Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching

In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scal...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 35; no. 34; pp. 11016 - 11022
Main Authors Tuo, Yanjing, Zhang, Haifeng, Rong, Wanting, Jiang, Shuyue, Chen, Weiping, Liu, Xiaowei
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 27.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.
AbstractList In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid–liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.
In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid-liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the anisotropic surface is studied by a self-designed solid-liquid interface friction test device. Periodic arrangement structures of quadrate scales with oblique grooves are obtained on a stainless steel surface by a laser. After modification by fluoride, the surface shows superhydrophobicity and anisotropic adhesive property. Here, the inclined direction of grooves and the inverse direction are defined as RO and OR, respectively. By changing the inclination of the grooves, a surface is obtained with a contact angle of 160° and a rolling angle difference of 6° along the RO and inverse RO direction. It is verified by numerical simulation and experiment that the subjected force of water droplets on the surface is different along the RO and inverse RO direction. Furthermore, the as-prepared surface has different drag reduction effects along the two directions. With the increase of velocity, the drag reduction effect of the superhydrophobic surface decreases against the RO direction, while the drag reduction effect along the RO direction is almost unchanged. We believe the anisotropic surface will be helpful in novel microfluid devices and shipping transportation.
Author Chen, Weiping
Liu, Xiaowei
Jiang, Shuyue
Rong, Wanting
Zhang, Haifeng
Tuo, Yanjing
AuthorAffiliation Ministry of Education
Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
MEMS Center
State Key Laboratory of Urban Water Resource & Environment
AuthorAffiliation_xml – name: MEMS Center
– name: Ministry of Education
– name: State Key Laboratory of Urban Water Resource & Environment
– name: Key Laboratory of Micro-Systems and Micro-Structures Manufacturing
Author_xml – sequence: 1
  givenname: Yanjing
  surname: Tuo
  fullname: Tuo, Yanjing
– sequence: 2
  givenname: Haifeng
  orcidid: 0000-0002-4917-746X
  surname: Zhang
  fullname: Zhang, Haifeng
  email: zhanghf@hit.edu.cn
  organization: Ministry of Education
– sequence: 3
  givenname: Wanting
  surname: Rong
  fullname: Rong, Wanting
– sequence: 4
  givenname: Shuyue
  surname: Jiang
  fullname: Jiang, Shuyue
– sequence: 5
  givenname: Weiping
  surname: Chen
  fullname: Chen, Weiping
  organization: Ministry of Education
– sequence: 6
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Ministry of Education
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31364849$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPwzAQhS1URBf4BwjlyCXFW-KEW1XKIlViP1u247SukjjYyaH_Hpe2Fw5wGs3M-8bWe2MwaGyjAbhEcIogRjdC-WklmlXdGzfNJUSQwhMwQgmGcZJhNgAjyCiJGU3JEIy930AIc0LzMzAkiKQ0o_kIvN45sYredNGrztgmsmU0a4y3nbOtUdF732q33hahW1v5M3ClUNpHL063wukikttoKbx20aJTa9OszsFpKSqvLw51Aj7vFx_zx3j5_PA0ny1jEV7uYpRppjTKEaYFCxVDhjKBEU1pEuYplpJplsoSZygtcCKlyNKypIJRqYQkZAKu93dbZ7967TteG690FTzRtvccE5IgChGC_0txyihMwr-C9Oog7WWtC946Uwu35UfHguB2L1DOeu90yZXpxM67zglTcQT5Lh4e4uHHePghngDTX_Dx_j8Y3GO77cb2rgnG_o18Ax2XqEE
CitedBy_id crossref_primary_10_1007_s10853_023_08217_9
crossref_primary_10_1016_j_porgcoat_2020_106090
crossref_primary_10_1021_acs_langmuir_1c02617
crossref_primary_10_1007_s41871_024_00237_6
crossref_primary_10_2139_ssrn_4175996
crossref_primary_10_1039_D3NR02779A
crossref_primary_10_1016_j_jciso_2022_100059
crossref_primary_10_1016_j_surfin_2022_102556
crossref_primary_10_1016_j_mtcomm_2022_103403
crossref_primary_10_1021_acs_langmuir_3c03929
crossref_primary_10_1021_acsami_0c11224
crossref_primary_10_2139_ssrn_3995926
crossref_primary_10_1016_j_ifset_2024_103899
crossref_primary_10_1246_cl_220447
crossref_primary_10_1016_j_colsurfa_2024_133497
crossref_primary_10_1088_2631_7990_ad0471
crossref_primary_10_1142_S0218625X23500725
crossref_primary_10_1016_j_colsurfa_2020_125983
crossref_primary_10_1039_D2SM00165A
crossref_primary_10_1016_j_colsurfa_2019_124331
crossref_primary_10_1021_acs_langmuir_1c00640
crossref_primary_10_1063_5_0012620
crossref_primary_10_1016_j_mtcomm_2024_108573
crossref_primary_10_1007_s10853_023_09162_3
crossref_primary_10_1007_s00170_023_11331_2
crossref_primary_10_1038_s41467_022_31092_y
crossref_primary_10_1016_j_isci_2024_111059
crossref_primary_10_3390_coatings13081305
crossref_primary_10_1016_j_carbpol_2024_122595
crossref_primary_10_1016_j_jmrt_2022_05_150
crossref_primary_10_1063_5_0113964
crossref_primary_10_1016_j_surfin_2023_103317
crossref_primary_10_1021_acs_langmuir_0c02790
crossref_primary_10_1002_admi_202101616
crossref_primary_10_1016_j_colsurfa_2021_127406
crossref_primary_10_1016_j_jcis_2022_06_155
crossref_primary_10_1021_acs_langmuir_4c00445
crossref_primary_10_3390_nano12193370
crossref_primary_10_1016_j_colsurfa_2023_131181
crossref_primary_10_1007_s11998_022_00699_7
crossref_primary_10_1016_j_giant_2020_100017
crossref_primary_10_1016_j_mseb_2025_118063
crossref_primary_10_1016_j_surfcoat_2024_130622
crossref_primary_10_1016_j_colsurfa_2024_133188
crossref_primary_10_3390_ma16041417
crossref_primary_10_1007_s00339_022_06183_8
crossref_primary_10_1021_acs_langmuir_1c01123
crossref_primary_10_3389_fbioe_2022_958095
crossref_primary_10_1007_s40544_022_0652_3
crossref_primary_10_1016_j_mtcomm_2022_104460
crossref_primary_10_1016_j_colsurfa_2023_131109
crossref_primary_10_1007_s11051_022_05651_9
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122573
crossref_primary_10_1016_j_colsurfa_2023_132700
crossref_primary_10_1088_2053_1591_ac2a61
crossref_primary_10_1016_j_colsurfa_2022_128800
crossref_primary_10_1016_j_apsusc_2020_145754
crossref_primary_10_1016_j_applthermaleng_2020_115147
crossref_primary_10_1063_5_0075171
crossref_primary_10_1021_acs_langmuir_0c03596
crossref_primary_10_1007_s40544_021_0502_8
crossref_primary_10_1039_D2NR06780C
crossref_primary_10_1016_j_applthermaleng_2023_120098
crossref_primary_10_1016_j_apsusc_2021_150825
crossref_primary_10_1088_2053_1591_ac4aa4
crossref_primary_10_1016_j_jpowsour_2021_229573
crossref_primary_10_1088_2053_1591_ac4b4c
crossref_primary_10_1016_j_surfin_2024_104168
crossref_primary_10_1049_bsb2_12044
crossref_primary_10_3390_polym17020174
crossref_primary_10_1021_acs_langmuir_0c03623
crossref_primary_10_1021_acs_langmuir_0c01923
crossref_primary_10_1016_j_surfin_2022_102421
crossref_primary_10_1021_acsomega_3c10436
crossref_primary_10_1088_1742_6596_2463_1_012005
crossref_primary_10_1007_s00339_020_03653_9
crossref_primary_10_1016_j_colsurfa_2021_126259
crossref_primary_10_1002_admi_202100555
crossref_primary_10_1016_j_surfcoat_2023_129882
crossref_primary_10_1016_j_surfcoat_2024_130521
crossref_primary_10_1016_j_surfin_2021_101238
crossref_primary_10_1021_acs_langmuir_3c03544
crossref_primary_10_1088_1361_6439_ad208a
crossref_primary_10_3390_coatings9110753
crossref_primary_10_1016_j_renene_2021_12_123
crossref_primary_10_1021_acs_langmuir_3c01202
crossref_primary_10_1063_5_0100476
crossref_primary_10_3389_fbioe_2022_1033514
crossref_primary_10_3390_coatings11010095
Cites_doi 10.1021/j150474a015
10.1103/physrevlett.106.014502
10.1039/tf9444000546
10.1039/c3nr01710a
10.1002/adem.201500458
10.1021/am1006035
10.1002/admi.201600641
10.1021/la703821h
10.1039/c0nr00642d
10.1039/c7ra05820a
10.1039/c2sc21772d
10.1039/c2sm26517f
10.1021/la301894e
10.1126/sciadv.1603288
10.1039/c3nr04755e
10.1007/s004250050096
10.1002/adfm.201103017
10.1039/b612667g
10.1039/c1nr11369k
10.1021/acsami.5b01772
10.1039/c1jm14327a
10.1073/pnas.192252799
10.1039/c6sm00436a
10.1021/cm1030377
10.1126/science.1115172
10.1021/la904585j
10.1016/j.colsurfa.2017.09.018
10.1021/cr400083y
10.1039/c5ta09936f
10.1002/adma.201670220
10.1006/anbo.1997.0400
10.1016/j.nanoen.2018.11.089
10.1002/adma.201002689
10.1038/nmat856
10.1063/1.3103250
10.1002/adfm.201501705
10.1016/j.energy.2017.02.117
10.1017/jfm.2014.151
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
DOI 10.1021/acs.langmuir.9b01040
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 11022
ExternalDocumentID 31364849
10_1021_acs_langmuir_9b01040
a329315716
Genre Journal Article
GroupedDBID -
.K2
02
53G
55A
5GY
5VS
7~N
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F5P
GNL
IH9
IHE
JG
JG~
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
---
-~X
4.4
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
YQT
~02
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-a484t-18e7ce19124d7e1920718a214645ce162bb7e76bf2816d25bba86ff4a74bcab33
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Fri Jul 11 10:06:30 EDT 2025
Fri Jul 11 04:41:25 EDT 2025
Wed Feb 19 02:36:51 EST 2025
Thu Apr 24 22:58:31 EDT 2025
Tue Jul 01 01:34:39 EDT 2025
Thu Aug 27 13:44:19 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a484t-18e7ce19124d7e1920718a214645ce162bb7e76bf2816d25bba86ff4a74bcab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4917-746X
PMID 31364849
PQID 2267405484
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2335140110
proquest_miscellaneous_2267405484
pubmed_primary_31364849
crossref_citationtrail_10_1021_acs_langmuir_9b01040
crossref_primary_10_1021_acs_langmuir_9b01040
acs_journals_10_1021_acs_langmuir_9b01040
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-27
PublicationDateYYYYMMDD 2019-08-27
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-27
  day: 27
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2019
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref6/cit6
ref36/cit36
ref3/cit3
ref27/cit27
ref18/cit18
ref11/cit11
ref25/cit25
ref16/cit16
ref29/cit29
ref32/cit32
ref23/cit23
ref14/cit14
ref8/cit8
ref5/cit5
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref28/cit28
ref20/cit20
ref17/cit17
ref10/cit10
ref26/cit26
ref35/cit35
ref19/cit19
ref21/cit21
ref12/cit12
ref15/cit15
ref22/cit22
ref13/cit13
ref33/cit33
ref4/cit4
ref30/cit30
ref1/cit1
ref24/cit24
ref38/cit38
ref7/cit7
References_xml – ident: ref1/cit1
  doi: 10.1021/j150474a015
– ident: ref14/cit14
  doi: 10.1103/physrevlett.106.014502
– ident: ref2/cit2
  doi: 10.1039/tf9444000546
– ident: ref32/cit32
  doi: 10.1039/c3nr01710a
– ident: ref22/cit22
  doi: 10.1002/adem.201500458
– ident: ref12/cit12
  doi: 10.1021/am1006035
– ident: ref25/cit25
  doi: 10.1002/admi.201600641
– ident: ref7/cit7
  doi: 10.1021/la703821h
– ident: ref10/cit10
  doi: 10.1039/c0nr00642d
– ident: ref26/cit26
  doi: 10.1039/c7ra05820a
– ident: ref13/cit13
  doi: 10.1039/c2sc21772d
– ident: ref20/cit20
  doi: 10.1039/c2sm26517f
– ident: ref24/cit24
  doi: 10.1021/la301894e
– ident: ref38/cit38
  doi: 10.1126/sciadv.1603288
– ident: ref31/cit31
  doi: 10.1039/c3nr04755e
– ident: ref3/cit3
  doi: 10.1007/s004250050096
– ident: ref27/cit27
  doi: 10.1002/adfm.201103017
– ident: ref17/cit17
  doi: 10.1039/b612667g
– ident: ref5/cit5
  doi: 10.1039/c1nr11369k
– ident: ref15/cit15
  doi: 10.1021/acsami.5b01772
– ident: ref18/cit18
  doi: 10.1039/c1jm14327a
– ident: ref6/cit6
  doi: 10.1073/pnas.192252799
– ident: ref34/cit34
  doi: 10.1039/c6sm00436a
– ident: ref11/cit11
  doi: 10.1021/cm1030377
– ident: ref9/cit9
  doi: 10.1126/science.1115172
– ident: ref8/cit8
  doi: 10.1021/la904585j
– ident: ref21/cit21
  doi: 10.1016/j.colsurfa.2017.09.018
– ident: ref33/cit33
  doi: 10.1021/cr400083y
– ident: ref35/cit35
  doi: 10.1039/c5ta09936f
– ident: ref29/cit29
  doi: 10.1002/adma.201670220
– ident: ref4/cit4
  doi: 10.1006/anbo.1997.0400
– ident: ref16/cit16
  doi: 10.1016/j.nanoen.2018.11.089
– ident: ref19/cit19
  doi: 10.1002/adma.201002689
– ident: ref30/cit30
  doi: 10.1038/nmat856
– ident: ref23/cit23
  doi: 10.1063/1.3103250
– ident: ref28/cit28
  doi: 10.1002/adfm.201501705
– ident: ref36/cit36
  doi: 10.1016/j.energy.2017.02.117
– ident: ref37/cit37
  doi: 10.1017/jfm.2014.151
SSID ssj0009349
Score 2.5894327
Snippet In this research, the anisotropic superhydrophobic surface is prepared on a stainless steel surface by laser etching, and the drag reduction property of the...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 11016
SubjectTerms anisotropy
contact angle
droplets
fluorides
friction
hydrophobicity
liquid-solid interface
mathematical models
rolling
shipping
stainless steel
Title Drag Reduction of Anisotropic Superhydrophobic Surfaces Prepared by Laser Etching
URI http://dx.doi.org/10.1021/acs.langmuir.9b01040
https://www.ncbi.nlm.nih.gov/pubmed/31364849
https://www.proquest.com/docview/2267405484
https://www.proquest.com/docview/2335140110
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQOcAFyntpi4zEhUMW-bGxc1wtrSrEu1TqLfLYTrsCklUeh_LrmcmjFaBSOEUeeRJ5PNF8Y8-DsRegCgQNFhKpVEh0FIvEeusS0BkUUXjUKUpOfvc-PTzWb04WJ5eO4u83-FK8cr6Z09nd925dzzMg_wFd9JsytYacreXq6LLIrhrgLpXdNDpVU6rcFW8hg-SbXw3SFSiztzYHd9mHKWdnCDL5Ou9amPsff5Zw_MeFbLM7I_Dky0FT7rEbsbzPbq2mfm8P2KfXtTvln6mUK20Wrwq-LNdN1dbVZu35UbeJ9dl5wNFZBT2hLiiei3-sYx_GzuGcv0WjWPP9to_QfMiOD_a_rA6TseFC4rTVbSJsND6iByd1MPiUiD-so9bfeoH0VAKYaFIopBVpkAsAZ9Oi0M5o8A6UesS2yqqMTygVPNgsZNGGCNoKnwmvYzAK0AG0QWcz9hLlkY8_TJP3d-FS5ESchJSPQpoxNe1Q7sfK5dRA49s1XMkF12ao3HHN_OfT5ucoebo3cWWsuiZHhGoQ16KI_jJHUUoEgakZezxozsVXlVApMmdP_2PNO-w2QrOMTq-l2WVbbd3FPYQ_LTzrdf4njIECYg
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwELaqcigX3o-FFowEBw5Z8GNj58BhtW21pdsKaCv1FuJH6KolWeUhtP0__JX-LmayyVYglYpDJU5RRnZij8f2N_Y8CHltRAqgQZuAC-EC6dkg0FYngZGRST2zIFPonLy3H46P5MfjwfEK-dn5wkAjSvhS2VziX0YXYO-Qhkd43-tp0Y8MqhHvW1vKXT__AZpa-WFnE4b1DefbW4ejcdAmEwgSqWUVMO2V9aCdcOkUPDnsrTrBtNZyAPSQG6O8Ck3KNQsdHxiT6DBNZaKksYnBc09Y6W8B_uGo4w1HB5exfcUCZWO0TyVD0XnoXdFq3Adt-fs-eAW4bTa57bvkYsmexrbltF9Xpm_P_4gc-d_z7x6508JsOlzMi_tkxWcPyNqoy273kHzeLJJv9AsGrkXRpHlKh9m0zKsin00tPahnvjiZO3g7yU1DKFK0XqOfCt8Y7VMzpxOAAAXdqhp71Efk6EZ69JisZnnmn6Lju9ORi7x23kjNbMSs9E4JA-qudjLqkbfA_7hdHsq4ufnnLEZiNyhxOyg9IjrBiG0bpx3ThZxdUytY1pot4pRcU_5VJ3MxcB5viZLM53UZAx5XgOKBRX8pI9ABBKFjjzxZCOzyr4KJECpHz_6hzy_J2vhwbxJPdvZ3n5PbAEojPLfnap2sVkXtNwD4VeZFM-0o-XrTcvoLe6Jkkg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwELaqVgIulDfb8jASHDhkwbE3cQ4cVrtdtbRUhVKpt5CxHboCklUeQss_4q_wq5jJYxFIpeLQA6coIzuxx2P7G3sejD0FmSJo0OD5UlpPOTHytNGJByqC1AmDMkXOyW8Og90T9fp0dLrGvve-MNiIEr9UNpf4NKsXNu0iDIgXRKdjvC_1vBhGQKrEy86ect8tv6K2Vr7am-LQPvP92c77ya7XJRTwEqVV5QntQuNQQ_GVDfHp4_6qE0ptrUZID3yA0IUBpL4WgfVHAIkO0lQloQKTAJ194mq_QTeFpOeNJ8e_4vvKFmlTxM9QBbL30jun1bQXmvL3vfAcgNtsdLNN9mPFosa-5dOwrmBovv0RPfK_4OENdr2D23zczo-bbM1lt9jVSZ_l7jZ7Oy2Sj_wdBbAlEeV5ysfZvMyrIl_MDT-uF644W1p8O8uhIRQpWbHxo8I1xvsclvwAoUDBd6rGLvUOO7mUHt1l61meufvkAG91ZCOnrQOlhYmEUc6GElDt1VZFA_Yc-R93y0QZNxYAvoiJ2A9K3A3KgMleOGLTxWuntCGfL6jlrWot2nglF5R_0stdjJyn26Ikc3ldxojLQ0TzyKK_lJHkCEIQcsDutUK7-qsUMsDK0dY_9Pkxu3I0ncUHe4f72-waYtOotbV8wNaronYPEf9V8KiZeZx9uGwx_QkhDGcN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drag+Reduction+of+Anisotropic+Superhydrophobic+Surfaces+Prepared+by+Laser+Etching&rft.jtitle=Langmuir&rft.au=Tuo%2C+Yanjing&rft.au=Zhang%2C+Haifeng&rft.au=Rong%2C+Wanting&rft.au=Jiang%2C+Shuyue&rft.date=2019-08-27&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=35&rft.issue=34&rft.spage=11016&rft.epage=11022&rft_id=info:doi/10.1021%2Facs.langmuir.9b01040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_langmuir_9b01040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon