Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike
In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evoluti...
Saved in:
Published in | Journal of virology Vol. 96; no. 20; p. e0116222 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
26.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape.
Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity.
IMPORTANCE
In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. |
---|---|
AbstractList | Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19.Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including omicron lineages. It remains elusive how amino acid substitutions at L452 are selected in VOC. Here, we characterized all 19 possible mutations at this site and revealed that five mutants expressing the amino acids Q, K, H, M, and R gained greater fusogenicity and pseudovirus infectivity, whereas other mutants failed to maintain steady-state expression levels and/or pseudovirus infectivity. Moreover, the five mutants showed decreased sensitivity toward neutralization by vaccine-induced antisera and conferred escape from T cell recognition. Contrary to expectations, sequence data retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) revealed that the naturally occurring L452 mutations were limited to Q, M, and R, all of which can arise from a single nucleotide change. Collectively, these findings highlight that the codon base change mutational barrier is a prerequisite for amino acid substitutions at L452, in addition to the phenotypic advantages of viral fitness and decreased sensitivity to host immunity. IMPORTANCE In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe, fueling a surge in the number of cases and deaths that caused severe strain on the health care system. A major concern is whether viral evolution eventually promotes greater fitness advantages, transmissibility, and immune escape. In this study, we addressed the differential effect of amino acid substitutions at a frequent mutation site, L452 of SARS-CoV-2 spike, on viral antigenic and immunological profiles and demonstrated how the virus evolves to select one amino acid over the others to ensure better viral infectivity and immune evasion. Identifying such virus mutation signatures could be crucial for the preparedness of future interventions to control COVID-19. |
Author | Hamana, Hiroshi Kishi, Hiroyuki Tan, Toong Seng Motozono, Chihiro Iwatani, Yasumasa Ueno, Takamasa Ode, Hirotaka Kitamatsu, Mizuki Toyoda, Mako Barabona, Godfrey |
Author_xml | – sequence: 1 givenname: Toong Seng surname: Tan fullname: Tan, Toong Seng organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan – sequence: 2 givenname: Mako surname: Toyoda fullname: Toyoda, Mako organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan – sequence: 3 givenname: Hirotaka surname: Ode fullname: Ode, Hirotaka organization: Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan – sequence: 4 givenname: Godfrey surname: Barabona fullname: Barabona, Godfrey organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan – sequence: 5 givenname: Hiroshi surname: Hamana fullname: Hamana, Hiroshi organization: Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan – sequence: 6 givenname: Mizuki surname: Kitamatsu fullname: Kitamatsu, Mizuki organization: Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Osaka, Japan – sequence: 7 givenname: Hiroyuki surname: Kishi fullname: Kishi, Hiroyuki organization: Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan – sequence: 8 givenname: Chihiro surname: Motozono fullname: Motozono, Chihiro organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan – sequence: 9 givenname: Yasumasa orcidid: 0000-0001-9269-4828 surname: Iwatani fullname: Iwatani, Yasumasa organization: Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Aichi, Japan – sequence: 10 givenname: Takamasa orcidid: 0000-0003-4852-4236 surname: Ueno fullname: Ueno, Takamasa organization: Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36214577$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kdFL3TAUxoM49Hr1zWfJ4wbWJadJ2r4Myt10g8sUr4rsJaRtqrm2yV2TCv73trs6VBQChyTf-fGd8-2gTeusRmifkiNKIf26vDdHhFIBEcAGmlCSpRHnlG2iCSEAEY_T62204_2SEMqYYFtoOxZAGU-SCfrz3Xivy2DsDf6tQt-ppnnAeWf8-JK3xjqcl6bCi77wwYQ-GGc9VgGfOW_GC54zDtjVeJGfL6KZu4oAL1bmTu-iT7VqvN57qlN0efzjYvYzmp-e_Jrl80ixlIWIloxRmghRVlmS6iQuBpNUsEIlos4gTmKmGS90oRmpqhoywivgVIgsq0QlSDxF39bcVV-0uiq1DcMUctWZVnUP0ikjX_9Ycytv3L3MeDaeAfD5CdC5v732QbbGl7pplNWu9xISiFnK48HMFH1ZS5VvQS5d39lhNEmJHLOQQxbyXxYSRu3BS1__DT0vfxDAWlB2zvtO17I0QY07HWya5iPq4ZumZ-678kdOwKTN |
CitedBy_id | crossref_primary_10_1016_j_virol_2023_109850 crossref_primary_10_1186_s12879_024_09967_w crossref_primary_10_1002_jmv_28877 crossref_primary_10_1002_jmv_29822 crossref_primary_10_1038_s41598_024_55989_4 crossref_primary_10_1016_j_ebiom_2023_104916 crossref_primary_10_3389_fimmu_2023_1269916 crossref_primary_10_3390_v16040555 |
Cites_doi | 10.1038/s41598-021-04147-1 10.1371/journal.pone.0053785 10.1038/s41586-021-03944-y 10.1038/s41586-021-03777-9 10.1128/mBio.01516-15 10.1002/0471143030.cb2609s50 10.1038/s41586-020-2180-5 10.1038/s41467-021-27096-9 10.1038/s41467-022-33068-4 10.1038/s10038-020-0771-5 10.1016/j.celrep.2021.110218 10.1016/j.lana.2021.100112 10.1016/j.celrep.2021.109017 10.1016/j.cell.2022.04.035 10.1371/journal.pone.0009490 10.1186/s12985-020-01395-x 10.1101/2022.04.30.489997 10.1128/JCM.00921-21 10.1371/journal.ppat.1007010 10.1093/ve/veac034 10.1073/pnas.97.22.11905 10.1074/jbc.RA120.013887 10.1126/science.abl8506 10.1136/bmj.n230 10.1016/j.isci.2021.103341 10.1016/j.chom.2021.06.006 10.1038/s41467-022-28766-y 10.1016/j.cell.2021.04.025 10.1126/science.abf2303 10.1038/s41467-021-21118-2 10.1016/0378-1119(91)90434-d 10.1126/science.abe5901 10.1038/s41392-021-00695-0 10.1021/bi992922o 10.1038/s41586-022-04474-x 10.1001/jama.2021.1612 10.1016/j.cell.2020.07.012 10.1016/j.isci.2021.102311 10.1038/s41586-021-03402-9 10.1016/j.gendis.2021.05.006 10.1016/j.jsb.2021.107713 10.1038/s41467-022-28528-w 10.7448/IAS.16.1.18723 10.1172/JCI145476 10.1080/22221751.2021.2008775 10.1056/NEJMc2103740 10.1128/JVI.00634-21 10.1038/nmeth.2089 |
ContentType | Journal Article |
Copyright | Copyright © 2022 American Society for Microbiology. Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2022 American Society for Microbiology. – notice: Copyright © 2022 American Society for Microbiology. 2022 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1128/jvi.01162-22 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
Editor | Heise, Mark T. |
Editor_xml | – sequence: 1 givenname: Mark T. surname: Heise fullname: Heise, Mark T. |
ExternalDocumentID | PMC9599599 01162-22 36214577 10_1128_jvi_01162_22 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19K07623; 22H02877 funderid: https://doi.org/10.13039/501100001691 – fundername: Japan Agency for Medical Research and Development (AMED) grantid: 20fk0108539h0001; 20fk0108451s0101 funderid: https://doi.org/10.13039/100009619 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 22K07089 funderid: https://doi.org/10.13039/501100001691 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19H03703; 21K19657; 22H03119; JPJSCCB20190009; JSJSBP120219933; JPJSCCB20220010 funderid: https://doi.org/10.13039/501100001691 – fundername: ; grantid: 22K07089 – fundername: ; grantid: 19H03703; 21K19657; 22H03119; JPJSCCB20190009; JSJSBP120219933; JPJSCCB20220010 – fundername: ; grantid: 20fk0108539h0001; 20fk0108451s0101 – fundername: ; grantid: 19K07623; 22H02877 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM CGR CUY CVF ECM EIF NPM RHF UCJ ABFLS ABPTK ZA5 7X8 5PM |
ID | FETCH-LOGICAL-a484t-1c4411766cd978e73b446164ba76f923734e45bebe40ddf2905d2516699d6d603 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:38:53 EDT 2025 Fri Jul 11 00:38:19 EDT 2025 Thu Oct 27 05:09:25 EDT 2022 Thu Jan 02 22:53:27 EST 2025 Tue Jul 01 01:32:41 EDT 2025 Thu Apr 24 22:50:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Keywords | mutational studies SARS-CoV-2 substitution L452 fitness spike protein coronavirus spike |
Language | English |
License | All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. https://doi.org/10.1128/ASMCopyrightv2 All Rights Reserved. This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-a484t-1c4411766cd978e73b446164ba76f923734e45bebe40ddf2905d2516699d6d603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ORCID | 0000-0001-9269-4828 0000-0003-4852-4236 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9599599 |
PMID | 36214577 |
