Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike

In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evoluti...

Full description

Saved in:
Bibliographic Details
Published inJournal of virology Vol. 96; no. 20; p. e0116222
Main Authors Tan, Toong Seng, Toyoda, Mako, Ode, Hirotaka, Barabona, Godfrey, Hamana, Hiroshi, Kitamatsu, Mizuki, Kishi, Hiroyuki, Motozono, Chihiro, Iwatani, Yasumasa, Ueno, Takamasa
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 26.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
AbstractList Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.
Author Hamana, Hiroshi
Kishi, Hiroyuki
Tan, Toong Seng
Motozono, Chihiro
Iwatani, Yasumasa
Ueno, Takamasa
Ode, Hirotaka
Kitamatsu, Mizuki
Toyoda, Mako
Barabona, Godfrey
Author_xml – sequence: 1
  givenname: Toong Seng
  surname: Tan
  fullname: Tan, Toong Seng
  organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
– sequence: 2
  givenname: Mako
  surname: Toyoda
  fullname: Toyoda, Mako
  organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
– sequence: 3
  givenname: Hirotaka
  surname: Ode
  fullname: Ode, Hirotaka
  organization: Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
– sequence: 4
  givenname: Godfrey
  surname: Barabona
  fullname: Barabona, Godfrey
  organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
– sequence: 5
  givenname: Hiroshi
  surname: Hamana
  fullname: Hamana, Hiroshi
  organization: Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
– sequence: 6
  givenname: Mizuki
  surname: Kitamatsu
  fullname: Kitamatsu, Mizuki
  organization: Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka, Japan
– sequence: 7
  givenname: Hiroyuki
  surname: Kishi
  fullname: Kishi, Hiroyuki
  organization: Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
– sequence: 8
  givenname: Chihiro
  surname: Motozono
  fullname: Motozono, Chihiro
  organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
– sequence: 9
  givenname: Yasumasa
  orcidid: 0000-0001-9269-4828
  surname: Iwatani
  fullname: Iwatani, Yasumasa
  organization: Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan
– sequence: 10
  givenname: Takamasa
  orcidid: 0000-0003-4852-4236
  surname: Ueno
  fullname: Ueno, Takamasa
  organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36214577$$D View this record in MEDLINE/PubMed
BookMark eNp1kdFL3TAUxoM49Hr1zWfJ4wbWJadJ2r4Myt10g8sUr4rsJaRtqrm2yV2TCv73trs6VBQChyTf-fGd8-2gTeusRmifkiNKIf26vDdHhFIBEcAGmlCSpRHnlG2iCSEAEY_T62204_2SEMqYYFtoOxZAGU-SCfrz3Xivy2DsDf6tQt-ppnnAeWf8-JK3xjqcl6bCi77wwYQ-GGc9VgGfOW_GC54zDtjVeJGfL6KZu4oAL1bmTu-iT7VqvN57qlN0efzjYvYzmp-e_Jrl80ixlIWIloxRmghRVlmS6iQuBpNUsEIlos4gTmKmGS90oRmpqhoywivgVIgsq0QlSDxF39bcVV-0uiq1DcMUctWZVnUP0ikjX_9Ycytv3L3MeDaeAfD5CdC5v732QbbGl7pplNWu9xISiFnK48HMFH1ZS5VvQS5d39lhNEmJHLOQQxbyXxYSRu3BS1__DT0vfxDAWlB2zvtO17I0QY07HWya5iPq4ZumZ-678kdOwKTN
CitedBy_id crossref_primary_10_1016_j_virol_2023_109850
crossref_primary_10_1186_s12879_024_09967_w
crossref_primary_10_1002_jmv_28877
crossref_primary_10_1002_jmv_29822
crossref_primary_10_1038_s41598_024_55989_4
crossref_primary_10_1016_j_ebiom_2023_104916
crossref_primary_10_3389_fimmu_2023_1269916
crossref_primary_10_3390_v16040555
Cites_doi 10.1038/s41598-021-04147-1
10.1371/journal.pone.0053785
10.1038/s41586-021-03944-y
10.1038/s41586-021-03777-9
10.1128/mBio.01516-15
10.1002/0471143030.cb2609s50
10.1038/s41586-020-2180-5
10.1038/s41467-021-27096-9
10.1038/s41467-022-33068-4
10.1038/s10038-020-0771-5
10.1016/j.celrep.2021.110218
10.1016/j.lana.2021.100112
10.1016/j.celrep.2021.109017
10.1016/j.cell.2022.04.035
10.1371/journal.pone.0009490
10.1186/s12985-020-01395-x
10.1101/2022.04.30.489997
10.1128/JCM.00921-21
10.1371/journal.ppat.1007010
10.1093/ve/veac034
10.1073/pnas.97.22.11905
10.1074/jbc.RA120.013887
10.1126/science.abl8506
10.1136/bmj.n230
10.1016/j.isci.2021.103341
10.1016/j.chom.2021.06.006
10.1038/s41467-022-28766-y
10.1016/j.cell.2021.04.025
10.1126/science.abf2303
10.1038/s41467-021-21118-2
10.1016/0378-1119(91)90434-d
10.1126/science.abe5901
10.1038/s41392-021-00695-0
10.1021/bi992922o
10.1038/s41586-022-04474-x
10.1001/jama.2021.1612
10.1016/j.cell.2020.07.012
10.1016/j.isci.2021.102311
10.1038/s41586-021-03402-9
10.1016/j.gendis.2021.05.006
10.1016/j.jsb.2021.107713
10.1038/s41467-022-28528-w
10.7448/IAS.16.1.18723
10.1172/JCI145476
10.1080/22221751.2021.2008775
10.1056/NEJMc2103740
10.1128/JVI.00634-21
10.1038/nmeth.2089
ContentType Journal Article
Copyright Copyright © 2022 American Society for Microbiology.
Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
Copyright_xml – notice: Copyright © 2022 American Society for Microbiology.
– notice: Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1128/jvi.01162-22
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1098-5514
Editor Heise, Mark T.
Editor_xml – sequence: 1
  givenname: Mark T.
  surname: Heise
  fullname: Heise, Mark T.
ExternalDocumentID PMC9599599
01162-22
36214577
10_1128_jvi_01162_22
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19K07623; 22H02877
  funderid: https://doi.org/10.13039/501100001691
– fundername: Japan Agency for Medical Research and Development (AMED)
  grantid: 20fk0108539h0001; 20fk0108451s0101
  funderid: https://doi.org/10.13039/100009619
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 22K07089
  funderid: https://doi.org/10.13039/501100001691
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19H03703; 21K19657; 22H03119; JPJSCCB20190009; JSJSBP120219933; JPJSCCB20220010
  funderid: https://doi.org/10.13039/501100001691
– fundername: ;
  grantid: 22K07089
– fundername: ;
  grantid: 19H03703; 21K19657; 22H03119; JPJSCCB20190009; JSJSBP120219933; JPJSCCB20220010
– fundername: ;
  grantid: 20fk0108539h0001; 20fk0108451s0101
– fundername: ;
  grantid: 19K07623; 22H02877
GroupedDBID ---
-~X
0R~
18M
29L
2WC
39C
4.4
53G
5GY
5RE
5VS
85S
AAFWJ
AAGFI
AAYXX
ABPPZ
ACGFO
ACNCT
ADBBV
AENEX
AGVNZ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
E3Z
EBS
F5P
FRP
GX1
H13
HYE
HZ~
IH2
KQ8
N9A
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
UPT
W2D
W8F
WH7
WOQ
YQT
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
RHF
UCJ
ABFLS
ABPTK
ZA5
7X8
5PM
ID FETCH-LOGICAL-a484t-1c4411766cd978e73b446164ba76f923734e45bebe40ddf2905d2516699d6d603
ISSN 0022-538X
1098-5514
IngestDate Thu Aug 21 18:38:53 EDT 2025
Fri Jul 11 00:38:19 EDT 2025
Thu Oct 27 05:09:25 EDT 2022
Thu Jan 02 22:53:27 EST 2025
Tue Jul 01 01:32:41 EDT 2025
Thu Apr 24 22:50:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords mutational studies
SARS-CoV-2
substitution
L452
fitness
spike protein
coronavirus
spike
Language English
License All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2
All Rights Reserved.
This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a484t-1c4411766cd978e73b446164ba76f923734e45bebe40ddf2905d2516699d6d603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The authors declare no conflict of interest.
ORCID 0000-0001-9269-4828
0000-0003-4852-4236
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9599599
PMID 36214577
PQID 2723485392
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9599599
proquest_miscellaneous_2723485392
asm2_journals_10_1128_jvi_01162_22
pubmed_primary_36214577
crossref_citationtrail_10_1128_jvi_01162_22
crossref_primary_10_1128_jvi_01162_22
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-26
PublicationDateYYYYMMDD 2022-10-26
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-26
  day: 26
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Journal of virology
PublicationTitleAbbrev J Virol
PublicationTitleAlternate J Virol
PublicationYear 2022
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Voloch CM (e_1_3_2_5_2) 2020
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
36409111 - J Virol. 2022 Dec 14;96(23):e0173722
Pal, D (B34) 2021; 213
Bass, J, Turck, C, Rouard, M, Steiner, DF (B32) 2000; 97
B26
B27
Wedemeyer, WJ, Welker, E, Narayan, M, Scheraga, HA (B31) 2000; 39
Vargas-Herrera, N, Araujo-Castillo, RV, Mestanza, O, Galarza, M, Rojas-Serrano, N, Solari-Zerpa, L (B25) 2022; 6
Gao, A, Chen, Z, Amitai, A, Doelger, J, Mallajosyula, V, Sundquist, E, Pereyra Segal, F, Carrington, M, Davis, MM, Streeck, H, Chakraborty, AK, Julg, B (B20) 2021; 24
Kimura, I, Kosugi, Y, Wu, J, Zahradnik, J, Yamasoba, D, Butlertanaka, EP, Tanaka, YL, Uriu, K, Liu, Y, Morizako, N, Shirakawa, K, Kazuma, Y, Nomura, R, Horisawa, Y, Tokunaga, K, Ueno, T, Takaori-Kondo, A, Schreiber, G, Arase, H, Motozono, C, Saito, A, Nakagawa, S, Sato, K (B13) 2022; 38
Lan, J, Ge, J, Yu, J, Shan, S, Zhou, H, Fan, S, Zhang, Q, Shi, X, Wang, Q, Zhang, L, Wang, X (B1) 2020; 581
McCallum, M, Walls, AC, Sprouse, KR, Bowen, JE, Rosen, LE, Dang, HV, Marco, AD, Franko, N, Tilles, SW, Logue, J, Miranda, MC, Ahlrichs, M, Carter, L, Snell, G, Pizzuto, MS, Chu, HY, Voorhis, WCV, Corti, D, Veesler, D (B14) 2021; 374
Ikeda, T, Symeonides, M, Albin, JS, Li, M, Thali, M, Harris, RS (B46) 2018; 14
Ozono, S, Zhang, Y, Tobiume, M, Kishigami, S, Tokunaga, K (B45) 2020; 295
Shen, X, Tang, H, Pajon, R, Smith, G, Glenn, GM, Shi, W, Korber, B, Montefiori, DC (B17) 2021; 384
Kondo, N, Miyauchi, K, Matsuda, Z (B47) 2011; Chapter 26
Hu, C, Shen, M, Han, X, Chen, Q, Li, L, Chen, S, Zhang, J, Gao, F, Wang, W, Wang, Y, Li, T, Li, S, Huang, J, Wang, J, Zhu, J, Chen, D, Wu, Q, Tao, K, Pang, D, Jin, A (B22) 2022; 9
Hou, W (B28) 2020; 17
Wang, M, Zhang, L, Li, Q, Wang, B, Liang, Z, Sun, Y, Nie, J, Wu, J, Su, X, Qu, X, Y, L, Wang, Y, Huang, W (B38) 2022; 11
Zhou, Z, Du, P, Yu, M, Baptista-Hon, DT, Miao, M, Xiang, AP, Lau, JY-N, Li, N, Xiong, X, Huang, H, Liu, Z, Dai, Q, Zhu, J, Wu, S, Li, G, Zhang, K, Group, C-II (B24) 2021; 6
Price, MN, Dehal, PS, Arkin, AP (B43) 2010; 5
Motozono, C, Toyoda, M, Tan, TS, Hamana, H, Goto, Y, Aritsu, Y, Miyashita, Y, Oshiumi, H, Nakamura, K, Okada, S, Udaka, K, Kitamatsu, M, Kishi, H, Ueno, T (B50) 2022; 13
Yamasoba, D, Kimura, I, Nasser, H, Morioka, Y, Nao, N, Ito, J, Uriu, K, Tsuda, M, Zahradnik, J, Shirakawa, K, Suzuki, R, Kishimoto, M, Kosugi, Y, Kobiyama, K, Hara, T, Toyoda, M, Tanaka, YL, Butlertanaka, EP, Shimizu, R, Ito, H, Wang, L, Oda, Y, Orba, Y, Sasaki, M, Nagata, K, Yoshimatsu, K, Asakura, H, Nagashima, M, Sadamasu, K, Yoshimura, K, Kuramochi, J, Seki, M, Fujiki, R, Kaneda, A, Shimada, T, Nakada, T-a, Sakao, S, Suzuki, T, Ueno, T, Takaori-Kondo, A, Ishii, KJ, Schreiber, G, Sawa, H, Saito, A, Irie, T, Tanaka, S, Matsuno, K, Fukuhara, T, Ikeda, T, Sato, K (B39) 2022; 185
Hoffmann, M, Zhang, L, Krüger, N, Graichen, L, Kleine-Weber, H, Hofmann-Winkler, H, Kempf, A, Nessler, S, Riggert, J, Winkler, MS, Schulz, S, Jäck, HM, Pöhlmann, S (B12) 2021; 35
Schneider, CA, Rasband, WS, Eliceiri, KW (B49) 2012; 9
Balasco, N, Damaggio, G, Esposito, L, Villani, F, Berisio, R, Colonna, V, Vitagliano, L (B29) 2021; 11
Iacobucci, G (B2) 2021; 372
Tchesnokova, V, Kulasekara, H, Larson, L, Bowers, V, Rechkina, E, Kisiela, D, Sledneva, Y, Choudhury, D, Maslova, I, Deng, K, Kutumbaka, K, Geng, H, Fowler, C, Greene, D, Ralston, J, Samadpour, M, Sokurenko, E (B7) 2021; 59
Wang, Y, Liu, C, Zhang, C, Wang, Y, Hong, Q, Xu, S, Li, Z, Yang, Y, Huang, Z, Cong, Y (B37) 2022; 13
Zhang, J, Cai, Y, Xiao, T, Lu, J, Peng, H, Sterling, SM, Walsh, RM, Rits-Volloch, S, Zhu, H, Woosley, AN, Yang, W, Sliz, P, Chen, B (B36) 2021; 372
Ozono, S, Zhang, Y, Ode, H, Sano, K, Tan, TS, Imai, K, Miyoshi, K, Kishigami, S, Ueno, T, Iwatani, Y, Suzuki, T, Tokunaga, K (B33) 2021; 12
Voloch, CM, Silva, F, de Almeida, LGP, Cardoso, CC, Brustolini, OJ, Gerber, AL, Guimarães, A, Mariani, D, Costa, R, Ferreira, OC, Cavalcanti, AC, Frauches, TS, de Mello, CMB, Galliez, RM, Faffe, DS, Castiñeiras, TMPP, Tanuri, A, de Vasconcelos, ATR (B4) 2020
Mahiti, M, Toyoda, M, Jia, X, Kuang, XT, Mwimanzi, F, Mwimanzi, P, Walker, BD, Xiong, Y, Brumme, ZL, Brockman, MA, Ueno, T (B41) 2016; 7
Li, Q, Wu, J, Nie, J, Zhang, L, Hao, H, Liu, S, Zhao, C, Zhang, Q, Liu, H, Nie, L, Qin, H, Wang, M, Lu, Q, Li, X, Sun, Q, Liu, J, Zhang, L, Li, X, Huang, W, Wang, Y (B19) 2020; 182
Ode, H, Nakata, Y, Nagashima, M, Hayashi, M, Yamazaki, T, Asakura, H, Suzuki, J, Kubota, M, Matsuoka, K, Matsuda, M, Mori, M, Sugimoto, A, Imahashi, M, Yokomaku, Y, Sadamasu, K, Iwatani, Y (B42) 2022; 8
Kared, H, Redd, AD, Bloch, EM, Bonny, TS, Sumatoh, H, Kairi, F, Carbajo, D, Abel, B, Newell, EW, Bettinotti, MP, Benner, SE, Patel, EU, Littlefield, K, Laeyendecker, O, Shoham, S, Sullivan, D, Casadevall, A, Pekosz, A, Nardin, A, Fehlings, M, Tobian, AA, Quinn, TC (B21) 2021; 131
Niwa, H, Yamamura, K, Miyazaki, J (B44) 1991; 108
Tan, TS, Toyoda, M, Tokunaga, K, Ueno, T (B48) 2021; 95
Mlcochova, P, Kemp, SA, Dhar, MS, Papa, G, Meng, B, Ferreira, IATM, Datir, R, Collier, DA, Albecka, A, Singh, S, Pandey, R, Brown, J, Zhou, J, Goonawardane, N, Mishra, S, Whittaker, C, Mellan, T, Marwal, R, Datta, M, Sengupta, S, Ponnusamy, K, Radhakrishnan, VS, Abdullahi, A, Charles, O, Chattopadhyay, P, Devi, P, Caputo, D, Peacock, T, Wattal, C, Goel, N, Satwik, A, Vaishya, R, Agarwal, M, Mavousian, A, Lee, JH, Bassi, J, Silacci-Fegni, C, Saliba, C, Pinto, D, Irie, T, Yoshida, I, Hamilton, WL, Sato, K, Bhatt, S, Flaxman, S, James, LC, Corti, D, Piccoli, L, Barclay, WS, Rakshit, P (B5) 2021; 599
Deng, X, Garcia-Knight, MA, Khalid, MM, Servellita, V, Wang, C, Morris, MK, Sotomayor-González, A, Glasner, DR, Reyes, KR, Gliwa, AS, Reddy, NP, Sanchez San Martin, C, Federman, S, Cheng, J, Balcerek, J, Taylor, J, Streithorst, JA, Miller, S, Sreekumar, B, Chen, P-Y, Schulze-Gahmen, U, Taha, TY, Hayashi, JM, Simoneau, CR, Kumar, GR, McMahon, S, Lidsky, PV, Xiao, Y, Hemarajata, P, Green, NM, Espinosa, A, Kath, C, Haw, M, Bell, J, Hacker, JK, Hanson, C, Wadford, DA, Anaya, C, Ferguson, D, Frankino, PA, Shivram, H, Lareau, LF, Wyman, SK, Ott, M, Andino, R, Chiu, CY (B8) 2021; 184
Munnink, BBO, Sikkema, RS, Nieuwenhuijse, DF, Molenaar, RJ, Munger, E, Molenkamp, R, Spek, A, Tolsma, P, Rietveld, A, Brouwer, M, Bouwmeester-Vincken, N, Harders, F, Honing, RH-v, Wegdam-Blans, MCA, Bouwstra, RJ, GeurtsvanKessel, C, Eijk, A, Velkers, FC, Smit, LAM, Stegeman, A, Poel, W, Koopmans, MPG (B11) 2021; 371
Teeranaipong, P, Hosoya, N, Kawana-Tachikawa, A, Fujii, T, Koibuchi, T, Nakamura, H, Koga, M, Kondo, N, Gao, GF, Hoshino, H, Matsuda, Z, Iwamoto, A (B35) 2013; 16
Planas, D, Veyer, D, Baidaliuk, A, Staropoli, I, Guivel-Benhassine, F, Rajah, MM, Planchais, C, Porrot, F, Robillard, N, Puech, J, Prot, M, Gallais, F, Gantner, P, Velay, A, Le Guen, J, Kassis-Chikhani, N, Edriss, D, Belec, L, Seve, A, Courtellemont, L, Péré, H, Hocqueloux, L, Fafi-Kremer, S, Prazuck, T, Mouquet, H, Bruel, T, Simon-Lorière, E, Rey, FA, Schwartz, O (B16) 2021; 596
Kiyotani, K, Toyoshima, Y, Nemoto, K, Nakamura, Y (B40) 2020; 65
Lu, L, Sikkema, RS, Velkers, FC, Nieuwenhuijse, DF, Fischer, EAJ, Meijer, PA, Bouwmeester-Vincken, N, Rietveld, A, Wegdam-Blans, MCA, Tolsma, P, Koppelman, M, Smit, LAM, Hakze-van der Honing, RW, van der Poel, WHM, van der Spek, AN, Spierenburg, MAH, Molenaar, RJ, Rond, J, Augustijn, M, Woolhouse, M, Stegeman, JA, Lycett, S, Oude Munnink, BB, Koopmans, MPG (B10) 2021; 12
Morgan, AA, Rubenstein, E (B30) 2013; 8
Zhang, W, Davis, BD, Chen, SS, Sincuir Martinez, JM, Plummer, JT, Vail, E (B9) 2021; 325
Kaleta, T, Kern, L, Hong, SL, Hölzer, M, Kochs, G, Beer, J, Schnepf, D, Schwemmle, M, Bollen, N, Kolb, P, Huber, M, Ulferts, S, Weigang, S, Dudas, G, Wittig, A, Jaki, L, Padane, A, Lagare, A, Salou, M, Ozer, EA, Nnaemeka, N, Odoom, JK, Rutayisire, R, Benkahla, A, Akoua-Koffi, C, Ouedraogo, A-S, Simon-Lorière, E, Enouf, V, Kröger, S, Calvignac-Spencer, S, Baele, G, Panning, M, Fuchs, J (B15) 2022; 13
Tada, T, Zhou, H, Dcosta, BM, Samanovic, MI, Mulligan, MJ, Landau, NR (B18) 2021; 24
Tegally, H, Wilkinson, E, Giovanetti, M, Iranzadeh, A, Fonseca, V, Giandhari, J, Doolabh, D, Pillay, S, San, EJ, Msomi, N, Mlisana, K, von Gottberg, A, Walaza, S, Allam, M, Ismail, A, Mohale, T, Glass, AJ, Engelbrecht, S, Van Zyl, G, Preiser, W, Petruccione, F, Sigal, A, Hardie, D, Marais, G, Hsiao, NY, Korsman, S, Davies, MA, Tyers, L, Mudau, I, York, D, Maslo, C, Goedhals, D, Abrahams, S, Laguda-Akingba, O, Alisoltani-Dehkordi, A, Godzik, A, Wibmer, CK, Sewell, BT, Lourenço, J, Alcantara, LCJ, Kosakovsky Pond, SL, Weaver, S, Martin, D, Lessells, RJ, Bhiman, JN, Williamson, C, de Oliveira, T (B3) 2021; 592
Meng, B, Abdullahi, A, Ferreira, IATM, Goonawardane, N, Saito, A, Kimura, I, Yamasoba, D, Gerber, PP, Fatihi, S, Rathore, S, Zepeda, SK, Papa, G, Kemp, SA, Ikeda, T, Toyoda, M, Tan, TS, Kuramochi, J, Mitsunaga, S, Ueno, T, Shirakawa, K, Takaori-Kondo, A, Brevini, T, Mallery, DL, Charles, OJ, Baker, S, Dougan, G, Hess, C, Kingston, N, Lehner, PJ, Lyons, PA, Matheson, NJ, Ouwehand, WH, Saunders, C, Summers, C, Thaventhiran, JED, Toshner, M, Weekes, MP, Maxwell, P, Shaw, A, Bucke, A, Calder, J, Canna, L, Domingo, J, Elmer, A, Fuller, S, Harris, J, Hewitt, S, Kennet, J, Jose, S, Kourampa, J (B6) 2022; 603
Motozono, C, Toyoda, M, Zahradnik, J, Saito, A, Nasser, H, Tan, TS, Ngare, I, Kimura, I, Uriu, K, Kosugi, Y, Yue, Y, Shimizu, R, Ito, J, Torii, S, Yonekawa, A, Shimono, N, Nagasaki, Y, Minami, R, Toya, T, Sekiya, N, Fukuhara, T, Matsuura, Y, Schreiber, G, Ikeda, T, Nakagawa, S, Ueno, T, Sato, K (B23) 2021; 29
References_xml – ident: e_1_3_2_30_2
  doi: 10.1038/s41598-021-04147-1
– ident: e_1_3_2_31_2
  doi: 10.1371/journal.pone.0053785
– ident: e_1_3_2_6_2
  doi: 10.1038/s41586-021-03944-y
– ident: e_1_3_2_17_2
  doi: 10.1038/s41586-021-03777-9
– ident: e_1_3_2_42_2
  doi: 10.1128/mBio.01516-15
– ident: e_1_3_2_48_2
  doi: 10.1002/0471143030.cb2609s50
– ident: e_1_3_2_2_2
  doi: 10.1038/s41586-020-2180-5
– ident: e_1_3_2_11_2
  doi: 10.1038/s41467-021-27096-9
– ident: e_1_3_2_51_2
  doi: 10.1038/s41467-022-33068-4
– ident: e_1_3_2_41_2
  doi: 10.1038/s10038-020-0771-5
– ident: e_1_3_2_14_2
  doi: 10.1016/j.celrep.2021.110218
– ident: e_1_3_2_26_2
  doi: 10.1016/j.lana.2021.100112
– ident: e_1_3_2_13_2
  doi: 10.1016/j.celrep.2021.109017
– ident: e_1_3_2_40_2
  doi: 10.1016/j.cell.2022.04.035
– ident: e_1_3_2_44_2
  doi: 10.1371/journal.pone.0009490
– ident: e_1_3_2_29_2
  doi: 10.1186/s12985-020-01395-x
– ident: e_1_3_2_28_2
  doi: 10.1101/2022.04.30.489997
– ident: e_1_3_2_8_2
  doi: 10.1128/JCM.00921-21
– ident: e_1_3_2_47_2
  doi: 10.1371/journal.ppat.1007010
– ident: e_1_3_2_43_2
  doi: 10.1093/ve/veac034
– year: 2020
  ident: e_1_3_2_5_2
  article-title: Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil
  publication-title: medRxiv
– ident: e_1_3_2_33_2
  doi: 10.1073/pnas.97.22.11905
– ident: e_1_3_2_46_2
  doi: 10.1074/jbc.RA120.013887
– ident: e_1_3_2_15_2
  doi: 10.1126/science.abl8506
– ident: e_1_3_2_3_2
  doi: 10.1136/bmj.n230
– ident: e_1_3_2_19_2
  doi: 10.1016/j.isci.2021.103341
– ident: e_1_3_2_24_2
  doi: 10.1016/j.chom.2021.06.006
– ident: e_1_3_2_16_2
  doi: 10.1038/s41467-022-28766-y
– ident: e_1_3_2_9_2
  doi: 10.1016/j.cell.2021.04.025
– ident: e_1_3_2_37_2
  doi: 10.1126/science.abf2303
– ident: e_1_3_2_34_2
  doi: 10.1038/s41467-021-21118-2
– ident: e_1_3_2_45_2
  doi: 10.1016/0378-1119(91)90434-d
– ident: e_1_3_2_12_2
  doi: 10.1126/science.abe5901
– ident: e_1_3_2_25_2
  doi: 10.1038/s41392-021-00695-0
– ident: e_1_3_2_32_2
  doi: 10.1021/bi992922o
– ident: e_1_3_2_7_2
  doi: 10.1038/s41586-022-04474-x
– ident: e_1_3_2_10_2
  doi: 10.1001/jama.2021.1612
– ident: e_1_3_2_20_2
  doi: 10.1016/j.cell.2020.07.012
– ident: e_1_3_2_21_2
  doi: 10.1016/j.isci.2021.102311
– ident: e_1_3_2_4_2
  doi: 10.1038/s41586-021-03402-9
– ident: e_1_3_2_23_2
  doi: 10.1016/j.gendis.2021.05.006
– ident: e_1_3_2_35_2
  doi: 10.1016/j.jsb.2021.107713
– ident: e_1_3_2_27_2
– ident: e_1_3_2_38_2
  doi: 10.1038/s41467-022-28528-w
– ident: e_1_3_2_36_2
  doi: 10.7448/IAS.16.1.18723
– ident: e_1_3_2_22_2
  doi: 10.1172/JCI145476
– ident: e_1_3_2_39_2
  doi: 10.1080/22221751.2021.2008775
– ident: e_1_3_2_18_2
  doi: 10.1056/NEJMc2103740
– ident: e_1_3_2_49_2
  doi: 10.1128/JVI.00634-21
– ident: e_1_3_2_50_2
  doi: 10.1038/nmeth.2089
– reference: 36409111 - J Virol. 2022 Dec 14;96(23):e0173722
– volume: 131
  year: 2021
  ident: B21
  article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals
  publication-title: J Clin Invest
  doi: 10.1172/JCI145476
– volume: 29
  start-page: 1124
  year: 2021
  end-page: 1136.e11
  ident: B23
  article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2021.06.006
– volume: 599
  start-page: 114
  year: 2021
  end-page: 119
  ident: B5
  article-title: SARS-CoV-2 B.1.617.2 delta variant replication and immune evasion
  publication-title: Nature
  doi: 10.1038/s41586-021-03944-y
– volume: 6
  start-page: 100112
  year: 2022
  ident: B25
  article-title: SARS-CoV-2 Lambda and Gamma variants competition in Peru, a country with high seroprevalence
  publication-title: Lancet Reg Health Am
  doi: 10.1016/j.lana.2021.100112
– volume: 596
  start-page: 276
  year: 2021
  end-page: 280
  ident: B16
  article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization
  publication-title: Nature
  doi: 10.1038/s41586-021-03777-9
– volume: 13
  start-page: 1152
  year: 2022
  ident: B15
  article-title: Antibody escape and global spread of SARS-CoV-2 lineage A.27
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28766-y
– volume: 59
  year: 2021
  ident: B7
  article-title: Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants
  publication-title: J Clin Microbiol
  doi: 10.1128/JCM.00921-21
– volume: 65
  start-page: 569
  year: 2020
  end-page: 575
  ident: B40
  article-title: Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2
  publication-title: J Hum Genet
  doi: 10.1038/s10038-020-0771-5
– year: 2020
  ident: B4
  article-title: Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil
  publication-title: medRxiv
– volume: 35
  start-page: 109017
  year: 2021
  ident: B12
  article-title: SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.109017
– ident: B26
  article-title: World Health Organization . 2022 . Tracking SARS-CoV-2 variants . World Health Organization , Geneva, Switzerland .
– ident: B27
  article-title: Cao Y , Yisimayi A , Jian F , Song W , Xiao T , Wang L , Du S , Wang J , Li Q , Chen X , Wang P , Zhang Z , Liu P , An R , Hao X , Wang Y , Feng R , Sun H , Zhao L , Zhang W , Zhao D , Zheng J , Yu L , Li C , Zhang N , Wang R , Niu X , Yang S , Song X , Zheng L , Li Z , Gu Q , Shao F , Huang W , Jin R , Shen Z , Wang Y , Wang X , Xiao J , Xie XS . 2022 . BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection . bioRxiv . https://www.biorxiv.org/content/10.1101/2022.04.30.489997v2 .
– volume: 384
  start-page: 2352
  year: 2021
  end-page: 2354
  ident: B17
  article-title: Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2103740
– volume: 184
  start-page: 3426
  year: 2021
  end-page: 3437.e8
  ident: B8
  article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant
  publication-title: Cell
  doi: 10.1016/j.cell.2021.04.025
– volume: 11
  start-page: 24495
  year: 2021
  ident: B29
  article-title: A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04147-1
– volume: 24
  start-page: 103341
  year: 2021
  ident: B18
  article-title: Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103341
– volume: 11
  start-page: 18
  year: 2022
  end-page: 29
  ident: B38
  article-title: Reduced sensitivity of the SARS-CoV-2 Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination
  publication-title: Emerg Microbes Infect
  doi: 10.1080/22221751.2021.2008775
– volume: 39
  start-page: 4207
  year: 2000
  end-page: 4216
  ident: B31
  article-title: Disulfide bonds and protein folding
  publication-title: Biochemistry
  doi: 10.1021/bi992922o
– volume: 97
  start-page: 11905
  year: 2000
  end-page: 11909
  ident: B32
  article-title: Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.97.22.11905
– volume: 581
  start-page: 215
  year: 2020
  end-page: 220
  ident: B1
  article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 7
  start-page: e01516-15
  year: 2016
  end-page: e01515
  ident: B41
  article-title: Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences
  publication-title: mBio
  doi: 10.1128/mBio.01516-15
– volume: 12
  start-page: 6802
  year: 2021
  ident: B10
  article-title: Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-27096-9
– volume: Chapter 26
  start-page: Unit 26.9
  year: 2011
  ident: B47
  article-title: Monitoring viral-mediated membrane fusion using fluorescent reporter methods
  publication-title: Curr Protoc Cell Biol
  doi: 10.1002/0471143030.cb2609s50
– volume: 13
  start-page: 871
  year: 2022
  ident: B37
  article-title: Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-28528-w
– volume: 14
  year: 2018
  ident: B46
  article-title: HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G
  publication-title: PLoS Pathog
  doi: 10.1371/journal.ppat.1007010
– volume: 6
  start-page: 285
  year: 2021
  ident: B24
  article-title: Assessment of infectivity and the impact on neutralizing activity of immune sera of the COVID-19 variant, CAL.20C
  publication-title: Signal Transduction and Targeted Therapy
  doi: 10.1038/s41392-021-00695-0
– volume: 185
  start-page: 2103
  year: 2022
  end-page: 2115
  ident: B39
  article-title: Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike
  publication-title: Cell
  doi: 10.1016/j.cell.2022.04.035
– volume: 374
  start-page: 1621
  year: 2021
  end-page: 1626
  ident: B14
  article-title: Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants
  publication-title: Science
  doi: 10.1126/science.abl8506
– volume: 8
  start-page: veac034
  year: 2022
  ident: B42
  article-title: Molecular epidemiological features of SARS-CoV-2 in Japan
  publication-title: Virus Evol
  doi: 10.1093/ve/veac034
– volume: 603
  start-page: 706
  year: 2022
  end-page: 714
  ident: B6
  article-title: Altered TMPRSS2 usage by SARS-CoV-2 omicron impacts tropism and fusogenicity
  publication-title: Nature
  doi: 10.1038/s41586-022-04474-x
– volume: 213
  start-page: 107713
  year: 2021
  ident: B34
  article-title: Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity
  publication-title: J Struct Biol
  doi: 10.1016/j.jsb.2021.107713
– volume: 325
  start-page: 1324
  year: 2021
  end-page: 1326
  ident: B9
  article-title: Emergence of a novel SARS-CoV-2 variant in southern California
  publication-title: JAMA
  doi: 10.1001/jama.2021.1612
– volume: 24
  start-page: 102311
  year: 2021
  ident: B20
  article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-CoV-2
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102311
– volume: 295
  start-page: 13023
  year: 2020
  end-page: 13030
  ident: B45
  article-title: Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag
  publication-title: J Biol Chem
  doi: 10.1074/jbc.RA120.013887
– volume: 8
  year: 2013
  ident: B30
  article-title: Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0053785
– volume: 5
  year: 2010
  ident: B43
  article-title: FastTree 2: approximately maximum-likelihood trees for large alignments
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0009490
– volume: 371
  start-page: 172
  year: 2021
  end-page: 177
  ident: B11
  article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans
  publication-title: Science
  doi: 10.1126/science.abe5901
– volume: 16
  start-page: 18723
  year: 2013
  end-page: 18723
  ident: B35
  article-title: Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay
  publication-title: J Int AIDS Soc
  doi: 10.7448/IAS.16.1.18723
– volume: 372
  start-page: 525
  year: 2021
  end-page: 530
  ident: B36
  article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution
  publication-title: Science
  doi: 10.1126/science.abf2303
– volume: 17
  start-page: 138
  year: 2020
  ident: B28
  article-title: Characterization of codon usage pattern in SARS-CoV-2
  publication-title: Virol J
  doi: 10.1186/s12985-020-01395-x
– volume: 95
  year: 2021
  ident: B48
  article-title: Aromatic side chain at position 412 of SERINC5 exerts restriction activity toward HIV-1 and other retroviruses
  publication-title: J Virol
  doi: 10.1128/JVI.00634-21
– volume: 108
  start-page: 193
  year: 1991
  end-page: 199
  ident: B44
  article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector
  publication-title: Gene
  doi: 10.1016/0378-1119(91)90434-d
– volume: 372
  start-page: n230
  year: 2021
  ident: B2
  article-title: Covid-19: New UK variant may be linked to increased death rate, early data indicate
  publication-title: BMJ
  doi: 10.1136/bmj.n230
– volume: 38
  start-page: 110218
  year: 2022
  ident: B13
  article-title: The SARS-CoV-2 lambda variant exhibits enhanced infectivity and immune resistance
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2021.110218
– volume: 12
  start-page: 848
  year: 2021
  ident: B33
  article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21118-2
– volume: 592
  start-page: 438
  year: 2021
  end-page: 443
  ident: B3
  article-title: Detection of a SARS-CoV-2 variant of concern in South Africa
  publication-title: Nature
  doi: 10.1038/s41586-021-03402-9
– volume: 182
  start-page: 1284
  year: 2020
  end-page: 1294.e9
  ident: B19
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 13
  start-page: 5440
  year: 2022
  ident: B50
  article-title: The SARS-CoV-2 Omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition
  publication-title: Nat Commun
  doi: 10.1038/s41467-022-33068-4
– volume: 9
  start-page: 216
  year: 2022
  end-page: 229
  ident: B22
  article-title: Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants
  publication-title: Genes Dis
  doi: 10.1016/j.gendis.2021.05.006
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: B49
  article-title: NIH Image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
SSID ssj0014464
Score 2.4623265
Snippet In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe,...
Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including...
SourceID pubmedcentral
proquest
asm2
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e0116222
SubjectTerms Amino Acid Substitution
Amino Acids - genetics
COVID-19
Genetic Diversity and Evolution
Humans
Immune Sera
Mutation
Nucleotides
SARS-CoV-2 - genetics
Spike Glycoprotein, Coronavirus - metabolism
Virology
Title Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike
URI https://www.ncbi.nlm.nih.gov/pubmed/36214577
https://journals.asm.org/doi/10.1128/jvi.01162-22
https://www.proquest.com/docview/2723485392
https://pubmed.ncbi.nlm.nih.gov/PMC9599599
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXND5XBsggeKoyEsdx4sdqbBSoikRbVPES2XEiSrdkWjOk8tdztvPJNmnwElXpya18P5_v7PvdIfSGhSxNwNF3qEoCh3rKd3iQKUeywKdRJgMuTYLslI0X9NMyWLblCQy7pJQHye8reSX_o1V4B3rVLNl_0GwzKLyAz6BfeIKG4XkjHb_Xl-mJSVyeClNA42Q7HMGyNWcdp6u8GI6SlTLWwaQEmKw3UeoWvSZVazihATG8ldHXmXNYfHPIcHa2Wvfzg1qfVZPiusfw86q5caE7Fs3Sahc0h9bbQglLBloXzUmurfE7hlFKsW6PAsQ5QNGS0z4USjPLuocREMeCFbeM98p-6vKk2gmz28sV7yqjy1kHXMTtmNBUXw0RS1a-bN-J5iz8_LU6MFKOFeuX0Z5-iY8Xk0k8P1rOb6M7BOIHE2t__NxcL0EMbNIN6n9WMyJI9K47NmzTYnNK-i7LpTjk73Tajn8y30X3KyXhkUXJA3QrzR-iu7bV6PYR-t5iBTdYwRVWsMEK1ljBPaxgUeIaK1hjBRcZbrGCDVYeo8Xx0fxw7FR9NRxBI1o6XgI-sC4MmigeRmnoS5gPCJulCFkGDn_o05QGEpY3dZXKCHcDBW4wY5wrppjrP0E7eZGnewgnSsqMuNzPdBNz5kahnxBXhH7qedITcoBe6xmMq0WziU3MSaIYpjk20xwTMkDDen7jpKpMrxuknFwj_baRPrMVWa6Re1WrKgaTqe_BRJ4WF5uYACAouKkcZJ5a1TUjgT_n0SAMByjsKbUR0OXY-9_kqx-mLDs3tfv4sxv87j66166e52inPL9IX4BzW8qXBqh_AFREod8
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+Naturally+Arising+Amino+Acid+Substitutions+at+Position+L452+of+SARS-CoV-2+Spike&rft.jtitle=Journal+of+virology&rft.au=Tan%2C+Toong+Seng&rft.au=Toyoda%2C+Mako&rft.au=Ode%2C+Hirotaka&rft.au=Barabona%2C+Godfrey&rft.date=2022-10-26&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=96&rft.issue=20&rft.spage=e0116222&rft_id=info:doi/10.1128%2Fjvi.01162-22&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon