Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects
The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg...
Saved in:
Published in | Antimicrobial agents and chemotherapy Vol. 61; no. 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 0066-4804 1098-6596 1098-6596 |
DOI | 10.1128/AAC.01135-17 |
Cover
Loading…
Abstract | The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC
0–24
) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC
0–24
values were 17.23 mg · h/liter and 1.47, respectively. The AUC
0–24
value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC
0–12
) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC
0–12
values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. |
---|---|
AbstractList | The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC
) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC
values were 17.23 mg · h/liter and 1.47, respectively. The AUC
value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC
) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC
values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC 0–24 ) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC 0–24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC 0–24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC 0–12 ) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC 0–12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0–24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0–24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0–24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0–12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0–12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0-24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0-24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0-24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0-12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0-12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens.The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult subjects were obtained. Subjects were administered either omadacycline at 100 mg intravenously (i.v.) every 12 h for two doses followed by 100 mg i.v. every 24 h for three doses or tigecycline at an initial dose of 100 mg i.v. followed by 50 mg i.v. every 12 h for six doses. A bronchoscopy and bronchoalveolar lavage were performed once in each subject following the start of the fifth dose of omadacycline at 0.5, 1, 2, 4, 8, 12, or 24 h and after the start of the seventh dose of tigecycline at 2, 4, 6, or 12 h. The value of the area under the concentration-time curve (AUC) from time zero to 24 h postdosing (AUC0-24) (based on mean concentrations) in ELF and the ratio of the ELF to total plasma omadacycline concentration based on AUC0-24 values were 17.23 mg · h/liter and 1.47, respectively. The AUC0-24 value in AC was 302.46 mg · h/liter, and the ratio of the AC to total plasma omadacycline concentration was 25.8. In comparison, the values of the AUC from time zero to 12 h postdosing (AUC0-12) based on the mean concentrations of tigecycline in ELF and AC were 3.16 and 38.50 mg · h/liter, respectively. The ratio of the ELF and AC to total plasma concentrations of tigecycline based on AUC0-12 values were 1.71 and 20.8, respectively. The pharmacokinetic advantages of higher and sustained concentrations of omadacycline compared to those of tigecycline in plasma, ELF, and AC suggest that omadacycline is a promising antibacterial agent for the treatment of lower respiratory tract bacterial infections caused by susceptible pathogens. |
Author | Horn, Karolyn Garrity-Ryan, Lynne Villano, Stephen Tanaka, S. Ken Gotfried, Mark H. Tzanis, Evan Manley, Amy Rodvold, Keith A. Chitra, Surya |
Author_xml | – sequence: 1 givenname: Mark H. surname: Gotfried fullname: Gotfried, Mark H. organization: Pulmonary Associates, Phoenix, Arizona, USA – sequence: 2 givenname: Karolyn surname: Horn fullname: Horn, Karolyn organization: College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA – sequence: 3 givenname: Lynne surname: Garrity-Ryan fullname: Garrity-Ryan, Lynne organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 4 givenname: Stephen surname: Villano fullname: Villano, Stephen organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 5 givenname: Evan surname: Tzanis fullname: Tzanis, Evan organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 6 givenname: Surya surname: Chitra fullname: Chitra, Surya organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 7 givenname: Amy surname: Manley fullname: Manley, Amy organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 8 givenname: S. Ken surname: Tanaka fullname: Tanaka, S. Ken organization: Paratek Pharmaceuticals, King of Prussia, Pennsylvania, USA – sequence: 9 givenname: Keith A. surname: Rodvold fullname: Rodvold, Keith A. organization: College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28696233$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kU9vFCEYxompsdvqzbPhqMlOBWZgZi4mk0lrTTapiXsnDAO7rAyswDTZb-FHlu22jRo9kQd-PO-f5wKcOe8UAG8xusKYNB-7rr9CGJe0wPULsMCobQpGW3YGFggxVlQNqs7BRYw7lDVt0StwThrWMlKWC_Cz99NeBBO9g17Du0mMQh6kNU5B4Ua4Nhv1pL9uRZiE9N-zSEZGaBxM23xvRZzEEl7vTZbWCAtXxhm3gTd2NuPywaiz98pbEWCvrI3HWrdK2LQ9wG6cbYLf5mGnZIqvwUstbFRvHs9LsL65Xve3xeru85e-WxWiaqpUCCTxoLFu8YAH1CKEK9o2hBE1aIqVHktGa01ISephwCXRNdMSjTVluMV0KC_Bp5Ptfh4mNUrlUhCW74OZRDhwLwz_88WZLd_4e05pjUmLs8H7R4Pgf8wqJj6ZKPNswik_R57L1HnHqCwz-uGE5jURvvNzcHkyjhE_BshzgPwhQI7rzL77va_nhp4Sy8DyBMjgYwxKPyP_8SN_4dIkkYw_TmXsvz_9Ap67t8U |
CitedBy_id | crossref_primary_10_1002_med_21798 crossref_primary_10_1016_j_ejps_2024_106713 crossref_primary_10_1128_AAC_02263_19 crossref_primary_10_1128_aac_01579_22 crossref_primary_10_1080_17425255_2023_2261376 crossref_primary_10_1128_AAC_01704_21 crossref_primary_10_1128_AAC_01722_17 crossref_primary_10_1177_0018578718823730 crossref_primary_10_1093_cid_ciz394 crossref_primary_10_1080_14728214_2019_1685494 crossref_primary_10_1128_msphere_00381_24 crossref_primary_10_1093_jac_dkac068 crossref_primary_10_1080_14656566_2020_1740205 crossref_primary_10_1097_QCO_0000000000000429 crossref_primary_10_3390_antibiotics11010019 crossref_primary_10_1186_s13613_020_00715_2 crossref_primary_10_2217_fmb_2020_0182 crossref_primary_10_1128_AAC_01972_19 crossref_primary_10_1097_QCO_0000000000001101 crossref_primary_10_1093_milmed_usad417 crossref_primary_10_1093_ofid_ofad423 crossref_primary_10_1097_QCO_0000000000000815 crossref_primary_10_1128_AAC_01907_18 crossref_primary_10_1128_aac_01087_24 crossref_primary_10_1093_jac_dkac055 crossref_primary_10_3389_fphar_2025_1559857 crossref_primary_10_1007_s40121_024_01065_3 crossref_primary_10_1002_phar_2607 crossref_primary_10_3390_microorganisms7080270 crossref_primary_10_1093_ofid_ofaa415 crossref_primary_10_1007_s40262_021_01010_4 crossref_primary_10_1016_j_xphs_2018_03_023 crossref_primary_10_1128_aac_02213_21 crossref_primary_10_1007_s40121_022_00750_5 crossref_primary_10_1016_j_clinthera_2024_06_014 crossref_primary_10_1097_QCO_0000000000001089 crossref_primary_10_1093_jac_dkz267 crossref_primary_10_1002_ppul_24939 crossref_primary_10_1093_jacamr_dlad104 crossref_primary_10_1093_jac_dkae333 crossref_primary_10_3390_antibiotics9120905 crossref_primary_10_1177_1060028018818094 crossref_primary_10_1016_j_rmr_2023_10_010 crossref_primary_10_3389_fcimb_2023_1243457 crossref_primary_10_2147_IDR_S322803 crossref_primary_10_3389_fphar_2021_724725 crossref_primary_10_3390_antibiotics11091193 crossref_primary_10_1007_s40262_019_00843_4 crossref_primary_10_3389_fphar_2022_869237 crossref_primary_10_1016_j_jgar_2021_01_018 crossref_primary_10_3390_antibiotics12040761 crossref_primary_10_1002_phar_2185 crossref_primary_10_1128_AAC_02488_19 crossref_primary_10_1093_jac_dkaa520 crossref_primary_10_3390_antibiotics13030261 crossref_primary_10_1128_aac_01065_24 crossref_primary_10_1016_j_idm_2023_05_013 crossref_primary_10_1128_AAC_02058_19 crossref_primary_10_1007_s40265_018_1015_2 crossref_primary_10_1128_msphere_00671_24 crossref_primary_10_1016_j_clinthera_2023_09_004 crossref_primary_10_1128_aac_00824_23 crossref_primary_10_3389_fcimb_2024_1380312 crossref_primary_10_1093_cid_ciz242 crossref_primary_10_3390_ph16091304 crossref_primary_10_1080_14728214_2019_1677607 crossref_primary_10_1007_s40262_024_01440_w crossref_primary_10_2147_IDR_S384296 crossref_primary_10_1128_AAC_00470_19 crossref_primary_10_3390_ph12020063 crossref_primary_10_1016_j_diagmicrobio_2024_116254 crossref_primary_10_1128_AAC_01208_18 crossref_primary_10_1128_AAC_01947_20 crossref_primary_10_1128_spectrum_00718_23 crossref_primary_10_1186_s12879_022_07857_7 crossref_primary_10_1097_QCO_0000000000000526 crossref_primary_10_1080_13543784_2018_1460354 crossref_primary_10_1056_NEJMoa1800201 crossref_primary_10_3389_fmed_2024_1496402 crossref_primary_10_1186_s12879_024_09097_3 crossref_primary_10_1055_s_0043_1778641 crossref_primary_10_1093_cid_ciz309 crossref_primary_10_1038_s41429_022_00538_2 crossref_primary_10_1128_AAC_02262_18 crossref_primary_10_1016_j_ijantimicag_2023_106847 crossref_primary_10_1016_j_ijantimicag_2021_106487 crossref_primary_10_1016_j_diagmicrobio_2024_116663 crossref_primary_10_1080_1120009X_2024_2339706 crossref_primary_10_3390_antibiotics12020307 crossref_primary_10_1007_s11095_017_2336_7 crossref_primary_10_1093_jac_dkac356 crossref_primary_10_1128_aac_00687_22 crossref_primary_10_1007_s40262_021_01061_7 crossref_primary_10_1007_s40267_019_00634_8 crossref_primary_10_1055_s_0041_1730997 crossref_primary_10_1016_j_ijantimicag_2018_11_011 crossref_primary_10_1007_s40265_020_01257_4 |
Cites_doi | 10.1128/AAC.01066-13 10.1086/653057 10.2165/11594090-000000000-00000 10.1128/AAC.01242-13 10.1128/AAC.02368-16 10.1128/AAC.01734-16 10.1080/00498254.2016.1213465 10.3109/9781420017137.013 10.1128/AAC.00065-07 10.1128/AAC.00766-12 10.1128/AAC.01393-16 10.1128/AAC.00948-12 10.1128/AAC.00018-17 10.1128/AAC.44.4.943-949.2000 10.3390/antibiotics5040032 10.1002/jcph.814 10.1093/jac/dkp301 10.1201/b13787-79 10.1016/j.diagmicrobio.2008.04.009 10.1016/j.ijantimicag.2009.01.015 10.1128/AAC.01536-15 10.26226/morressier.56d6be7ad462b80296c97ddc 10.1128/AAC.02411-16 10.1002/jps.23872 10.1128/AAC.00985-09 10.1128/AAC.01414-09 10.1093/jac/dkn242 10.2217/fmb-2016-0100 10.1128/AAC.41.6.1399 10.1016/S0891-5520(05)70202-6 10.1016/j.diagmicrobio.2008.10.011 10.1128/AAC.02483-12 10.1128/AAC.36.6.1176 10.1093/jac/dkg355 10.1177/0091270007300263 10.1016/j.ijantimicag.2005.02.013 10.1128/AAC.47.8.2450-2457.2003 10.1152/jappl.1986.60.2.532 10.1128/AAC.49.1.220-229.2005 10.1183/09031936.93.03080886 |
ContentType | Journal Article |
Copyright | Copyright © 2017 Gotfried et al. Copyright © 2017 Gotfried et al. 2017 Gotfried et al. |
Copyright_xml | – notice: Copyright © 2017 Gotfried et al. – notice: Copyright © 2017 Gotfried et al. 2017 Gotfried et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/AAC.01135-17 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Pharmacy, Therapeutics, & Pharmacology |
DocumentTitleAlternate | Omadacycline and Tigecycline Pulmonary Concentrations, Gotfried et al Omadacycline and Tigecycline Pulmonary Concentrations |
EISSN | 1098-6596 |
ExternalDocumentID | PMC5571291 01135-17 28696233 10_1128_AAC_01135_17 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Paratek Pharmaceutical |
GroupedDBID | --- .55 .GJ 0R~ 23M 2WC 39C 3O- 4.4 53G 5GY 5RE 5VS 6J9 AAGFI AAYXX ACGFO ADBBV AENEX AGNAY AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE HZ~ H~9 J5H K-O KQ8 L7B LSO MVM NEJ O9- OK1 P2P RHI RNS RPM RSF TR2 UHB VH1 W2D W8F WH7 WHG WOQ X7M X7N XOL Y6R ZGI ZXP ~A~ CGR CUY CVF ECM EIF NPM - 0R 55 AAPBV ABFLS ADACO BXI HZ RHF ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a484t-a0c1bf1f91b1b090014598262ebf51efd3657f22327bb132f76fc0d7561915b3 |
ISSN | 0066-4804 1098-6596 |
IngestDate | Thu Aug 21 18:00:20 EDT 2025 Fri Jul 11 01:19:27 EDT 2025 Tue Dec 28 13:58:58 EST 2021 Thu Apr 03 07:01:33 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jul 01 04:32:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | lung omadacycline tigecycline alveolar macrophages intrapulmonary penetration pharmacokinetics epithelial lining fluid |
Language | English |
License | Copyright © 2017 Gotfried et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license . https://creativecommons.org/licenses/by/4.0 This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a484t-a0c1bf1f91b1b090014598262ebf51efd3657f22327bb132f76fc0d7561915b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Gotfried MH, Horn K, Garrity-Ryan L, Villano S, Tzanis E, Chitra S, Manley A, Tanaka SK, Rodvold KA. 2017. Comparison of omadacycline and tigecycline pharmacokinetics in the plasma, epithelial lining fluid, and alveolar cells of healthy adult subjects. Antimicrob Agents Chemother 61:e01135-17. https://doi.org/10.1128/AAC.01135-17. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC5571291 |
PMID | 28696233 |
PQID | 1917962033 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5571291 proquest_miscellaneous_1917962033 asm2_journals_10_1128_AAC_01135_17 pubmed_primary_28696233 crossref_primary_10_1128_AAC_01135_17 crossref_citationtrail_10_1128_AAC_01135_17 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Antimicrobial agents and chemotherapy |
PublicationTitleAbbrev | Antimicrob Agents Chemother |
PublicationTitleAlternate | Antimicrob Agents Chemother |
PublicationYear | 2017 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_41_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_25_2 Nabuurs MH (e_1_3_2_37_2) 2010 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 Andes D (e_1_3_2_33_2) 2007 Tanaka SK (e_1_3_2_26_2) 2016 Baldwin DR (e_1_3_2_24_2) 1990; 3 Wyeth Pharmaceuticals Inc (e_1_3_2_32_2) 2010 21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64 9174209 - Antimicrob Agents Chemother. 1997 Jun;41(6):1399-402 28193651 - Antimicrob Agents Chemother. 2017 Apr 24;61(5) 15616299 - Antimicrob Agents Chemother. 2005 Jan;49(1):220-9 9779382 - Infect Dis Clin North Am. 1998 Sep;12(3):631-46, viii 24549736 - J Pharm Sci. 2014 Mar;103(3):1013-9 20921315 - Antimicrob Agents Chemother. 