page: 1176
  year: 1992
  end-page: 1180
  ident: B17
  article-title: Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.36.6.1176
– volume: 44
  start-page: 943
  year: 2000
  end-page: 949
  ident: B33
  article-title: In vivo pharmacodynamics activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.44.4.943-949.2000
– ident: B25
  article-title: Tanaka SK Villano S Tzanis E . 2016 . Multiple dose pharmacokinetics and tolerability of intravenous omadacycline in healthy volunteers, abstr P1319 . Abstr 26th Eur Congr Clin Microbiol Infect Dis , Amsterdam, The Netherlands .
– volume: 12
  start-page: 631
  year: 1998
  end-page: 646
  ident: B16
  article-title: Intrapulmonary concentrations of antimicrobial agents
  publication-title: Infect Dis Clin North Am
  doi: 10.1016/S0891-5520(05)70202-6
– volume: 47
  start-page: 727
  year: 2007
  end-page: 737
  ident: B27
  article-title: Population pharmacokinetics of tigecycline in healthy volunteers
  publication-title: J Clin Pharmacol
  doi: 10.1177/0091270007300263
– volume: 51
  start-page: 4085
  year: 2007
  end-page: 4089
  ident: B38
  article-title: Evaluation of tigecycline penetration into colon wall tissue and epithelial lining fluid using a population pharmacokinetic model and Monte Carlo simulation
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00065-07
– volume: 63
  start-page: 155
  year: 2009
  end-page: 159
  ident: B34
  article-title: Application of patient population-derived pharmacokinetic-pharmacodynamic relationships to tigecycline breakpoint determination for staphylococci and streptococci
  publication-title: Diagn Microbiol Infect Dis
  doi: 10.1016/j.diagmicrobio.2008.10.011
– volume: 59
  start-page: 7044
  year: 2015
  end-page: 7053
  ident: B9
  article-title: Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01536-15
– volume: 57
  start-page: 321
  year: 2017
  end-page: 327
  ident: B11
  article-title: Effect of food on the bioavailability of omadacycline in healthy participants
  publication-title: J Clin Pharmacol
  doi: 10.1002/jcph.814
– ident: B8
  article-title: Dubois J Dubois M Martel JF Tanaka SK . 2016 . In vitro intracellular activity of omadacycline against Legionella pneumophila , abstr 551 . Abstr ASM Microbe , New Orleans, LA . American Society for Microbiology, Washington, DC .
– volume: 60
  start-page: 7431
  year: 2016
  end-page: 7435
  ident: B10
  article-title: Randomized, open-label study of the pharmacokinetics and safety of oral and intravenous administration of omadacycline to healthy subjects
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01393-16
– volume: 47
  start-page: 2450
  year: 2003
  end-page: 2457
  ident: B20
  article-title: Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.47.8.2450-2457.2003
– year: 2017
  ident: B5
  article-title: Surveillance of omadacycline activity tested against clinical isolates from a global (North American, Europe, Latin American and Asia-Western Pacific) collection (2010-2011)
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00018-17
– volume: 34
  start-page: 101
  year: 2009
  end-page: 102
  ident: B42
  article-title: Tigecycline possibly underdosed for the treatment of pneumonia: a pharmacokinetic viewpoint
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2009.01.015
– volume: 50
  start-page: 637
  year: 2011
  end-page: 664
  ident: B14
  article-title: Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus of antibacterial agents
  publication-title: Clin Pharmacokinet
  doi: 10.2165/11594090-000000000-00000
– volume: 41
  start-page: 1399
  year: 1997
  end-page: 1402
  ident: B18
  article-title: Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers
  publication-title: Antimicrob Agents Chemother
– volume: 49
  start-page: 220
  year: 2005
  end-page: 229
  ident: B26
  article-title: Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.49.1.220-229.2005
– volume: 56
  start-page: 5076
  year: 2012
  end-page: 5081
  ident: B21
  article-title: Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.00766-12
– volume: 57
  start-page: 3334
  year: 2013
  end-page: 3339
  ident: B24
  article-title: Intrapulmonary pharmacokinetics of GSK2251052 in healthy volunteers
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02483-12
– volume: 47
  start-page: 682
  year: 2017
  end-page: 696
  ident: B13
  article-title: Clinical disposition, metabolism and in vitro drug-drug interaction properties of omadacycline
  publication-title: Xenobiotica
  doi: 10.1080/00498254.2016.1213465
– volume: 52
  start-page: 450
  year: 2003
  end-page: 456
  ident: B19
  article-title: Steady-state plasma and bronchopulmonary characteristics of clarithromycin extended-release tablets in normal healthy adult subjects
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkg355
– volume: 25
  start-page: 523
  year: 2005
  end-page: 529
  ident: B28
  article-title: Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2005.02.013
– volume: 54
  start-page: 5180
  year: 2010
  end-page: 5186
  ident: B29
  article-title: Tigecycline population pharmacokinetics in patients with community- or hospital-acquired pneumonia
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01414-09
– volume: 51
  start-page: S103
  year: 2010
  end-page: S110
  ident: B15
  article-title: Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-acquired bacterial pneumonia studies: look before you leap!
  publication-title: Clin Infect Dis
  doi: 10.1086/653057
– volume: 5
  year: 2016
  ident: B2
  article-title: The novel aminomethylcycline omadacycline has high specificity for the primary tetracycline-binding site on the bacterial ribosome
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics5040032
– volume: 60
  start-page: 7502
  year: 2016
  end-page: 7504
  ident: B7
  article-title: In vitro activities of omadacycline (PTK 0796) and other antimicrobial agents against human mycoplasmas and ureaplasmas
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.01734-16
– start-page: 881
  year: 2010
  end-page: 892
  ident: B36
  article-title: Tigecycline
  publication-title: Kucer's the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs ;6th ed ;Hodder Arnold ;London, United Kingdom
– volume: 11
  start-page: 1421
  year: 2016
  end-page: 1434
  ident: B1
  article-title: Omadacycline: development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections
  publication-title: Future Microbiol
  doi: 10.2217/fmb-2016-0100
– volume: 103
  start-page: 1013
  year: 2014
  end-page: 1019
  ident: B39
  article-title: Determination of atypical nonlinear plasma-protein-binding behavior of tigecycline using an in vitro microdialysis technique
  publication-title: J Pharm Sci
  doi: 10.1002/jps.23872
– volume: 61
  start-page: e02411-16
  year: 2017
  ident: B6
  article-title: Activities of omadacycline and comparator agents against Staphylococcus aureus isolates from a surveillance program conducted in North America and Europe
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02411-16
– volume: 64
  start-page: 837
  year: 2009
  end-page: 839
  ident: B40
  article-title: Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkp301
– volume: 60
  start-page: 532
  year: 1986
  end-page: 538
  ident: B22
  article-title: Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution
  publication-title: J Appl Physiol
– volume: 65
  start-page: i11
  year: 2010
  end-page: i16
  ident: B30
  article-title: Tigecycline pharmacokinetic/pharmacodynamics update
  publication-title: J Antimicrob Chemother
  doi: 10.1093/jac/dkn242
– year: 2010
  ident: B31
  publication-title: Prescribing information for Tygacil® ;Wyeth Pharmaceuticals Inc ;Philadelphia, PA
– year: 2017
  ident: B35
  article-title: In vivo pharmacodynamics evaluation of omadacycline (PTK 0796) against Streptococcus pneumoniae in the murine pneumonia model
  publication-title: Antimicrob Agents Chemother
  doi: 10.1128/AAC.02368-16
SSID ssj0006590
Score 2.5431745
Snippet The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Adult
Alveolar Epithelial Cells
Alveolar Epithelial Cells - chemistry
Anti-Bacterial Agents
Anti-Bacterial Agents - blood
Anti-Bacterial Agents - pharmacokinetics
Area Under Curve
Bronchoalveolar Lavage
Bronchoalveolar Lavage Fluid
Bronchoalveolar Lavage Fluid - chemistry
Bronchoscopy
Female
Healthy Volunteers
Humans
Male
Microbial Sensitivity Tests
Middle Aged
Minocycline
Minocycline - adverse effects
Minocycline - analogs & derivatives
Minocycline - blood
Minocycline - pharmacokinetics
Pharmacology
Pulmonary Alveoli - cytology
Tetracyclines
Tetracyclines - adverse effects
Tetracyclines - blood
Tetracyclines - pharmacokinetics
Title Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects
URI https://www.ncbi.nlm.nih.gov/pubmed/28696233
https://journals.asm.org/doi/10.1128/AAC.01135-17
https://www.proquest.com/docview/1917962033
https://pubmed.ncbi.nlm.nih.gov/PMC5571291
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGEIgXBAPG-JJBsJc2o7ETJ3msqo2JMRiooL1FdWJvEW06bSlS-BX8If4b99pOk41NGrxETWw5qe6Jfa9zz7mEvI5yHfEw4l6ogsALhORekvmBJ3mew4IfJlzhPuT-R7H7NXh_GB6urPzuZC0tKrmV_byUV_I_VoVrYFdkyf6DZZeDwgX4DfaFI1gYjtey8ahbRLD3aTbJJ1mdGccR98PHxZFqzg-cRPV3ODHKzC6_8QC855lxILdPkJ4xxR30D6ZqRG9nuijyJr1zOP2hMAzujdTUKi5bBlPdG6KEB85AuKVz1vV2h2VVzAoj9YSSBEeGTWeIdMdq5qhfbTbpvNIQt-cNg6hLm7AZx3uYnFIv0fxucoqV97wvteNP1GWbI_ANqymZsuJNIlt3fwPWzCaBq-pQCnCu62Sx7hetSlV3dhfCC2JbznhL2Qkd9VJFaKvmNjO-lX93yE4uX0gYkiOGw9EWTIA89CzB9II0d9N0g9xkEKXgurD3uRWrh9taBpR7rIZ3weK33YHBGQBLs_OO0V_RzsWk3Y4XNL5H7rrwhQ4tFu-TFVWukVu2oGm9Rm7vu1SNNbLpEFf36bjl-J316SY9aOXS6wfkV4tiOte0i2IKWKEdFNOLKKZFSQFG1KK4T1sMU4thajDcNwM1CKYGwXgvh2BqEEwbBD8k453t8WjXc3VCvEkQB5U3GWS-1L5OfOnLQYJRP8pSCqakDn2lcy7CSIMfzCIpfc50JHQ2yCMIHRI_lPwRWS3npXpMKJNcxFqIQOs4gFgiyTnjGpxYHfhMxmKDvEJTpW4OOEtNCM3iFOyZGnumfrRBeo0h08wJ7WO9l-kVvd8se59YgZkr-r1sMJHCCoCf9Salmi_gGRJYVAUbcL5B1i1GliOxWEATtkTn0LPsgOry51vK4tiozIdhBLGA_-Q6f_kpudO-us_IanW6UM_BWa_kC_NK_AH3JOwt
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Omadacycline+and+Tigecycline+Pharmacokinetics+in+the+Plasma%2C+Epithelial+Lining+Fluid%2C+and+Alveolar+Cells+of+Healthy+Adult+Subjects&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Gotfried%2C+Mark+H&rft.au=Horn%2C+Karolyn&rft.au=Garrity-Ryan%2C+Lynne&rft.au=Villano%2C+Stephen&rft.date=2017-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=61&rft.issue=9&rft_id=info:doi/10.1128%2FAAC.01135-17&rft.externalDocID=01135-17
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon