Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching
In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scal...
Saved in:
Published in | Langmuir Vol. 35; no. 34; pp. 11016 - 11022 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
27.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation. |
---|---|
AbstractList | In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation. In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid-liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid-liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation. |
Author | Chen, Weiping Liu, Xiaowei Jiang, Shuyue Rong, Wanting Zhang, Haifeng Tuo, Yanjing |
AuthorAffiliation | Ministry of Education Key Laboratory of Micro-Systems and Micro-Structures Manufacturing MEMS Center State Key Laboratory of Urban Water Resource & Environment |
AuthorAffiliation_xml | – name: MEMS Center – name: Ministry of Education – name: State Key Laboratory of Urban Water Resource & Environment – name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing |
Author_xml | – sequence: 1 givenname: Yanjing surname: Tuo fullname: Tuo, Yanjing – sequence: 2 givenname: Haifeng orcidid: 0000-0002-4917-746X surname: Zhang fullname: Zhang, Haifeng email: zhanghf@hit.edu.cn organization: Ministry of Education – sequence: 3 givenname: Wanting surname: Rong fullname: Rong, Wanting – sequence: 4 givenname: Shuyue surname: Jiang fullname: Jiang, Shuyue – sequence: 5 givenname: Weiping surname: Chen fullname: Chen, Weiping organization: Ministry of Education – sequence: 6 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: Ministry of Education |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31364849$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUlPwzAQhS1URBf4BwjlyCXFW-KEW1XKIlViP1u247SukjjYyaH_Hpe2Fw5wGs3M-8bWe2MwaGyjAbhEcIogRjdC-WklmlXdGzfNJUSQwhMwQgmGcZJhNgAjyCiJGU3JEIy930AIc0LzMzAkiKQ0o_kIvN45sYredNGrztgmsmU0a4y3nbOtUdF732q33hahW1v5M3ClUNpHL063wukikttoKbx20aJTa9OszsFpKSqvLw51Aj7vFx_zx3j5_PA0ny1jEV7uYpRppjTKEaYFCxVDhjKBEU1pEuYplpJplsoSZygtcCKlyNKypIJRqYQkZAKu93dbZ7967TteG690FTzRtvccE5IgChGC_0txyihMwr-C9Oog7WWtC946Uwu35UfHguB2L1DOeu90yZXpxM67zglTcQT5Lh4e4uHHePghngDTX_Dx_j8Y3GO77cb2rgnG_o18Ax2XqEE |
CitedBy_id | crossref_primary_10_1007_s10853_023_08217_9 crossref_primary_10_1016_j_porgcoat_2020_106090 crossref_primary_10_1021_acs_langmuir_1c02617 crossref_primary_10_1007_s41871_024_00237_6 crossref_primary_10_2139_ssrn_4175996 crossref_primary_10_1039_D3NR02779A crossref_primary_10_1016_j_jciso_2022_100059 crossref_primary_10_1016_j_surfin_2022_102556 crossref_primary_10_1016_j_mtcomm_2022_103403 crossref_primary_10_1021_acs_langmuir_3c03929 crossref_primary_10_1021_acsami_0c11224 crossref_primary_10_2139_ssrn_3995926 crossref_primary_10_1016_j_ifset_2024_103899 crossref_primary_10_1246_cl_220447 crossref_primary_10_1016_j_colsurfa_2024_133497 crossref_primary_10_1088_2631_7990_ad0471 crossref_primary_10_1142_S0218625X23500725 crossref_primary_10_1016_j_colsurfa_2020_125983 crossref_primary_10_1039_D2SM00165A crossref_primary_10_1016_j_colsurfa_2019_124331 crossref_primary_10_1021_acs_langmuir_1c00640 crossref_primary_10_1063_5_0012620 crossref_primary_10_1016_j_mtcomm_2024_108573 crossref_primary_10_1007_s10853_023_09162_3 crossref_primary_10_1007_s00170_023_11331_2 crossref_primary_10_1038_s41467_022_31092_y crossref_primary_10_1016_j_isci_2024_111059 crossref_primary_10_3390_coatings13081305 crossref_primary_10_1016_j_carbpol_2024_122595 crossref_primary_10_1016_j_jmrt_2022_05_150 crossref_primary_10_1063_5_0113964 crossref_primary_10_1016_j_surfin_2023_103317 crossref_primary_10_1021_acs_langmuir_0c02790 crossref_primary_10_1002_admi_202101616 crossref_primary_10_1016_j_colsurfa_2021_127406 crossref_primary_10_1016_j_jcis_2022_06_155 crossref_primary_10_1021_acs_langmuir_4c00445 crossref_primary_10_3390_nano12193370 crossref_primary_10_1016_j_colsurfa_2023_131181 crossref_primary_10_1007_s11998_022_00699_7 crossref_primary_10_1016_j_giant_2020_100017 crossref_primary_10_1016_j_mseb_2025_118063 crossref_primary_10_1016_j_surfcoat_2024_130622 crossref_primary_10_1016_j_colsurfa_2024_133188 crossref_primary_10_3390_ma16041417 crossref_primary_10_1007_s00339_022_06183_8 crossref_primary_10_1021_acs_langmuir_1c01123 crossref_primary_10_3389_fbioe_2022_958095 crossref_primary_10_1007_s40544_022_0652_3 crossref_primary_10_1016_j_mtcomm_2022_104460 crossref_primary_10_1016_j_colsurfa_2023_131109 crossref_primary_10_1007_s11051_022_05651_9 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122573 crossref_primary_10_1016_j_colsurfa_2023_132700 crossref_primary_10_1088_2053_1591_ac2a61 crossref_primary_10_1016_j_colsurfa_2022_128800 crossref_primary_10_1016_j_apsusc_2020_145754 crossref_primary_10_1016_j_applthermaleng_2020_115147 crossref_primary_10_1063_5_0075171 crossref_primary_10_1021_acs_langmuir_0c03596 crossref_primary_10_1007_s40544_021_0502_8 crossref_primary_10_1039_D2NR06780C crossref_primary_10_1016_j_applthermaleng_2023_120098 crossref_primary_10_1016_j_apsusc_2021_150825 crossref_primary_10_1088_2053_1591_ac4aa4 crossref_primary_10_1016_j_jpowsour_2021_229573 crossref_primary_10_1088_2053_1591_ac4b4c crossref_primary_10_1016_j_surfin_2024_104168 crossref_primary_10_1049_bsb2_12044 crossref_primary_10_3390_polym17020174 crossref_primary_10_1021_acs_langmuir_0c03623 crossref_primary_10_1021_acs_langmuir_0c01923 crossref_primary_10_1016_j_surfin_2022_102421 crossref_primary_10_1021_acsomega_3c10436 crossref_primary_10_1088_1742_6596_2463_1_012005 crossref_primary_10_1007_s00339_020_03653_9 crossref_primary_10_1016_j_colsurfa_2021_126259 crossref_primary_10_1002_admi_202100555 crossref_primary_10_1016_j_surfcoat_2023_129882 crossref_primary_10_1016_j_surfcoat_2024_130521 crossref_primary_10_1016_j_surfin_2021_101238 crossref_primary_10_1021_acs_langmuir_3c03544 crossref_primary_10_1088_1361_6439_ad208a crossref_primary_10_3390_coatings9110753 crossref_primary_10_1016_j_renene_2021_12_123 crossref_primary_10_1021_acs_langmuir_3c01202 crossref_primary_10_1063_5_0100476 crossref_primary_10_3389_fbioe_2022_1033514 crossref_primary_10_3390_coatings11010095 |
Cites_doi | 10.1021/j150474a015 10.1103/physrevlett.106.014502 10.1039/tf9444000546 10.1039/c3nr01710a 10.1002/adem.201500458 10.1021/am1006035 10.1002/admi.201600641 10.1021/la703821h 10.1039/c0nr00642d 10.1039/c7ra05820a 10.1039/c2sc21772d 10.1039/c2sm26517f 10.1021/la301894e 10.1126/sciadv.1603288 10.1039/c3nr04755e 10.1007/s004250050096 10.1002/adfm.201103017 10.1039/b612667g 10.1039/c1nr11369k 10.1021/acsami.5b01772 10.1039/c1jm14327a 10.1073/pnas.192252799 10.1039/c6sm00436a 10.1021/cm1030377 10.1126/science.1115172 10.1021/la904585j 10.1016/j.colsurfa.2017.09.018 10.1021/cr400083y 10.1039/c5ta09936f 10.1002/adma.201670220 10.1006/anbo.1997.0400 10.1016/j.nanoen.2018.11.089 10.1002/adma.201002689 10.1038/nmat856 10.1063/1.3103250 10.1002/adfm.201501705 10.1016/j.energy.2017.02.117 10.1017/jfm.2014.151 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 |
DOI | 10.1021/acs.langmuir.9b01040 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 11022 |
ExternalDocumentID | 31364849 10_1021_acs_langmuir_9b01040 a329315716 |
Genre | Journal Article |
GroupedDBID | - .K2 02 53G 55A 5GY 5VS 7~N AABXI ABFLS ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED ED~ EJD F5P GNL IH9 IHE JG JG~ K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X --- -~X 4.4 AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV AGXLV AHGAQ CITATION CUPRZ GGK YQT ~02 NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-a484t-18e7ce19124d7e1920718a214645ce162bb7e76bf2816d25bba86ff4a74bcab33 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Fri Jul 11 10:06:30 EDT 2025 Fri Jul 11 04:41:25 EDT 2025 Wed Feb 19 02:36:51 EST 2025 Thu Apr 24 22:58:31 EDT 2025 Tue Jul 01 01:34:39 EDT 2025 Thu Aug 27 13:44:19 EDT 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a484t-18e7ce19124d7e1920718a214645ce162bb7e76bf2816d25bba86ff4a74bcab33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4917-746X |
PMID | 31364849 |
PQID | 2267405484 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2335140110 proquest_miscellaneous_2267405484 pubmed_primary_31364849 crossref_citationtrail_10_1021_acs_langmuir_9b01040 crossref_primary_10_1021_acs_langmuir_9b01040 acs_journals_10_1021_acs_langmuir_9b01040 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N ACJ VG9 W1F ACS AEESW AFEFF .K2 ABMVS ABUCX IH9 BAANH AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-27 |
PublicationDateYYYYMMDD | 2019-08-27 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-27 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2019 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref6/cit6 ref36/cit36 ref3/cit3 ref27/cit27 ref18/cit18 ref11/cit11 ref25/cit25 ref16/cit16 ref29/cit29 ref32/cit32 ref23/cit23 ref14/cit14 ref8/cit8 ref5/cit5 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref28/cit28 ref20/cit20 ref17/cit17 ref10/cit10 ref26/cit26 ref35/cit35 ref19/cit19 ref21/cit21 ref12/cit12 ref15/cit15 ref22/cit22 ref13/cit13 ref33/cit33 ref4/cit4 ref30/cit30 ref1/cit1 ref24/cit24 ref38/cit38 ref7/cit7 |
References_xml | – ident: ref1/cit1 doi: 10.1021/j150474a015 – ident: ref14/cit14 doi: 10.1103/physrevlett.106.014502 – ident: ref2/cit2 doi: 10.1039/tf9444000546 – ident: ref32/cit32 doi: 10.1039/c3nr01710a – ident: ref22/cit22 doi: 10.1002/adem.201500458 – ident: ref12/cit12 doi: 10.1021/am1006035 – ident: ref25/cit25 doi: 10.1002/admi.201600641 – ident: ref7/cit7 doi: 10.1021/la703821h – ident: ref10/cit10 doi: 10.1039/c0nr00642d – ident: ref26/cit26 doi: 10.1039/c7ra05820a – ident: ref13/cit13 doi: 10.1039/c2sc21772d – ident: ref20/cit20 doi: 10.1039/c2sm26517f – ident: ref24/cit24 doi: 10.1021/la301894e – ident: ref38/cit38 doi: 10.1126/sciadv.1603288 – ident: ref31/cit31 doi: 10.1039/c3nr04755e – ident: ref3/cit3 doi: 10.1007/s004250050096 – ident: ref27/cit27 doi: 10.1002/adfm.201103017 – ident: ref17/cit17 doi: 10.1039/b612667g – ident: ref5/cit5 doi: 10.1039/c1nr11369k – ident: ref15/cit15 doi: 10.1021/acsami.5b01772 – ident: ref18/cit18 doi: 10.1039/c1jm14327a – ident: ref6/cit6 doi: 10.1073/pnas.192252799 – ident: ref34/cit34 doi: 10.1039/c6sm00436a – ident: ref11/cit11 doi: 10.1021/cm1030377 – ident: ref9/cit9 doi: 10.1126/science.1115172 – ident: ref8/cit8 doi: 10.1021/la904585j – ident: ref21/cit21 doi: 10.1016/j.colsurfa.2017.09.018 – ident: ref33/cit33 doi: 10.1021/cr400083y – ident: ref35/cit35 doi: 10.1039/c5ta09936f – ident: ref29/cit29 doi: 10.1002/adma.201670220 – ident: ref4/cit4 doi: 10.1006/anbo.1997.0400 – ident: ref16/cit16 doi: 10.1016/j.nanoen.2018.11.089 – ident: ref19/cit19 doi: 10.1002/adma.201002689 – ident: ref30/cit30 doi: 10.1038/nmat856 – ident: ref23/cit23 doi: 10.1063/1.3103250 – ident: ref28/cit28 doi: 10.1002/adfm.201501705 – ident: ref36/cit36 doi: 10.1016/j.energy.2017.02.117 – ident: ref37/cit37 doi: 10.1017/jfm.2014.151 |
SSID | ssj0009349 |
Score | 2.5894327 |
Snippet | In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 11016 |
SubjectTerms | anisotropy contact angle droplets fluorides friction hydrophobicity liquid-solid interface mathematical models rolling shipping stainless steel |
Title | Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching |
URI | http://dx.doi.org/10.1021/acs.langmuir.9b01040 https://www.ncbi.nlm.nih.gov/pubmed/31364849 https://www.proquest.com/docview/2267405484 https://www.proquest.com/docview/2335140110 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOcAFyntpi4zEhUMW-bGxc1wtrSrEu1TqLfLYTrsCklUeh_LrmcmjFaBSOEUeeRJ5PNF8Y8-DsRegCgQNFhKpVEh0FIvEeusS0BkUUXjUKUpOfvc-PTzWb04WJ5eO4u83-FK8cr6Z09nd925dzzMg_wFd9JsytYacreXq6LLIrhrgLpXdNDpVU6rcFW8hg-SbXw3SFSiztzYHd9mHKWdnCDL5Ou9amPsff5Zw_MeFbLM7I_Dky0FT7rEbsbzPbq2mfm8P2KfXtTvln6mUK20Wrwq-LNdN1dbVZu35UbeJ9dl5wNFZBT2hLiiei3-sYx_GzuGcv0WjWPP9to_QfMiOD_a_rA6TseFC4rTVbSJsND6iByd1MPiUiD-so9bfeoH0VAKYaFIopBVpkAsAZ9Oi0M5o8A6UesS2yqqMTygVPNgsZNGGCNoKnwmvYzAK0AG0QWcz9hLlkY8_TJP3d-FS5ESchJSPQpoxNe1Q7sfK5dRA49s1XMkF12ao3HHN_OfT5ucoebo3cWWsuiZHhGoQ16KI_jJHUUoEgakZezxozsVXlVApMmdP_2PNO-w2QrOMTq-l2WVbbd3FPYQ_LTzrdf4njIECYg |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcigX3o-FFowEBw5Z8GNj58BhtW21pdsKaCv1FuJH6KolWeUhtP0__JX-LmayyVYglYpDJU5RRnZij8f2N_Y8CHltRAqgQZuAC-EC6dkg0FYngZGRST2zIFPonLy3H46P5MfjwfEK-dn5wkAjSvhS2VziX0YXYO-Qhkd43-tp0Y8MqhHvW1vKXT__AZpa-WFnE4b1DefbW4ejcdAmEwgSqWUVMO2V9aCdcOkUPDnsrTrBtNZyAPSQG6O8Ck3KNQsdHxiT6DBNZaKksYnBc09Y6W8B_uGo4w1HB5exfcUCZWO0TyVD0XnoXdFq3Adt-fs-eAW4bTa57bvkYsmexrbltF9Xpm_P_4gc-d_z7x6508JsOlzMi_tkxWcPyNqoy273kHzeLJJv9AsGrkXRpHlKh9m0zKsin00tPahnvjiZO3g7yU1DKFK0XqOfCt8Y7VMzpxOAAAXdqhp71Efk6EZ69JisZnnmn6Lju9ORi7x23kjNbMSs9E4JA-qudjLqkbfA_7hdHsq4ufnnLEZiNyhxOyg9IjrBiG0bpx3ThZxdUytY1pot4pRcU_5VJ3MxcB5viZLM53UZAx5XgOKBRX8pI9ABBKFjjzxZCOzyr4KJECpHz_6hzy_J2vhwbxJPdvZ3n5PbAEojPLfnap2sVkXtNwD4VeZFM-0o-XrTcvoLe6Jkkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqVgIulDfb8jASHDhkwbE3cQ4cVrtdtbRUhVKpt5CxHboCklUeQss_4q_wq5jJYxFIpeLQA6coIzuxx2P7G3sejD0FmSJo0OD5UlpPOTHytNGJByqC1AmDMkXOyW8Og90T9fp0dLrGvve-MNiIEr9UNpf4NKsXNu0iDIgXRKdjvC_1vBhGQKrEy86ect8tv6K2Vr7am-LQPvP92c77ya7XJRTwEqVV5QntQuNQQ_GVDfHp4_6qE0ptrUZID3yA0IUBpL4WgfVHAIkO0lQloQKTAJ194mq_QTeFpOeNJ8e_4vvKFmlTxM9QBbL30jun1bQXmvL3vfAcgNtsdLNN9mPFosa-5dOwrmBovv0RPfK_4OENdr2D23zczo-bbM1lt9jVSZ_l7jZ7Oy2Sj_wdBbAlEeV5ysfZvMyrIl_MDT-uF644W1p8O8uhIRQpWbHxo8I1xvsclvwAoUDBd6rGLvUOO7mUHt1l61meufvkAG91ZCOnrQOlhYmEUc6GElDt1VZFA_Yc-R93y0QZNxYAvoiJ2A9K3A3KgMleOGLTxWuntCGfL6jlrWot2nglF5R_0stdjJyn26Ikc3ldxojLQ0TzyKK_lJHkCEIQcsDutUK7-qsUMsDK0dY_9Pkxu3I0ncUHe4f72-waYtOotbV8wNaronYPEf9V8KiZeZx9uGwx_QkhDGcN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+Reduction+of+Anisotropic+Superhydrophobic+Surfaces+Prepared+by+Laser+Etching&rft.jtitle=Langmuir&rft.au=Tuo%2C+Yanjing&rft.au=Zhang%2C+Haifeng&rft.au=Rong%2C+Wanting&rft.au=Jiang%2C+Shuyue&rft.date=2019-08-27&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=35&rft.issue=34&rft.spage=11016&rft.epage=11022&rft_id=info:doi/10.1021%2Facs.langmuir.9b01040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_9b01040 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |