Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films
In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrare...
Saved in:
Published in | Langmuir Vol. 34; no. 48; pp. 14537 - 14545 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
04.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0743-7463 1520-5827 1520-5827 |
DOI | 10.1021/acs.langmuir.8b03061 |
Cover
Loading…
Abstract | In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications. |
---|---|
AbstractList | In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications. In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications. In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm² and displayed a lowest limit of Ag ion migration as 0.36 μg/cm². Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications. In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm and displayed a lowest limit of Ag ion migration as 0.36 μg/cm . Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications. |
Author | Kannan, Palanisamy Huang, Youju Guo, Zhiyong Zhong, Yingying Lin, Han Wang, Chun Cao, Guozhou |
AuthorAffiliation | School of Materials Science and Chemical Engineering Chinese Academy of Sciences College of Biological, Chemical Sciences and Engineering Ningbo Academy of Inspection and Quarantine Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering |
AuthorAffiliation_xml | – name: School of Materials Science and Chemical Engineering – name: Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering – name: College of Biological, Chemical Sciences and Engineering – name: Chinese Academy of Sciences – name: Ningbo Academy of Inspection and Quarantine |
Author_xml | – sequence: 1 givenname: Guozhou surname: Cao fullname: Cao, Guozhou organization: Ningbo Academy of Inspection and Quarantine – sequence: 2 givenname: Han surname: Lin fullname: Lin, Han organization: School of Materials Science and Chemical Engineering – sequence: 3 givenname: Palanisamy orcidid: 0000-0002-1257-9692 surname: Kannan fullname: Kannan, Palanisamy email: ktpkannan@mail.zjxu.edu.cn organization: College of Biological, Chemical Sciences and Engineering – sequence: 4 givenname: Chun surname: Wang fullname: Wang, Chun organization: Ningbo Academy of Inspection and Quarantine – sequence: 5 givenname: Yingying surname: Zhong fullname: Zhong, Yingying organization: Ningbo Academy of Inspection and Quarantine – sequence: 6 givenname: Youju orcidid: 0000-0001-5815-9784 surname: Huang fullname: Huang, Youju email: yjhuang@nimte.ac.cn organization: Chinese Academy of Sciences – sequence: 7 givenname: Zhiyong surname: Guo fullname: Guo, Zhiyong email: guozhiyong@nbu.edu.cn organization: School of Materials Science and Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30398355$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtvEzEUhS1URNPCP0Bolmwm9fgxttlFVUMrVYBE95ZfAVcee7A9lfLv65JkwwJYXcn3fPden3MBzmKKDoD3A1wPEA1XypR1UPHHtPi85hpiOA6vwGqgCPaUI3YGVpAR3DMy4nNwUcojhFBgIt6Acwyx4JjSFZhu4k8VjbPdJlavlakuexU6FW23Tcl23_20tDW125jqn3z1rnRp157Dk8vdFxXTrHL1Jrhy9S2F_ZzTvA8uut89k6Y5FV9dt_VhKm_B650Kxb071kvwsL15uL7t779-vrve3PeKcFJ7YhSjWCBsB62E1Q6NSBNkuB0pNAohrDUzRKOdtlyNI9MQMYetFYIxzvEl-HgY2475tbhS5eSLcaH9w6WlSDRwQSnFGP2HtHkFMRe4ST8cpYuenJVz9pPKe3kyswk-HQQmp1Ky20njq6o-xZqVD3KA8iU52ZKTp-TkMbkGkz_g0_x_YPCAvXQf05Jj8_XvyDPNT7Nv |
CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2023_111892 crossref_primary_10_1016_j_ijbiomac_2022_01_181 crossref_primary_10_1021_acs_langmuir_1c00637 crossref_primary_10_1051_e3sconf_202126702003 crossref_primary_10_3389_fbioe_2023_1233398 crossref_primary_10_1002_adfm_202000936 crossref_primary_10_1007_s11182_022_02544_1 crossref_primary_10_1016_j_impact_2022_100426 crossref_primary_10_1021_acs_analchem_9b04503 crossref_primary_10_3390_polym14142787 crossref_primary_10_1021_acssuschemeng_1c03797 crossref_primary_10_1007_s00253_020_10372_x crossref_primary_10_3390_nano13142141 crossref_primary_10_1007_s11694_024_02834_x crossref_primary_10_1007_s12221_023_00299_1 crossref_primary_10_1016_j_jhazmat_2022_129687 crossref_primary_10_1177_0892705720963159 crossref_primary_10_1016_j_ijbiomac_2020_07_151 crossref_primary_10_1002_app_51848 crossref_primary_10_1021_acsabm_2c00482 crossref_primary_10_1016_j_fct_2024_114841 crossref_primary_10_1002_pen_26913 crossref_primary_10_1007_s11182_022_02639_9 crossref_primary_10_1039_D0RA09856F crossref_primary_10_1016_j_polymertesting_2019_03_005 crossref_primary_10_1039_D1NA00391G crossref_primary_10_3390_foods11030402 crossref_primary_10_3390_polym15071661 crossref_primary_10_1021_acsanm_2c00319 crossref_primary_10_1021_acs_langmuir_4c02964 crossref_primary_10_1016_j_jafr_2022_100270 crossref_primary_10_1016_j_cjsc_2024_100349 crossref_primary_10_1021_acsomega_1c01100 crossref_primary_10_3390_nano12071196 crossref_primary_10_1007_s00289_021_04036_7 crossref_primary_10_1016_j_fpsl_2021_100772 crossref_primary_10_1016_j_powtec_2021_04_069 crossref_primary_10_1016_j_surfin_2025_106300 crossref_primary_10_1016_j_tifs_2021_01_020 crossref_primary_10_1021_acs_langmuir_1c00698 crossref_primary_10_1016_j_fpsl_2022_100997 |
Cites_doi | 10.1021/jp063826h 10.1067/mic.2003.23 10.1080/19440049.2015.1114184 10.1016/j.saa.2011.03.040 10.1039/c0sc00338g 10.1166/jnn.2007.097 10.1016/j.biotechadv.2008.09.002 10.1016/j.cis.2008.09.002 10.1002/ppsc.201400033 10.1021/bi0508542 10.1063/1.1462610 10.1016/j.eurpolymj.2011.05.008 10.1039/c7ra08778k 10.1007/s11051-015-3313-x 10.1016/j.biomaterials.2004.01.008 10.1007/bf00276299 10.1007/s11051-008-9428-6 10.1016/j.talanta.2015.12.071 10.3109/10408449609012524 10.1021/cm052654i 10.1021/nn501108g 10.1016/j.jare.2015.02.007 10.1016/j.colsurfb.2009.10.008 10.1002/cphc.200500113 10.1080/19440049.2016.1217067 10.1016/j.matlet.2005.02.033 10.1023/a:1009253223055 10.1002/pen.21889 10.1002/pssc.200675903 10.1038/s41598-017-01669-5 10.1163/092050610x541944 10.1080/00222348.2011.553174 10.1002/mame.201100028 10.1021/jf404038y 10.1002/app.42218 10.2134/jeq2009.0363 10.1002/jctb.2023 10.1166/jnn.2011.3561 10.1016/j.cap.2012.02.026 10.1021/acs.est.5b00370 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 10.1166/jnn.2015.10847 10.1166/jnn.2014.8991 10.1021/ar7002804 10.1128/aem.69.7.4278-4281.2003 10.1088/0957-4484/19/8/085602 10.1016/j.reactfunctpolym.2011.05.012 10.3390/jfb4040358 10.1016/j.nano.2007.02.001 10.1016/j.progpolymsci.2011.02.003 10.1016/j.fct.2014.12.019 10.1016/j.nantod.2008.10.014 10.1016/j.jhin.2004.11.014 10.1016/j.foodchem.2014.05.139 10.1021/cr030698+ 10.1134/s1995078015050171 10.1155/2012/486301 10.1016/j.jksus.2016.05.004 10.1021/la960445u |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.8b03061 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 14545 |
ExternalDocumentID | 30398355 10_1021_acs_langmuir_8b03061 b687948440 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a484t-4ca753923d1ba9dbe262b42c8d650ca223bb7c4b2fbd8a667b027e3dd9977883 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 06:41:16 EDT 2025 Fri Jul 11 00:35:18 EDT 2025 Wed Feb 19 02:36:21 EST 2025 Tue Jul 01 01:34:34 EDT 2025 Thu Apr 24 23:11:35 EDT 2025 Thu Aug 27 13:41:56 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a484t-4ca753923d1ba9dbe262b42c8d650ca223bb7c4b2fbd8a667b027e3dd9977883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5815-9784 0000-0002-1257-9692 |
PMID | 30398355 |
PQID | 2130303893 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2189555332 proquest_miscellaneous_2130303893 pubmed_primary_30398355 crossref_citationtrail_10_1021_acs_langmuir_8b03061 crossref_primary_10_1021_acs_langmuir_8b03061 acs_journals_10_1021_acs_langmuir_8b03061 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-04 |
PublicationDateYYYYMMDD | 2018-12-04 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2018 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 Alsawalha M. (ref33/cit33) 2016; 6 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref58/cit58 ref22/cit22 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref13/cit13 doi: 10.1021/jp063826h – ident: ref23/cit23 doi: 10.1067/mic.2003.23 – ident: ref38/cit38 doi: 10.1080/19440049.2015.1114184 – ident: ref14/cit14 doi: 10.1016/j.saa.2011.03.040 – ident: ref7/cit7 doi: 10.1039/c0sc00338g – ident: ref31/cit31 doi: 10.1166/jnn.2007.097 – ident: ref12/cit12 doi: 10.1016/j.biotechadv.2008.09.002 – ident: ref24/cit24 doi: 10.1016/j.cis.2008.09.002 – ident: ref5/cit5 doi: 10.1002/ppsc.201400033 – ident: ref19/cit19 doi: 10.1021/bi0508542 – ident: ref45/cit45 doi: 10.1063/1.1462610 – ident: ref29/cit29 doi: 10.1016/j.eurpolymj.2011.05.008 – ident: ref49/cit49 doi: 10.1039/c7ra08778k – ident: ref39/cit39 doi: 10.1007/s11051-015-3313-x – ident: ref21/cit21 doi: 10.1016/j.biomaterials.2004.01.008 – ident: ref10/cit10 doi: 10.1007/bf00276299 – ident: ref15/cit15 doi: 10.1007/s11051-008-9428-6 – ident: ref61/cit61 doi: 10.1016/j.talanta.2015.12.071 – ident: ref20/cit20 doi: 10.3109/10408449609012524 – ident: ref25/cit25 doi: 10.1021/cm052654i – ident: ref41/cit41 doi: 10.1021/nn501108g – ident: ref6/cit6 doi: 10.1016/j.jare.2015.02.007 – ident: ref16/cit16 doi: 10.1016/j.colsurfb.2009.10.008 – ident: ref44/cit44 doi: 10.1002/cphc.200500113 – ident: ref58/cit58 doi: 10.1080/19440049.2016.1217067 – ident: ref28/cit28 doi: 10.1016/j.matlet.2005.02.033 – ident: ref11/cit11 doi: 10.1023/a:1009253223055 – ident: ref32/cit32 doi: 10.1002/pen.21889 – ident: ref43/cit43 doi: 10.1002/pssc.200675903 – ident: ref53/cit53 doi: 10.1038/s41598-017-01669-5 – ident: ref56/cit56 doi: 10.1163/092050610x541944 – ident: ref42/cit42 – ident: ref27/cit27 doi: 10.1080/00222348.2011.553174 – ident: ref51/cit51 doi: 10.1002/mame.201100028 – ident: ref59/cit59 doi: 10.1021/jf404038y – ident: ref55/cit55 doi: 10.1002/app.42218 – ident: ref40/cit40 doi: 10.2134/jeq2009.0363 – ident: ref8/cit8 doi: 10.1002/jctb.2023 – ident: ref47/cit47 doi: 10.1166/jnn.2011.3561 – ident: ref30/cit30 doi: 10.1016/j.cap.2012.02.026 – ident: ref9/cit9 doi: 10.1021/acs.est.5b00370 – ident: ref18/cit18 doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3 – ident: ref36/cit36 doi: 10.1166/jnn.2015.10847 – ident: ref37/cit37 doi: 10.1166/jnn.2014.8991 – ident: ref4/cit4 doi: 10.1021/ar7002804 – ident: ref54/cit54 doi: 10.1128/aem.69.7.4278-4281.2003 – ident: ref46/cit46 doi: 10.1088/0957-4484/19/8/085602 – volume: 6 start-page: 87 year: 2016 ident: ref33/cit33 publication-title: Am. J. Mater. Sci. – ident: ref50/cit50 doi: 10.1016/j.reactfunctpolym.2011.05.012 – ident: ref52/cit52 doi: 10.3390/jfb4040358 – ident: ref17/cit17 doi: 10.1016/j.nano.2007.02.001 – ident: ref26/cit26 doi: 10.1016/j.progpolymsci.2011.02.003 – ident: ref35/cit35 doi: 10.1016/j.fct.2014.12.019 – ident: ref2/cit2 doi: 10.1016/j.nantod.2008.10.014 – ident: ref22/cit22 doi: 10.1016/j.jhin.2004.11.014 – ident: ref60/cit60 doi: 10.1016/j.foodchem.2014.05.139 – ident: ref3/cit3 doi: 10.1021/cr030698+ – ident: ref57/cit57 doi: 10.1134/s1995078015050171 – ident: ref1/cit1 doi: 10.1155/2012/486301 – ident: ref34/cit34 doi: 10.1016/j.jksus.2016.05.004 – ident: ref48/cit48 doi: 10.1021/la960445u |
SSID | ssj0009349 |
Score | 2.4602382 |
Snippet | In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 14537 |
SubjectTerms | Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antibacterial properties atomic absorption spectrometry bacteria crystallization Escherichia coli Escherichia coli - drug effects Food Fourier transform infrared spectroscopy industrial applications ions melting Metal Nanoparticles - chemistry mixing nanocomposites Nanocomposites - chemistry nanosilver Phase Transition polypropylenes Polypropylenes - chemistry silver Silver - chemistry Silver - pharmacology Staphylococcus aureus Staphylococcus aureus - drug effects Temperature thermal degradation thermogravimetry toxicity transmission electron microscopy ultraviolet-visible spectroscopy |
Title | Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films |
URI | http://dx.doi.org/10.1021/acs.langmuir.8b03061 https://www.ncbi.nlm.nih.gov/pubmed/30398355 https://www.proquest.com/docview/2130303893 https://www.proquest.com/docview/2189555332 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQHODCvpRNRuLCIa3qOIlzrCqqColFapG4Rd4iKtoEkeQAX89MllaA2K6Ox5E9duZN5nmGkHMPABtaAic2PHa4AV0Ibqzj-YEMtGU6LmsRXN_4w3t-9eA9LBzFzxF81u1InbXx392smLy0hUKMC97OCvMBaSMU6o8WSXbdCu5i2s2A-25zVe6bUdAg6eyjQfoGZZbWZrBBbps7OxXJ5Kld5Kqt376mcPzjRDbJeg08aa_aKVtkySbbZLXf1HvbIbPL5LGkA9Bekk9UlcUZJGRi6CBNDR1NZgWMnNOeLktOgI9N0xiakVxN4TMN_ndNs-vcpVO8S_X8CkbNls-Qu44EMUsHk-ks2yXjweW4P3TqYgyO5ILnDtcSPBvQq-kqGRplmc8UZ1oYwHhaAspQKtBcsVgZIX0_UODwWteYEBCmEO4eWU7SxB4QqrG6faB8V4GiQmmVRC4O48JoE3tMtcgFLFVUn6UsKsPkrBthY7N-Ub1-LeI2yot0ndQca2tMf5Fy5lLPVVKPX_qfNfsiAqVgSEUmNi2yiCEEwByF7k99ROh5AKtZi-xXm2r-VpANAQN7h_-Y8xFZA9QmSk4NPybL-UthTwAZ5eq0PA7vT5MM-Q |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqCXtvTFFiiu1AuHLFrHSZzjasVqWx6qxBZxi_yKWLGbIJIc2l_PjJMsohJFXB2PY3vszDfx5xmA7xECNrIEQW5FHgiLupDCuiCKE5UYx03ucxGcncez3-LnVXS1AVF_FwY7UWFLlT_Ef4guMDqiMvqFt2oWd0OpCeqi0_MK8QgnJt94cvEQazdsUS9F30xEHPY35p5oheySqR7bpSfApjc607dwue6u55rcDJtaD83ffyI5vng87-BNB0PZuF0327DhivewNemzv32A1XFx7ckBbFzUC93GdEYJVVg2LUvLLharBluu2dj4BBTocbMyx2KiWjP8aKM33pHujn6VS7pZdfsHTZzzz4jJTnQxx6aL5ar6CPPp8XwyC7rUDIESUtSBMAr9HNSyHWmVWu14zLXgRlpEfEYh5tA6MULzXFup4jjR6P660NoU8aaU4SfYLMrC7QAzlOs-0XGoUV-pcloRM4cLaY3NI64HcIhTlXU7q8r8oTkfZVTYz1_Wzd8Awl6HmelCnFOmjeUzUsFa6rYN8fFM_W_98shQKXTAogpXNlXGCRBQxMLwf3VkGkUIsvkAPrdra_1WlE0REUdfXjDmA9iazc9Os9Mf5ye78BrxnPRsG7EHm_Vd4_YRM9X6q98h93VaFVo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlaAXSoHC0gdG4sIhi9ZxEue42hJRXkICJMQl8itixW6yIskBfn1nnGSBShS1V8fj2B478038eYaQvQAAG1oCLzM887gBXQhurBeEkYy0ZTpzuQjOzsOja358E9y8SPUFnSihpdId4uOunpmsjTAwOMBy_I03rccPfaEQ7oLj8wFP7pDNNxxdPsfb9RvkixE4Ix763a25N1pB26TL17bpDcDpDE_yidzOu-z4Jvf9ulJ9_fRHNMf_GtMqWWnhKB026-czWbD5GlkedVng1sn0ML9zJAE6zKuxamI7g4TMDU2KwtDL8bSGlis61C4RBXjetMigGCnXFD7e4JW35LuDi2KCN6xmj2DqrHuGjHakjVmajCfTcoNcJYdXoyOvTdHgSS545XEtwd8BbZuBkrFRloVMcaaFAeSnJWAPpSLNFcuUETIMIwVusPWNiQF3CuF_IYt5kdstQjXmvI9U6CvQWSytksjQYVwYbbKAqR7Zh6lK2x1Wpu7wnA1SLOzmL23nr0f8To-pbkOdY8aNyTtS3lxq1oT6eKf-brdEUlAKHrTI3BZ1mTIEBhi50P9bHREHAYBt1iObzfqavxVkY0DGwfY_jHmHLF38TNLTX-cnX8lHgHXCkW74N7JYPdT2O0CnSv1wm-Q3Qg0X3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Antibacterial+and+Food+Simulant+Activities+of+Silver+Nanoparticles%2FPolypropylene+Nanocomposite+Films&rft.jtitle=Langmuir&rft.au=Cao%2C+Guozhou&rft.au=Lin%2C+Han&rft.au=Kannan%2C+Palanisamy&rft.au=Wang%2C+Chun&rft.date=2018-12-04&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=34&rft.issue=48&rft.spage=14537&rft.epage=14545&rft_id=info:doi/10.1021%2Facs.langmuir.8b03061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_8b03061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |