Remdesivir against COVID-19 and Other Viral Diseases
Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a nove...
Saved in:
Published in | Clinical microbiology reviews Vol. 34; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
16.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-8512 1098-6618 1098-6618 |
DOI | 10.1128/CMR.00162-20 |
Cover
Loading…
Abstract | Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2.
Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses.
In vivo
, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable. |
---|---|
AbstractList | Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable.Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable. Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo , remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable. SUMMARY Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. In vivo, remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable. Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome coronavirus 2 (SARS-CoV-2) pandemic. Remdesivir (GS-5734) is the first approved treatment for severe coronavirus disease 2019 (COVID-19). It is a novel nucleoside analog with a broad antiviral activity spectrum among RNA viruses, including ebolavirus (EBOV) and the respiratory pathogens Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV, and SARS-CoV-2. First described in 2016, the drug was derived from an antiviral library of small molecules intended to target emerging pathogenic RNA viruses. , remdesivir showed therapeutic and prophylactic effects in animal models of EBOV, MERS-CoV, SARS-CoV, and SARS-CoV-2 infection. However, the substance failed in a clinical trial on ebolavirus disease (EVD), where it was inferior to investigational monoclonal antibodies in an interim analysis. As there was no placebo control in this study, no conclusions on its efficacy in EVD can be made. In contrast, data from a placebo-controlled trial show beneficial effects for patients with COVID-19. Remdesivir reduces the time to recovery of hospitalized patients who require supplemental oxygen and may have a positive impact on mortality outcomes while having a favorable safety profile. Although this is an important milestone in the fight against COVID-19, approval of this drug will not be sufficient to solve the public health issues caused by the ongoing pandemic. Further scientific efforts are needed to evaluate the full potential of nucleoside analogs as treatment or prophylaxis of viral respiratory infections and to develop effective antivirals that are orally bioavailable. |
Author | Suárez, Isabelle Priesner, Vanessa Fätkenheuer, Gerd Rybniker, Jan Malin, Jakob J. |
Author_xml | – sequence: 1 givenname: Jakob J. orcidid: 0000-0002-2989-0436 surname: Malin fullname: Malin, Jakob J. organization: Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany, Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany – sequence: 2 givenname: Isabelle surname: Suárez fullname: Suárez, Isabelle organization: Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany – sequence: 3 givenname: Vanessa surname: Priesner fullname: Priesner, Vanessa organization: Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany – sequence: 4 givenname: Gerd surname: Fätkenheuer fullname: Fätkenheuer, Gerd organization: Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany – sequence: 5 givenname: Jan surname: Rybniker fullname: Rybniker, Jan organization: Department I of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany, Faculty of Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33055231$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLw0AURgep2IfuXEuWCqbOO5ONIKmPQqVQtNthkkzaKXnUmaTgvze1tajo6i7uuR_fPX3QKatSA3CO4BAhLG6i59kQQsSxj-ER6CEYCp9zJDqgB0VIfMEQ7oK-c6uWopSIE9AlBDKGCeoBOtNFqp3ZGOuphTKlq71oOh-PfBR6qky9ab3U1psbq3JvZJxWTrtTcJyp3Omz_RyA14f7l-jJn0wfx9HdxFdU0NrnKhaUpxzFCReBIIjBgGiWhUkWpimBCdMxTyEJGGRxRmOuGAkySlFMAhhyTQbgdpe7buJCp4ku67aGXFtTKPsuK2Xkz01plnJRbWTAOBchbwMu9wG2emu0q2VhXKLzXJW6apzElCHBOOVhi17tUOUKLFdVY8v2NYmg3FqWrWX5aVli2LIX33sdCn1pbYHrHZDYyjmrswPyTx7-hSemVrWptl-Z_O-jD6AolfE |
CitedBy_id | crossref_primary_10_1016_j_jiph_2022_12_019 crossref_primary_10_1186_s12934_021_01576_5 crossref_primary_10_1016_j_isci_2024_111347 crossref_primary_10_3390_v13040667 crossref_primary_10_1016_j_microb_2024_100051 crossref_primary_10_1007_s00011_021_01520_8 crossref_primary_10_1128_Spectrum_01537_21 crossref_primary_10_1016_j_crphar_2021_100072 crossref_primary_10_1128_AAC_00233_21 crossref_primary_10_1055_a_2332_3253 crossref_primary_10_1371_journal_pone_0267283 crossref_primary_10_3390_microorganisms9040734 crossref_primary_10_2174_1573406418666220616110351 crossref_primary_10_1093_bib_bbab526 crossref_primary_10_1016_j_slasd_2021_10_012 crossref_primary_10_7759_cureus_23059 crossref_primary_10_1016_j_ejmech_2024_116671 crossref_primary_10_2174_2589977513666210806122901 crossref_primary_10_4110_in_2021_21_e7 crossref_primary_10_1080_03007995_2024_2366443 crossref_primary_10_3390_molecules29235564 crossref_primary_10_1016_j_bcp_2021_114800 crossref_primary_10_3390_molecules28031277 crossref_primary_10_3389_fimmu_2023_1147991 crossref_primary_10_3390_ph17050661 crossref_primary_10_3390_ijms232012649 crossref_primary_10_1016_j_bsheal_2024_09_001 crossref_primary_10_1016_j_drudis_2022_02_012 crossref_primary_10_3390_v14061345 crossref_primary_10_1007_s12275_024_00154_9 crossref_primary_10_1515_med_2023_0867 crossref_primary_10_3390_molecules26040923 crossref_primary_10_3390_microorganisms11061577 crossref_primary_10_7759_cureus_21535 crossref_primary_10_1007_s00228_021_03270_2 crossref_primary_10_1515_hsz_2022_0323 crossref_primary_10_1007_s10930_021_10019_4 crossref_primary_10_1016_j_isci_2022_105348 crossref_primary_10_1016_j_jpba_2022_114646 crossref_primary_10_3389_fmicb_2023_1239079 crossref_primary_10_1093_bioinformatics_btad082 crossref_primary_10_7759_cureus_16351 crossref_primary_10_4167_jbv_2022_52_4_149 crossref_primary_10_1080_17425255_2022_2112175 crossref_primary_10_3390_v16060947 crossref_primary_10_1007_s40121_024_00994_3 crossref_primary_10_1016_j_jiph_2021_06_013 crossref_primary_10_1002_bmc_5212 crossref_primary_10_1007_s10989_022_10477_z crossref_primary_10_3390_vaccines10122145 crossref_primary_10_3389_fimmu_2022_988479 crossref_primary_10_18231_j_ijohd_2021_032 crossref_primary_10_1007_s12275_024_00168_3 crossref_primary_10_1016_j_envres_2022_113282 crossref_primary_10_1016_j_jsb_2025_108197 crossref_primary_10_14233_ajchem_2022_23868 crossref_primary_10_2147_CIA_S313028 crossref_primary_10_3389_fimmu_2022_819574 crossref_primary_10_1128_jvi_01565_23 crossref_primary_10_1021_acs_jmedchem_2c00758 crossref_primary_10_1186_s13063_021_05752_1 crossref_primary_10_1002_iid3_790 crossref_primary_10_3389_fcvm_2023_1093053 crossref_primary_10_14218_JCTH_2021_00368 crossref_primary_10_2174_0115748855255004231001182927 crossref_primary_10_1080_0028825X_2024_2384453 crossref_primary_10_3390_life12081287 crossref_primary_10_1016_j_biopha_2021_111956 crossref_primary_10_1016_j_jmsacl_2022_06_001 crossref_primary_10_3389_fimmu_2022_830990 crossref_primary_10_1111_ene_16017 crossref_primary_10_3389_fphar_2022_1019487 crossref_primary_10_3390_v14020366 crossref_primary_10_1155_2022_8712424 crossref_primary_10_51483_AFJPS_2_2_2022_1_33 crossref_primary_10_3389_fphar_2021_704205 crossref_primary_10_1016_j_mtbio_2024_101165 crossref_primary_10_1002_14651858_CD014962 crossref_primary_10_1007_s12291_021_00987_w crossref_primary_10_1016_j_antiviral_2024_106034 crossref_primary_10_1002_ejoc_202300197 crossref_primary_10_3390_healthcare9091108 crossref_primary_10_1007_s00284_024_03671_3 crossref_primary_10_1021_acsptsci_3c00121 crossref_primary_10_3390_jcm11041139 crossref_primary_10_1016_j_cmi_2021_02_029 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_5501_wjv_v13_i4_99110 crossref_primary_10_1007_s11094_023_02952_8 crossref_primary_10_3390_vaccines13030255 crossref_primary_10_1007_s11837_021_04662_6 crossref_primary_10_2174_0115734129323940240809053530 crossref_primary_10_3390_v14122738 crossref_primary_10_15252_emmm_202013426 crossref_primary_10_1080_14740338_2021_1962846 crossref_primary_10_1016_j_apsb_2025_02_028 crossref_primary_10_1039_D1OB00751C crossref_primary_10_1007_s11030_022_10550_1 crossref_primary_10_3389_fimmu_2022_1006395 crossref_primary_10_3390_jpm12030439 crossref_primary_10_14218_JCTH_2020_00140 crossref_primary_10_3390_ijms24032591 crossref_primary_10_1007_s12275_023_00062_4 crossref_primary_10_3389_fnins_2021_674204 crossref_primary_10_1016_j_comptc_2023_114188 crossref_primary_10_3390_medicina58020261 crossref_primary_10_1002_cpt_2686 crossref_primary_10_1128_cmr_00168_21 crossref_primary_10_3390_ijms232214462 crossref_primary_10_3390_ijms24054401 crossref_primary_10_3390_jcm12226989 crossref_primary_10_3389_fimmu_2022_855496 crossref_primary_10_4274_tjh_galenos_2021_2021_0607 crossref_primary_10_3390_transplantology2020022 crossref_primary_10_4103_bbrj_bbrj_161_21 crossref_primary_10_3390_microorganisms10101949 crossref_primary_10_1126_scitranslmed_abi7643 crossref_primary_10_1016_j_curtheres_2023_100699 crossref_primary_10_3390_v17020150 crossref_primary_10_1128_cmr_00119_23 crossref_primary_10_1177_11786302221104348 crossref_primary_10_1016_j_virs_2024_03_011 crossref_primary_10_30895_2221_996X_2024_569 crossref_primary_10_3389_fmolb_2021_648232 crossref_primary_10_1080_07391102_2022_2093793 crossref_primary_10_7759_cureus_30286 crossref_primary_10_1080_14787210_2021_1961579 crossref_primary_10_1055_a_1581_3707 crossref_primary_10_3390_cells10061412 crossref_primary_10_4103_ajim_ajim_3_21 crossref_primary_10_3389_fmicb_2022_740382 crossref_primary_10_1186_s42269_021_00487_0 crossref_primary_10_1007_s43440_022_00425_5 crossref_primary_10_1021_acsinfecdis_1c00053 crossref_primary_10_1093_jac_dkaa500 crossref_primary_10_3389_fcimb_2021_792584 crossref_primary_10_1016_j_jconrel_2025_01_044 crossref_primary_10_1007_s40265_023_01926_0 crossref_primary_10_1007_s43440_022_00388_7 crossref_primary_10_4103_sjhs_sjhs_42_22 crossref_primary_10_3390_vaccines9080886 crossref_primary_10_55095_CSPediatrie2023_027 crossref_primary_10_1021_acsomega_1c03230 crossref_primary_10_3389_fmicb_2022_959577 crossref_primary_10_3390_life11060565 crossref_primary_10_1159_000529687 crossref_primary_10_2807_1560_7917_ES_2025_30_10_2400252 crossref_primary_10_2174_1874467214666210811120635 crossref_primary_10_3390_biomedicines11020643 crossref_primary_10_1016_j_cellsig_2022_110559 crossref_primary_10_1002_jctb_6641 crossref_primary_10_1016_j_algal_2024_103491 crossref_primary_10_2174_1871526523666230509110907 crossref_primary_10_3390_molecules28052332 crossref_primary_10_1134_S1068162021030183 crossref_primary_10_3390_vaccines13010017 crossref_primary_10_1002_ardp_202100382 crossref_primary_10_31665_JFB_2021_16290 crossref_primary_10_1002_ejoc_202101062 crossref_primary_10_1080_23744235_2021_1923799 crossref_primary_10_1016_j_rechem_2024_101428 crossref_primary_10_1038_s41598_022_13680_6 crossref_primary_10_1093_jac_dkac234 crossref_primary_10_3389_fphys_2024_1436727 crossref_primary_10_1186_s44149_021_00017_5 crossref_primary_10_3390_v16040651 crossref_primary_10_1007_s12013_024_01424_4 crossref_primary_10_3390_v15040947 crossref_primary_10_1016_j_jddst_2023_104567 |
Cites_doi | 10.3390/v11040326 10.1099/0022-1317-72-9-2197 10.1101/2020.05.02.20088559 10.1002/phar.2429 10.3201/eid2609.201495 10.1016/S0140-6736(20)31022-9 10.1016/j.phrs.2020.104899 10.1074/jbc.AC120.013056 10.1056/NEJMoa2015301 10.1021/acs.jmedchem.6b01594 10.1177/2040206618764483 10.1111/j.1348-0421.1976.tb00978.x 10.1128/AAC.01184-07 10.1038/nmicrobiol.2016.226 10.1126/scitranslmed.aal3653 10.1074/jbc.M707834200 10.1038/s41467-019-13940-6 10.3201/eid1201.050496 10.1101/2020.05.23.20110932 10.1002/14651858.CD008965.pub4 10.1517/17460441.3.6.671 10.1016/j.antiviral.2019.104541 10.1074/jbc.RA120.013679 10.1038/s41586-020-2423-5 10.1128/JVI.79.6.3846-3850.2005 10.1002/jmv.1890410503 10.1038/s41467-019-10280-3 10.1038/s41422-020-0282-0 10.1038/srep43395 10.1056/NEJMoa1604330 10.1016/j.antiviral.2020.104786 10.1021/jm950605j 10.1101/2020.04.15.043166 10.1074/jbc.M806797200 10.1111/cts.12840 10.1016/j.bmcl.2012.02.105 10.1021/jm400201a 10.1128/AAC.41.7.1444 10.1208/s12248-020-00459-8 10.1038/nature17180 10.1099/jgv.0.001453 10.1056/NEJMoa1214853 10.1016/j.antiviral.2020.104793 10.1146/annurev-pharmtox-010510-100228 10.1007/s00018-014-1695-z 10.1128/AAC.02351-13 10.1056/NEJMoa2007016 10.1016/j.coviro.2014.08.004 10.3851/IMP2012 10.1056/NEJMoa2007764 10.1001/jamanetworkopen.2020.8857 10.1016/j.antiviral.2018.11.016 10.1016/j.antiviral.2018.04.004 10.1002/jps.23258 10.1126/science.abb7498 10.1056/NEJMoa2001282 10.1038/nrd4010 10.1021/jm060776w 10.1016/j.cell.2020.02.052 10.1073/pnas.1922083117 10.1126/scitranslmed.abb5883 10.1016/j.antiviral.2006.06.002 10.1056/NEJMoa1910993 10.1073/pnas.2002589117 10.1128/CMR.00028-20 10.1056/NEJMoa2021436 10.1016/j.jacbts.2020.05.002 10.1128/mBio.00221-18 10.1371/journal.pone.0194880 10.1128/AAC.42.12.3200 |
ContentType | Journal Article |
Copyright | Copyright © 2020 American Society for Microbiology. Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2020 American Society for Microbiology. – notice: Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/CMR.00162-20 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | Remdesivir, a Broad-Spectrum Direct Antiviral, Malin et al Remdesivir, a Broad-Spectrum Direct Antiviral |
EISSN | 1098-6618 |
ExternalDocumentID | PMC7566896 00162-20 33055231 10_1128_CMR_00162_20 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- 0R~ 18M 29B 2WC 39C 4.4 53G 5GY 5VS 6J9 AAGFI AAYXX ACGFO ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS F5P FRP GX1 H13 HYE HZ~ KQ8 O9- OK1 P2P RHI RNS RPM RSF TR2 W2D W8F WH7 WOQ CGR CUY CVF ECM EIF NPM - 0R AAPBV ABFLS ADACO BXI HZ RHF UCJ ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a484t-6ab846d61bc6878315073e5f9cf9dd30c5eb6d037505bf4b6a537f441b37096e3 |
ISSN | 0893-8512 1098-6618 |
IngestDate | Thu Aug 21 14:30:03 EDT 2025 Fri Jul 11 15:54:07 EDT 2025 Tue Dec 28 13:59:06 EST 2021 Thu Apr 03 06:55:35 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Tue Jul 01 03:08:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | COVID-19 SARS-CoV-2 ebolavirus SARS-CoV antiviral coronavirus MERS-CoV remdesivir |
Language | English |
License | Copyright © 2020 American Society for Microbiology. All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a484t-6ab846d61bc6878315073e5f9cf9dd30c5eb6d037505bf4b6a537f441b37096e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 Citation Malin JJ, Suárez I, Priesner V, Fätkenheuer G, Rybniker J. 2021. Remdesivir against COVID-19 and other viral diseases. Clin Microbiol Rev 34:e00162-20. https://doi.org/10.1128/CMR.00162-20. |
ORCID | 0000-0002-2989-0436 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7566896 |
PMID | 33055231 |
PQID | 2451856469 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7566896 proquest_miscellaneous_2451856469 asm2_journals_10_1128_CMR_00162_20 pubmed_primary_33055231 crossref_primary_10_1128_CMR_00162_20 crossref_citationtrail_10_1128_CMR_00162_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-16 |
PublicationDateYYYYMMDD | 2020-12-16 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Clinical microbiology reviews |
PublicationTitleAbbrev | Clin Microbiol Reviews |
PublicationTitleAlternate | Clin Microbiol Rev |
PublicationYear | 2020 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_68_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_66_2 National Institute of Allergy and Infectious Diseases (e_1_3_2_7_2) 2020 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_18_2 e_1_3_2_39_2 European Medicines Agency (e_1_3_2_8_2) 2020 e_1_3_2_54_2 e_1_3_2_75_2 US Food and Drug Administration (e_1_3_2_49_2) 2020 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_73_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_77_2 e_1_3_2_50_2 e_1_3_2_71_2 US Food and Drug Administration (e_1_3_2_56_2) 2020 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Gilead Sciences (e_1_3_2_64_2) 2020 Johns Hopkins University (e_1_3_2_3_2) 2020 e_1_3_2_40_2 e_1_3_2_65_2 O’Day D (e_1_3_2_76_2) 2020 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_63_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_69_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_67_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_74_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_78_2 e_1_3_2_2_2 e_1_3_2_72_2 e_1_3_2_70_2 Lawitz, E, Mangia, A, Wyles, D, Rodriguez-Torres, M, Hassanein, T, Gordon, SC, Schultz, M, Davis, MN, Kayali, Z, Reddy, KR, Jacobson, IM, Kowdley, KV, Nyberg, L, Subramanian, GM, Hyland, RH, Arterburn, S, Jiang, D, McNally, J, Brainard, D, Symonds, WT, McHutchison, JG, Sheikh, AM, Younossi, Z, Gane, EJ (B11) 2013; 368 Matsuyama, S, Nao, N, Shirato, K, Kawase, M, Saito, S, Takayama, I, Nagata, N, Sekizuka, T, Katoh, H, Kato, F, Sakata, M, Tahara, M, Kutsuna, S, Ohmagari, N, Kuroda, M, Suzuki, T, Kageyama, T, Takeda, M (B43) 2020; 117 Choy, KT, Wong, AY, Kaewpreedee, P, Sia, SF, Chen, D, Hui, KPY, Chu, DKW, Chan, MCW, Cheung, PP, Huang, X, Peiris, M, Yen, HL (B47) 2020; 178 Goldman, JD, Lye, DCB, Hui, DS, Marks, KM, Bruno, R, Montejano, R, Spinner, CD, Galli, M, Ahn, M-Y, Nahass, RG, Chen, Y-S, SenGupta, D, Hyland, RH, Osinusi, AO, Cao, H, Blair, C, Wei, X, Gaggar, A, Brainard, DM, Towner, WJ, Muñoz, J, Mullane, KM, Marty, FM, Tashima, KT, Diaz, G, Subramanian, A (B62) 2020 Agostini, ML, Andres, EL, Sims, AC, Graham, RL, Sheahan, TP, Lu, X, Smith, EC, Case, JB, Feng, JY, Jordan, R, Ray, AS, Cihlar, T, Siegel, D, Mackman, RL, Clarke, MO, Baric, RS, Denison, MR (B26) 2018; 9 Koonin, EV (B13) 1991; 72 Beigel, JH, Tomashek, KM, Dodd, LE, Mehta, AK, Zingman, BS, Kalil, AC, Hohmann, E, Chu, HY, Luetkemeyer, A, Kline, S, Lopez de Castilla, D, Finberg, RW, Dierberg, K, Tapson, V, Hsieh, L, Patterson, TF, Paredes, R, Sweeney, DA, Short, WR, Touloumi, G, Lye, DC, Ohmagari, N, Oh, MD, Ruiz-Palacios, GM, Benfield, T, Fätkenheuer, G, Kortepeter, MG, Atmar, RL, Creech, CB, Lundgren, J, Babiker, AG, Pett, S, Neaton, JD, Burgess, TH, Bonnett, T, Green, M, Makowski, M, Osinusi, A, Nayak, S, Lane, HC (B5) 2020 Gordon, CJ, Tchesnokov, EP, Feng, JY, Porter, DP, Götte, M (B49) 2020; 295 Sheahan, TP, Sims, AC, Zhou, S, Graham, RL, Pruijssers, AJ, Agostini, ML, Leist, SR, Schäfer, A, Dinnon, KH, Stevens, LJ, Chappell, JD, Lu, X, Hughes, TM, George, AS, Hill, CS, Montgomery, SA, Brown, AJ, Bluemling, GR, Natchus, MG, Saindane, M, Kolykhalov, AA, Painter, G, Harcourt, J, Tamin, A, Thornburg, NJ, Swanstrom, R, Denison, MR, Baric, RS (B76) 2020; 12 Kirchdoerfer, RN, Ward, AB (B36) 2019; 10 Humeniuk, R, Mathias, A, Cao, H, Osinusi, A, Shen, G, Chng, E, Ling, J, Vu, A, German, P (B68) 2020; 13 te Velthuis, AJW (B12) 2014; 71 Green, N, Ott, RD, Isaacs, RJ, Fang, H (B40) 2008; 3 Jordan, PC, Stevens, SK, Deval, J (B19) 2018; 26 Sheahan, TP, Sims, AC, Leist, SR, Schafer, A, Won, J, Brown, AJ, Montgomery, SA, Hogg, A, Babusis, D, Clarke, MO, Spahn, JE, Bauer, L, Sellers, S, Porter, D, Feng, JY, Cihlar, T, Jordan, R, Denison, MR, Baric, RS (B28) 2020; 11 Tchesnokov, EP, Obikhod, A, Schinazi, RF, Gotte, M (B31) 2008; 283 Gordon, CJ, Tchesnokov, EP, Woolner, E, Perry, JK, Feng, JY, Porter, DP, Götte, M (B37) 2020; 295 B70 B71 O’Day, D (B75) 2020 Banerjee, A, Nasir, JA, Budylowski, P, Yip, L, Aftanas, P, Christie, N, Ghalami, A, Baid, K, Raphenya, AR, Hirota, JA, Miller, MS, McGeer, AJ, Ostrowski, M, Kozak, RA, McArthur, AG, Mossman, K, Mubareka, S (B42) 2020; 26 Dhama, K, Khan, S, Tiwari, R, Sircar, S, Bhat, S, Malik, YS, Singh, KP, Chaicumpa, W, Bonilla-Aldana, DK, Rodriguez-Morales, AJ (B1) 2020; 33 Mulangu, S, Dodd, LE, Davey, RT, Tshiani Mbaya, O, Proschan, M, Mukadi, D, Lusakibanza Manzo, M, Nzolo, D, Tshomba Oloma, A, Ibanda, A, Ali, R, Coulibaly, S, Levine, AC, Grais, R, Diaz, J, Lane, HC, Muyembe-Tamfum, J-J, Sivahera, B, Camara, M, Kojan, R, Walker, R, Dighero-Kemp, B, Cao, H, Mukumbayi, P, Mbala-Kingebeni, P, Ahuka, S, Albert, S, Bonnett, T, Crozier, I, Duvenhage, M, Proffitt, C, Teitelbaum, M, Moench, T, Aboulhab, J, Barrett, K, Cahill, K, Cone, K, Eckes, R, Hensley, L, Herpin, B, Higgs, E, Ledgerwood, J, Pierson, J, Smolskis, M, Sow, Y, Tierney, J, Sivapalasingam, S, Holman, W, Gettinger, N, Vallee, D, Nordwall, J (B27) 2019; 381 de Wit, E, Feldmann, F, Cronin, J, Jordan, R, Okumura, A, Thomas, T, Scott, D, Cihlar, T, Feldmann, H (B29) 2020; 117 Cao, B, Wang, Y, Wen, D, Liu, W, Wang, J, Fan, G, Ruan, L, Song, B, Cai, Y, Wei, M, Li, X, Xia, J, Chen, N, Xiang, J, Yu, T, Bai, T, Xie, X, Zhang, L, Li, C, Yuan, Y, Chen, H, Li, H, Huang, H, Tu, S, Gong, F, Liu, Y, Wei, Y, Dong, C, Zhou, F, Gu, X, Xu, J, Liu, Z, Zhang, Y, Li, H, Shang, L, Wang, K, Li, K, Zhou, X, Dong, X, Qu, Z, Lu, S, Hu, X, Ruan, S, Luo, S, Wu, J, Peng, L, Cheng, F, Pan, L, Zou, J, Jia, C (B72) 2020; 382 Siegel, D, Hui, HC, Doerffler, E, Clarke, MO, Chun, K, Zhang, L, Neville, S, Carra, E, Lew, W, Ross, B, Wang, Q, Wolfe, L, Jordan, R, Soloveva, V, Knox, J, Perry, J, Perron, M, Stray, KM, Barauskas, O, Feng, JY, Xu, Y, Lee, G, Rheingold, AL, Ray, AS, Bannister, R, Strickley, R, Swaminathan, S, Lee, WA, Bavari, S, Cihlar, T, Lo, MK, Warren, TK, Mackman, RL (B20) 2017; 60 Mossel, EC, Huang, C, Narayanan, K, Makino, S, Tesh, RB, Peters, CJ (B44) 2005; 79 Mozersky, J, Mann, DL, DuBois, JM (B61) 2020; 5 Cho, A, Saunders, OL, Butler, T, Zhang, L, Xu, J, Vela, JE, Feng, JY, Ray, AS, Kim, CU (B14) 2012; 22 De Clercq, E (B9) 2011; 51 Warren, TK, Jordan, R, Lo, MK, Ray, AS, Mackman, RL, Soloveva, V, Siegel, D, Perron, M, Bannister, R, Hui, HC, Larson, N, Strickley, R, Wells, J, Stuthman, KS, Van Tongeren, SA, Garza, NL, Donnelly, G, Shurtleff, AC, Retterer, CJ, Gharaibeh, D, Zamani, R, Kenny, T, Eaton, BP, Grimes, E, Welch, LS, Gomba, L, Wilhelmsen, CL, Nichols, DK, Nuss, JE, Nagle, ER, Kugelman, JR, Palacios, G, Doerffler, E, Neville, S, Carra, E, Clarke, MO, Zhang, L, Lew, W, Ross, B, Wang, Q, Chun, K, Wolfe, L, Babusis, D, Park, Y, Stray, KM, Trancheva, I, Feng, JY, Barauskas, O, Xu, Y, Wong, P, Braun, MR, Flint, M (B24) 2016; 531 Horby, P, Lim, WS, Emberson, JR, Mafham, M, Bell, JL, Linsell, L, Staplin, N, Brightling, C, Ustianowski, A, Elmahi, E, Prudon, B, Green, C, Felton, T, Chadwick, D, Rege, K, Fegan, C, Chappell, LC, Faust, SN, Jaki, T, Jeffery, K, Montgomery, A, Rowan, K, Juszczak, E, Baillie, JK, Haynes, R, Landray, MJ (B77) 2020 McGuigan, C, Hassan-Abdallah, A, Srinivasan, S, Wang, Y, Siddiqui, A, Daluge, SM, Gudmundsson, KS, Zhou, H, McLean, EW, Peckham, JP, Burnette, TC, Marr, H, Hazen, R, Condreay, LD, Johnson, L, Balzarini, J (B23) 2006; 49 Domaoal, RA, McMahon, M, Thio, CL, Bailey, CM, Tirado-Rives, J, Obikhod, A, Detorio, M, Rapp, KL, Siliciano, RF, Schinazi, RF, Anderson, KS (B32) 2008; 283 (B7) 2020 Yates, MK, Seley-Radtke, KL (B17) 2019; 162 Cho, A, Zhang, L, Xu, J, Lee, R, Butler, T, Metobo, S, Aktoudianakis, V, Lew, W, Ye, H, Clarke, M, Doerffler, E, Byun, D, Wang, T, Babusis, D, Carey, AC, German, P, Sauer, D, Zhong, W, Rossi, S, Fenaux, M, McHutchison, JG, Perry, J, Feng, J, Ray, AS, Kim, CU (B16) 2014; 57 (B48) 2020 Sheahan, TP, Sims, AC, Graham, RL, Menachery, VD, Gralinski, LE, Case, JB, Leist, SR, Pyrc, K, Feng, JY, Trantcheva, I, Bannister, R, Park, Y, Babusis, D, Clarke, MO, Mackman, RL, Spahn, JE, Palmiotti, CA, Siegel, D, Ray, AS, Cihlar, T, Jordan, R, Denison, MR, Baric, RS (B25) 2017; 9 Borba, MGS, Val, FFA, Sampaio, VS, Alexandre, MAA, Melo, GC, Brito, M, Mourão, MPG, Brito-Sousa, JD, Baía-da-Silva, D, Guerra, MVF, Hajjar, LA, Pinto, RC, Balieiro, AAS, Pacheco, AGF, Santos, JDO, Naveca, FG, Xavier, MS, Siqueira, AM, Schwarzbold, A, Croda, J, Nogueira, ML, Romero, GAS, Bassat, Q, Fontes, CJ, Albuquerque, BC, Daniel-Ribeiro, C-T, Monteiro, WM, Lacerda, MVG (B73) 2020; 3 Seifer, M, Hamatake, RK, Colonno, RJ, Standring, DN (B33) 1998; 42 Cockrell, AS, Yount, BL, Scobey, T, Jensen, K, Douglas, M, Beall, A, Tang, XC, Marasco, WA, Heise, MT, Baric, RS (B52) 2016; 2 Postnikova, E, Cong, Y, DeWald, LE, Dyall, J, Yu, S, Hart, BJ, Zhou, H, Gross, R, Logue, J, Cai, Y, Deiuliis, N, Michelotti, J, Honko, AN, Bennett, RS, Holbrook, MR, Olinger, GG, Hensley, LE, Jahrling, PB (B38) 2018; 13 Wang, M, Cao, R, Zhang, L, Yang, X, Liu, J, Xu, M, Shi, Z, Hu, Z, Zhong, W, Xiao, G (B3) 2020; 30 Davey, RT, Dodd, L, Proschan, MA, Neaton, J, Neuhaus Nordwall, J, Koopmeiners, JS, Beigel, J, Tierney, J, Lane, HC, Fauci, AS, Massaquoi, MBF, Sahr, F, Malvy, D (B59) 2016; 375 Kaye, M (B45) 2006; 12 Deval, J, Symons, JA, Beigelman, L (B65) 2014; 9 Pertusati, F, Serpi, M, McGuigan, C (B67) 2012; 22 Gao, Y, Yan, L, Huang, Y, Liu, F, Zhao, Y, Cao, L, Wang, T, Sun, Q, Ming, Z, Zhang, L, Ge, J, Zheng, L, Zhang, Y, Wang, H, Zhu, Y, Zhu, C, Hu, T, Hua, T, Zhang, B, Yang, X, Li, J, Yang, H, Liu, Z, Xu, W, Guddat, LW, Wang, Q, Lou, Z, Rao, Z (B35) 2020; 368 Brown, AJ, Won, JJ, Graham, RL, Dinnon, KH, Sims, AC, Feng, JY, Cihlar, T, Denison, MR, Baric, RS, Sheahan, TP (B46) 2019; 169 (B6) 2020 McGuigan, C, Cahard, D, Sheeka, HM, De Clercq, E, Balzarini, J (B22) 1996; 39 Jorgensen, SC, Kebriaei, R, Dresser, LD (B54) 2020; 40 Lo, MK, Jordan, R, Arvey, A, Sudhamsu, J, Shrivastava-Ranjan, P, Hotard, AL, Flint, M, McMullan, LK, Siegel, D, Clarke, MO, Mackman, RL, Hui, HC, Perron, M, Ray, AS, Cihlar, T, Nichol, ST, Spiropoulou, CF (B21) 2017; 7 Elion, GB (B8) 1993; 1993 Jordheim, LP, Durantel, D, Zoulim, F, Dumontet, C (B64) 2013; 12 Antinori, S, Cossu, MV, Ridolfo, AL, Rech, R, Bonazzetti, C, Pagani, G, Gubertini, G, Coen, M, Magni, C, Castelli, A, Borghi, B, Colombo, R, Giorgi, R, Angeli, E, Mileto, D, Milazzo, L, Vimercati, S, Pellicciotta, M, Corbellino, M, Torre, A, Rusconi, S, Oreni, L, Gismondo, MR, Giacomelli, A, Meroni, L, Rizzardini, G, Galli, M (B57) 2020; 158 Murakami, E, Niu, C, Bao, H, Micolochick Steuer, HM, Whitaker, T, Nachman, T, Sofia, MA, Wang, P, Otto, MJ, Furman, PA (B66) 2008; 52 Tchesnokov, EP, Feng, JY, Porter, DP, Gotte, M (B30) 2019; 11 B58 Ogando, NS, Dalebout, TJ, Zevenhoven-Dobbe, JC, Limpens, RWAL, van der Meer, Y, Caly, L, Druce, J, de Vries, JJC, Kikkert, M, Bárcena, M, Sidorov, I, Snijder, EJ (B4) 2020 (B63) 2020 Bahar, FG, Ohura, K, Ogihara, T, Imai, T (B51) 2012; 101 Hirano, N, Fujiwara, K, Matumoto, M (B39) 1976; 20 Seley-Radtke, KL, Yates, MK (B18) 2018; 154 Shannon, A, Le, NT-T, Selisko, B, Eydoux, C, Alvarez, K, Guillemot, J-C, Decroly, E, Peersen, O, Ferron, F, Canard, B (B50) 2020; 178 Jefferson, T, Jones, MA, Doshi, P, |
References_xml | – ident: e_1_3_2_31_2 doi: 10.3390/v11040326 – ident: e_1_3_2_14_2 doi: 10.1099/0022-1317-72-9-2197 – ident: e_1_3_2_59_2 doi: 10.1101/2020.05.02.20088559 – ident: e_1_3_2_55_2 doi: 10.1002/phar.2429 – ident: e_1_3_2_43_2 doi: 10.3201/eid2609.201495 – ident: e_1_3_2_61_2 doi: 10.1016/S0140-6736(20)31022-9 – ident: e_1_3_2_58_2 doi: 10.1016/j.phrs.2020.104899 – ident: e_1_3_2_50_2 doi: 10.1074/jbc.AC120.013056 – ident: e_1_3_2_63_2 doi: 10.1056/NEJMoa2015301 – ident: e_1_3_2_21_2 doi: 10.1021/acs.jmedchem.6b01594 – ident: e_1_3_2_20_2 doi: 10.1177/2040206618764483 – ident: e_1_3_2_40_2 doi: 10.1111/j.1348-0421.1976.tb00978.x – ident: e_1_3_2_67_2 doi: 10.1128/AAC.01184-07 – ident: e_1_3_2_53_2 doi: 10.1038/nmicrobiol.2016.226 – ident: e_1_3_2_26_2 doi: 10.1126/scitranslmed.aal3653 – ident: e_1_3_2_33_2 doi: 10.1074/jbc.M707834200 – ident: e_1_3_2_29_2 doi: 10.1038/s41467-019-13940-6 – ident: e_1_3_2_46_2 doi: 10.3201/eid1201.050496 – volume-title: NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19 year: 2020 ident: e_1_3_2_7_2 – ident: e_1_3_2_72_2 doi: 10.1101/2020.05.23.20110932 – ident: e_1_3_2_75_2 doi: 10.1002/14651858.CD008965.pub4 – ident: e_1_3_2_41_2 doi: 10.1517/17460441.3.6.671 – ident: e_1_3_2_47_2 doi: 10.1016/j.antiviral.2019.104541 – ident: e_1_3_2_38_2 doi: 10.1074/jbc.RA120.013679 – ident: e_1_3_2_54_2 doi: 10.1038/s41586-020-2423-5 – ident: e_1_3_2_45_2 doi: 10.1128/JVI.79.6.3846-3850.2005 – ident: e_1_3_2_9_2 doi: 10.1002/jmv.1890410503 – ident: e_1_3_2_37_2 doi: 10.1038/s41467-019-10280-3 – ident: e_1_3_2_4_2 doi: 10.1038/s41422-020-0282-0 – volume-title: Revised 08/2020 year: 2020 ident: e_1_3_2_56_2 – ident: e_1_3_2_22_2 doi: 10.1038/srep43395 – ident: e_1_3_2_60_2 doi: 10.1056/NEJMoa1604330 – ident: e_1_3_2_48_2 doi: 10.1016/j.antiviral.2020.104786 – ident: e_1_3_2_23_2 doi: 10.1021/jm950605j – ident: e_1_3_2_71_2 doi: 10.1101/2020.04.15.043166 – ident: e_1_3_2_32_2 doi: 10.1074/jbc.M806797200 – ident: e_1_3_2_69_2 doi: 10.1111/cts.12840 – ident: e_1_3_2_15_2 doi: 10.1016/j.bmcl.2012.02.105 – ident: e_1_3_2_17_2 doi: 10.1021/jm400201a – ident: e_1_3_2_35_2 doi: 10.1128/AAC.41.7.1444 – ident: e_1_3_2_70_2 doi: 10.1208/s12248-020-00459-8 – ident: e_1_3_2_25_2 doi: 10.1038/nature17180 – volume-title: US Food and Drug Administration year: 2020 ident: e_1_3_2_49_2 – ident: e_1_3_2_5_2 doi: 10.1099/jgv.0.001453 – ident: e_1_3_2_12_2 doi: 10.1056/NEJMoa1214853 – ident: e_1_3_2_51_2 doi: 10.1016/j.antiviral.2020.104793 – ident: e_1_3_2_10_2 doi: 10.1146/annurev-pharmtox-010510-100228 – volume-title: Remdesivir (GS-5734) investigator’s brochure version 5.0, p 115–116 year: 2020 ident: e_1_3_2_64_2 – ident: e_1_3_2_13_2 doi: 10.1007/s00018-014-1695-z – volume-title: First COVID-19 treatment authorised for use in the EU year: 2020 ident: e_1_3_2_8_2 – ident: e_1_3_2_16_2 doi: 10.1128/AAC.02351-13 – ident: e_1_3_2_57_2 doi: 10.1056/NEJMoa2007016 – ident: e_1_3_2_66_2 doi: 10.1016/j.coviro.2014.08.004 – ident: e_1_3_2_68_2 doi: 10.3851/IMP2012 – ident: e_1_3_2_6_2 doi: 10.1056/NEJMoa2007764 – ident: e_1_3_2_74_2 doi: 10.1001/jamanetworkopen.2020.8857 – volume-title: An open letter from Daniel O’Day, chairman & CEO, Gilead Sciences year: 2020 ident: e_1_3_2_76_2 – ident: e_1_3_2_18_2 doi: 10.1016/j.antiviral.2018.11.016 – ident: e_1_3_2_19_2 doi: 10.1016/j.antiviral.2018.04.004 – ident: e_1_3_2_52_2 doi: 10.1002/jps.23258 – volume-title: COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) year: 2020 ident: e_1_3_2_3_2 – ident: e_1_3_2_36_2 doi: 10.1126/science.abb7498 – ident: e_1_3_2_73_2 doi: 10.1056/NEJMoa2001282 – ident: e_1_3_2_65_2 doi: 10.1038/nrd4010 – ident: e_1_3_2_24_2 doi: 10.1021/jm060776w – ident: e_1_3_2_42_2 doi: 10.1016/j.cell.2020.02.052 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1922083117 – ident: e_1_3_2_77_2 doi: 10.1126/scitranslmed.abb5883 – ident: e_1_3_2_11_2 doi: 10.1016/j.antiviral.2006.06.002 – ident: e_1_3_2_28_2 doi: 10.1056/NEJMoa1910993 – ident: e_1_3_2_44_2 doi: 10.1073/pnas.2002589117 – ident: e_1_3_2_2_2 doi: 10.1128/CMR.00028-20 – ident: e_1_3_2_78_2 doi: 10.1056/NEJMoa2021436 – ident: e_1_3_2_62_2 doi: 10.1016/j.jacbts.2020.05.002 – ident: e_1_3_2_27_2 doi: 10.1128/mBio.00221-18 – ident: e_1_3_2_39_2 doi: 10.1371/journal.pone.0194880 – ident: e_1_3_2_34_2 doi: 10.1128/AAC.42.12.3200 – volume: 381 start-page: 2293 year: 2019 end-page: 2303 ident: B27 article-title: A randomized, controlled trial of Ebola virus disease therapeutics publication-title: N Engl J Med doi: 10.1056/NEJMoa1910993 – volume: 1993 start-page: 2 year: 1993 end-page: 6 ident: B8 article-title: Acyclovir: discovery, mechanism of action, and selectivity publication-title: J Med Virol doi: 10.1002/jmv.1890410503 – volume: 2 start-page: 16226 year: 2016 ident: B52 article-title: A mouse model for MERS coronavirus-induced acute respiratory distress syndrome publication-title: Nat Microbiol doi: 10.1038/nmicrobiol.2016.226 – volume: 12 start-page: 447 year: 2013 end-page: 464 ident: B64 article-title: Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4010 – volume: 7 start-page: 43395 year: 2017 ident: B21 article-title: GS-5734 and its parent nucleoside analog inhibit filo-, pneumo-, and paramyxoviruses publication-title: Sci Rep doi: 10.1038/srep43395 – volume: 60 start-page: 1648 year: 2017 end-page: 1661 ident: B20 article-title: Discovery and synthesis of a phosphoramidate prodrug of a pyrrolo[2,1-f][triazin-4-amino] adenine C-nucleoside (GS-5734) for the treatment of Ebola and emerging viruses publication-title: J Med Chem doi: 10.1021/acs.jmedchem.6b01594 – volume: 11 start-page: 222 year: 2020 ident: B28 article-title: Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV publication-title: Nat Commun doi: 10.1038/s41467-019-13940-6 – volume: 41 start-page: 1444 year: 1997 end-page: 1448 ident: B34 article-title: Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.41.7.1444 – volume: 368 start-page: 779 year: 2020 end-page: 782 ident: B35 article-title: Structure of the RNA-dependent RNA polymerase from COVID-19 virus publication-title: Science doi: 10.1126/science.abb7498 – year: 2020 ident: B48 article-title: Fact sheet for health care providers: emergency use authorization (EUA) of Veklury (remdesivir)—revision 1 publication-title: US Food and Drug Administration ;Silver Spring, MD – volume: 39 start-page: 1748 year: 1996 end-page: 1753 ident: B22 article-title: Aryl phosphoramidate derivatives of d4T have improved anti-HIV efficacy in tissue culture and may act by the generation of a novel intracellular metabolite publication-title: J Med Chem doi: 10.1021/jm950605j – volume: 2014 start-page: CD008965 year: 2014 ident: B74 article-title: Neuraminidase inhibitors for preventing and treating influenza in healthy adults and children publication-title: Cochrane Database Syst Rev doi: 10.1002/14651858.CD008965.pub4 – volume: 52 start-page: 458 year: 2008 end-page: 464 ident: B66 article-title: The mechanism of action of β-d-2′-deoxy-2′-fluoro-2′-C-methylcytidine involves a second metabolic pathway leading to β-d-2′-deoxy-2′-fluoro-2′-C-methyluridine 5′-triphosphate, a potent inhibitor of the hepatitis C virus RNA-dependent RNA polymerase publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.01184-07 – volume: 181 start-page: 271 year: 2020 end-page: 280.e8 ident: B41 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 26 start-page: 2054 year: 2020 end-page: 2063 ident: B42 article-title: Isolation, sequence, infectivity, and replication kinetics of severe acute respiratory syndrome coronavirus 2 publication-title: Emerg Infect Dis doi: 10.3201/eid2609.201495 – volume: 117 start-page: 7001 year: 2020 end-page: 7003 ident: B43 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2002589117 – volume: 9 year: 2017 ident: B25 article-title: Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aal3653 – volume: 3 start-page: 671 year: 2008 end-page: 676 ident: B40 article-title: Cell-based assays to identify inhibitors of viral disease publication-title: Expert Opin Drug Discov doi: 10.1517/17460441.3.6.671 – volume: 382 start-page: 1787 year: 2020 end-page: 1799 ident: B72 article-title: A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2001282 – volume: 20 start-page: 219 year: 1976 end-page: 225 ident: B39 article-title: Mouse hepatitis virus (MHV-2). Plaque assay and propagation in mouse cell line DBT cells publication-title: Jpn J Microbiol doi: 10.1111/j.1348-0421.1976.tb00978.x – volume: 101 start-page: 3979 year: 2012 end-page: 3988 ident: B51 article-title: Species difference of esterase expression and hydrolase activity in plasma publication-title: J Pharm Sci doi: 10.1002/jps.23258 – volume: 13 year: 2018 ident: B38 article-title: Testing therapeutics in cell-based assays: factors that influence the apparent potency of drugs publication-title: PLoS One doi: 10.1371/journal.pone.0194880 – volume: 11 start-page: 326 year: 2019 ident: B30 article-title: Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir publication-title: Viruses doi: 10.3390/v11040326 – volume: 9 issue: 2 year: 2018 ident: B26 article-title: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease publication-title: mBio doi: 10.1128/mBio.00221-18 – year: 2020 ident: B62 article-title: Remdesivir for 5 or 10 days in patients with severe Covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2015301 – volume: 154 start-page: 66 year: 2018 end-page: 86 ident: B18 article-title: The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. Part 1: early structural modifications to the nucleoside scaffold publication-title: Antiviral Res doi: 10.1016/j.antiviral.2018.04.004 – year: 2020 ident: B75 publication-title: An open letter from Daniel O’Day, chairman & CEO, Gilead Sciences ;Gilead Sciences ;Foster City, CA – volume: 58 start-page: 1930 year: 2014 end-page: 1942 ident: B15 article-title: Inhibition of hepatitis C virus replication by GS-6620, a potent C-nucleoside monophosphate prodrug publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.02351-13 – year: 2020 ident: B2 publication-title: COVID-19 dashboard by the Center for Systems Science and Engineering (CSSE) ;Johns Hopkins University ;Baltimore, MD – volume: 22 start-page: 2705 year: 2012 end-page: 2707 ident: B14 article-title: Synthesis and antiviral activity of a series of 1′-substituted 4-aza-7,9-dideazaadenosine C-nucleosides publication-title: Bioorg Med Chem Lett doi: 10.1016/j.bmcl.2012.02.105 – year: 2020 ident: B77 article-title: Dexamethasone in hospitalized patients with Covid-19—preliminary report publication-title: N Engl J Med doi: 10.1056/NEJMoa2021436 – volume: 42 start-page: 3200 year: 1998 end-page: 3208 ident: B33 article-title: In vitro inhibition of hepadnavirus polymerases by the triphosphates of BMS-200475 and lobucavir publication-title: Antimicrob Agents Chemother doi: 10.1128/AAC.42.12.3200 – volume: 178 start-page: 104786 year: 2020 ident: B47 article-title: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro publication-title: Antiviral Res doi: 10.1016/j.antiviral.2020.104786 – year: 2020 ident: B63 publication-title: Remdesivir (GS-5734) investigator’s brochure version 5.0, p 115–116 ;Gilead Sciences ;Foster City, CA – volume: 162 start-page: 5 year: 2019 end-page: 21 ident: B17 article-title: The evolution of antiviral nucleoside analogues: a review for chemists and non-chemists. Part II: complex modifications to the nucleoside scaffold publication-title: Antiviral Res doi: 10.1016/j.antiviral.2018.11.016 – volume: 72 start-page: 2197 issue: Part 9 year: 1991 end-page: 2206 ident: B13 article-title: The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses publication-title: J Gen Virol doi: 10.1099/0022-1317-72-9-2197 – volume: 295 start-page: 4773 year: 2020 end-page: 4779 ident: B49 article-title: The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus publication-title: J Biol Chem doi: 10.1074/jbc.AC120.013056 – volume: 22 start-page: 77 year: 2020 ident: B69 article-title: Remdesivir for treatment of COVID-19: combination of pulmonary and IV administration may offer aditional [sic] benefit publication-title: AAPS J doi: 10.1208/s12248-020-00459-8 – ident: B71 article-title: Alexander PE , Piticaru J , Lewis K , Aryal K , Thomas P , Szczeklik W , Fronczek J , Polok K , Alhazzani W , Mammen M . 2020 . Remdesivir use in patients with coronavirus COVID-19 disease: a systematic review and meta-analysis . medRxiv https://doi.org/10.1101/2020.05.23.20110932 . – volume: 71 start-page: 4403 year: 2014 end-page: 4420 ident: B12 article-title: Common and unique features of viral RNA-dependent polymerases publication-title: Cell Mol Life Sci doi: 10.1007/s00018-014-1695-z – volume: 57 start-page: 1812 year: 2014 end-page: 1825 ident: B16 article-title: Discovery of the first C-nucleoside HCV polymerase inhibitor (GS-6620) with demonstrated antiviral response in HCV infected patients publication-title: J Med Chem doi: 10.1021/jm400201a – volume: 49 start-page: 7215 year: 2006 end-page: 7226 ident: B23 article-title: Application of phosphoramidate ProTide technology significantly improves antiviral potency of carbocyclic adenosine derivatives publication-title: J Med Chem doi: 10.1021/jm060776w – volume: 10 start-page: 2342 year: 2019 ident: B36 article-title: Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors publication-title: Nat Commun doi: 10.1038/s41467-019-10280-3 – volume: 382 start-page: 2327 year: 2020 end-page: 2336 ident: B56 article-title: Compassionate use of remdesivir for patients with severe Covid-19 publication-title: N Engl J Med doi: 10.1056/NEJMoa2007016 – volume: 71 start-page: 248 year: 2006 end-page: 253 ident: B10 article-title: Antiviral acyclic nucleoside phosphonates structure activity studies publication-title: Antiviral Res doi: 10.1016/j.antiviral.2006.06.002 – volume: 178 start-page: 104793 year: 2020 ident: B50 article-title: Remdesivir and SARS-CoV-2: structural requirements at both nsp12 RdRp and nsp14 exonuclease active-sites publication-title: Antiviral Res doi: 10.1016/j.antiviral.2020.104793 – volume: 117 start-page: 6771 year: 2020 end-page: 6776 ident: B29 article-title: Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1922083117 – volume: 531 start-page: 381 year: 2016 end-page: 385 ident: B24 article-title: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys publication-title: Nature doi: 10.1038/nature17180 – volume: 5 start-page: 645 year: 2020 end-page: 647 ident: B61 article-title: The National Institute of Allergy and Infectious Diseases decision to stop the adaptive COVID-19 trial: on solid ethical and scientific grounds publication-title: JACC Basic Transl Sci doi: 10.1016/j.jacbts.2020.05.002 – volume: 368 start-page: 1878 year: 2013 end-page: 1887 ident: B11 article-title: Sofosbuvir for previously untreated chronic hepatitis C infection publication-title: N Engl J Med doi: 10.1056/NEJMoa1214853 – volume: 283 start-page: 34218 year: 2008 end-page: 34228 ident: B31 article-title: Delayed chain termination protects the anti-hepatitis B virus drug entecavir from excision by HIV-1 reverse transcriptase publication-title: J Biol Chem doi: 10.1074/jbc.M806797200 – volume: 40 start-page: 659 year: 2020 end-page: 671 ident: B54 article-title: Remdesivir: review of pharmacology, pre-clinical data and emerging clinical experience for COVID-19 publication-title: Pharmacotherapy doi: 10.1002/phar.2429 – year: 2020 ident: B7 publication-title: First COVID-19 treatment authorised for use in the EU ;European Medicines Agency ;Amsterdam, Netherlands – volume: 13 start-page: 896 year: 2020 end-page: 906 ident: B68 article-title: Safety, tolerability, and pharmacokinetics of remdesivir, an antiviral for treatment of COVID-19, in healthy subjects publication-title: Clin Transl Sci doi: 10.1111/cts.12840 – volume: 395 start-page: 1569 year: 2020 end-page: 1578 ident: B60 article-title: Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial publication-title: Lancet doi: 10.1016/S0140-6736(20)31022-9 – volume: 30 start-page: 269 year: 2020 end-page: 271 ident: B3 article-title: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro publication-title: Cell Res doi: 10.1038/s41422-020-0282-0 – year: 2020 ident: B4 article-title: SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology publication-title: J Gen Virol doi: 10.1099/jgv.0.001453 – volume: 3 year: 2020 ident: B73 article-title: Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2020.8857 – year: 2020 ident: B6 publication-title: NIH clinical trial shows remdesivir accelerates recovery from advanced COVID-19 ;National Institute of Allergy and Infectious Diseases ;Rockville, MD – volume: 283 start-page: 5452 year: 2008 end-page: 5459 ident: B32 article-title: Pre-steady-state kinetic studies establish entecavir 5′-triphosphate as a substrate for HIV-1 reverse transcriptase publication-title: J Biol Chem doi: 10.1074/jbc.M707834200 – volume: 26 start-page: 2040206618764483 year: 2018 ident: B19 article-title: Nucleosides for the treatment of respiratory RNA virus infections publication-title: Antivir Chem Chemother doi: 10.1177/2040206618764483 – volume: 79 start-page: 3846 year: 2005 end-page: 3850 ident: B44 article-title: Exogenous ACE2 expression allows refractory cell lines to support severe acute respiratory syndrome coronavirus replication publication-title: J Virol doi: 10.1128/JVI.79.6.3846-3850.2005 – volume: 33 year: 2020 ident: B1 article-title: Coronavirus disease 2019—COVID-19 publication-title: Clin Microbiol Rev doi: 10.1128/CMR.00028-20 – volume: 51 start-page: 1 year: 2011 end-page: 24 ident: B9 article-title: A 40-year journey in search of selective antiviral chemotherapy publication-title: Annu Rev Pharmacol Toxicol doi: 10.1146/annurev-pharmtox-010510-100228 – volume: 375 start-page: 1448 year: 2016 end-page: 1456 ident: B59 article-title: A randomized, controlled trial of ZMapp for Ebola virus infection publication-title: N Engl J Med doi: 10.1056/NEJMoa1604330 – volume: 295 start-page: 6785 year: 2020 end-page: 6797 ident: B37 article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency publication-title: J Biol Chem doi: 10.1074/jbc.RA120.013679 – year: 2020 ident: B55 article-title: Fact sheet for health care providers: emergency use authorization (EUA) of Veklury (remdesivir) publication-title: Revised 08/2020 ;US Food and Drug Administration ;Silver Spring, MD – volume: 12 year: 2020 ident: B76 article-title: An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice publication-title: Sci Transl Med doi: 10.1126/scitranslmed.abb5883 – volume: 12 start-page: 128 year: 2006 end-page: 133 ident: B45 article-title: SARS-associated coronavirus replication in cell lines publication-title: Emerg Infect Dis doi: 10.3201/eid1201.050496 – volume: 585 start-page: 273 year: 2020 end-page: 276 ident: B53 article-title: Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2423-5 – ident: B58 article-title: Hsu C-Y , Lai C-C , Yen AM-F , Chen SL-S , Chen H-H . 2020 . Efficacy of remdesivir in COVID-19 patients with a simulated two-arm controlled study . medRxiv https://doi.org/10.1101/2020.05.02.20088559 . – year: 2020 ident: B5 article-title: Remdesivir for the treatment of Covid-19—preliminary report publication-title: N Engl J Med doi: 10.1056/NEJMoa2007764 – ident: B70 article-title: Williamson BN , Feldmann F , Schwarz B , Meade-White K , Porter DP , Schulz J , van Doremalen N , Leighton I , Kwe Yinda C , Pérez-Pérez L , Okumura A , Lovaglio J , Hanley PW , Saturday G , Bosio CM , Anzick S , Barbian K , Cihlar T , Martens C , Scott DP , Munster VJ , de Wit E . 2020 . Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2 . bioRxiv https://doi.org/10.1101/2020.04.15.043166 . – volume: 158 start-page: 104899 year: 2020 ident: B57 article-title: Compassionate remdesivir treatment of severe Covid-19 pneumonia in intensive care unit (ICU) and non-ICU patients: clinical outcome and differences in post-treatment hospitalisation status publication-title: Pharmacol Res doi: 10.1016/j.phrs.2020.104899 – volume: 9 start-page: 1 year: 2014 end-page: 7 ident: B65 article-title: Inhibition of viral RNA polymerases by nucleoside and nucleotide analogs: therapeutic applications against positive-strand RNA viruses beyond hepatitis C virus publication-title: Curr Opin Virol doi: 10.1016/j.coviro.2014.08.004 – volume: 22 start-page: 181 year: 2012 end-page: 203 ident: B67 article-title: Medicinal chemistry of nucleoside phosphonate prodrugs for antiviral therapy publication-title: Antivir Chem Chemother doi: 10.3851/IMP2012 – volume: 169 start-page: 104541 year: 2019 ident: B46 article-title: Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase publication-title: Antiviral Res doi: 10.1016/j.antiviral.2019.104541 |
SSID | ssj0014438 |
Score | 2.665658 |
SecondaryResourceType | review_article |
Snippet | Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome... SUMMARY Patients and physicians worldwide are facing tremendous health care hazards that are caused by the ongoing severe acute respiratory distress syndrome... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adenosine Monophosphate - analogs & derivatives Adenosine Monophosphate - pharmacokinetics Adenosine Monophosphate - pharmacology Alanine - analogs & derivatives Alanine - pharmacokinetics Alanine - pharmacology Antiviral Agents - pharmacokinetics Antiviral Agents - pharmacology Betacoronavirus - drug effects Betacoronavirus - growth & development Betacoronavirus - pathogenicity Clinical Trials as Topic Compassionate Use Trials - methods Coronavirus Infections - drug therapy Coronavirus Infections - mortality Coronavirus Infections - pathology Coronavirus Infections - virology COVID-19 Drug Administration Schedule Ebolavirus - drug effects Ebolavirus - growth & development Ebolavirus - pathogenicity Hemorrhagic Fever, Ebola - drug therapy Hemorrhagic Fever, Ebola - mortality Hemorrhagic Fever, Ebola - pathology Hemorrhagic Fever, Ebola - virology Humans Middle East Respiratory Syndrome Coronavirus - drug effects Middle East Respiratory Syndrome Coronavirus - growth & development Middle East Respiratory Syndrome Coronavirus - pathogenicity Pandemics Patient Safety Pneumonia, Viral - drug therapy Pneumonia, Viral - mortality Pneumonia, Viral - pathology Pneumonia, Viral - virology Review SARS Virus - drug effects SARS Virus - growth & development SARS Virus - pathogenicity SARS-CoV-2 Severe Acute Respiratory Syndrome - drug therapy Severe Acute Respiratory Syndrome - mortality Severe Acute Respiratory Syndrome - pathology Severe Acute Respiratory Syndrome - virology Survival Analysis Treatment Outcome |
Title | Remdesivir against COVID-19 and Other Viral Diseases |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33055231 https://journals.asm.org/doi/10.1128/CMR.00162-20 https://www.proquest.com/docview/2451856469 https://pubmed.ncbi.nlm.nih.gov/PMC7566896 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKENNeEIxbuSkgeKqyJY7txI-oMLaisjFt1d6i2HFYNNpOTYoET_x0jh0ndRmTYC9RlToX-ft8co7PDaE3haBFoeP8BImpT7CM_IQI4suEY5xQSrFpnTD-zPZPyeiMnvV6v5yopWUtduTPv-aV3ARVOAe46izZ_0C2uymcgN-ALxwBYTj-E8bHapqrqvxeLgbZVzDxq3owPJwcvPdDbpwCh1q7G0zKhZFtxhNTudrosE2LnJZOPSZboHS1V217uo-yi7kYjHZWfiTjZQ8XzSb0QZVpJ0ZHlCNthNt0mkmmJWr3BdgzF5L6Qs3O1bIZ8lE16f3tFgQ24RxNhqQT9a_FkRNoOnZe3JVpHMhAbeS0amSuLmkKakLiCmW7w-mQ76qsxzp_YTg-1t4khn2TVFc7sF9ODe6RLmqG7bdmvbb20XgYgz6bcHYL3cZgaOgeGJ--rPxQhJhe6N1rt6kTONl1H7yFNtunwKc9q6Z4Xc25Yrv8GYLr6DQn99Bda4x47xpm3Uc9NdtGd5r2pD-20ebYBl48QGRFNc9SzWup5gHVPEM1z1DNa6n2EJ3ufTgZ7vu24YafkYTUPssEqKM5C4VkSZxE2liIFC24LHieR4GkSrBcd00OqCiIYBmN4gIUahHFYAqr6BHamM1n6gnyuBQBznMcSgk6KuVZzOOQi5iFIVwYsD56racptaupSo0xipMUpjU105rioI8G7SSm0pas151Tvl0z-m03-rIp1XLNuFctHinIUu0gg0UwX1YpJhTUV0YY76PHDT7dnVp8-yheQ64boOu0r_8zK89NvXZLsac3vvIZ2lotu-doo14s1QvQhWvx0tD1N9dTrbQ |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Remdesivir+against+COVID-19+and+Other+Viral+Diseases&rft.jtitle=Clinical+microbiology+reviews&rft.au=Malin%2C+Jakob+J.&rft.au=Su%C3%A1rez%2C+Isabelle&rft.au=Priesner%2C+Vanessa&rft.au=F%C3%A4tkenheuer%2C+Gerd&rft.date=2020-12-16&rft.pub=American+Society+for+Microbiology&rft.issn=0893-8512&rft.eissn=1098-6618&rft.volume=34&rft.issue=1&rft_id=info:doi/10.1128%2FCMR.00162-20&rft_id=info%3Apmid%2F33055231&rft.externalDocID=PMC7566896 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-8512&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-8512&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-8512&client=summon |