2010 Dec;54(12):5180-6 23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9 1963411 - Eur Respir J. 1990 Sep;3(8):886-90 19278835 - Int J Antimicrob Agents. 2009 Jul;34(1):101-2 17846139 - Antimicrob Agents Chemother. 2007 Nov;51(11):4085-9 27539539 - J Clin Pharmacol. 2017 Mar;57(3):321-327 22802254 - Antimicrob Agents Chemother. 2012 Oct;56(10):5076-81 27539442 - Future Microbiol. 2016 Oct;11:1421-1434 1416817 - Antimicrob Agents Chemother. 1992 Jun;36(6):1176-80 27736760 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7431-7435 12888589 - J Antimicrob Chemother. 2003 Sep;52(3):450-6 28223386 - Antimicrob Agents Chemother. 2017 Apr 24;61(5) 24041885 - Antimicrob Agents Chemother. 2014;58(3):1279-83 20597657 - Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S103-10 27993854 - Antimicrob Agents Chemother. 2017 Feb 23;61(3) 22908151 - Antimicrob Agents Chemother. 2012 Nov;56(11):5650-4 17519399 - J Clin Pharmacol. 2007 Jun;47(6):727-37 19696049 - J Antimicrob Chemother. 2009 Oct;64(4):837-9 19150707 - Diagn Microbiol Infect Dis. 2009 Feb;63(2):155-9 12878504 - Antimicrob Agents Chemother. 2003 Aug;47(8):2450-7 27669321 - Antibiotics (Basel). 2016 Sep 22;5(4):null 27671057 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7502-7504 10722495 - Antimicrob Agents Chemother. 2000 Apr;44(4):943-9 26349824 - Antimicrob Agents Chemother. 2015 Nov;59(11):7044-53 3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8 19738006 - Antimicrob Agents Chemother. 2009 Dec;53(12):5060-3 27499331 - Xenobiotica. 2017 Aug;47(8):682-696 18508226 - Diagn Microbiol Infect Dis. 2008 Jul;61(3):329-38 24295985 - Antimicrob Agents Chemother. 2014;58(2):1127-35 18684702 - J Antimicrob Chemother. 2008 Sep;62 Suppl 1:i11-6 15885987 - Int J Antimicrob Agents. 2005 Jun;25(6):523-9 Koomanachai, P, Crandon, JL, Banevicius, MA, Peng, L, Nicolau, DP (B41) 2009; 53 Honeyman, L, Ismail, M, Nelson, ML, Bhatia, B, Bowser, TE, Chen, J, Mechiche, R, Ohemeng, K, Verma, AK, Cannon, EP, Macone, A, Tanaka, SK, Levy, S (B9) 2015; 59 B25 Ambrose, PG, Bhavnani, SM, Ellis-Grosse, EJ, Drusano, GL (B15) 2010; 51 Rennard, SI, Basset, G, Lecossier, D, O'Donnell, KM, Pinkston, P, Martin, PG, Crystal, RG (B22) 1986; 60 Rubino, CM, Forrest, A, Bhavnani, SM, Dukart, G, Cooper, A, Korth-Bradley, J, Ambrose, PG (B29) 2010; 54 Muralidharan, G, Micalizzi, M, Speth, J, Raible, D, Troy, S (B26) 2005; 49 Conte, JE, Golden, JA, Kelly, MG, Zurlinden, E (B28) 2005; 25 Pfaller, MA, Rhomberg, PR, Huband, MD, Flamm, RK (B6) 2017; 61 MacGowen, A (B30) 2010; 65 van Ogtrop, ML, Andes, D, Stamstad, TJ, Conklin, B, Weiss, WJ, Craig, WA, Vesga, O (B33) 2000; 44 Gotfried, MH, Danziger, LH, Rodvold, KA (B19) 2003; 52 Nabuurs, MH, Mouton, JW, Grayson, ML, Crowe, SM, McCarthy, JS, Mills, J, Mouton, JW, Norrby, SR, Paterson, DL, Pfaller, MA (B36) 2010 Andes, D, Craig, W, Nightingale, CH, Ambrose, PG, Drusano, GL, Murakawa, T (B32) 2007 Villano, S, Steenbergen, J, Loh, E (B1) 2016; 11 Rodvold, KA, Danziger, LH, Gotfried, MH (B20) 2003; 47 Noel, GJ, Draper, MP, Halt, H, Tanaka, SK, Arbeit, RD (B12) 2012; 56 Tenero, D, Bowers, G, Rodvold, KA, Patel, A, Kurtinecz, M, Dumont, E, Tomayko, J, Patel, P (B24) 2013; 57 Pfaller, MA, Rhomberg, PR, Huband, MD, Flamm, RK (B5) 2017 Rodvold, KA, George, JM, Yoo, L (B14) 2011; 50 Draper, MP, Weir, S, Macone, A, Donatelli, J, Trieber, CA, Tanaka, SK, Levy, SB (B3) 2014; 58 Heidrich, CG, Mitova, S, Schedlbauer, A, Connell, SR, Fucini, P, Steenbergen, JN, Berens, C (B2) 2016; 5 Flarakos, J, Du, Y, Gu, H, Wang, L, Einolf, HJ, Chun, DY, Zhu, B, Alexander, N, Natrillo, A, Hanna, I, Ting, L, Zhou, W, Dole, K, Sun, H, Kovacs, SJ, Stein, DS, Tanaka, SK, Villano, S, Mangold, JB (B13) 2017; 47 Rodvold, KA, Gotfried, MH, Still, JG, Clark, K, Fernandes, P (B21) 2012; 56 Tanaseanu, C, Bergallo, C, Teglia, O, Jasovich, A, Oliva, ME, Dukart, G, Darois, N, Cooper, CA, Gandjini, H (B37) 2008; 61 Mukker, JK, Singh, RP, Derendorf, H (B39) 2014; 103 Lepak, AJ, Zhao, M, Marchillo, K, VanHecker, J, Andes, DR (B35) 2017 (B31) 2010 Rubino, CM, Ma, L, Bhavnani, SM, Korth-Bradley, J, Speth, J, Ellis-Grosse, E, Rodvold, KA, Ambrose, PG, Drusano, GL (B38) 2007; 51 Baldwin, DR, Wise, R, Andrews, JM, Ashby, P, Honeybourne, D (B23) 1990; 3 Crandon, JL, Kim, A, Nicolau, DP (B40) 2009; 64 Ambrose, PG, Meagher, AK, Passarell, JA, Van Wart, SA, Cirincione, BB, Bhavnani, SM, Ellis-Grosse, E (B34) 2009; 63 B8 Baldwin, DR, Honeybourne, D, Wise, R (B17) 1992; 36 Rodvold, KA, Gotfried, MH, Danziger, LH, Servi, RJ (B18) 1997; 41 Macone, AB, Caruso, BK, Leahy, RG, Donatelli, J, Weir, S, Draper, MP, Tanaka, SK, Levy, SB (B4) 2014; 58 Waites, KB, Crabb, DM, Liu, Y, Duffy, LB (B7) 2016; 60 Sun, H, Ting, L, Machneni, S, Praestgaard, J, Kuemmell, A, Stein, DS, Sunkara, G, Kovacs, SJ, Villano, S, Tanaka, SK (B10) 2016; 60 Tzanis, E, Manley, A, Villano, S, Tanaka, SK, Bai, S, Loh, E (B11) 2017; 57 Nix, DE (B16) 1998; 12 Van Wart, SA, Cirincione, BB, Ludwig, EA, Meagher, AK, Korth-Bradley, JM, Owen, JS (B27) 2007; 47 Burkhardt, O, Rauch, K, Kaever, V, Hadem, J, Kielstein, JT, Welte, T (B42) 2009; 34 |
References_xml | – ident: e_1_3_2_4_2 doi: 10.1128/AAC.01066-13 – ident: e_1_3_2_16_2 doi: 10.1086/653057 – ident: e_1_3_2_15_2 doi: 10.2165/11594090-000000000-00000 – ident: e_1_3_2_5_2 doi: 10.1128/AAC.01242-13 – ident: e_1_3_2_36_2 doi: 10.1128/AAC.02368-16 – ident: e_1_3_2_8_2 doi: 10.1128/AAC.01734-16 – ident: e_1_3_2_14_2 doi: 10.1080/00498254.2016.1213465 – start-page: 267 volume-title: Antimicrobial pharmacodynamics in theory and clinical practice year: 2007 ident: e_1_3_2_33_2 doi: 10.3109/9781420017137.013 – ident: e_1_3_2_39_2 doi: 10.1128/AAC.00065-07 – ident: e_1_3_2_22_2 doi: 10.1128/AAC.00766-12 – ident: e_1_3_2_11_2 doi: 10.1128/AAC.01393-16 – ident: e_1_3_2_13_2 doi: 10.1128/AAC.00948-12 – ident: e_1_3_2_6_2 doi: 10.1128/AAC.00018-17 – ident: e_1_3_2_34_2 doi: 10.1128/AAC.44.4.943-949.2000 – ident: e_1_3_2_3_2 doi: 10.3390/antibiotics5040032 – ident: e_1_3_2_12_2 doi: 10.1002/jcph.814 – ident: e_1_3_2_41_2 doi: 10.1093/jac/dkp301 – start-page: 881 volume-title: Kucer's the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs year: 2010 ident: e_1_3_2_37_2 doi: 10.1201/b13787-79 – ident: e_1_3_2_38_2 doi: 10.1016/j.diagmicrobio.2008.04.009 – volume-title: Abstr 26th Eur Congr Clin Microbiol Infect Dis year: 2016 ident: e_1_3_2_26_2 – volume-title: Prescribing information for Tygacil® year: 2010 ident: e_1_3_2_32_2 – ident: e_1_3_2_43_2 doi: 10.1016/j.ijantimicag.2009.01.015 – ident: e_1_3_2_10_2 doi: 10.1128/AAC.01536-15 – ident: e_1_3_2_9_2 doi: 10.26226/morressier.56d6be7ad462b80296c97ddc – ident: e_1_3_2_7_2 doi: 10.1128/AAC.02411-16 – ident: e_1_3_2_40_2 doi: 10.1002/jps.23872 – ident: e_1_3_2_42_2 doi: 10.1128/AAC.00985-09 – ident: e_1_3_2_30_2 doi: 10.1128/AAC.01414-09 – ident: e_1_3_2_31_2 doi: 10.1093/jac/dkn242 – ident: e_1_3_2_2_2 doi: 10.2217/fmb-2016-0100 – ident: e_1_3_2_19_2 doi: 10.1128/AAC.41.6.1399 – ident: e_1_3_2_17_2 doi: 10.1016/S0891-5520(05)70202-6 – ident: e_1_3_2_35_2 doi: 10.1016/j.diagmicrobio.2008.10.011 – ident: e_1_3_2_25_2 doi: 10.1128/AAC.02483-12 – ident: e_1_3_2_18_2 doi: 10.1128/AAC.36.6.1176 – ident: e_1_3_2_20_2 doi: 10.1093/jac/dkg355 – ident: e_1_3_2_28_2 doi: 10.1177/0091270007300263 – ident: e_1_3_2_29_2 doi: 10.1016/j.ijantimicag.2005.02.013 – ident: e_1_3_2_21_2 doi: 10.1128/AAC.47.8.2450-2457.2003 – ident: e_1_3_2_23_2 doi: 10.1152/jappl.1986.60.2.532 – ident: e_1_3_2_27_2 doi: 10.1128/AAC.49.1.220-229.2005 – volume: 3 start-page: 886 year: 1990 ident: e_1_3_2_24_2 article-title: Azithromycin concentrations at the sites of pulmonary infection publication-title: Eur Respir J doi: 10.1183/09031936.93.03080886 – reference: 15885987 - Int J Antimicrob Agents. 2005 Jun;25(6):523-9 – reference: 23650164 - Antimicrob Agents Chemother. 2013 Jul;57(7):3334-9 – reference: 3512509 - J Appl Physiol (1985). 1986 Feb;60(2):532-8 – reference: 10722495 - Antimicrob Agents Chemother. 2000 Apr;44(4):943-9 – reference: 19150707 - Diagn Microbiol Infect Dis. 2009 Feb;63(2):155-9 – reference: 24041885 - Antimicrob Agents Chemother. 2014;58(3):1279-83 – reference: 19278835 - Int J Antimicrob Agents. 2009 Jul;34(1):101-2 – reference: 1963411 - Eur Respir J. 1990 Sep;3(8):886-90 – reference: 9174209 - Antimicrob Agents Chemother. 1997 Jun;41(6):1399-402 – reference: 27993854 - Antimicrob Agents Chemother. 2017 Feb 23;61(3): – reference: 27499331 - Xenobiotica. 2017 Aug;47(8):682-696 – reference: 28193651 - Antimicrob Agents Chemother. 2017 Apr 24;61(5): – reference: 26349824 - Antimicrob Agents Chemother. 2015 Nov;59(11):7044-53 – reference: 1416817 - Antimicrob Agents Chemother. 1992 Jun;36(6):1176-80 – reference: 27671057 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7502-7504 – reference: 27736760 - Antimicrob Agents Chemother. 2016 Nov 21;60(12 ):7431-7435 – reference: 21895037 - Clin Pharmacokinet. 2011 Oct;50(10):637-64 – reference: 20597657 - Clin Infect Dis. 2010 Aug 1;51 Suppl 1:S103-10 – reference: 27669321 - Antibiotics (Basel). 2016 Sep 22;5(4):null – reference: 19738006 - Antimicrob Agents Chemother. 2009 Dec;53(12):5060-3 – reference: 15616299 - Antimicrob Agents Chemother. 2005 Jan;49(1):220-9 – reference: 27539442 - Future Microbiol. 2016 Oct;11:1421-1434 – reference: 12888589 - J Antimicrob Chemother. 2003 Sep;52(3):450-6 – reference: 18508226 - Diagn Microbiol Infect Dis. 2008 Jul;61(3):329-38 – reference: 22908151 - Antimicrob Agents Chemother. 2012 Nov;56(11):5650-4 – reference: 9779382 - Infect Dis Clin North Am. 1998 Sep;12(3):631-46, viii – reference: 22802254 - Antimicrob Agents Chemother. 2012 Oct;56(10):5076-81 – reference: 12878504 - Antimicrob Agents Chemother. 2003 Aug;47(8):2450-7 – reference: 20921315 - Antimicrob Agents Chemother. 2010 Dec;54(12):5180-6 – reference: 28223386 - Antimicrob Agents Chemother. 2017 Apr 24;61(5): – reference: 24549736 - J Pharm Sci. 2014 Mar;103(3):1013-9 – reference: 19696049 - J Antimicrob Chemother. 2009 Oct;64(4):837-9 – reference: 17519399 - J Clin Pharmacol. 2007 Jun;47(6):727-37 – reference: 24295985 - Antimicrob Agents Chemother. 2014;58(2):1127-35 – reference: 17846139 - Antimicrob Agents Chemother. 2007 Nov;51(11):4085-9 – reference: 18684702 - J Antimicrob Chemother. 2008 Sep;62 Suppl 1:i11-6 – reference: 27539539 - J Clin Pharmacol. 2017 Mar;57(3):321-327 – volume: 56 start-page: 5650 year: 2012 end-page: 5654 ident: B12 article-title: A randomized, evaluator-blind, phase 2 study comparing the safety and efficacy of omadacycline to those of linezolid for treatment of complicated skin and skin structure infections publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00948-12 – start-page: 267 year: 2007 end-page: 278 ident: B32 article-title: Pharmacokinetics and pharmacodynamics of tetracyclines publication-title: Antimicrobial pharmacodynamics in theory and clinical practice ;2nd ed ;Informa Healthcare USA ;New York, NY – volume: 53 start-page: 5060 year: 2009 end-page: 5063 ident: B41 article-title: Pharmacodynamic profile of tigecycline against methicillin-resistant Staphylococcus aureus in an experimental pneumonia model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00985-09 – volume: 61 start-page: 329 year: 2008 end-page: 338 ident: B37 article-title: Integrated results of 2 phase 3 studies comparing tigecycline and levofloxacin in community-acquired pneumonia publication-title: Diagn Microbiol Infect Dis doi: 10.1016/j.diagmicrobio.2008.04.009 – volume: 3 start-page: 886 year: 1990 end-page: 890 ident: B23 article-title: Azithromycin concentrations at the sites of pulmonary infection publication-title: Eur Respir J – volume: 58 start-page: 1279 year: 2014 end-page: 1283 ident: B3 article-title: Mechanism of action of the novel aminomethylcycline antibiotic omadacycline publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01066-13 – volume: 58 start-page: 1127 year: 2014 end-page: 1135 ident: B4 article-title: In vitro and in vivo antibacterial activities of omadacycline, a novel aminomethylcycline publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01242-13 – volume: 36 start-page: 1176 year: 1992 end-page: 1180 ident: B17 article-title: Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.36.6.1176 – volume: 44 start-page: 943 year: 2000 end-page: 949 ident: B33 article-title: In vivo pharmacodynamics activities of two glycylcyclines (GAR-936 and WAY 152,288) against various gram-positive and gram-negative bacteria publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.44.4.943-949.2000 – ident: B25 article-title: Tanaka SK Villano S Tzanis E . 2016 . Multiple dose pharmacokinetics and tolerability of intravenous omadacycline in healthy volunteers, abstr P1319 . Abstr 26th Eur Congr Clin Microbiol Infect Dis , Amsterdam, The Netherlands . – volume: 12 start-page: 631 year: 1998 end-page: 646 ident: B16 article-title: Intrapulmonary concentrations of antimicrobial agents publication-title: Infect Dis Clin North Am doi: 10.1016/S0891-5520(05)70202-6 – volume: 47 start-page: 727 year: 2007 end-page: 737 ident: B27 article-title: Population pharmacokinetics of tigecycline in healthy volunteers publication-title: J Clin Pharmacol doi: 10.1177/0091270007300263 – volume: 51 start-page: 4085 year: 2007 end-page: 4089 ident: B38 article-title: Evaluation of tigecycline penetration into colon wall tissue and epithelial lining fluid using a population pharmacokinetic model and Monte Carlo simulation publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00065-07 – volume: 63 start-page: 155 year: 2009 end-page: 159 ident: B34 article-title: Application of patient population-derived pharmacokinetic-pharmacodynamic relationships to tigecycline breakpoint determination for staphylococci and streptococci publication-title: Diagn Microbiol Infect Dis doi: 10.1016/j.diagmicrobio.2008.10.011 – volume: 59 start-page: 7044 year: 2015 end-page: 7053 ident: B9 article-title: Structure-activity relationship of the aminomethylcyclines and the discovery of omadacycline publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01536-15 – volume: 57 start-page: 321 year: 2017 end-page: 327 ident: B11 article-title: Effect of food on the bioavailability of omadacycline in healthy participants publication-title: J Clin Pharmacol doi: 10.1002/jcph.814 – ident: B8 article-title: Dubois J Dubois M Martel JF Tanaka SK . 2016 . In vitro intracellular activity of omadacycline against Legionella pneumophila , abstr 551 . Abstr ASM Microbe , New Orleans, LA . American Society for Microbiology, Washington, DC . – volume: 60 start-page: 7431 year: 2016 end-page: 7435 ident: B10 article-title: Randomized, open-label study of the pharmacokinetics and safety of oral and intravenous administration of omadacycline to healthy subjects publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01393-16 – volume: 47 start-page: 2450 year: 2003 end-page: 2457 ident: B20 article-title: Steady-state plasma and bronchopulmonary concentrations of intravenous levofloxacin and azithromycin in healthy adults publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.47.8.2450-2457.2003 – year: 2017 ident: B5 article-title: Surveillance of omadacycline activity tested against clinical isolates from a global (North American, Europe, Latin American and Asia-Western Pacific) collection (2010-2011) publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00018-17 – volume: 34 start-page: 101 year: 2009 end-page: 102 ident: B42 article-title: Tigecycline possibly underdosed for the treatment of pneumonia: a pharmacokinetic viewpoint publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2009.01.015 – volume: 50 start-page: 637 year: 2011 end-page: 664 ident: B14 article-title: Penetration of anti-infective agents into pulmonary epithelial lining fluid: focus of antibacterial agents publication-title: Clin Pharmacokinet doi: 10.2165/11594090-000000000-00000 – volume: 41 start-page: 1399 year: 1997 end-page: 1402 ident: B18 article-title: Intrapulmonary steady-state concentrations of clarithromycin and azithromycin in healthy adult volunteers publication-title: Antimicrob Agents Chemother – volume: 49 start-page: 220 year: 2005 end-page: 229 ident: B26 article-title: Pharmacokinetics of tigecycline after single and multiple doses in healthy subjects publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.49.1.220-229.2005 – volume: 56 start-page: 5076 year: 2012 end-page: 5081 ident: B21 article-title: Comparison of plasma, epithelial lining fluid, and alveolar macrophage concentrations of solithromycin (CEM-101) in healthy adult subjects publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.00766-12 – volume: 57 start-page: 3334 year: 2013 end-page: 3339 ident: B24 article-title: Intrapulmonary pharmacokinetics of GSK2251052 in healthy volunteers publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02483-12 – volume: 47 start-page: 682 year: 2017 end-page: 696 ident: B13 article-title: Clinical disposition, metabolism and in vitro drug-drug interaction properties of omadacycline publication-title: Xenobiotica doi: 10.1080/00498254.2016.1213465 – volume: 52 start-page: 450 year: 2003 end-page: 456 ident: B19 article-title: Steady-state plasma and bronchopulmonary characteristics of clarithromycin extended-release tablets in normal healthy adult subjects publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkg355 – volume: 25 start-page: 523 year: 2005 end-page: 529 ident: B28 article-title: Steady-state serum and intrapulmonary pharmacokinetics and pharmacodynamics of tigecycline publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2005.02.013 – volume: 54 start-page: 5180 year: 2010 end-page: 5186 ident: B29 article-title: Tigecycline population pharmacokinetics in patients with community- or hospital-acquired pneumonia publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01414-09 – volume: 51 start-page: S103 year: 2010 end-page: S110 ident: B15 article-title: Pharmacokinetic-pharmacodynamic considerations in the design of hospital-acquired or ventilator-acquired bacterial pneumonia studies: look before you leap! publication-title: Clin Infect Dis doi: 10.1086/653057 – volume: 5 year: 2016 ident: B2 article-title: The novel aminomethylcycline omadacycline has high specificity for the primary tetracycline-binding site on the bacterial ribosome publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics5040032 – volume: 60 start-page: 7502 year: 2016 end-page: 7504 ident: B7 article-title: In vitro activities of omadacycline (PTK 0796) and other antimicrobial agents against human mycoplasmas and ureaplasmas publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01734-16 – start-page: 881 year: 2010 end-page: 892 ident: B36 article-title: Tigecycline publication-title: Kucer's the use of antibiotics: a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs ;6th ed ;Hodder Arnold ;London, United Kingdom – volume: 11 start-page: 1421 year: 2016 end-page: 1434 ident: B1 article-title: Omadacycline: development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections publication-title: Future Microbiol doi: 10.2217/fmb-2016-0100 – volume: 103 start-page: 1013 year: 2014 end-page: 1019 ident: B39 article-title: Determination of atypical nonlinear plasma-protein-binding behavior of tigecycline using an in vitro microdialysis technique publication-title: J Pharm Sci doi: 10.1002/jps.23872 – volume: 61 start-page: e02411-16 year: 2017 ident: B6 article-title: Activities of omadacycline and comparator agents against Staphylococcus aureus isolates from a surveillance program conducted in North America and Europe publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02411-16 – volume: 64 start-page: 837 year: 2009 end-page: 839 ident: B40 article-title: Comparison of tigecycline penetration into the epithelial lining fluid of infected and uninfected murine lungs publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkp301 – volume: 60 start-page: 532 year: 1986 end-page: 538 ident: B22 article-title: Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution publication-title: J Appl Physiol – volume: 65 start-page: i11 year: 2010 end-page: i16 ident: B30 article-title: Tigecycline pharmacokinetic/pharmacodynamics update publication-title: J Antimicrob Chemother doi: 10.1093/jac/dkn242 – year: 2010 ident: B31 publication-title: Prescribing information for Tygacil® ;Wyeth Pharmaceuticals Inc ;Philadelphia, PA – year: 2017 ident: B35 article-title: In vivo pharmacodynamics evaluation of omadacycline (PTK 0796) against Streptococcus pneumoniae in the murine pneumonia model publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02368-16 |
SSID | ssj0006590 |
Score | 2.5431745 |
Snippet | The steady-state concentrations of omadacycline and tigecycline in the plasma, epithelial lining fluid (ELF), and alveolar cells (AC) of 58 healthy adult... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adult Alveolar Epithelial Cells Alveolar Epithelial Cells - chemistry Anti-Bacterial Agents Anti-Bacterial Agents - blood Anti-Bacterial Agents - pharmacokinetics Area Under Curve Bronchoalveolar Lavage Bronchoalveolar Lavage Fluid Bronchoalveolar Lavage Fluid - chemistry Bronchoscopy Female Healthy Volunteers Humans Male Microbial Sensitivity Tests Middle Aged Minocycline Minocycline - adverse effects Minocycline - analogs & derivatives Minocycline - blood Minocycline - pharmacokinetics Pharmacology Pulmonary Alveoli - cytology Tetracyclines Tetracyclines - adverse effects Tetracyclines - blood Tetracyclines - pharmacokinetics |
Title | Comparison of Omadacycline and Tigecycline Pharmacokinetics in the Plasma, Epithelial Lining Fluid, and Alveolar Cells of Healthy Adult Subjects |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28696233 https://journals.asm.org/doi/10.1128/AAC.01135-17 https://www.proquest.com/docview/1917962033 https://pubmed.ncbi.nlm.nih.gov/PMC5571291 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXGEIgXBAPG-JJBsJc2o7ETJ3msqo2JMRiooL1FdWJvEW06bSlS-BX8If4b99pOk41NGrxETWw5qe6Jfa9zz7mEvI5yHfEw4l6ogsALhORekvmBJ3mew4IfJlzhPuT-R7H7NXh_GB6urPzuZC0tKrmV_byUV_I_VoVrYFdkyf6DZZeDwgX4DfaFI1gYjtey8ahbRLD3aTbJJ1mdGccR98PHxZFqzg-cRPV3ODHKzC6_8QC855lxILdPkJ4xxR30D6ZqRG9nuijyJr1zOP2hMAzujdTUKi5bBlPdG6KEB85AuKVz1vV2h2VVzAoj9YSSBEeGTWeIdMdq5qhfbTbpvNIQt-cNg6hLm7AZx3uYnFIv0fxucoqV97wvteNP1GWbI_ANqymZsuJNIlt3fwPWzCaBq-pQCnCu62Sx7hetSlV3dhfCC2JbznhL2Qkd9VJFaKvmNjO-lX93yE4uX0gYkiOGw9EWTIA89CzB9II0d9N0g9xkEKXgurD3uRWrh9taBpR7rIZ3weK33YHBGQBLs_OO0V_RzsWk3Y4XNL5H7rrwhQ4tFu-TFVWukVu2oGm9Rm7vu1SNNbLpEFf36bjl-J316SY9aOXS6wfkV4tiOte0i2IKWKEdFNOLKKZFSQFG1KK4T1sMU4thajDcNwM1CKYGwXgvh2BqEEwbBD8k453t8WjXc3VCvEkQB5U3GWS-1L5OfOnLQYJRP8pSCqakDn2lcy7CSIMfzCIpfc50JHQ2yCMIHRI_lPwRWS3npXpMKJNcxFqIQOs4gFgiyTnjGpxYHfhMxmKDvEJTpW4OOEtNCM3iFOyZGnumfrRBeo0h08wJ7WO9l-kVvd8se59YgZkr-r1sMJHCCoCf9Salmi_gGRJYVAUbcL5B1i1GliOxWEATtkTn0LPsgOry51vK4tiozIdhBLGA_-Q6f_kpudO-us_IanW6UM_BWa_kC_NK_AH3JOwt |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Omadacycline+and+Tigecycline+Pharmacokinetics+in+the+Plasma%2C+Epithelial+Lining+Fluid%2C+and+Alveolar+Cells+of+Healthy+Adult+Subjects&rft.jtitle=Antimicrobial+agents+and+chemotherapy&rft.au=Gotfried%2C+Mark+H&rft.au=Horn%2C+Karolyn&rft.au=Garrity-Ryan%2C+Lynne&rft.au=Villano%2C+Stephen&rft.date=2017-09-01&rft.pub=American+Society+for+Microbiology&rft.issn=0066-4804&rft.eissn=1098-6596&rft.volume=61&rft.issue=9&rft_id=info:doi/10.1128%2FAAC.01135-17&rft.externalDocID=01135-17 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0066-4804&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0066-4804&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0066-4804&client=summon |