PQID | 2723485392 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9599599 proquest_miscellaneous_2723485392 asm2_journals_10_1128_jvi_01162_22 pubmed_primary_36214577 crossref_citationtrail_10_1128_jvi_01162_22 crossref_primary_10_1128_jvi_01162_22 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-26 |
PublicationDateYYYYMMDD | 2022-10-26 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of virology |
PublicationTitleAbbrev | J Virol |
PublicationTitleAlternate | J Virol |
PublicationYear | 2022 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Voloch CM (e_1_3_2_5_2) 2020 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 36409111 - J Virol. 2022 Dec 14;96(23):e0173722 Pal, D (B34) 2021; 213 Bass, J, Turck, C, Rouard, M, Steiner, DF (B32) 2000; 97 B26 B27 Wedemeyer, WJ, Welker, E, Narayan, M, Scheraga, HA (B31) 2000; 39 Vargas-Herrera, N, Araujo-Castillo, RV, Mestanza, O, Galarza, M, Rojas-Serrano, N, Solari-Zerpa, L (B25) 2022; 6 Gao, A, Chen, Z, Amitai, A, Doelger, J, Mallajosyula, V, Sundquist, E, Pereyra Segal, F, Carrington, M, Davis, MM, Streeck, H, Chakraborty, AK, Julg, B (B20) 2021; 24 Kimura, I, Kosugi, Y, Wu, J, Zahradnik, J, Yamasoba, D, Butlertanaka, EP, Tanaka, YL, Uriu, K, Liu, Y, Morizako, N, Shirakawa, K, Kazuma, Y, Nomura, R, Horisawa, Y, Tokunaga, K, Ueno, T, Takaori-Kondo, A, Schreiber, G, Arase, H, Motozono, C, Saito, A, Nakagawa, S, Sato, K (B13) 2022; 38 Lan, J, Ge, J, Yu, J, Shan, S, Zhou, H, Fan, S, Zhang, Q, Shi, X, Wang, Q, Zhang, L, Wang, X (B1) 2020; 581 McCallum, M, Walls, AC, Sprouse, KR, Bowen, JE, Rosen, LE, Dang, HV, Marco, AD, Franko, N, Tilles, SW, Logue, J, Miranda, MC, Ahlrichs, M, Carter, L, Snell, G, Pizzuto, MS, Chu, HY, Voorhis, WCV, Corti, D, Veesler, D (B14) 2021; 374 Ikeda, T, Symeonides, M, Albin, JS, Li, M, Thali, M, Harris, RS (B46) 2018; 14 Ozono, S, Zhang, Y, Tobiume, M, Kishigami, S, Tokunaga, K (B45) 2020; 295 Shen, X, Tang, H, Pajon, R, Smith, G, Glenn, GM, Shi, W, Korber, B, Montefiori, DC (B17) 2021; 384 Kondo, N, Miyauchi, K, Matsuda, Z (B47) 2011; Chapter 26 Hu, C, Shen, M, Han, X, Chen, Q, Li, L, Chen, S, Zhang, J, Gao, F, Wang, W, Wang, Y, Li, T, Li, S, Huang, J, Wang, J, Zhu, J, Chen, D, Wu, Q, Tao, K, Pang, D, Jin, A (B22) 2022; 9 Hou, W (B28) 2020; 17 Wang, M, Zhang, L, Li, Q, Wang, B, Liang, Z, Sun, Y, Nie, J, Wu, J, Su, X, Qu, X, Y, L, Wang, Y, Huang, W (B38) 2022; 11 Zhou, Z, Du, P, Yu, M, Baptista-Hon, DT, Miao, M, Xiang, AP, Lau, JY-N, Li, N, Xiong, X, Huang, H, Liu, Z, Dai, Q, Zhu, J, Wu, S, Li, G, Zhang, K, Group, C-II (B24) 2021; 6 Price, MN, Dehal, PS, Arkin, AP (B43) 2010; 5 Motozono, C, Toyoda, M, Tan, TS, Hamana, H, Goto, Y, Aritsu, Y, Miyashita, Y, Oshiumi, H, Nakamura, K, Okada, S, Udaka, K, Kitamatsu, M, Kishi, H, Ueno, T (B50) 2022; 13 Yamasoba, D, Kimura, I, Nasser, H, Morioka, Y, Nao, N, Ito, J, Uriu, K, Tsuda, M, Zahradnik, J, Shirakawa, K, Suzuki, R, Kishimoto, M, Kosugi, Y, Kobiyama, K, Hara, T, Toyoda, M, Tanaka, YL, Butlertanaka, EP, Shimizu, R, Ito, H, Wang, L, Oda, Y, Orba, Y, Sasaki, M, Nagata, K, Yoshimatsu, K, Asakura, H, Nagashima, M, Sadamasu, K, Yoshimura, K, Kuramochi, J, Seki, M, Fujiki, R, Kaneda, A, Shimada, T, Nakada, T-a, Sakao, S, Suzuki, T, Ueno, T, Takaori-Kondo, A, Ishii, KJ, Schreiber, G, Sawa, H, Saito, A, Irie, T, Tanaka, S, Matsuno, K, Fukuhara, T, Ikeda, T, Sato, K (B39) 2022; 185 Hoffmann, M, Zhang, L, Krüger, N, Graichen, L, Kleine-Weber, H, Hofmann-Winkler, H, Kempf, A, Nessler, S, Riggert, J, Winkler, MS, Schulz, S, Jäck, HM, Pöhlmann, S (B12) 2021; 35 Schneider, CA, Rasband, WS, Eliceiri, KW (B49) 2012; 9 Balasco, N, Damaggio, G, Esposito, L, Villani, F, Berisio, R, Colonna, V, Vitagliano, L (B29) 2021; 11 Iacobucci, G (B2) 2021; 372 Tchesnokova, V, Kulasekara, H, Larson, L, Bowers, V, Rechkina, E, Kisiela, D, Sledneva, Y, Choudhury, D, Maslova, I, Deng, K, Kutumbaka, K, Geng, H, Fowler, C, Greene, D, Ralston, J, Samadpour, M, Sokurenko, E (B7) 2021; 59 Wang, Y, Liu, C, Zhang, C, Wang, Y, Hong, Q, Xu, S, Li, Z, Yang, Y, Huang, Z, Cong, Y (B37) 2022; 13 Zhang, J, Cai, Y, Xiao, T, Lu, J, Peng, H, Sterling, SM, Walsh, RM, Rits-Volloch, S, Zhu, H, Woosley, AN, Yang, W, Sliz, P, Chen, B (B36) 2021; 372 Ozono, S, Zhang, Y, Ode, H, Sano, K, Tan, TS, Imai, K, Miyoshi, K, Kishigami, S, Ueno, T, Iwatani, Y, Suzuki, T, Tokunaga, K (B33) 2021; 12 Voloch, CM, Silva, F, de Almeida, LGP, Cardoso, CC, Brustolini, OJ, Gerber, AL, Guimarães, A, Mariani, D, Costa, R, Ferreira, OC, Cavalcanti, AC, Frauches, TS, de Mello, CMB, Galliez, RM, Faffe, DS, Castiñeiras, TMPP, Tanuri, A, de Vasconcelos, ATR (B4) 2020 Mahiti, M, Toyoda, M, Jia, X, Kuang, XT, Mwimanzi, F, Mwimanzi, P, Walker, BD, Xiong, Y, Brumme, ZL, Brockman, MA, Ueno, T (B41) 2016; 7 Li, Q, Wu, J, Nie, J, Zhang, L, Hao, H, Liu, S, Zhao, C, Zhang, Q, Liu, H, Nie, L, Qin, H, Wang, M, Lu, Q, Li, X, Sun, Q, Liu, J, Zhang, L, Li, X, Huang, W, Wang, Y (B19) 2020; 182 Ode, H, Nakata, Y, Nagashima, M, Hayashi, M, Yamazaki, T, Asakura, H, Suzuki, J, Kubota, M, Matsuoka, K, Matsuda, M, Mori, M, Sugimoto, A, Imahashi, M, Yokomaku, Y, Sadamasu, K, Iwatani, Y (B42) 2022; 8 Kared, H, Redd, AD, Bloch, EM, Bonny, TS, Sumatoh, H, Kairi, F, Carbajo, D, Abel, B, Newell, EW, Bettinotti, MP, Benner, SE, Patel, EU, Littlefield, K, Laeyendecker, O, Shoham, S, Sullivan, D, Casadevall, A, Pekosz, A, Nardin, A, Fehlings, M, Tobian, AA, Quinn, TC (B21) 2021; 131 Niwa, H, Yamamura, K, Miyazaki, J (B44) 1991; 108 Tan, TS, Toyoda, M, Tokunaga, K, Ueno, T (B48) 2021; 95 Mlcochova, P, Kemp, SA, Dhar, MS, Papa, G, Meng, B, Ferreira, IATM, Datir, R, Collier, DA, Albecka, A, Singh, S, Pandey, R, Brown, J, Zhou, J, Goonawardane, N, Mishra, S, Whittaker, C, Mellan, T, Marwal, R, Datta, M, Sengupta, S, Ponnusamy, K, Radhakrishnan, VS, Abdullahi, A, Charles, O, Chattopadhyay, P, Devi, P, Caputo, D, Peacock, T, Wattal, C, Goel, N, Satwik, A, Vaishya, R, Agarwal, M, Mavousian, A, Lee, JH, Bassi, J, Silacci-Fegni, C, Saliba, C, Pinto, D, Irie, T, Yoshida, I, Hamilton, WL, Sato, K, Bhatt, S, Flaxman, S, James, LC, Corti, D, Piccoli, L, Barclay, WS, Rakshit, P (B5) 2021; 599 Deng, X, Garcia-Knight, MA, Khalid, MM, Servellita, V, Wang, C, Morris, MK, Sotomayor-González, A, Glasner, DR, Reyes, KR, Gliwa, AS, Reddy, NP, Sanchez San Martin, C, Federman, S, Cheng, J, Balcerek, J, Taylor, J, Streithorst, JA, Miller, S, Sreekumar, B, Chen, P-Y, Schulze-Gahmen, U, Taha, TY, Hayashi, JM, Simoneau, CR, Kumar, GR, McMahon, S, Lidsky, PV, Xiao, Y, Hemarajata, P, Green, NM, Espinosa, A, Kath, C, Haw, M, Bell, J, Hacker, JK, Hanson, C, Wadford, DA, Anaya, C, Ferguson, D, Frankino, PA, Shivram, H, Lareau, LF, Wyman, SK, Ott, M, Andino, R, Chiu, CY (B8) 2021; 184 Munnink, BBO, Sikkema, RS, Nieuwenhuijse, DF, Molenaar, RJ, Munger, E, Molenkamp, R, Spek, A, Tolsma, P, Rietveld, A, Brouwer, M, Bouwmeester-Vincken, N, Harders, F, Honing, RH-v, Wegdam-Blans, MCA, Bouwstra, RJ, GeurtsvanKessel, C, Eijk, A, Velkers, FC, Smit, LAM, Stegeman, A, Poel, W, Koopmans, MPG (B11) 2021; 371 Teeranaipong, P, Hosoya, N, Kawana-Tachikawa, A, Fujii, T, Koibuchi, T, Nakamura, H, Koga, M, Kondo, N, Gao, GF, Hoshino, H, Matsuda, Z, Iwamoto, A (B35) 2013; 16 Planas, D, Veyer, D, Baidaliuk, A, Staropoli, I, Guivel-Benhassine, F, Rajah, MM, Planchais, C, Porrot, F, Robillard, N, Puech, J, Prot, M, Gallais, F, Gantner, P, Velay, A, Le Guen, J, Kassis-Chikhani, N, Edriss, D, Belec, L, Seve, A, Courtellemont, L, Péré, H, Hocqueloux, L, Fafi-Kremer, S, Prazuck, T, Mouquet, H, Bruel, T, Simon-Lorière, E, Rey, FA, Schwartz, O (B16) 2021; 596 Kiyotani, K, Toyoshima, Y, Nemoto, K, Nakamura, Y (B40) 2020; 65 Lu, L, Sikkema, RS, Velkers, FC, Nieuwenhuijse, DF, Fischer, EAJ, Meijer, PA, Bouwmeester-Vincken, N, Rietveld, A, Wegdam-Blans, MCA, Tolsma, P, Koppelman, M, Smit, LAM, Hakze-van der Honing, RW, van der Poel, WHM, van der Spek, AN, Spierenburg, MAH, Molenaar, RJ, Rond, J, Augustijn, M, Woolhouse, M, Stegeman, JA, Lycett, S, Oude Munnink, BB, Koopmans, MPG (B10) 2021; 12 Morgan, AA, Rubenstein, E (B30) 2013; 8 Zhang, W, Davis, BD, Chen, SS, Sincuir Martinez, JM, Plummer, JT, Vail, E (B9) 2021; 325 Kaleta, T, Kern, L, Hong, SL, Hölzer, M, Kochs, G, Beer, J, Schnepf, D, Schwemmle, M, Bollen, N, Kolb, P, Huber, M, Ulferts, S, Weigang, S, Dudas, G, Wittig, A, Jaki, L, Padane, A, Lagare, A, Salou, M, Ozer, EA, Nnaemeka, N, Odoom, JK, Rutayisire, R, Benkahla, A, Akoua-Koffi, C, Ouedraogo, A-S, Simon-Lorière, E, Enouf, V, Kröger, S, Calvignac-Spencer, S, Baele, G, Panning, M, Fuchs, J (B15) 2022; 13 Tada, T, Zhou, H, Dcosta, BM, Samanovic, MI, Mulligan, MJ, Landau, NR (B18) 2021; 24 Tegally, H, Wilkinson, E, Giovanetti, M, Iranzadeh, A, Fonseca, V, Giandhari, J, Doolabh, D, Pillay, S, San, EJ, Msomi, N, Mlisana, K, von Gottberg, A, Walaza, S, Allam, M, Ismail, A, Mohale, T, Glass, AJ, Engelbrecht, S, Van Zyl, G, Preiser, W, Petruccione, F, Sigal, A, Hardie, D, Marais, G, Hsiao, NY, Korsman, S, Davies, MA, Tyers, L, Mudau, I, York, D, Maslo, C, Goedhals, D, Abrahams, S, Laguda-Akingba, O, Alisoltani-Dehkordi, A, Godzik, A, Wibmer, CK, Sewell, BT, Lourenço, J, Alcantara, LCJ, Kosakovsky Pond, SL, Weaver, S, Martin, D, Lessells, RJ, Bhiman, JN, Williamson, C, de Oliveira, T (B3) 2021; 592 Meng, B, Abdullahi, A, Ferreira, IATM, Goonawardane, N, Saito, A, Kimura, I, Yamasoba, D, Gerber, PP, Fatihi, S, Rathore, S, Zepeda, SK, Papa, G, Kemp, SA, Ikeda, T, Toyoda, M, Tan, TS, Kuramochi, J, Mitsunaga, S, Ueno, T, Shirakawa, K, Takaori-Kondo, A, Brevini, T, Mallery, DL, Charles, OJ, Baker, S, Dougan, G, Hess, C, Kingston, N, Lehner, PJ, Lyons, PA, Matheson, NJ, Ouwehand, WH, Saunders, C, Summers, C, Thaventhiran, JED, Toshner, M, Weekes, MP, Maxwell, P, Shaw, A, Bucke, A, Calder, J, Canna, L, Domingo, J, Elmer, A, Fuller, S, Harris, J, Hewitt, S, Kennet, J, Jose, S, Kourampa, J (B6) 2022; 603 Motozono, C, Toyoda, M, Zahradnik, J, Saito, A, Nasser, H, Tan, TS, Ngare, I, Kimura, I, Uriu, K, Kosugi, Y, Yue, Y, Shimizu, R, Ito, J, Torii, S, Yonekawa, A, Shimono, N, Nagasaki, Y, Minami, R, Toya, T, Sekiya, N, Fukuhara, T, Matsuura, Y, Schreiber, G, Ikeda, T, Nakagawa, S, Ueno, T, Sato, K (B23) 2021; 29 |
References_xml | – ident: e_1_3_2_30_2 doi: 10.1038/s41598-021-04147-1 – ident: e_1_3_2_31_2 doi: 10.1371/journal.pone.0053785 – ident: e_1_3_2_6_2 doi: 10.1038/s41586-021-03944-y – ident: e_1_3_2_17_2 doi: 10.1038/s41586-021-03777-9 – ident: e_1_3_2_42_2 doi: 10.1128/mBio.01516-15 – ident: e_1_3_2_48_2 doi: 10.1002/0471143030.cb2609s50 – ident: e_1_3_2_2_2 doi: 10.1038/s41586-020-2180-5 – ident: e_1_3_2_11_2 doi: 10.1038/s41467-021-27096-9 – ident: e_1_3_2_51_2 doi: 10.1038/s41467-022-33068-4 – ident: e_1_3_2_41_2 doi: 10.1038/s10038-020-0771-5 – ident: e_1_3_2_14_2 doi: 10.1016/j.celrep.2021.110218 – ident: e_1_3_2_26_2 doi: 10.1016/j.lana.2021.100112 – ident: e_1_3_2_13_2 doi: 10.1016/j.celrep.2021.109017 – ident: e_1_3_2_40_2 doi: 10.1016/j.cell.2022.04.035 – ident: e_1_3_2_44_2 doi: 10.1371/journal.pone.0009490 – ident: e_1_3_2_29_2 doi: 10.1186/s12985-020-01395-x – ident: e_1_3_2_28_2 doi: 10.1101/2022.04.30.489997 – ident: e_1_3_2_8_2 doi: 10.1128/JCM.00921-21 – ident: e_1_3_2_47_2 doi: 10.1371/journal.ppat.1007010 – ident: e_1_3_2_43_2 doi: 10.1093/ve/veac034 – year: 2020 ident: e_1_3_2_5_2 article-title: Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil publication-title: medRxiv – ident: e_1_3_2_33_2 doi: 10.1073/pnas.97.22.11905 – ident: e_1_3_2_46_2 doi: 10.1074/jbc.RA120.013887 – ident: e_1_3_2_15_2 doi: 10.1126/science.abl8506 – ident: e_1_3_2_3_2 doi: 10.1136/bmj.n230 – ident: e_1_3_2_19_2 doi: 10.1016/j.isci.2021.103341 – ident: e_1_3_2_24_2 doi: 10.1016/j.chom.2021.06.006 – ident: e_1_3_2_16_2 doi: 10.1038/s41467-022-28766-y – ident: e_1_3_2_9_2 doi: 10.1016/j.cell.2021.04.025 – ident: e_1_3_2_37_2 doi: 10.1126/science.abf2303 – ident: e_1_3_2_34_2 doi: 10.1038/s41467-021-21118-2 – ident: e_1_3_2_45_2 doi: 10.1016/0378-1119(91)90434-d – ident: e_1_3_2_12_2 doi: 10.1126/science.abe5901 – ident: e_1_3_2_25_2 doi: 10.1038/s41392-021-00695-0 – ident: e_1_3_2_32_2 doi: 10.1021/bi992922o – ident: e_1_3_2_7_2 doi: 10.1038/s41586-022-04474-x – ident: e_1_3_2_10_2 doi: 10.1001/jama.2021.1612 – ident: e_1_3_2_20_2 doi: 10.1016/j.cell.2020.07.012 – ident: e_1_3_2_21_2 doi: 10.1016/j.isci.2021.102311 – ident: e_1_3_2_4_2 doi: 10.1038/s41586-021-03402-9 – ident: e_1_3_2_23_2 doi: 10.1016/j.gendis.2021.05.006 – ident: e_1_3_2_35_2 doi: 10.1016/j.jsb.2021.107713 – ident: e_1_3_2_27_2 – ident: e_1_3_2_38_2 doi: 10.1038/s41467-022-28528-w – ident: e_1_3_2_36_2 doi: 10.7448/IAS.16.1.18723 – ident: e_1_3_2_22_2 doi: 10.1172/JCI145476 – ident: e_1_3_2_39_2 doi: 10.1080/22221751.2021.2008775 – ident: e_1_3_2_18_2 doi: 10.1056/NEJMc2103740 – ident: e_1_3_2_49_2 doi: 10.1128/JVI.00634-21 – ident: e_1_3_2_50_2 doi: 10.1038/nmeth.2089 – reference: 36409111 - J Virol. 2022 Dec 14;96(23):e0173722 – volume: 131 year: 2021 ident: B21 article-title: SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals publication-title: J Clin Invest doi: 10.1172/JCI145476 – volume: 29 start-page: 1124 year: 2021 end-page: 1136.e11 ident: B23 article-title: SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity publication-title: Cell Host Microbe doi: 10.1016/j.chom.2021.06.006 – volume: 599 start-page: 114 year: 2021 end-page: 119 ident: B5 article-title: SARS-CoV-2 B.1.617.2 delta variant replication and immune evasion publication-title: Nature doi: 10.1038/s41586-021-03944-y – volume: 6 start-page: 100112 year: 2022 ident: B25 article-title: SARS-CoV-2 Lambda and Gamma variants competition in Peru, a country with high seroprevalence publication-title: Lancet Reg Health Am doi: 10.1016/j.lana.2021.100112 – volume: 596 start-page: 276 year: 2021 end-page: 280 ident: B16 article-title: Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization publication-title: Nature doi: 10.1038/s41586-021-03777-9 – volume: 13 start-page: 1152 year: 2022 ident: B15 article-title: Antibody escape and global spread of SARS-CoV-2 lineage A.27 publication-title: Nat Commun doi: 10.1038/s41467-022-28766-y – volume: 59 year: 2021 ident: B7 article-title: Acquisition of the L452R mutation in the ACE2-binding interface of Spike protein triggers recent massive expansion of SARS-CoV-2 variants publication-title: J Clin Microbiol doi: 10.1128/JCM.00921-21 – volume: 65 start-page: 569 year: 2020 end-page: 575 ident: B40 article-title: Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2 publication-title: J Hum Genet doi: 10.1038/s10038-020-0771-5 – year: 2020 ident: B4 article-title: Genomic characterization of a novel SARS-CoV-2 lineage from Rio de Janeiro, Brazil publication-title: medRxiv – volume: 35 start-page: 109017 year: 2021 ident: B12 article-title: SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization publication-title: Cell Rep doi: 10.1016/j.celrep.2021.109017 – ident: B26 article-title: World Health Organization . 2022 . Tracking SARS-CoV-2 variants . World Health Organization , Geneva, Switzerland . – ident: B27 article-title: Cao Y , Yisimayi A , Jian F , Song W , Xiao T , Wang L , Du S , Wang J , Li Q , Chen X , Wang P , Zhang Z , Liu P , An R , Hao X , Wang Y , Feng R , Sun H , Zhao L , Zhang W , Zhao D , Zheng J , Yu L , Li C , Zhang N , Wang R , Niu X , Yang S , Song X , Zheng L , Li Z , Gu Q , Shao F , Huang W , Jin R , Shen Z , Wang Y , Wang X , Xiao J , Xie XS . 2022 . BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection . bioRxiv . https://www.biorxiv.org/content/10.1101/2022.04.30.489997v2 . – volume: 384 start-page: 2352 year: 2021 end-page: 2354 ident: B17 article-title: Neutralization of SARS-CoV-2 variants B.1.429 and B.1.351 publication-title: N Engl J Med doi: 10.1056/NEJMc2103740 – volume: 184 start-page: 3426 year: 2021 end-page: 3437.e8 ident: B8 article-title: Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant publication-title: Cell doi: 10.1016/j.cell.2021.04.025 – volume: 11 start-page: 24495 year: 2021 ident: B29 article-title: A global analysis of conservative and non-conservative mutations in SARS-CoV-2 detected in the first year of the COVID-19 world-wide diffusion publication-title: Sci Rep doi: 10.1038/s41598-021-04147-1 – volume: 24 start-page: 103341 year: 2021 ident: B18 article-title: Partial resistance of SARS-CoV-2 Delta variants to vaccine-elicited antibodies and convalescent sera publication-title: iScience doi: 10.1016/j.isci.2021.103341 – volume: 11 start-page: 18 year: 2022 end-page: 29 ident: B38 article-title: Reduced sensitivity of the SARS-CoV-2 Lambda variant to monoclonal antibodies and neutralizing antibodies induced by infection and vaccination publication-title: Emerg Microbes Infect doi: 10.1080/22221751.2021.2008775 – volume: 39 start-page: 4207 year: 2000 end-page: 4216 ident: B31 article-title: Disulfide bonds and protein folding publication-title: Biochemistry doi: 10.1021/bi992922o – volume: 97 start-page: 11905 year: 2000 end-page: 11909 ident: B32 article-title: Furin-mediated processing in the early secretory pathway: sequential cleavage and degradation of misfolded insulin receptors publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.97.22.11905 – volume: 581 start-page: 215 year: 2020 end-page: 220 ident: B1 article-title: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 7 start-page: e01516-15 year: 2016 end-page: e01515 ident: B41 article-title: Relative Resistance of HLA-B to Downregulation by Naturally Occurring HIV-1 Nef Sequences publication-title: mBio doi: 10.1128/mBio.01516-15 – volume: 12 start-page: 6802 year: 2021 ident: B10 article-title: Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands publication-title: Nat Commun doi: 10.1038/s41467-021-27096-9 – volume: Chapter 26 start-page: Unit 26.9 year: 2011 ident: B47 article-title: Monitoring viral-mediated membrane fusion using fluorescent reporter methods publication-title: Curr Protoc Cell Biol doi: 10.1002/0471143030.cb2609s50 – volume: 13 start-page: 871 year: 2022 ident: B37 article-title: Structural basis for SARS-CoV-2 Delta variant recognition of ACE2 receptor and broadly neutralizing antibodies publication-title: Nat Commun doi: 10.1038/s41467-022-28528-w – volume: 14 year: 2018 ident: B46 article-title: HIV-1 adaptation studies reveal a novel Env-mediated homeostasis mechanism for evading lethal hypermutation by APOBEC3G publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1007010 – volume: 6 start-page: 285 year: 2021 ident: B24 article-title: Assessment of infectivity and the impact on neutralizing activity of immune sera of the COVID-19 variant, CAL.20C publication-title: Signal Transduction and Targeted Therapy doi: 10.1038/s41392-021-00695-0 – volume: 185 start-page: 2103 year: 2022 end-page: 2115 ident: B39 article-title: Virological characteristics of the SARS-CoV-2 Omicron BA.2 spike publication-title: Cell doi: 10.1016/j.cell.2022.04.035 – volume: 374 start-page: 1621 year: 2021 end-page: 1626 ident: B14 article-title: Molecular basis of immune evasion by the delta and kappa SARS-CoV-2 variants publication-title: Science doi: 10.1126/science.abl8506 – volume: 8 start-page: veac034 year: 2022 ident: B42 article-title: Molecular epidemiological features of SARS-CoV-2 in Japan publication-title: Virus Evol doi: 10.1093/ve/veac034 – volume: 603 start-page: 706 year: 2022 end-page: 714 ident: B6 article-title: Altered TMPRSS2 usage by SARS-CoV-2 omicron impacts tropism and fusogenicity publication-title: Nature doi: 10.1038/s41586-022-04474-x – volume: 213 start-page: 107713 year: 2021 ident: B34 article-title: Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity publication-title: J Struct Biol doi: 10.1016/j.jsb.2021.107713 – volume: 325 start-page: 1324 year: 2021 end-page: 1326 ident: B9 article-title: Emergence of a novel SARS-CoV-2 variant in southern California publication-title: JAMA doi: 10.1001/jama.2021.1612 – volume: 24 start-page: 102311 year: 2021 ident: B20 article-title: Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-CoV-2 publication-title: iScience doi: 10.1016/j.isci.2021.102311 – volume: 295 start-page: 13023 year: 2020 end-page: 13030 ident: B45 article-title: Super-rapid quantitation of the production of HIV-1 harboring a luminescent peptide tag publication-title: J Biol Chem doi: 10.1074/jbc.RA120.013887 – volume: 8 year: 2013 ident: B30 article-title: Proline: the distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome publication-title: PLoS One doi: 10.1371/journal.pone.0053785 – volume: 5 year: 2010 ident: B43 article-title: FastTree 2: approximately maximum-likelihood trees for large alignments publication-title: PLoS One doi: 10.1371/journal.pone.0009490 – volume: 371 start-page: 172 year: 2021 end-page: 177 ident: B11 article-title: Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans publication-title: Science doi: 10.1126/science.abe5901 – volume: 16 start-page: 18723 year: 2013 end-page: 18723 ident: B35 article-title: Development of a rapid cell-fusion-based phenotypic HIV-1 tropism assay publication-title: J Int AIDS Soc doi: 10.7448/IAS.16.1.18723 – volume: 372 start-page: 525 year: 2021 end-page: 530 ident: B36 article-title: Structural impact on SARS-CoV-2 spike protein by D614G substitution publication-title: Science doi: 10.1126/science.abf2303 – volume: 17 start-page: 138 year: 2020 ident: B28 article-title: Characterization of codon usage pattern in SARS-CoV-2 publication-title: Virol J doi: 10.1186/s12985-020-01395-x – volume: 95 year: 2021 ident: B48 article-title: Aromatic side chain at position 412 of SERINC5 exerts restriction activity toward HIV-1 and other retroviruses publication-title: J Virol doi: 10.1128/JVI.00634-21 – volume: 108 start-page: 193 year: 1991 end-page: 199 ident: B44 article-title: Efficient selection for high-expression transfectants with a novel eukaryotic vector publication-title: Gene doi: 10.1016/0378-1119(91)90434-d – volume: 372 start-page: n230 year: 2021 ident: B2 article-title: Covid-19: New UK variant may be linked to increased death rate, early data indicate publication-title: BMJ doi: 10.1136/bmj.n230 – volume: 38 start-page: 110218 year: 2022 ident: B13 article-title: The SARS-CoV-2 lambda variant exhibits enhanced infectivity and immune resistance publication-title: Cell Rep doi: 10.1016/j.celrep.2021.110218 – volume: 12 start-page: 848 year: 2021 ident: B33 article-title: SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity publication-title: Nat Commun doi: 10.1038/s41467-021-21118-2 – volume: 592 start-page: 438 year: 2021 end-page: 443 ident: B3 article-title: Detection of a SARS-CoV-2 variant of concern in South Africa publication-title: Nature doi: 10.1038/s41586-021-03402-9 – volume: 182 start-page: 1284 year: 2020 end-page: 1294.e9 ident: B19 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 13 start-page: 5440 year: 2022 ident: B50 article-title: The SARS-CoV-2 Omicron BA.1 spike G446S mutation potentiates antiviral T-cell recognition publication-title: Nat Commun doi: 10.1038/s41467-022-33068-4 – volume: 9 start-page: 216 year: 2022 end-page: 229 ident: B22 article-title: Identification of cross-reactive CD8+ T cell receptors with high functional avidity to a SARS-CoV-2 immunodominant epitope and its natural mutant variants publication-title: Genes Dis doi: 10.1016/j.gendis.2021.05.006 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: B49 article-title: NIH Image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 |
SSID | ssj0014464 |
Score | 2.4623265 |
Snippet | In a span of less than 3 years since the declaration of the coronavirus pandemic, numerous SARS-CoV-2 variants of concern have emerged all around the globe,... Mutations at spike protein L452 are recurrently observed in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including... |
SourceID | pubmedcentral proquest asm2 pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e0116222 |
SubjectTerms | Amino Acid Substitution Amino Acids - genetics COVID-19 Genetic Diversity and Evolution Humans Immune Sera Mutation Nucleotides SARS-CoV-2 - genetics Spike Glycoprotein, Coronavirus - metabolism Virology |
Title | Dissecting Naturally Arising Amino Acid Substitutions at Position L452 of SARS-CoV-2 Spike |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36214577 https://journals.asm.org/doi/10.1128/jvi.01162-22 https://www.proquest.com/docview/2723485392 https://pubmed.ncbi.nlm.nih.gov/PMC9599599 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgCIkXND5XBsggeKoyEsdx4sdqbBSoikRbVPES2XEiSrdkWjOk8tdztvPJNmnwElXpya18P5_v7PvdIfSGhSxNwNF3qEoCh3rKd3iQKUeywKdRJgMuTYLslI0X9NMyWLblCQy7pJQHye8reSX_o1V4B3rVLNl_0GwzKLyAz6BfeIKG4XkjHb_Xl-mJSVyeClNA42Q7HMGyNWcdp6u8GI6SlTLWwaQEmKw3UeoWvSZVazihATG8ldHXmXNYfHPIcHa2Wvfzg1qfVZPiusfw86q5caE7Fs3Sahc0h9bbQglLBloXzUmurfE7hlFKsW6PAsQ5QNGS0z4USjPLuocREMeCFbeM98p-6vKk2gmz28sV7yqjy1kHXMTtmNBUXw0RS1a-bN-J5iz8_LU6MFKOFeuX0Z5-iY8Xk0k8P1rOb6M7BOIHE2t__NxcL0EMbNIN6n9WMyJI9K47NmzTYnNK-i7LpTjk73Tajn8y30X3KyXhkUXJA3QrzR-iu7bV6PYR-t5iBTdYwRVWsMEK1ljBPaxgUeIaK1hjBRcZbrGCDVYeo8Xx0fxw7FR9NRxBI1o6XgI-sC4MmigeRmnoS5gPCJulCFkGDn_o05QGEpY3dZXKCHcDBW4wY5wrppjrP0E7eZGnewgnSsqMuNzPdBNz5kahnxBXhH7qedITcoBe6xmMq0WziU3MSaIYpjk20xwTMkDDen7jpKpMrxuknFwj_baRPrMVWa6Re1WrKgaTqe_BRJ4WF5uYACAouKkcZJ5a1TUjgT_n0SAMByjsKbUR0OXY-9_kqx-mLDs3tfv4sxv87j66166e52inPL9IX4BzW8qXBqh_AFREod8 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissecting+Naturally+Arising+Amino+Acid+Substitutions+at+Position+L452+of+SARS-CoV-2+Spike&rft.jtitle=Journal+of+virology&rft.au=Tan%2C+Toong+Seng&rft.au=Toyoda%2C+Mako&rft.au=Ode%2C+Hirotaka&rft.au=Barabona%2C+Godfrey&rft.date=2022-10-26&rft.issn=1098-5514&rft.eissn=1098-5514&rft.volume=96&rft.issue=20&rft.spage=e0116222&rft_id=info:doi/10.1128%2Fjvi.01162-22&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |