Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films

In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrare...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 34; no. 48; pp. 14537 - 14545
Main Authors Cao, Guozhou, Lin, Han, Kannan, Palanisamy, Wang, Chun, Zhong, Yingying, Huang, Youju, Guo, Zhiyong
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 04.12.2018
Subjects
Online AccessGet full text
ISSN0743-7463
1520-5827
1520-5827
DOI10.1021/acs.langmuir.8b03061

Cover

Loading…
Abstract In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.
AbstractList In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.
In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm2 and displayed a lowest limit of Ag ion migration as 0.36 μg/cm2. Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.
In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV–visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma–mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm² and displayed a lowest limit of Ag ion migration as 0.36 μg/cm². Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.
In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a simple in situ melt blending method. The formation and distribution of AgNPs are confirmed by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and thermogravimetric analysis. The existence of DM-AgNPs in PP film substrate enhances the thermal degradation and crystallization properties. Further, the antimicrobial activity of as-synthesized DM-AgNPs/PP film substrate is studied using Gram-negative ( Escherichia coli) and Gram-positive ( Staphylococcus aureus) bacteria as model microbes, which displayed significantly enhanced bacteriostatic activities under optimized composition and experimental conditions. Interestingly, PP substrate with 0.4% DM-AgNPs exhibits drastically improved antibacterial property via the release of oxygen reactive species and Ag ion diffusion processes; thus, the inhibition rates of E. coli and S. aureus are obtained as 100 and 84.6%, respectively, which is higher than the conventional AgNPs. Finally, we demonstrate the migration study of Ag ions from the DM-AgNPs/PP film using different food simulant solutions by inductively coupled plasma-mass spectrometry analysis and the dissolved Ag ion content is estimated, which is a key prospect for the toxicity analysis. The overall Ag ion migration value is estimated between 1.8 and 24.5 μg/cm and displayed a lowest limit of Ag ion migration as 0.36 μg/cm . Our work highlights the development of high performance nanocomposites as promising antibacterial and food simulant materials for biomedical and industrial applications.
Author Kannan, Palanisamy
Huang, Youju
Guo, Zhiyong
Zhong, Yingying
Lin, Han
Wang, Chun
Cao, Guozhou
AuthorAffiliation School of Materials Science and Chemical Engineering
Chinese Academy of Sciences
College of Biological, Chemical Sciences and Engineering
Ningbo Academy of Inspection and Quarantine
Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering
AuthorAffiliation_xml – name: School of Materials Science and Chemical Engineering
– name: Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Material Technology and Engineering
– name: College of Biological, Chemical Sciences and Engineering
– name: Chinese Academy of Sciences
– name: Ningbo Academy of Inspection and Quarantine
Author_xml – sequence: 1
  givenname: Guozhou
  surname: Cao
  fullname: Cao, Guozhou
  organization: Ningbo Academy of Inspection and Quarantine
– sequence: 2
  givenname: Han
  surname: Lin
  fullname: Lin, Han
  organization: School of Materials Science and Chemical Engineering
– sequence: 3
  givenname: Palanisamy
  orcidid: 0000-0002-1257-9692
  surname: Kannan
  fullname: Kannan, Palanisamy
  email: ktpkannan@mail.zjxu.edu.cn
  organization: College of Biological, Chemical Sciences and Engineering
– sequence: 4
  givenname: Chun
  surname: Wang
  fullname: Wang, Chun
  organization: Ningbo Academy of Inspection and Quarantine
– sequence: 5
  givenname: Yingying
  surname: Zhong
  fullname: Zhong, Yingying
  organization: Ningbo Academy of Inspection and Quarantine
– sequence: 6
  givenname: Youju
  orcidid: 0000-0001-5815-9784
  surname: Huang
  fullname: Huang, Youju
  email: yjhuang@nimte.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 7
  givenname: Zhiyong
  surname: Guo
  fullname: Guo, Zhiyong
  email: guozhiyong@nbu.edu.cn
  organization: School of Materials Science and Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30398355$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCP0Bolmwm9fgxttlFVUMrVYBE95ZfAVcee7A9lfLv65JkwwJYXcn3fPden3MBzmKKDoD3A1wPEA1XypR1UPHHtPi85hpiOA6vwGqgCPaUI3YGVpAR3DMy4nNwUcojhFBgIt6Acwyx4JjSFZhu4k8VjbPdJlavlakuexU6FW23Tcl23_20tDW125jqn3z1rnRp157Dk8vdFxXTrHL1Jrhy9S2F_ZzTvA8uut89k6Y5FV9dt_VhKm_B650Kxb071kvwsL15uL7t779-vrve3PeKcFJ7YhSjWCBsB62E1Q6NSBNkuB0pNAohrDUzRKOdtlyNI9MQMYetFYIxzvEl-HgY2475tbhS5eSLcaH9w6WlSDRwQSnFGP2HtHkFMRe4ST8cpYuenJVz9pPKe3kyswk-HQQmp1Ky20njq6o-xZqVD3KA8iU52ZKTp-TkMbkGkz_g0_x_YPCAvXQf05Jj8_XvyDPNT7Nv
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2023_111892
crossref_primary_10_1016_j_ijbiomac_2022_01_181
crossref_primary_10_1021_acs_langmuir_1c00637
crossref_primary_10_1051_e3sconf_202126702003
crossref_primary_10_3389_fbioe_2023_1233398
crossref_primary_10_1002_adfm_202000936
crossref_primary_10_1007_s11182_022_02544_1
crossref_primary_10_1016_j_impact_2022_100426
crossref_primary_10_1021_acs_analchem_9b04503
crossref_primary_10_3390_polym14142787
crossref_primary_10_1021_acssuschemeng_1c03797
crossref_primary_10_1007_s00253_020_10372_x
crossref_primary_10_3390_nano13142141
crossref_primary_10_1007_s11694_024_02834_x
crossref_primary_10_1007_s12221_023_00299_1
crossref_primary_10_1016_j_jhazmat_2022_129687
crossref_primary_10_1177_0892705720963159
crossref_primary_10_1016_j_ijbiomac_2020_07_151
crossref_primary_10_1002_app_51848
crossref_primary_10_1021_acsabm_2c00482
crossref_primary_10_1016_j_fct_2024_114841
crossref_primary_10_1002_pen_26913
crossref_primary_10_1007_s11182_022_02639_9
crossref_primary_10_1039_D0RA09856F
crossref_primary_10_1016_j_polymertesting_2019_03_005
crossref_primary_10_1039_D1NA00391G
crossref_primary_10_3390_foods11030402
crossref_primary_10_3390_polym15071661
crossref_primary_10_1021_acsanm_2c00319
crossref_primary_10_1021_acs_langmuir_4c02964
crossref_primary_10_1016_j_jafr_2022_100270
crossref_primary_10_1016_j_cjsc_2024_100349
crossref_primary_10_1021_acsomega_1c01100
crossref_primary_10_3390_nano12071196
crossref_primary_10_1007_s00289_021_04036_7
crossref_primary_10_1016_j_fpsl_2021_100772
crossref_primary_10_1016_j_powtec_2021_04_069
crossref_primary_10_1016_j_surfin_2025_106300
crossref_primary_10_1016_j_tifs_2021_01_020
crossref_primary_10_1021_acs_langmuir_1c00698
crossref_primary_10_1016_j_fpsl_2022_100997
Cites_doi 10.1021/jp063826h
10.1067/mic.2003.23
10.1080/19440049.2015.1114184
10.1016/j.saa.2011.03.040
10.1039/c0sc00338g
10.1166/jnn.2007.097
10.1016/j.biotechadv.2008.09.002
10.1016/j.cis.2008.09.002
10.1002/ppsc.201400033
10.1021/bi0508542
10.1063/1.1462610
10.1016/j.eurpolymj.2011.05.008
10.1039/c7ra08778k
10.1007/s11051-015-3313-x
10.1016/j.biomaterials.2004.01.008
10.1007/bf00276299
10.1007/s11051-008-9428-6
10.1016/j.talanta.2015.12.071
10.3109/10408449609012524
10.1021/cm052654i
10.1021/nn501108g
10.1016/j.jare.2015.02.007
10.1016/j.colsurfb.2009.10.008
10.1002/cphc.200500113
10.1080/19440049.2016.1217067
10.1016/j.matlet.2005.02.033
10.1023/a:1009253223055
10.1002/pen.21889
10.1002/pssc.200675903
10.1038/s41598-017-01669-5
10.1163/092050610x541944
10.1080/00222348.2011.553174
10.1002/mame.201100028
10.1021/jf404038y
10.1002/app.42218
10.2134/jeq2009.0363
10.1002/jctb.2023
10.1166/jnn.2011.3561
10.1016/j.cap.2012.02.026
10.1021/acs.est.5b00370
10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
10.1166/jnn.2015.10847
10.1166/jnn.2014.8991
10.1021/ar7002804
10.1128/aem.69.7.4278-4281.2003
10.1088/0957-4484/19/8/085602
10.1016/j.reactfunctpolym.2011.05.012
10.3390/jfb4040358
10.1016/j.nano.2007.02.001
10.1016/j.progpolymsci.2011.02.003
10.1016/j.fct.2014.12.019
10.1016/j.nantod.2008.10.014
10.1016/j.jhin.2004.11.014
10.1016/j.foodchem.2014.05.139
10.1021/cr030698+
10.1134/s1995078015050171
10.1155/2012/486301
10.1016/j.jksus.2016.05.004
10.1021/la960445u
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.8b03061
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 14545
ExternalDocumentID 30398355
10_1021_acs_langmuir_8b03061
b687948440
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a484t-4ca753923d1ba9dbe262b42c8d650ca223bb7c4b2fbd8a667b027e3dd9977883
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 06:41:16 EDT 2025
Fri Jul 11 00:35:18 EDT 2025
Wed Feb 19 02:36:21 EST 2025
Tue Jul 01 01:34:34 EDT 2025
Thu Apr 24 23:11:35 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a484t-4ca753923d1ba9dbe262b42c8d650ca223bb7c4b2fbd8a667b027e3dd9977883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5815-9784
0000-0002-1257-9692
PMID 30398355
PQID 2130303893
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2189555332
proquest_miscellaneous_2130303893
pubmed_primary_30398355
crossref_citationtrail_10_1021_acs_langmuir_8b03061
crossref_primary_10_1021_acs_langmuir_8b03061
acs_journals_10_1021_acs_langmuir_8b03061
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-04
PublicationDateYYYYMMDD 2018-12-04
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2018
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
Alsawalha M. (ref33/cit33) 2016; 6
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref58/cit58
ref22/cit22
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref13/cit13
  doi: 10.1021/jp063826h
– ident: ref23/cit23
  doi: 10.1067/mic.2003.23
– ident: ref38/cit38
  doi: 10.1080/19440049.2015.1114184
– ident: ref14/cit14
  doi: 10.1016/j.saa.2011.03.040
– ident: ref7/cit7
  doi: 10.1039/c0sc00338g
– ident: ref31/cit31
  doi: 10.1166/jnn.2007.097
– ident: ref12/cit12
  doi: 10.1016/j.biotechadv.2008.09.002
– ident: ref24/cit24
  doi: 10.1016/j.cis.2008.09.002
– ident: ref5/cit5
  doi: 10.1002/ppsc.201400033
– ident: ref19/cit19
  doi: 10.1021/bi0508542
– ident: ref45/cit45
  doi: 10.1063/1.1462610
– ident: ref29/cit29
  doi: 10.1016/j.eurpolymj.2011.05.008
– ident: ref49/cit49
  doi: 10.1039/c7ra08778k
– ident: ref39/cit39
  doi: 10.1007/s11051-015-3313-x
– ident: ref21/cit21
  doi: 10.1016/j.biomaterials.2004.01.008
– ident: ref10/cit10
  doi: 10.1007/bf00276299
– ident: ref15/cit15
  doi: 10.1007/s11051-008-9428-6
– ident: ref61/cit61
  doi: 10.1016/j.talanta.2015.12.071
– ident: ref20/cit20
  doi: 10.3109/10408449609012524
– ident: ref25/cit25
  doi: 10.1021/cm052654i
– ident: ref41/cit41
  doi: 10.1021/nn501108g
– ident: ref6/cit6
  doi: 10.1016/j.jare.2015.02.007
– ident: ref16/cit16
  doi: 10.1016/j.colsurfb.2009.10.008
– ident: ref44/cit44
  doi: 10.1002/cphc.200500113
– ident: ref58/cit58
  doi: 10.1080/19440049.2016.1217067
– ident: ref28/cit28
  doi: 10.1016/j.matlet.2005.02.033
– ident: ref11/cit11
  doi: 10.1023/a:1009253223055
– ident: ref32/cit32
  doi: 10.1002/pen.21889
– ident: ref43/cit43
  doi: 10.1002/pssc.200675903
– ident: ref53/cit53
  doi: 10.1038/s41598-017-01669-5
– ident: ref56/cit56
  doi: 10.1163/092050610x541944
– ident: ref42/cit42
– ident: ref27/cit27
  doi: 10.1080/00222348.2011.553174
– ident: ref51/cit51
  doi: 10.1002/mame.201100028
– ident: ref59/cit59
  doi: 10.1021/jf404038y
– ident: ref55/cit55
  doi: 10.1002/app.42218
– ident: ref40/cit40
  doi: 10.2134/jeq2009.0363
– ident: ref8/cit8
  doi: 10.1002/jctb.2023
– ident: ref47/cit47
  doi: 10.1166/jnn.2011.3561
– ident: ref30/cit30
  doi: 10.1016/j.cap.2012.02.026
– ident: ref9/cit9
  doi: 10.1021/acs.est.5b00370
– ident: ref18/cit18
  doi: 10.1002/1097-4636(20001215)52:4<662::aid-jbm10>3.0.co;2-3
– ident: ref36/cit36
  doi: 10.1166/jnn.2015.10847
– ident: ref37/cit37
  doi: 10.1166/jnn.2014.8991
– ident: ref4/cit4
  doi: 10.1021/ar7002804
– ident: ref54/cit54
  doi: 10.1128/aem.69.7.4278-4281.2003
– ident: ref46/cit46
  doi: 10.1088/0957-4484/19/8/085602
– volume: 6
  start-page: 87
  year: 2016
  ident: ref33/cit33
  publication-title: Am. J. Mater. Sci.
– ident: ref50/cit50
  doi: 10.1016/j.reactfunctpolym.2011.05.012
– ident: ref52/cit52
  doi: 10.3390/jfb4040358
– ident: ref17/cit17
  doi: 10.1016/j.nano.2007.02.001
– ident: ref26/cit26
  doi: 10.1016/j.progpolymsci.2011.02.003
– ident: ref35/cit35
  doi: 10.1016/j.fct.2014.12.019
– ident: ref2/cit2
  doi: 10.1016/j.nantod.2008.10.014
– ident: ref22/cit22
  doi: 10.1016/j.jhin.2004.11.014
– ident: ref60/cit60
  doi: 10.1016/j.foodchem.2014.05.139
– ident: ref3/cit3
  doi: 10.1021/cr030698+
– ident: ref57/cit57
  doi: 10.1134/s1995078015050171
– ident: ref1/cit1
  doi: 10.1155/2012/486301
– ident: ref34/cit34
  doi: 10.1016/j.jksus.2016.05.004
– ident: ref48/cit48
  doi: 10.1021/la960445u
SSID ssj0009349
Score 2.4602382
Snippet In this work, we synthesize dodecyl mercaptan-functionalized silver nanoparticles integrated with polypropylene nanocomposite (DM-AgNPs/PP) substrates by a...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 14537
SubjectTerms Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
atomic absorption spectrometry
bacteria
crystallization
Escherichia coli
Escherichia coli - drug effects
Food
Fourier transform infrared spectroscopy
industrial applications
ions
melting
Metal Nanoparticles - chemistry
mixing
nanocomposites
Nanocomposites - chemistry
nanosilver
Phase Transition
polypropylenes
Polypropylenes - chemistry
silver
Silver - chemistry
Silver - pharmacology
Staphylococcus aureus
Staphylococcus aureus - drug effects
Temperature
thermal degradation
thermogravimetry
toxicity
transmission electron microscopy
ultraviolet-visible spectroscopy
Title Enhanced Antibacterial and Food Simulant Activities of Silver Nanoparticles/Polypropylene Nanocomposite Films
URI http://dx.doi.org/10.1021/acs.langmuir.8b03061
https://www.ncbi.nlm.nih.gov/pubmed/30398355
https://www.proquest.com/docview/2130303893
https://www.proquest.com/docview/2189555332
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQHODCvpRNRuLCIa3qOIlzrCqqColFapG4Rd4iKtoEkeQAX89MllaA2K6Ox5E9duZN5nmGkHMPABtaAic2PHa4AV0Ibqzj-YEMtGU6LmsRXN_4w3t-9eA9LBzFzxF81u1InbXx392smLy0hUKMC97OCvMBaSMU6o8WSXbdCu5i2s2A-25zVe6bUdAg6eyjQfoGZZbWZrBBbps7OxXJ5Kld5Kqt376mcPzjRDbJeg08aa_aKVtkySbbZLXf1HvbIbPL5LGkA9Bekk9UlcUZJGRi6CBNDR1NZgWMnNOeLktOgI9N0xiakVxN4TMN_ndNs-vcpVO8S_X8CkbNls-Qu44EMUsHk-ks2yXjweW4P3TqYgyO5ILnDtcSPBvQq-kqGRplmc8UZ1oYwHhaAspQKtBcsVgZIX0_UODwWteYEBCmEO4eWU7SxB4QqrG6faB8V4GiQmmVRC4O48JoE3tMtcgFLFVUn6UsKsPkrBthY7N-Ub1-LeI2yot0ndQca2tMf5Fy5lLPVVKPX_qfNfsiAqVgSEUmNi2yiCEEwByF7k99ROh5AKtZi-xXm2r-VpANAQN7h_-Y8xFZA9QmSk4NPybL-UthTwAZ5eq0PA7vT5MM-Q
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4heqCXtvTFFiiu1AuHLFrHSZzjasVqWx6qxBZxi_yKWLGbIJIc2l_PjJMsohJFXB2PY3vszDfx5xmA7xECNrIEQW5FHgiLupDCuiCKE5UYx03ucxGcncez3-LnVXS1AVF_FwY7UWFLlT_Ef4guMDqiMvqFt2oWd0OpCeqi0_MK8QgnJt94cvEQazdsUS9F30xEHPY35p5oheySqR7bpSfApjc607dwue6u55rcDJtaD83ffyI5vng87-BNB0PZuF0327DhivewNemzv32A1XFx7ckBbFzUC93GdEYJVVg2LUvLLharBluu2dj4BBTocbMyx2KiWjP8aKM33pHujn6VS7pZdfsHTZzzz4jJTnQxx6aL5ar6CPPp8XwyC7rUDIESUtSBMAr9HNSyHWmVWu14zLXgRlpEfEYh5tA6MULzXFup4jjR6P660NoU8aaU4SfYLMrC7QAzlOs-0XGoUV-pcloRM4cLaY3NI64HcIhTlXU7q8r8oTkfZVTYz1_Wzd8Awl6HmelCnFOmjeUzUsFa6rYN8fFM_W_98shQKXTAogpXNlXGCRBQxMLwf3VkGkUIsvkAPrdra_1WlE0REUdfXjDmA9iazc9Os9Mf5ye78BrxnPRsG7EHm_Vd4_YRM9X6q98h93VaFVo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQlaAXSoHC0gdG4sIhi9ZxEue42hJRXkICJMQl8itixW6yIskBfn1nnGSBShS1V8fj2B478038eYaQvQAAG1oCLzM887gBXQhurBeEkYy0ZTpzuQjOzsOja358E9y8SPUFnSihpdId4uOunpmsjTAwOMBy_I03rccPfaEQ7oLj8wFP7pDNNxxdPsfb9RvkixE4Ix763a25N1pB26TL17bpDcDpDE_yidzOu-z4Jvf9ulJ9_fRHNMf_GtMqWWnhKB026-czWbD5GlkedVng1sn0ML9zJAE6zKuxamI7g4TMDU2KwtDL8bSGlis61C4RBXjetMigGCnXFD7e4JW35LuDi2KCN6xmj2DqrHuGjHakjVmajCfTcoNcJYdXoyOvTdHgSS545XEtwd8BbZuBkrFRloVMcaaFAeSnJWAPpSLNFcuUETIMIwVusPWNiQF3CuF_IYt5kdstQjXmvI9U6CvQWSytksjQYVwYbbKAqR7Zh6lK2x1Wpu7wnA1SLOzmL23nr0f8To-pbkOdY8aNyTtS3lxq1oT6eKf-brdEUlAKHrTI3BZ1mTIEBhi50P9bHREHAYBt1iObzfqavxVkY0DGwfY_jHmHLF38TNLTX-cnX8lHgHXCkW74N7JYPdT2O0CnSv1wm-Q3Qg0X3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+Antibacterial+and+Food+Simulant+Activities+of+Silver+Nanoparticles%2FPolypropylene+Nanocomposite+Films&rft.jtitle=Langmuir&rft.au=Cao%2C+Guozhou&rft.au=Lin%2C+Han&rft.au=Kannan%2C+Palanisamy&rft.au=Wang%2C+Chun&rft.date=2018-12-04&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=34&rft.issue=48&rft.spage=14537&rft.epage=14545&rft_id=info:doi/10.1021%2Facs.langmuir.8b03061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_8b03061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon