Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground

SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three‐story and three‐span subway station. The dynamic responses of the structure and ground soil under main shoc...

Full description

Saved in:
Bibliographic Details
Published inEarthquake engineering & structural dynamics Vol. 42; no. 10; pp. 1489 - 1507
Main Authors Chen, Guoxing, Wang, Zhihua, Zuo, Xi, Du, Xiuli, Gao, Hongmei
Format Journal Article
LanguageEnglish
Published Chichester Blackwell Publishing Ltd 01.08.2013
Wiley
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three‐story and three‐span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake‐induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an ‘S’ type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three-story and three-span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake-induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an 'S' type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd. [PUBLICATION ABSTRACT]
SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three‐story and three‐span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake‐induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an ‘S’ type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright © 2013 John Wiley & Sons, Ltd.
SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted based on a plaster model of a three-story and three-span subway station. The dynamic responses of the structure and ground soil under main shock and aftershock ground motions were studied. The sand boils and waterspouts phenomena, ground surface cracks, and earthquake-induced ground surface settlements were observed in the testing. For the structure, the upward movement, local damage and member cracking were obtained. Under the main shock, there appeared longer liquefaction duration for the ground soil while the pore pressure dissipated slowly. The acceleration amplification effect of the liquefied soil was weakened, and the soil showed a remarkable shock absorption and concentration effect with low frequency component of ground motion. However, under the aftershock, the dissipation of pore pressure in the ground soil became obvious. The peak acceleration of the structure reduced with the buried depth. Dynamic soil pressure on the side wall was smaller in the middle and larger at both ends. The interior column of the model structure was the weakest member. The peak strain and damage degree for both sides of the interior column exhibited an 'S' type distribution along the height. Moreover, the seismic response of both ground soil and subway station structure exhibited a remarkable spatial effect. The seismic damage development process and failure mechanism of the structure illustrated in this study can provide references for the engineers and researcher. Copyright [copy 2013 John Wiley & Sons, Ltd.
Author Wang, Zhihua
Zuo, Xi
Du, Xiuli
Chen, Guoxing
Gao, Hongmei
Author_xml – sequence: 1
  givenname: Guoxing
  surname: Chen
  fullname: Chen, Guoxing
  email: Correspondence to: Guoxing Chen, Institute of Geotechnical Engineering, Nanjing University of Technology, Nanjing, 210009, China., gxc6307@163.com
  organization: Institute of Geotechnical Engineering, Nanjing University of Technology, 210009, Nanjing, China
– sequence: 2
  givenname: Zhihua
  surname: Wang
  fullname: Wang, Zhihua
  organization: Institute of Geotechnical Engineering, Nanjing University of Technology, 210009, Nanjing, China
– sequence: 3
  givenname: Xi
  surname: Zuo
  fullname: Zuo, Xi
  organization: Institute of Geotechnical Engineering, Nanjing University of Technology, 210009, Nanjing, China
– sequence: 4
  givenname: Xiuli
  surname: Du
  fullname: Du, Xiuli
  organization: College of Architecture and Civil Engineering, Beijing University of Technology, 100022, Beijing, China
– sequence: 5
  givenname: Hongmei
  surname: Gao
  fullname: Gao, Hongmei
  organization: Institute of Geotechnical Engineering, Nanjing University of Technology, 210009, Nanjing, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27517198$$DView record in Pascal Francis
BookMark eNqFkW9rFDEQh4NU8HoKfoSACL7ZOkk2m-xLvZ5tof6jRcE3YTY320u7t9smWep9e_fsUUQQXw0Dzzwzw--QHfRDT4y9FHAkAORbuqMjKa16wmYC6qqobakP2AygtoW1pXnGDlO6BgBVgZmxzcUab0J_xTM2HfFMKfOh53lNPFFIm-B5i6EbI3G_xog-UwwpB5_40HLkaWzucctTxhymuZTj6POOnpou3I3Uht_iqziM_eo5e9pil-jFvs7Z5Yfl5eK0OP98crZ4d15gaZUqqBIGtERUlSaLgMKbVktYNV6uymZ6Q1BdQbNSjZYW2rIurQZpLXorDag5e_OgvY3DdELKbhOSp67DnoYxOVHVUiljtf4_WqraKFFNd83Zq7_Q62GM_fSHE6q22kAJf-z2cUgpUutuY9hg3DoBbpeQmxJyu4Qm9PVeiMlj10bsfUiPvDRaGFHvFhcP3H3oaPtPn1t-Xe69e34Kin4-8hhvXGWU0e77pxN38fFYLL69_-J-qF98NK8i
CODEN IJEEBG
CitedBy_id crossref_primary_10_1016_j_soildyn_2020_106527
crossref_primary_10_1016_j_tust_2017_04_005
crossref_primary_10_1155_2021_9166545
crossref_primary_10_1016_j_soildyn_2018_05_037
crossref_primary_10_1016_j_undsp_2021_08_001
crossref_primary_10_1016_j_tust_2022_104489
crossref_primary_10_1016_j_istruc_2021_03_006
crossref_primary_10_1016_j_soildyn_2023_107862
crossref_primary_10_1371_journal_pone_0204672
crossref_primary_10_1016_j_engstruct_2020_110221
crossref_primary_10_1016_j_soildyn_2018_09_051
crossref_primary_10_1142_S0219876219400140
crossref_primary_10_1016_j_tust_2022_104372
crossref_primary_10_1016_j_engstruct_2018_10_060
crossref_primary_10_1016_j_soildyn_2018_01_004
crossref_primary_10_1016_j_soildyn_2021_106756
crossref_primary_10_1590_1679_78256042
crossref_primary_10_1142_S021987622041008X
crossref_primary_10_1016_j_soildyn_2023_107852
crossref_primary_10_1007_s10518_017_0189_4
crossref_primary_10_1007_s10706_022_02277_5
crossref_primary_10_1007_s10518_023_01773_0
crossref_primary_10_3390_buildings13051281
crossref_primary_10_3390_app122211767
crossref_primary_10_1016_j_soildyn_2015_12_002
crossref_primary_10_1016_j_soildyn_2021_107116
crossref_primary_10_1016_j_tust_2020_103334
crossref_primary_10_1142_S0219876220410145
crossref_primary_10_1016_j_soildyn_2020_106107
crossref_primary_10_1016_j_tust_2020_103328
crossref_primary_10_1155_2018_4270187
crossref_primary_10_1177_1369433217706777
crossref_primary_10_1016_j_engstruct_2016_07_014
crossref_primary_10_1007_s10706_016_0015_9
crossref_primary_10_1007_s10064_015_0777_y
crossref_primary_10_1007_s12205_016_1856_8
crossref_primary_10_1142_S1793431121400017
crossref_primary_10_1016_j_tust_2024_105920
crossref_primary_10_1016_j_tust_2019_103145
crossref_primary_10_4028_www_scientific_net_AMM_256_259_2142
crossref_primary_10_1016_j_tust_2018_03_016
crossref_primary_10_1371_journal_pone_0284074
crossref_primary_10_1177_13694332231202293
crossref_primary_10_1016_j_tust_2020_103583
crossref_primary_10_1016_j_soildyn_2019_04_023
crossref_primary_10_1080_13632469_2022_2141371
crossref_primary_10_1016_j_tust_2020_103579
crossref_primary_10_1016_j_soildyn_2023_107793
crossref_primary_10_1016_j_soildyn_2023_108083
crossref_primary_10_3390_app10082834
crossref_primary_10_1680_jgere_18_00010
crossref_primary_10_1177_1369433221993296
crossref_primary_10_1002_tal_1559
crossref_primary_10_1007_s11803_020_0560_3
crossref_primary_10_1155_2018_5791354
crossref_primary_10_2112_JCOASTRES_D_16_00158_1
crossref_primary_10_1016_j_soildyn_2019_02_022
crossref_primary_10_1016_j_undsp_2018_10_001
crossref_primary_10_1007_s10518_016_9907_6
crossref_primary_10_1016_j_enggeo_2016_02_008
crossref_primary_10_1080_13632469_2021_1991523
crossref_primary_10_1016_j_soildyn_2019_105737
crossref_primary_10_1016_j_soildyn_2024_108478
crossref_primary_10_1016_j_tust_2019_05_017
crossref_primary_10_1016_j_soildyn_2024_108479
crossref_primary_10_1016_j_istruc_2023_04_083
crossref_primary_10_1016_j_soildyn_2020_106055
crossref_primary_10_1080_13632469_2024_2326548
crossref_primary_10_1016_j_soildyn_2014_09_013
crossref_primary_10_1155_2019_6450853
crossref_primary_10_1016_j_tust_2020_103629
crossref_primary_10_61186_nmce_2302_1005
crossref_primary_10_1002_eqe_3434
crossref_primary_10_1007_s11771_020_4289_y
crossref_primary_10_1002_eqe_3446
crossref_primary_10_1016_j_soildyn_2022_107707
crossref_primary_10_1016_j_soildyn_2014_12_012
crossref_primary_10_1016_j_tust_2019_102994
crossref_primary_10_1680_geot_SIP_15_P_004
crossref_primary_10_1080_17486025_2021_1955158
crossref_primary_10_1016_j_istruc_2022_09_079
crossref_primary_10_1016_j_soildyn_2023_108065
crossref_primary_10_1016_j_soildyn_2019_02_013
crossref_primary_10_1007_s11803_020_0583_9
crossref_primary_10_1155_2021_8816755
crossref_primary_10_3390_buildings13010020
crossref_primary_10_1007_s40515_021_00177_4
crossref_primary_10_1007_s10518_014_9675_0
crossref_primary_10_1016_j_tust_2023_105435
crossref_primary_10_1016_j_soildyn_2020_106542
crossref_primary_10_1016_j_tust_2022_104820
crossref_primary_10_1016_j_soildyn_2021_106621
crossref_primary_10_1016_j_engstruct_2020_110799
crossref_primary_10_1016_j_soildyn_2023_107998
crossref_primary_10_1016_j_tust_2023_105551
crossref_primary_10_1016_j_soildyn_2023_108334
crossref_primary_10_1016_j_tust_2020_103803
crossref_primary_10_1007_s10518_015_9790_6
crossref_primary_10_1016_j_istruc_2024_106785
crossref_primary_10_1016_j_engstruct_2019_109557
crossref_primary_10_1016_j_soildyn_2017_04_015
crossref_primary_10_1016_j_soildyn_2020_106153
crossref_primary_10_1016_j_soildyn_2018_10_030
crossref_primary_10_1155_2019_8412390
crossref_primary_10_1080_13632469_2021_1927890
crossref_primary_10_3390_app10041331
crossref_primary_10_1016_j_tust_2016_07_008
crossref_primary_10_1155_2019_6189873
crossref_primary_10_1002_eqe_4118
crossref_primary_10_1007_s11069_021_05139_0
crossref_primary_10_1007_s11803_023_2211_y
crossref_primary_10_1016_j_jrmge_2020_11_002
crossref_primary_10_1080_13632469_2021_1961935
crossref_primary_10_1016_j_enggeo_2021_106090
crossref_primary_10_1007_s10518_019_00705_1
crossref_primary_10_1080_19648189_2023_2252042
crossref_primary_10_1080_13632469_2020_1803160
crossref_primary_10_1016_j_tust_2016_11_003
crossref_primary_10_1155_2021_6633535
crossref_primary_10_1002_eqe_4078
crossref_primary_10_1061__ASCE_GT_1943_5606_0002549
crossref_primary_10_1061__ASCE_GM_1943_5622_0002204
crossref_primary_10_1680_jphmg_22_00071
Cites_doi 10.1016/S0958-9465(97)00018-8
10.3208/sandf.43.2_69
10.1016/S0886-7798(01)00051-7
10.2208/jsceseee.23.117s
10.1016/S0958-9465(97)00014-0
10.1061/(ASCE)1090-0241(2005)131:12(1522)
10.1061/40975(318)204
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
2014 INIST-CNRS
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: 2014 INIST-CNRS
DBID BSCLL
IQODW
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7SM
7SU
DOI 10.1002/eqe.2283
DatabaseName Istex
Pascal-Francis
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Earthquake Engineering Abstracts
Environmental Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
Environmental Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef

Earthquake Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1096-9845
EndPage 1507
ExternalDocumentID 3014562001
10_1002_eqe_2283
27517198
EQE2283
ark_67375_WNG_SMD1CVBP_Z
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 90715018; 90715035; 50908114
– fundername: National Natural Science Foundation of China
– fundername: Special Fund for the Commonweal Industry of China
  funderid: 200808022
– fundername: Key Basic Research Program of Natural Science Foundation for Universities
  funderid: 08KJA560001
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8WZ
930
A03
A6W
AABCJ
AAESR
AAEVG
AAHHS
AAIKC
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABJNI
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACKIV
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CKXBT
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M58
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWC
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~WT
AITYG
HGLYW
OIG
08R
6XO
8W4
IPNFZ
IQODW
AAYXX
CITATION
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7SM
7SU
ID FETCH-LOGICAL-a4833-e617052aa365e8a0a1c7f520dbc2d4b8841e960bd3b5280f494850288ac82703
IEDL.DBID DR2
ISSN 0098-8847
IngestDate Sat Aug 17 03:32:50 EDT 2024
Sat Aug 17 04:07:43 EDT 2024
Thu Oct 10 15:44:04 EDT 2024
Fri Aug 23 04:05:16 EDT 2024
Fri Nov 25 01:10:49 EST 2022
Sat Aug 24 00:44:51 EDT 2024
Wed Jan 17 05:02:13 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords fissures
failure characteristics
damage
aftershock
subway station structure
exhibits
liquefaction
earthquakes
low frequency
rupture
settlement
duration
acceleration
subways
shaking table test
pore pressure
aftershocks
soils
strain
models
absorption
testing
main shock
concentration
ground motion
mainshocks
shaking table
seismic response
depth
liquefiable ground
sand boils
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4833-e617052aa365e8a0a1c7f520dbc2d4b8841e960bd3b5280f494850288ac82703
Notes National Natural Science Foundation of China - No. 90715018; No. 90715035; No. 50908114
ArticleID:EQE2283
Key Basic Research Program of Natural Science Foundation for Universities - No. 08KJA560001
istex:607864BFFFA7DC4823CAB99A7FC014088539430E
Special Fund for the Commonweal Industry of China - No. 200808022
National Natural Science Foundation of China
ark:/67375/WNG-SMD1CVBP-Z
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1398570400
PQPubID 866380
PageCount 19
ParticipantIDs proquest_miscellaneous_1692337855
proquest_miscellaneous_1439731648
proquest_journals_1398570400
crossref_primary_10_1002_eqe_2283
pascalfrancis_primary_27517198
wiley_primary_10_1002_eqe_2283_EQE2283
istex_primary_ark_67375_WNG_SMD1CVBP_Z
PublicationCentury 2000
PublicationDate August 2013
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: August 2013
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
– name: Bognor Regis
PublicationTitle Earthquake engineering & structural dynamics
PublicationTitleAlternate Earthquake Engng Struct. Dyn
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: Wiley Subscription Services, Inc
References Ito K, Ohno S, Matsuda T. Seismic response of underground reinforced concrete structure-centrifuge model test and its analysis. Structural Engineering/Earthquake Engineering 2006; 23(1):117-124.
Zuo X, Chen GX, Wang ZH, et al. Shaking table test on ground liquefaction effect of soil-subway station structure under near-fault and far-field ground motions. Rock and Soil Mechanics 2010; 31(12):3733-3740.
Chen GX, Zuo X, Wang ZH, et al. Large scale shaking table test study of the dynamic damage behavior of subway station structure in liquefiable foundation under near-fault and far-field ground motions. China Civil Engineering Journal 2010; 43(12):120-126.
Chen GX, Zuo X, Wang ZH, et al. Shaking table model test of subway station structure at liquefiable ground under far field and near field ground motion. Journal of Zhejiang University: Engineering Science 2010; 44(10):1955-1961.
Yang LD, Ji QQ, Zhang YL, et al. Shaking table test on metro station structures in soft soil. Modern Tunneling Technology 2003; 40(1):7-11.
Philip JM. Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay. University of California: Berkeley, 1998.
Samata S, Ohuchi H, Matsuda T. Study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake. Cement and Concrete Composites 1997; 19(3):223-239.
An X, Shawsky AA, Maekawa K. Collapse mechanism of a subway station during the great Hanshin earthquake. Cement and Concrete Composites 1997; 19(3):241-257.
Chen GX, Zhang HY, Du XL, et al. Analysis of large-scale shaking table test of dynamic soil-subway station interaction. Earthquake Engineering and Engineering Vibration 2007; 27(2):171-176.
Zuo X, Yang SC, Chen GX. Analysis on evolution of nonlinear seismic damage of subway station structure. Earthquake Resistant Engineering and Retrofitting 2010; 32(1):110-116.
Chen GX, Wang ZH, Zuo X, et al. Development of laminar shear soil container for shaking table tests. Chinese Journal of Geotechnical Engineering 2010; 32(1):89-97.
Han XJ, Zuo X, Chen GX. 98 Channels' Dynamic signal acquisition system development for shaking table test based on virtual instrument technology. Journal of Disaster Prevention and Mitgation Engineering 2010; 30(5):503-508.
Tamari Y, Towhata I. Seismic soil-structure interaction of cross sections of flexible underground structures subjected to soil liquefaction. Soil and Foundations 2003; 43(2):69-87.
Wang DR. Study on Engineering Analytical Model and Numerical Simulation on Hypervelocity Penetration. University of science and technology of China: Hefei, 2002.
Huo H, Bobet A, Fernández G, Ramírez J. Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station. Journal of Geotechnical and Geoenvironmental Engineering 2005; 131(12):1522-1533.
Wang XY, Liu WN, Zhang M. Study on the categorization and mechanism of seismic damage of underground structures. China Safety Science Journal 2003; 13(3):55-58.
Hashash YMA, Hook JJ, Schmidt B, Yao JI-C. Seismic design and analysis of underground structures. Tunnelling and Underground Space Technology 2001; 16(4):247-293.
Zuo X, Chen GX, Wang ZH, Du XL, Hong XX, Li FM. Shaking table test on the seismic response of subway station structure in soft sites under near and far field ground motion. China Civil Engineering Journal 2010; 43(s2):299-305.
2010; 44
2010; 43
2010; 32
2010; 31
2005; 131
2006; 23
2000
2003; 13
1997; 19
1998
2008
2001; 16
2002
2003; 40
2010; 30
2003; 43
2007; 27
Ito K (e_1_2_6_10_1) 2006; 23
Zuo X (e_1_2_6_21_1) 2010; 32
Yang LD (e_1_2_6_12_1) 2003; 40
Philip JM (e_1_2_6_18_1) 1998
Han XJ (e_1_2_6_20_1) 2010; 30
Zuo X (e_1_2_6_16_1) 2010; 31
Zuo X (e_1_2_6_17_1) 2010; 43
Chen GX (e_1_2_6_19_1) 2010; 32
Wang DR (e_1_2_6_22_1) 2002
Chen GX (e_1_2_6_14_1) 2010; 44
e_1_2_6_8_1
Chen GX (e_1_2_6_13_1) 2007; 27
An X (e_1_2_6_5_1) 1997; 19
Tamari Y (e_1_2_6_9_1) 2003; 43
e_1_2_6_4_1
Wang XY (e_1_2_6_2_1) 2003; 13
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_3_1
e_1_2_6_11_1
Chen GX (e_1_2_6_15_1) 2010; 43
References_xml – start-page: 1191
  year: 2000
  end-page: 1197
– volume: 40
  start-page: 7
  issue: 1
  year: 2003
  end-page: 11
  article-title: Shaking table test on metro station structures in soft soil
  publication-title: Modern Tunneling Technology
– volume: 32
  start-page: 89
  issue: 1
  year: 2010
  end-page: 97
  article-title: Development of laminar shear soil container for shaking table tests
  publication-title: Chinese Journal of Geotechnical Engineering
– volume: 13
  start-page: 55
  issue: 3
  year: 2003
  end-page: 58
  article-title: Study on the categorization and mechanism of seismic damage of underground structures
  publication-title: China Safety Science Journal
– volume: 43
  start-page: 120
  issue: 12
  year: 2010
  end-page: 126
  article-title: Large scale shaking table test study of the dynamic damage behavior of subway station structure in liquefiable foundation under near‐fault and far‐field ground motions
  publication-title: China Civil Engineering Journal
– volume: 43
  start-page: 299
  issue: s2
  year: 2010
  end-page: 305
  article-title: Shaking table test on the seismic response of subway station structure in soft sites under near and far field ground motion
  publication-title: China Civil Engineering Journal
– volume: 23
  start-page: 117
  issue: 1
  year: 2006
  end-page: 124
  article-title: Seismic response of underground reinforced concrete structure—centrifuge model test and its analysis
  publication-title: Structural Engineering/Earthquake Engineering
– volume: 43
  start-page: 69
  issue: 2
  year: 2003
  end-page: 87
  article-title: Seismic soil‐structure interaction of cross sections of flexible underground structures subjected to soil liquefaction
  publication-title: Soil and Foundations
– year: 2002
– year: 2008
– volume: 19
  start-page: 223
  issue: 3
  year: 1997
  end-page: 239
  article-title: Study of the damage of subway structures during the 1995 Hanshin–Awaji earthquake
  publication-title: Cement and Concrete Composites
– volume: 27
  start-page: 171
  issue: 2
  year: 2007
  end-page: 176
  article-title: Analysis of large‐scale shaking table test of dynamic soil‐subway station interaction
  publication-title: Earthquake Engineering and Engineering Vibration
– volume: 131
  start-page: 1522
  issue: 12
  year: 2005
  end-page: 1533
  article-title: Load transfer mechanisms between underground structure and surrounding ground: evaluation of the failure of the Daikai station
  publication-title: Journal of Geotechnical and Geoenvironmental Engineering
– volume: 19
  start-page: 241
  issue: 3
  year: 1997
  end-page: 257
  article-title: Collapse mechanism of a subway station during the great Hanshin earthquake
  publication-title: Cement and Concrete Composites
– volume: 44
  start-page: 1955
  issue: 10
  year: 2010
  end-page: 1961
  article-title: Shaking table model test of subway station structure at liquefiable ground under far field and near field ground motion
  publication-title: Journal of Zhejiang University: Engineering Science
– volume: 32
  start-page: 110
  issue: 1
  year: 2010
  end-page: 116
  article-title: Analysis on evolution of nonlinear seismic damage of subway station structure
  publication-title: Earthquake Resistant Engineering and Retrofitting
– volume: 31
  start-page: 3733
  issue: 12
  year: 2010
  end-page: 3740
  article-title: Shaking table test on ground liquefaction effect of soil‐subway station structure under near‐fault and far‐field ground motions
  publication-title: Rock and Soil Mechanics
– start-page: 1043
  year: 2000
  end-page: 1051
– volume: 30
  start-page: 503
  issue: 5
  year: 2010
  end-page: 508
  article-title: 98 Channels' Dynamic signal acquisition system development for shaking table test based on virtual instrument technology
  publication-title: Journal of Disaster Prevention and Mitgation Engineering
– volume: 16
  start-page: 247
  issue: 4
  year: 2001
  end-page: 293
  article-title: Seismic design and analysis of underground structures
  publication-title: Tunnelling and Underground Space Technology
– year: 1998
– ident: e_1_2_6_4_1
  doi: 10.1016/S0958-9465(97)00018-8
– volume: 44
  start-page: 1955
  issue: 10
  year: 2010
  ident: e_1_2_6_14_1
  article-title: Shaking table model test of subway station structure at liquefiable ground under far field and near field ground motion
  publication-title: Journal of Zhejiang University: Engineering Science
  contributor:
    fullname: Chen GX
– volume: 40
  start-page: 7
  issue: 1
  year: 2003
  ident: e_1_2_6_12_1
  article-title: Shaking table test on metro station structures in soft soil
  publication-title: Modern Tunneling Technology
  contributor:
    fullname: Yang LD
– volume: 32
  start-page: 110
  issue: 1
  year: 2010
  ident: e_1_2_6_21_1
  article-title: Analysis on evolution of nonlinear seismic damage of subway station structure
  publication-title: Earthquake Resistant Engineering and Retrofitting
  contributor:
    fullname: Zuo X
– volume-title: Study on Engineering Analytical Model and Numerical Simulation on Hypervelocity Penetration
  year: 2002
  ident: e_1_2_6_22_1
  contributor:
    fullname: Wang DR
– volume: 31
  start-page: 3733
  issue: 12
  year: 2010
  ident: e_1_2_6_16_1
  article-title: Shaking table test on ground liquefaction effect of soil‐subway station structure under near‐fault and far‐field ground motions
  publication-title: Rock and Soil Mechanics
  contributor:
    fullname: Zuo X
– volume: 13
  start-page: 55
  issue: 3
  year: 2003
  ident: e_1_2_6_2_1
  article-title: Study on the categorization and mechanism of seismic damage of underground structures
  publication-title: China Safety Science Journal
  contributor:
    fullname: Wang XY
– volume: 43
  start-page: 69
  issue: 2
  year: 2003
  ident: e_1_2_6_9_1
  article-title: Seismic soil‐structure interaction of cross sections of flexible underground structures subjected to soil liquefaction
  publication-title: Soil and Foundations
  doi: 10.3208/sandf.43.2_69
  contributor:
    fullname: Tamari Y
– volume-title: Shaking Table Scale Model Tests of Nonlinear Soil‐Pile‐Superstructure Interaction in Soft Clay
  year: 1998
  ident: e_1_2_6_18_1
  contributor:
    fullname: Philip JM
– ident: e_1_2_6_8_1
– volume: 32
  start-page: 89
  issue: 1
  year: 2010
  ident: e_1_2_6_19_1
  article-title: Development of laminar shear soil container for shaking table tests
  publication-title: Chinese Journal of Geotechnical Engineering
  contributor:
    fullname: Chen GX
– ident: e_1_2_6_6_1
  doi: 10.1016/S0886-7798(01)00051-7
– volume: 43
  start-page: 299
  issue: 2
  year: 2010
  ident: e_1_2_6_17_1
  article-title: Shaking table test on the seismic response of subway station structure in soft sites under near and far field ground motion
  publication-title: China Civil Engineering Journal
  contributor:
    fullname: Zuo X
– volume: 23
  start-page: 117
  issue: 1
  year: 2006
  ident: e_1_2_6_10_1
  article-title: Seismic response of underground reinforced concrete structure—centrifuge model test and its analysis
  publication-title: Structural Engineering/Earthquake Engineering
  doi: 10.2208/jsceseee.23.117s
  contributor:
    fullname: Ito K
– volume: 19
  start-page: 241
  issue: 3
  year: 1997
  ident: e_1_2_6_5_1
  article-title: Collapse mechanism of a subway station during the great Hanshin earthquake
  publication-title: Cement and Concrete Composites
  doi: 10.1016/S0958-9465(97)00014-0
  contributor:
    fullname: An X
– volume: 30
  start-page: 503
  issue: 5
  year: 2010
  ident: e_1_2_6_20_1
  article-title: 98 Channels' Dynamic signal acquisition system development for shaking table test based on virtual instrument technology
  publication-title: Journal of Disaster Prevention and Mitgation Engineering
  contributor:
    fullname: Han XJ
– ident: e_1_2_6_3_1
  doi: 10.1061/(ASCE)1090-0241(2005)131:12(1522)
– ident: e_1_2_6_11_1
  doi: 10.1061/40975(318)204
– volume: 27
  start-page: 171
  issue: 2
  year: 2007
  ident: e_1_2_6_13_1
  article-title: Analysis of large‐scale shaking table test of dynamic soil‐subway station interaction
  publication-title: Earthquake Engineering and Engineering Vibration
  contributor:
    fullname: Chen GX
– ident: e_1_2_6_7_1
– volume: 43
  start-page: 120
  issue: 12
  year: 2010
  ident: e_1_2_6_15_1
  article-title: Large scale shaking table test study of the dynamic damage behavior of subway station structure in liquefiable foundation under near‐fault and far‐field ground motions
  publication-title: China Civil Engineering Journal
  contributor:
    fullname: Chen GX
SSID ssj0003607
Score 2.4952168
Snippet SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted...
SUMMARY In order to investigate the seismic failure characteristics of a structure on the liquefiable ground, a series of shaking table tests were conducted...
SourceID proquest
crossref
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1489
SubjectTerms aftershock
Dissipation
Dynamics
Earth sciences
Earth, ocean, space
Earthquakes, seismology
Engineering and environment geology. Geothermics
Engineering geology
Exact sciences and technology
Failure
failure characteristics
Ground stations
Grounds
Internal geophysics
liquefiable ground
main shock
Sand
shaking table test
Soil (material)
subway station structure
Subway stations
Title Shaking table test on the seismic failure characteristics of a subway station structure on liquefiable ground
URI https://api.istex.fr/ark:/67375/WNG-SMD1CVBP-Z/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feqe.2283
https://www.proquest.com/docview/1398570400
https://search.proquest.com/docview/1439731648
https://search.proquest.com/docview/1692337855
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQe4EDUD7EQqmMhLhlm9jr2DlCu6VCagW0QAUHa-w4YlWapc2uCv31nXE2aRcJVHGKoowt2-MZP8fjN4y91AUuPFCoxBvw8UpOAjroBIhsDkBr6WOU736--2n07kgdLaIq6S5Myw_R_3Ajy4j-mgwcXLN5RRoaTsOQuFvQ_RKPHuGhj1fMUTJPe7pMgx64451NxWZXcGklWqVB_UWRkdDg4FRtVosl2HkdvMbVZ-ce-9a1uw06OR7OZ27oL_6gdPy_jt1ndxeglL9uZ9EauxXqB-zONarCh-zk4HvMW8VndNeKI0Cd8WnNET7yJkyak4nnFUwoxp37ZQ5oPq048GbuzuE3b9qTf97S1pI0vvwgDtlqEiumWyZ1-Ygd7owPt3aTRaoGVKqRMgnE664EgMxVMJBC5nWlRFo6L8qRQw1kAfdKrpROCZNWkZQGoQ1OECPQ6TxmK_W0Dk8YHxkvC5eXQCEBuXNYmchD6gvpMpOGMGAvOq3Zny0hh22pl4XFkbM0cgP2KqqzF4CzYwpg08p-2X9rD_a2s63Pb97brwO2saTvvoDQKtNZYQZsvZsAdmHcjUXQTGkB0PthY_rPaJZ01gJ1mM5RhoCexL2o-YdMjuhaaqMUNjjOiL_2yI4_jOn59KaCz9htERN3UKjiOltBrYbnCJ9mbiMayiWyPRa9
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7QF44BtRGMNIiLd0iV0njniCraPAVgErMCEky3YcUY2lQFrx8ddz5zTZigRCPEVRzpHtu7N_ts-_A3iQ5TjxmFxGThkXruREJvNZZIhszpgsEy5E-Y7T0ZvB8yN5tAaP2rswDT9Et-FGnhHGa3Jw2pDePmUN9V98n8hbzsEGerskr9x9fcodJdK4I8xUOAa3zLMx325LrsxFG9St3yk20tTYPWWT12IFeJ6Fr2H-2bsMH9qaN2Enx_3F3Pbdz99IHf-zaVfg0hKXsseNIV2FNV9dg4tn2Aqvw8nhx5C6is3puhVDjDpns4ohgmS1n9YnU8dKM6Uwd-ZWaaDZrGSG1Qv7zfxgdXP4zxrmWpLGl09EI1tOw4_poklV3IDJ3nCyM4qW2RpQr0qIyBO1u-TGiFR6ZWKTuKyUPC6s48XAogoSj8slWwgruYrLwEuD6AZtRHEcd27CejWr_C1gA-VEbtPCUFRAai3-jKc-drmwiYq978H9Vm36c8PJoRv2Za6x5zT1XA8eBn12AubrMcWwZVK_Gz_Vhwe7yc7bJy_1-x5srSi8K8DRpLIkVz3YbC1AL_271oibKTMADoBYme4zeiYdt5jKzxYoQ1hP4HJU_UUmRYAtMiUlVjiYxB9bpIevhvS8_a-C9-D8aHKwr_efjV_cgQs85PGgyMVNWEcN-7uIpuZ2K3jNLxNHGt0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdgkxB7AAZDFMZmJMRbusSuY-cR1pZ9QDXYgAkeLNtxtGosHaQVH389d06TrUibEE9RlLNl3_nsn-Pz7wh5LjNYeEwmIqeMC1dyIiO9jAySzRkjJXchyneU7nzo7R2L43lUJd6Fqfkh2h9u6BlhvkYHP8-LrQvSUP_Nd5G75SZZ7qWc4car__6COoqnccuXqWAKbohnY7bVlFxYipZRqz8xNNJUoJ2iTmuxgDsvo9ew_Azvki9Nw-uok9PubGq77vdfnI7_17N75M4cldKX9TBaJTd8eZ-sXOIqfEDODk9C4io6xctWFBDqlE5KCviRVn5cnY0dLcwYg9ypWySBppOCGlrN7A_zi1b10T-teWtRGl6-IolsMQ4V4zWTMl8jR8PB0fZONM_VAFZVnEceid0FM4anwisTm8TJQrA4t47lPQsWSDxslmzOrWAqLgIrDWAbGCGKwazzkCyVk9I_IrSnHM9smhuMCUithcpY6mOXcZuo2PsOedZYTZ_XjBy65l5mGjSnUXMd8iKYsxUw308xgk0K_Wn0Wh--7SfbH18d6M8dsrFg77YAkyKRSaY6ZL0ZAHru3ZUG1Ix5AWD6g8a0n8Ev8bDFlH4yAxlEehw2o-oamRTgNZdKCGhwGBFX9kgP3g3w-fhfBTfJrYP-UL_ZHe0_IbdZSOKBYYvrZAkM7J8ClJrajeAzfwC14RmM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shaking+table+test+on+the+seismic+failure+characteristics+of+a+subway+station+structure+on+liquefiable+ground&rft.jtitle=Earthquake+engineering+%26+structural+dynamics&rft.au=Chen%2C+Guoxing&rft.au=Wang%2C+Zhihua&rft.au=Zuo%2C+Xi&rft.au=Du%2C+Xiuli&rft.date=2013-08-01&rft.issn=0098-8847&rft.eissn=1096-9845&rft.volume=42&rft.issue=10&rft.spage=1489&rft.epage=1507&rft_id=info:doi/10.1002%2Feqe.2283&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_eqe_2283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8847&client=summon