POLARIS: A 30-meter probabilistic soil series map of the contiguous United States

A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSM...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 274; pp. 54 - 67
Main Authors Chaney, Nathaniel W., Wood, Eric F., McBratney, Alexander B., Hempel, Jonathan W., Nauman, Travis W., Brungard, Colby W., Odgers, Nathan P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security. •Development of the POLARIS map of soil series probabilities over CONUS•Spatial disaggregation, harmonization, and gap filling of SSURGO using DSMART-HPC•An innovative use of high performance computing in digital soil mapping•Understanding the role of environmental covariates in soil spatial patterns over CONUS•The probability of misclassification at each grid cell drives POLARIS' accuracy.
AbstractList A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.
A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.
A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security. •Development of the POLARIS map of soil series probabilities over CONUS•Spatial disaggregation, harmonization, and gap filling of SSURGO using DSMART-HPC•An innovative use of high performance computing in digital soil mapping•Understanding the role of environmental covariates in soil spatial patterns over CONUS•The probability of misclassification at each grid cell drives POLARIS' accuracy.
Author Odgers, Nathan P.
Chaney, Nathaniel W.
Brungard, Colby W.
McBratney, Alexander B.
Hempel, Jonathan W.
Wood, Eric F.
Nauman, Travis W.
Author_xml – sequence: 1
  givenname: Nathaniel W.
  surname: Chaney
  fullname: Chaney, Nathaniel W.
  email: nchaney@princeton.edu
  organization: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA
– sequence: 2
  givenname: Eric F.
  surname: Wood
  fullname: Wood, Eric F.
  organization: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA
– sequence: 3
  givenname: Alexander B.
  surname: McBratney
  fullname: McBratney, Alexander B.
  organization: Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney, Australia
– sequence: 4
  givenname: Jonathan W.
  surname: Hempel
  fullname: Hempel, Jonathan W.
  organization: National Soil Survey Center, NRCS, Lincoln, NE, USA
– sequence: 5
  givenname: Travis W.
  surname: Nauman
  fullname: Nauman, Travis W.
  organization: U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA
– sequence: 6
  givenname: Colby W.
  surname: Brungard
  fullname: Brungard, Colby W.
  organization: Department of Plants, Soils, and Climate, Utah State University, Logan, UT, USA
– sequence: 7
  givenname: Nathan P.
  surname: Odgers
  fullname: Odgers, Nathan P.
  organization: Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney, Australia
BookMark eNqNUctKLDEUDKLgOPoLkqWbbvPqdFpcOIjeKwz4Xod0-rRm6O6MSUa4f29kvBs3ujoUp6ooqg7Q7uQnQOiYkpISKk9X5Qv4DsJoSpZxSXhJWLWDZlTVrJCsanbRjORPURNJ99FBjKsMa8LIDN3f3S4XDzePZ3iBOSlGSBDwOvjWtG5wMTmLo3cDjhAcRDyaNfY9Tq-ArZ-Se9n4TcTPk0vQ4cdkEsRDtNebIcLR152j5-urp8u_xfL2z83lYlkYoVgqoGKCNbJvRW15DiMFg4bUpGmNNUrVPe0UlVw2rQLayr6TvOkNN4rQXghp-RydbH1z2rcNxKRHFy0Mg5kgh9JUcSmFZKL6BZVVQlQ5zi-oRMmmaqo6U-WWaoOPMUCv18GNJvzTlOjPZfRK_19Gfy6jCdd5mSw8_ya0LlfncqHBuOFn-cVWDrnddwdBR-tgstC5ADbpzrufLD4AP42uFw
CitedBy_id crossref_primary_10_1002_ecs2_3538
crossref_primary_10_1002_ecs2_4625
crossref_primary_10_1016_j_rama_2023_04_011
crossref_primary_10_3390_rs15184601
crossref_primary_10_1002_ajb2_1235
crossref_primary_10_1002_saj2_20702
crossref_primary_10_1186_s42408_018_0018_4
crossref_primary_10_1016_j_geoderma_2019_06_013
crossref_primary_10_1029_2021EF002518
crossref_primary_10_3389_fpls_2021_727021
crossref_primary_10_1016_j_earscirev_2020_103466
crossref_primary_10_2478_johh_2024_0013
crossref_primary_10_1111_csp2_13179
crossref_primary_10_3390_rs16224258
crossref_primary_10_1016_j_catena_2020_104806
crossref_primary_10_5194_soil_6_371_2020
crossref_primary_10_1007_s11258_022_01228_7
crossref_primary_10_2136_sssaj2016_08_0258
crossref_primary_10_3389_fpls_2025_1512598
crossref_primary_10_5194_hess_23_2615_2019
crossref_primary_10_1016_j_geoderma_2016_12_001
crossref_primary_10_1186_s13104_021_05729_y
crossref_primary_10_1556_0088_2019_00031
crossref_primary_10_1016_j_geodrs_2020_e00342
crossref_primary_10_1016_j_ecolind_2018_09_037
crossref_primary_10_1002_2017RG000581
crossref_primary_10_1656_058_021_0106
crossref_primary_10_1029_2018WR022797
crossref_primary_10_1371_journal_pclm_0000363
crossref_primary_10_2136_sssaj2016_09_0301
crossref_primary_10_1016_j_scitotenv_2018_07_353
crossref_primary_10_1002_ecs2_4170
crossref_primary_10_1002_ecs2_4974
crossref_primary_10_5194_hess_25_4681_2021
crossref_primary_10_1038_s41545_024_00417_3
crossref_primary_10_3390_hydrology9100179
crossref_primary_10_5194_hess_20_3859_2016
crossref_primary_10_1038_s41598_018_26284_w
crossref_primary_10_1016_j_ecolind_2019_105872
crossref_primary_10_1016_j_catena_2024_108074
crossref_primary_10_1029_2023JD039938
crossref_primary_10_1016_j_ecolind_2021_108447
crossref_primary_10_1111_jbi_14515
crossref_primary_10_1016_j_geoderma_2017_10_015
crossref_primary_10_1002_hyp_10891
crossref_primary_10_2136_sssaj2016_05_0151
crossref_primary_10_1016_j_agwat_2024_108892
crossref_primary_10_1002_ecs2_2780
crossref_primary_10_1029_2021MS002602
crossref_primary_10_1016_j_geoderma_2017_11_004
crossref_primary_10_1029_2022MS003073
crossref_primary_10_1016_j_geoderma_2018_03_009
crossref_primary_10_1016_j_hydroa_2022_100131
crossref_primary_10_5194_hess_21_4323_2017
crossref_primary_10_1111_ajae_12338
crossref_primary_10_5194_hess_21_1051_2017
crossref_primary_10_1007_s40899_022_00704_2
crossref_primary_10_1029_2023WR036008
crossref_primary_10_1016_j_geoderma_2016_09_022
crossref_primary_10_35595_2414_9179_2021_2_27_394_448
crossref_primary_10_1002_2016WR019967
crossref_primary_10_1016_j_geodrs_2022_e00495
crossref_primary_10_5194_hess_26_429_2022
crossref_primary_10_1029_2019MS001784
crossref_primary_10_1016_j_earscirev_2019_103028
crossref_primary_10_1111_ejss_13244
crossref_primary_10_3390_rs14081947
crossref_primary_10_1016_j_geoderma_2020_114383
crossref_primary_10_2136_sssaj2016_07_0206
crossref_primary_10_5194_hess_21_5293_2017
crossref_primary_10_1088_1748_9326_acd5e4
crossref_primary_10_3390_w17050670
crossref_primary_10_1007_s11442_024_2249_4
crossref_primary_10_1016_j_pedsph_2023_12_004
crossref_primary_10_5194_hess_22_3311_2018
crossref_primary_10_5194_hess_21_1263_2017
crossref_primary_10_3390_soilsystems7010027
crossref_primary_10_1016_j_jhydrol_2019_06_026
crossref_primary_10_1029_2021MS002818
crossref_primary_10_5194_hess_26_1145_2022
crossref_primary_10_1016_j_eja_2022_126718
crossref_primary_10_1111_gcb_14628
crossref_primary_10_1002_saj2_20769
crossref_primary_10_1002_2016WR019034
crossref_primary_10_1016_j_geoderma_2022_115802
crossref_primary_10_1590_0001_3765201820180423
crossref_primary_10_1016_j_geoderma_2019_114061
crossref_primary_10_1016_j_jhydrol_2021_126722
crossref_primary_10_1002_saj2_20080
crossref_primary_10_1016_j_catena_2021_105854
crossref_primary_10_1016_j_rala_2021_09_004
crossref_primary_10_1029_2020AV000298
crossref_primary_10_1111_ddi_13402
crossref_primary_10_1186_s42408_022_00145_4
crossref_primary_10_1016_j_geoderma_2020_114244
crossref_primary_10_1029_2020WR027639
crossref_primary_10_3390_rs13112040
crossref_primary_10_1016_j_geoderma_2023_116769
crossref_primary_10_1016_j_jhydrol_2021_126584
crossref_primary_10_1371_journal_pone_0270176
crossref_primary_10_2136_vzj2017_04_0086
crossref_primary_10_2136_vzj2017_04_0085
crossref_primary_10_3390_rs16234440
crossref_primary_10_1016_j_geoderma_2020_114452
crossref_primary_10_1029_2019WR024892
crossref_primary_10_1029_2023WR034431
crossref_primary_10_1016_j_geoderma_2019_01_048
crossref_primary_10_5194_hess_21_3879_2017
crossref_primary_10_1111_tgis_12730
crossref_primary_10_1016_j_scitotenv_2016_11_078
crossref_primary_10_1016_j_geodrs_2020_e00294
crossref_primary_10_2166_wcc_2023_279
crossref_primary_10_1002_hyp_13296
crossref_primary_10_3390_rs14040807
crossref_primary_10_1016_j_geoderma_2019_113907
crossref_primary_10_1093_aob_mcad041
crossref_primary_10_3390_f14030526
crossref_primary_10_1002_2017WR020401
crossref_primary_10_1139_cjss_2021_0091
crossref_primary_10_1139_cjss_2021_0090
crossref_primary_10_1029_2023EF004120
crossref_primary_10_1002_ecs2_2827
crossref_primary_10_1002_csc2_20845
crossref_primary_10_2134_jeq2017_08_0318
crossref_primary_10_1016_j_geoderma_2019_01_018
crossref_primary_10_1016_j_rama_2021_06_007
crossref_primary_10_2139_ssrn_4060872
crossref_primary_10_1088_1748_9326_abe4f4
crossref_primary_10_1016_j_geoderma_2021_115041
crossref_primary_10_1134_S1064229319050107
crossref_primary_10_1016_j_geoderma_2020_114556
crossref_primary_10_1007_s11119_016_9488_z
crossref_primary_10_3390_rs16081318
crossref_primary_10_1088_1748_9326_ad3f32
crossref_primary_10_1007_s10980_023_01647_5
crossref_primary_10_2134_jeq2016_10_0416
crossref_primary_10_1111_jbi_14136
crossref_primary_10_1016_j_ecoinf_2020_101170
crossref_primary_10_1111_avsc_12547
crossref_primary_10_1016_j_jhydrol_2022_128277
crossref_primary_10_1002_wat2_1533
crossref_primary_10_1029_2018WR022606
crossref_primary_10_1016_j_eja_2021_126285
crossref_primary_10_1016_j_geodrs_2024_e00833
crossref_primary_10_1111_1365_2745_13999
crossref_primary_10_1111_1365_2745_13634
crossref_primary_10_1016_j_geoderma_2024_117152
crossref_primary_10_1016_j_jhydrol_2021_126917
crossref_primary_10_1016_j_geoderma_2019_01_038
crossref_primary_10_3390_w11020301
crossref_primary_10_1016_j_geoderma_2018_11_003
crossref_primary_10_1007_s10980_023_01672_4
crossref_primary_10_1016_j_scitotenv_2017_01_034
crossref_primary_10_1016_j_rama_2024_01_006
crossref_primary_10_1016_j_advwatres_2020_103682
crossref_primary_10_5194_hess_21_2301_2017
crossref_primary_10_5194_hess_26_2519_2022
crossref_primary_10_1016_j_envsoft_2021_105139
crossref_primary_10_3390_rs14010004
crossref_primary_10_3398_064_083_0301
crossref_primary_10_1016_j_jhydrol_2021_126423
crossref_primary_10_1016_j_agrformet_2024_110169
crossref_primary_10_1111_ejss_13086
crossref_primary_10_1371_journal_pone_0226926
crossref_primary_10_1038_s41597_022_01481_5
crossref_primary_10_1111_ejss_12790
crossref_primary_10_3390_rs10121968
crossref_primary_10_1002_saj2_20119
crossref_primary_10_3389_fevo_2019_00188
crossref_primary_10_3390_s25020543
crossref_primary_10_1016_j_scitotenv_2020_140972
crossref_primary_10_3390_land11101856
crossref_primary_10_3389_fpls_2021_675410
crossref_primary_10_1016_j_rama_2020_03_009
crossref_primary_10_3389_fclim_2021_689945
crossref_primary_10_1016_j_geodrs_2021_e00366
crossref_primary_10_1016_j_epsl_2025_119239
crossref_primary_10_1002_saj2_20487
crossref_primary_10_1016_j_fcr_2019_04_013
crossref_primary_10_1071_SR20288
crossref_primary_10_1016_j_geodrs_2019_e00215
crossref_primary_10_1029_2023WR035543
crossref_primary_10_1002_vzj2_20244
crossref_primary_10_1016_j_rse_2020_111668
crossref_primary_10_1029_2020GL089858
crossref_primary_10_1111_geb_13174
crossref_primary_10_2136_sssaj2017_04_0122
crossref_primary_10_5194_hess_21_3427_2017
crossref_primary_10_1016_j_geomat_2024_100028
crossref_primary_10_1175_JHM_D_19_0075_1
crossref_primary_10_1029_2018WR022643
crossref_primary_10_1029_2022WR032336
crossref_primary_10_1016_j_geoderma_2023_116360
crossref_primary_10_1016_j_geoderma_2024_116781
crossref_primary_10_1088_1748_9326_ad9035
crossref_primary_10_1016_j_scitotenv_2023_166422
crossref_primary_10_1002_ecs2_3311
crossref_primary_10_1139_cjss_2021_0154
crossref_primary_10_1007_s00271_023_00848_9
crossref_primary_10_15302_J_FASE_2024567
Cites_doi 10.1016/j.geoderma.2007.08.022
10.1002/2013WR014964
10.1029/97WR02174
10.1002/hyp.10391
10.1016/j.geoderma.2013.09.024
10.2136/sssaj2010.0002
10.2136/sssaj2012.0321
10.1016/j.soilbio.2009.02.031
10.14358/PERS.80.4.353
10.2136/sssaj2001.6551463x
10.1002/hyp.10383
10.1109/JSTARS.2011.2162643
10.1029/2002WR001426
10.1890/13-0600.1
10.1029/2010WR010090
10.2136/sh2009.2.0062
10.1142/S0129626408003557
10.1016/j.geoderma.2013.08.024
10.1016/S0016-7061(97)00018-9
10.2136/sssaj1992.03615995005600030027x
10.1145/2425676.2425684
10.1201/b12728-21
10.1016/j.geoderma.2013.08.018
10.1016/j.geoderma.2009.01.013
10.1029/2003JD003823
10.1016/S0016-7061(03)00223-4
10.1016/S0016-7061(01)00070-2
10.1371/journal.pone.0105992
10.1016/j.cageo.2015.06.023
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.geoderma.2016.03.025
DatabaseName CrossRef
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
AGRICOLA

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
EndPage 67
ExternalDocumentID 10_1016_j_geoderma_2016_03_025
S0016706116301434
GeographicLocations USA
United States
GeographicLocations_xml – name: USA
– name: United States
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7UA
C1K
F1W
H96
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a482t-e524296fb47c3170642e90709baca887f1d816369b8e1b6fd639fa3a801f446c3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 03:53:01 EDT 2025
Fri Jul 11 03:34:43 EDT 2025
Fri Jul 11 00:01:16 EDT 2025
Tue Jul 01 04:04:41 EDT 2025
Thu Apr 24 23:05:40 EDT 2025
Fri Feb 23 02:27:13 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Digital soil mapping
Environmental modeling
High performance computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a482t-e524296fb47c3170642e90709baca887f1d816369b8e1b6fd639fa3a801f446c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0016706116301434?via%3Dihub
PQID 1808695957
PQPubID 23462
PageCount 14
ParticipantIDs proquest_miscellaneous_1836646245
proquest_miscellaneous_1825445296
proquest_miscellaneous_1808695957
crossref_primary_10_1016_j_geoderma_2016_03_025
crossref_citationtrail_10_1016_j_geoderma_2016_03_025
elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_03_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-15
PublicationDateYYYYMMDD 2016-07-15
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-15
  day: 15
PublicationDecade 2010
PublicationTitle Geoderma
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Burrough, van Gaans, Hootsmans (bb0035) 1997; 77
Daly, Halbleib, Smith, Gibson, Doggett, Taylor, Curtis, Pasteris (bb0050) 2008; 28
Fry, Xian, Jin, Dewitz, Homer, Yang, Barnes, Herold, Wickham (bb0080) 2011; 77
Plaza, Chang (bb0195) 2007
Brady, Weil (bb0020) 2008
Wei, McBratney, Hempel, Minasny, Malone, D'Avello, Burras, Thompson (bb0230) 2010
Subburayalu, Slater (bb0210) 2013; 77
Bierkens (bb0010) 2014; 29
Lichstein, Golaz, Malyshev, Shevliakova, Zhang, Sheffield, Birdsey, Sarmiento, Pacala (bb0135) 2014; 24
Crow, Berg, Cosh, Loew, Mohanty, Panciera, de Rosnay, Ryu, Walker (bb0045) 2012; 50
Nauman, Thompson, Rasmussen (bb0175) 2014; 80
Gallant, Dowling (bb0085) 2003; 39
Meirik, Frazier, Brown, Roberts, Rupp (bb0150) 2010
Bui, Moran (bb0030) 2001; 103
Balaji (bb0005) 2013; 19
Nauman, Thompson (bb0170) 2014; 213
Dobos, Bialko, Micheli, Kobza (bb0055) 2010
Bode, Butler, Dunning, Gropp, Hoefler, Hwu, Kramer (bb0015) 2013
Subburayalu, Jenhani, Slater (bb0215) 2014; 213
Gatzke, Beaudette, Ficklin, Luo, O'Geen, Zhang (bb0090) 2011; 75
Hudson (bb0120) 1992; 56
Frazier, Rodgers, Briggs, Rupp (bb0075) 2009; 50
Michalakes, Vachharajani (bb0155) 2008; 18
Thompson J. A., T. W. Nauman, N. P. Odgers, N. Libohova, J. Hempel (2012), Harmonization of Legacy Soil Maps in North America: Status, Trends, and Implications for Digital Soil Mapping Efforts, in The 5th Global Workshop on Digital Soil Mapping, Digital Soil Assessments and Beyond, edited by A. B. McBratney, B. Minasny, B. Malone, Sydney, Australia.
Gesch, Evans, Mauck, Hutchinson, Carswell (bb0095) 2009
Jenny (bb0125) 1941
Breiman, Friedman, Olshen, Stone (bb0025) 1984
Duval, Carson, Holman, Darnley (bb0065) 2005
Mitchell, Lohmann, Houser, Wood, Schaake (bb0165) 2004; 109
Zhu, Hudson, Burt, Lubich, Simonson (bb0245) 2001; 65
McBratney, Mendonca Santos, Minasny (bb0145) 2003; 117
Padarian, Minasny, McBratney (bb0185) 2015; 83
Odgers, Sun, McBratney, Minasny, Clifford (bb0180) 2014; 214
Hansen, Brown, Dennison, Graves, Bricklemyer (bb0105) 2009; 150
Wood (bb0235) 2011; 47
Chaney, Roundy, Herrera Estrada, Wood (bb0040) 2014; 51
Yang, Jiao, Fahmy, Zhu, Hann, Burt, Qi (bb0240) 2011; 75
Hengl, de Jesus, MacMillan, Batjes, Heuvenlink (bb0115) 2014; 9
Grayson, Western, Chiew Francis, Blöschl (bb0100) 1997; 33
Minasny, McBratney (bb0160) 2007; 142
Soil Survey Staff (bb0205) 2014
Lee, Gasster, Plaza, Chang, Huang (bb0130) 2011; 4
Ferziger, Peric (bb0070) 2012
Rodriguez-Iturbe, Porporato (bb0200) 2004
Manzoni, Porporato (bb0140) 2009; 41
(bb0110) 2008; 33
Thompson, Prescott, Moore, Bell, Kautz, Hempel, Waltman, Perry (bb0220) 2010
Pedregosa (bb0190) 2011; 12
Du, Zhu, Band, Liu (bb0060) 2014; 29
(10.1016/j.geoderma.2016.03.025_bb0110) 2008; 33
Grayson (10.1016/j.geoderma.2016.03.025_bb0100) 1997; 33
Jenny (10.1016/j.geoderma.2016.03.025_bb0125) 1941
Lee (10.1016/j.geoderma.2016.03.025_bb0130) 2011; 4
Bui (10.1016/j.geoderma.2016.03.025_bb0030) 2001; 103
Burrough (10.1016/j.geoderma.2016.03.025_bb0035) 1997; 77
Gallant (10.1016/j.geoderma.2016.03.025_bb0085) 2003; 39
Minasny (10.1016/j.geoderma.2016.03.025_bb0160) 2007; 142
Ferziger (10.1016/j.geoderma.2016.03.025_bb0070) 2012
Nauman (10.1016/j.geoderma.2016.03.025_bb0175) 2014; 80
Gesch (10.1016/j.geoderma.2016.03.025_bb0095) 2009
Brady (10.1016/j.geoderma.2016.03.025_bb0020) 2008
Subburayalu (10.1016/j.geoderma.2016.03.025_bb0210) 2013; 77
Frazier (10.1016/j.geoderma.2016.03.025_bb0075) 2009; 50
Padarian (10.1016/j.geoderma.2016.03.025_bb0185) 2015; 83
Lichstein (10.1016/j.geoderma.2016.03.025_bb0135) 2014; 24
Bode (10.1016/j.geoderma.2016.03.025_bb0015) 2013
Michalakes (10.1016/j.geoderma.2016.03.025_bb0155) 2008; 18
Manzoni (10.1016/j.geoderma.2016.03.025_bb0140) 2009; 41
Zhu (10.1016/j.geoderma.2016.03.025_bb0245) 2001; 65
Rodriguez-Iturbe (10.1016/j.geoderma.2016.03.025_bb0200) 2004
Plaza (10.1016/j.geoderma.2016.03.025_bb0195) 2007
Mitchell (10.1016/j.geoderma.2016.03.025_bb0165) 2004; 109
10.1016/j.geoderma.2016.03.025_bb0225
Gatzke (10.1016/j.geoderma.2016.03.025_bb0090) 2011; 75
Duval (10.1016/j.geoderma.2016.03.025_bb0065)
Subburayalu (10.1016/j.geoderma.2016.03.025_bb0215) 2014; 213
Daly (10.1016/j.geoderma.2016.03.025_bb0050) 2008; 28
Thompson (10.1016/j.geoderma.2016.03.025_bb0220) 2010
Odgers (10.1016/j.geoderma.2016.03.025_bb0180) 2014; 214
Soil Survey Staff (10.1016/j.geoderma.2016.03.025_bb0205)
Crow (10.1016/j.geoderma.2016.03.025_bb0045) 2012; 50
Wood (10.1016/j.geoderma.2016.03.025_bb0235) 2011; 47
Balaji (10.1016/j.geoderma.2016.03.025_bb0005) 2013; 19
Pedregosa (10.1016/j.geoderma.2016.03.025_bb0190) 2011; 12
Wei (10.1016/j.geoderma.2016.03.025_bb0230) 2010
Du (10.1016/j.geoderma.2016.03.025_bb0060) 2014; 29
Nauman (10.1016/j.geoderma.2016.03.025_bb0170) 2014; 213
Chaney (10.1016/j.geoderma.2016.03.025_bb0040) 2014; 51
Hansen (10.1016/j.geoderma.2016.03.025_bb0105) 2009; 150
Hengl (10.1016/j.geoderma.2016.03.025_bb0115) 2014; 9
Bierkens (10.1016/j.geoderma.2016.03.025_bb0010) 2014; 29
Yang (10.1016/j.geoderma.2016.03.025_bb0240) 2011; 75
Fry (10.1016/j.geoderma.2016.03.025_bb0080) 2011; 77
McBratney (10.1016/j.geoderma.2016.03.025_bb0145) 2003; 117
Hudson (10.1016/j.geoderma.2016.03.025_bb0120) 1992; 56
Meirik (10.1016/j.geoderma.2016.03.025_bb0150) 2010
Breiman (10.1016/j.geoderma.2016.03.025_bb0025) 1984
Dobos (10.1016/j.geoderma.2016.03.025_bb0055) 2010
References_xml – year: 1984
  ident: bb0025
  article-title: Classification and Regression Trees
– year: 2004
  ident: bb0200
  article-title: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics
– volume: 75
  start-page: 1044
  year: 2011
  end-page: 1053
  ident: bb0240
  article-title: Updating conventional soil maps through digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
– volume: 19
  year: 2013
  ident: bb0005
  article-title: Scientific computing in the age of complexity
  publication-title: XRDS
– volume: 39
  start-page: 1347
  year: 2003
  end-page: 1360
  ident: bb0085
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 310
  year: 2014
  end-page: 320
  ident: bb0010
  article-title: Hyper-resolution global hydrological modeling: what's next
  publication-title: Hydrol. Process.
– year: 2012
  ident: bb0070
  article-title: Computational Methods for Fluid Dynamics
– volume: 4
  year: 2011
  ident: bb0130
  article-title: Recent developments in high performance computing for remote sensing: a review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Thompson J. A., T. W. Nauman, N. P. Odgers, N. Libohova, J. Hempel (2012), Harmonization of Legacy Soil Maps in North America: Status, Trends, and Implications for Digital Soil Mapping Efforts, in The 5th Global Workshop on Digital Soil Mapping, Digital Soil Assessments and Beyond, edited by A. B. McBratney, B. Minasny, B. Malone, Sydney, Australia.
– year: 2010
  ident: bb0220
  article-title: Regional Apprach to Soil Property Mapping Using Legacy Data and Spatial Disaggregation Techniques, in 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia
– volume: 50
  start-page: 62
  year: 2009
  end-page: 67
  ident: bb0075
  article-title: Remote area soil proxy modeling technique
  publication-title: Soil Surv. Horizons
– year: 2013
  ident: bb0015
  publication-title: The Blue Waters Super-System for Super-Science, in Contemporary HPC Architectures
– volume: 109
  year: 2004
  ident: bb0165
  article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res.
– volume: 83
  start-page: 80
  year: 2015
  end-page: 88
  ident: bb0185
  article-title: Using Google's cloud-based platform for digital soil mapping
  publication-title: Comput. Geosci.
– year: 1941
  ident: bb0125
  article-title: Factors of Soil Formation, A System of Quantitative Pedology
– volume: 9
  year: 2014
  ident: bb0115
  article-title: SoilGrids1km-Global soil information based on automated mapping
  publication-title: PLoS One
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: bb0145
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 65
  start-page: 1463
  year: 2001
  end-page: 1472
  ident: bb0245
  article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic
  publication-title: Soil Sci. Soc. Am. J.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bb0190
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2010
  ident: bb0055
  publication-title: Legacy Soil Data Harmonization and Database Development, in Digital Soil Mapping, Progress in Soil Science 2
– volume: 77
  start-page: 1254
  year: 2013
  end-page: 1268
  ident: bb0210
  article-title: Soil series mapping by knowledge discovery from an Ohio county soil map
  publication-title: Soil Sci. Soc. Am. J.
– volume: 142
  start-page: 285
  year: 2007
  end-page: 293
  ident: bb0160
  article-title: Incorporating taxonomic distance into spatial prediction and digital soil mapping of soil classes
  publication-title: Geoderma
– volume: 51
  start-page: 619
  year: 2014
  end-page: 638
  ident: bb0040
  article-title: High-resolution modeling of the spatial heterogeneity of soil moisture: applications in network design
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: bb0235
  article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water
  publication-title: Water Resour. Res.
– volume: 24
  year: 2014
  ident: bb0135
  article-title: Confronting terrestrial biosphere models with forest inventory data
  publication-title: Ecol. Appl.
– volume: 213
  start-page: 334
  year: 2014
  end-page: 335
  ident: bb0215
  article-title: Disaggregation of component soil series on an Ohio county soil survey map using possibilistic decision trees
  publication-title: Geoderma
– volume: 103
  start-page: 79
  year: 2001
  end-page: 94
  ident: bb0030
  article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data
  publication-title: Geoderma
– volume: 77
  start-page: 115
  year: 1997
  end-page: 135
  ident: bb0035
  article-title: Continuous classification in soil survey: spatial correlation, confusion and boundaries
  publication-title: Geoderma
– volume: 150
  start-page: 72
  year: 2009
  end-page: 84
  ident: bb0105
  article-title: Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data
  publication-title: Geoderma
– volume: 80
  start-page: 353
  year: 2014
  end-page: 366
  ident: bb0175
  article-title: Semi-automated disaggregation of a conventional soil map using knowledge driven data mining and Random Forests in the Sonoran Desert, USA
  publication-title: PE&RS
– year: 2009
  ident: bb0095
  article-title: The National Map-Elevation: U.S. Geological Survey fact sheet, (2009-3053)
– volume: 75
  year: 2011
  ident: bb0090
  article-title: Aggregation strategies for SSURGO data: effects on SWAT soil input and hydrologic outputs
  publication-title: Soil Water Manag. Conserv.
– volume: 29
  start-page: 2491
  year: 2014
  end-page: 2503
  ident: bb0060
  article-title: Soil property variation mapping through data mining of soil category maps
  publication-title: Hydrol. Process.
– year: 2007
  ident: bb0195
  article-title: High Performace Computing in Remote Sensing
– volume: 41
  start-page: 1355
  year: 2009
  end-page: 1379
  ident: bb0140
  article-title: Soil carbon and nitrogen mineralization: theory and models across scales
  publication-title: Soil Biol. Biochem.
– volume: 18
  year: 2008
  ident: bb0155
  article-title: GPU acceleration of numerical weather prediction
  publication-title: Parallel Process. Lett.
– volume: 33
  start-page: 2897
  year: 1997
  end-page: 2908
  ident: bb0100
  article-title: Prefered states in spatial soil moisture patterns: local and nonlocal controls
  publication-title: Water Resour. Res.
– year: 2005
  ident: bb0065
  article-title: Terrestrial Radioactivity and Gamma-Ray Exposure in the United States and Canada: U.S. Geological Survey Open-File Report 2005-1413
– volume: 213
  start-page: 385
  year: 2014
  end-page: 399
  ident: bb0170
  article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees
  publication-title: Geoderma
– volume: 77
  start-page: 858
  year: 2011
  end-page: 864
  ident: bb0080
  article-title: Completion of the 2006 National Land Cover Database for the Conterminous United States
  publication-title: PE&RS
– volume: 33
  start-page: 772
  year: 2008
  ident: bb0110
  publication-title: Geomorphometry: concepts, software, applications
– year: 2008
  ident: bb0020
  article-title: The Nature and Properties of Soils
– volume: 28
  year: 2008
  ident: bb0050
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: Int. J. Climatol.
– year: 2014
  ident: bb0205
  article-title: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States. United States Department of Agriculture, Natural Resources Conservation Service
– year: 2010
  ident: bb0150
  publication-title: ASTER-based vegetation map to improve soil modeling in remote areas, in Digital Soil Mapping: Bridging Research, Environmental Application, and Operation
– volume: 50
  year: 2012
  ident: bb0045
  article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products
  publication-title: Rev. Geophys.
– year: 2010
  ident: bb0230
  article-title: Digital Harmonisation of Adjacent Soil Survey Areas — 4 Iowa Counties, in Proceedings of the 19th World Congress of Soil Science, Soils Solutions for a Changing World
– volume: 56
  start-page: 836
  year: 1992
  end-page: 841
  ident: bb0120
  article-title: The soil survey as paradigm-based science
  publication-title: Soil Sci. Soc. Am. J.
– volume: 214
  start-page: 91
  year: 2014
  end-page: 100
  ident: bb0180
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
– volume: 142
  start-page: 285
  issue: 3–4
  year: 2007
  ident: 10.1016/j.geoderma.2016.03.025_bb0160
  article-title: Incorporating taxonomic distance into spatial prediction and digital soil mapping of soil classes
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2007.08.022
– volume: 51
  start-page: 619
  issue: 1
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0040
  article-title: High-resolution modeling of the spatial heterogeneity of soil moisture: applications in network design
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014964
– volume: 75
  issue: 5
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0090
  article-title: Aggregation strategies for SSURGO data: effects on SWAT soil input and hydrologic outputs
  publication-title: Soil Water Manag. Conserv.
– volume: 33
  start-page: 2897
  issue: 12
  year: 1997
  ident: 10.1016/j.geoderma.2016.03.025_bb0100
  article-title: Prefered states in spatial soil moisture patterns: local and nonlocal controls
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR02174
– volume: 29
  start-page: 310
  issue: 2
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0010
  article-title: Hyper-resolution global hydrological modeling: what's next
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10391
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0190
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 1941
  ident: 10.1016/j.geoderma.2016.03.025_bb0125
– volume: 214
  start-page: 91
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0180
  article-title: Disaggregating and harmonising soil map units through resampled classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.09.024
– year: 2004
  ident: 10.1016/j.geoderma.2016.03.025_bb0200
– volume: 75
  start-page: 1044
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0240
  article-title: Updating conventional soil maps through digital soil mapping
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0002
– volume: 77
  start-page: 1254
  issue: 4
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.025_bb0210
  article-title: Soil series mapping by knowledge discovery from an Ohio county soil map
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2012.0321
– volume: 41
  start-page: 1355
  year: 2009
  ident: 10.1016/j.geoderma.2016.03.025_bb0140
  article-title: Soil carbon and nitrogen mineralization: theory and models across scales
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2009.02.031
– volume: 80
  start-page: 353
  issue: 4
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0175
  article-title: Semi-automated disaggregation of a conventional soil map using knowledge driven data mining and Random Forests in the Sonoran Desert, USA
  publication-title: PE&RS
  doi: 10.14358/PERS.80.4.353
– volume: 65
  start-page: 1463
  issue: 5
  year: 2001
  ident: 10.1016/j.geoderma.2016.03.025_bb0245
  article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.6551463x
– volume: 29
  start-page: 2491
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0060
  article-title: Soil property variation mapping through data mining of soil category maps
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.10383
– volume: 4
  issue: 3
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0130
  article-title: Recent developments in high performance computing for remote sensing: a review
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2011.2162643
– year: 2007
  ident: 10.1016/j.geoderma.2016.03.025_bb0195
– year: 2010
  ident: 10.1016/j.geoderma.2016.03.025_bb0055
– year: 2008
  ident: 10.1016/j.geoderma.2016.03.025_bb0020
– volume: 39
  start-page: 1347
  issue: 12
  year: 2003
  ident: 10.1016/j.geoderma.2016.03.025_bb0085
  article-title: A multiresolution index of valley bottom flatness for mapping depositional areas
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001426
– volume: 24
  issue: 4
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0135
  article-title: Confronting terrestrial biosphere models with forest inventory data
  publication-title: Ecol. Appl.
  doi: 10.1890/13-0600.1
– volume: 47
  issue: 5
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0235
  article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010090
– volume: 50
  start-page: 62
  year: 2009
  ident: 10.1016/j.geoderma.2016.03.025_bb0075
  article-title: Remote area soil proxy modeling technique
  publication-title: Soil Surv. Horizons
  doi: 10.2136/sh2009.2.0062
– volume: 18
  issue: 4
  year: 2008
  ident: 10.1016/j.geoderma.2016.03.025_bb0155
  article-title: GPU acceleration of numerical weather prediction
  publication-title: Parallel Process. Lett.
  doi: 10.1142/S0129626408003557
– year: 2009
  ident: 10.1016/j.geoderma.2016.03.025_bb0095
– year: 2010
  ident: 10.1016/j.geoderma.2016.03.025_bb0220
– year: 2013
  ident: 10.1016/j.geoderma.2016.03.025_bb0015
– volume: 50
  issue: RG2002
  year: 2012
  ident: 10.1016/j.geoderma.2016.03.025_bb0045
  article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products
  publication-title: Rev. Geophys.
– volume: 77
  start-page: 858
  issue: 9
  year: 2011
  ident: 10.1016/j.geoderma.2016.03.025_bb0080
  article-title: Completion of the 2006 National Land Cover Database for the Conterminous United States
  publication-title: PE&RS
– volume: 213
  start-page: 385
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0170
  article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.08.024
– volume: 77
  start-page: 115
  issue: 2–4
  year: 1997
  ident: 10.1016/j.geoderma.2016.03.025_bb0035
  article-title: Continuous classification in soil survey: spatial correlation, confusion and boundaries
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(97)00018-9
– volume: 56
  start-page: 836
  issue: 3
  year: 1992
  ident: 10.1016/j.geoderma.2016.03.025_bb0120
  article-title: The soil survey as paradigm-based science
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1992.03615995005600030027x
– volume: 19
  issue: 3
  year: 2013
  ident: 10.1016/j.geoderma.2016.03.025_bb0005
  article-title: Scientific computing in the age of complexity
  publication-title: XRDS
  doi: 10.1145/2425676.2425684
– ident: 10.1016/j.geoderma.2016.03.025_bb0225
  doi: 10.1201/b12728-21
– volume: 28
  issue: 16
  year: 2008
  ident: 10.1016/j.geoderma.2016.03.025_bb0050
  article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States
  publication-title: Int. J. Climatol.
– volume: 213
  start-page: 334
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0215
  article-title: Disaggregation of component soil series on an Ohio county soil survey map using possibilistic decision trees
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2013.08.018
– volume: 150
  start-page: 72
  issue: 1–2
  year: 2009
  ident: 10.1016/j.geoderma.2016.03.025_bb0105
  article-title: Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.01.013
– year: 1984
  ident: 10.1016/j.geoderma.2016.03.025_bb0025
– volume: 109
  year: 2004
  ident: 10.1016/j.geoderma.2016.03.025_bb0165
  article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JD003823
– ident: 10.1016/j.geoderma.2016.03.025_bb0065
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.geoderma.2016.03.025_bb0145
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 103
  start-page: 79
  issue: 1–2
  year: 2001
  ident: 10.1016/j.geoderma.2016.03.025_bb0030
  article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(01)00070-2
– ident: 10.1016/j.geoderma.2016.03.025_bb0205
– volume: 33
  start-page: 772
  year: 2008
  ident: 10.1016/j.geoderma.2016.03.025_bb0110
  publication-title: Dev. Soil Sci.
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.geoderma.2016.03.025_bb0115
  article-title: SoilGrids1km-Global soil information based on automated mapping
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0105992
– year: 2012
  ident: 10.1016/j.geoderma.2016.03.025_bb0070
– year: 2010
  ident: 10.1016/j.geoderma.2016.03.025_bb0150
– year: 2010
  ident: 10.1016/j.geoderma.2016.03.025_bb0230
– volume: 83
  start-page: 80
  year: 2015
  ident: 10.1016/j.geoderma.2016.03.025_bb0185
  article-title: Using Google's cloud-based platform for digital soil mapping
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2015.06.023
SSID ssj0017020
Score 2.5723176
Snippet A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named...
A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms algorithms
artificial intelligence
Availability
Computer information security
Data base management systems
Digital soil mapping
Discontinuity
energy
Environment models
Environmental modeling
environmental models
geographical distribution
High performance computing
hydrology
information systems
Mathematical models
monitoring
politics
potassium
precision agriculture
prediction
soil
Soil (material)
soil map
soil surveys
thorium
uncertainty
United States
uranium
Title POLARIS: A 30-meter probabilistic soil series map of the contiguous United States
URI https://dx.doi.org/10.1016/j.geoderma.2016.03.025
https://www.proquest.com/docview/1808695957
https://www.proquest.com/docview/1825445296
https://www.proquest.com/docview/1836646245
Volume 274
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF6KvuiDeOJZVvA1NpvsbhLfQrHUq54F35bNdlNaetHj1d_uTI6iIvXBx4RZCN9M5khmviHkwkJKz6TxHC2gNuEB1w6upnRSCJ2B2_FDL8Fp5IeWbLb57bt4r5B6OQuDbZWF7899euatizu1As3apNfDGV8mAwhHkFEgSR1ygnIeoJVffizbPFjgFtSMTDoo_WVKuA86woVjGf8QkxnZKa7M_j1A_XDVWfxpbJOtInGkcf5sO6RiR7tkM-5OC_IMu0eenx7v45eb1ysaU991htjpQnFjTMaii4TMdDbuDShanZ3RoZ7QcUohA6TYsN7rLsaLGc2TUJonofuk3bh-qzedYmWCo3nozR0rIORGMk14YHxkxuGehfLXjRJtNPiTlHVCwEtGSWhZItMOJCip9jXEqRQKQ-MfkLXReGQPCQ18w5IQFCeMy430QCoJPS20K1LJjTkiosRJmYJPHNdaDFTZONZXJb4K8VWurwDfI1JbnpvkjBp_nohKNahvtqHA7f959rzUm4IXB_-G6JEFOBULoZqLRCSCVTIZgxsgukrGl5JLj4vjfzznCdnAK_xqzMQpWZtPF_YM0p15Us3suUrW45u7ZusTfcv9XA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqyGolraJzYTsKtQqACbdml3izHdapW3UTbK9_OTJYKEGoPXJOxZL2xZ0lm3hByYSGkZ9J4jhaQm_CAawdHUzoJuM7AbfmhF2M3cr0hq-_8vimaS-S66IXBssrc9mc2PbXW-ZNyjmZ51Olgjy-TAbgjiCiQpI4vk1UO1xfHGFx-zuo8WODm3IxMOij-rU24C0rCiWMpARGTKdspzsz-20P9stWpA7rdIpt55Egr2ea2yZId7JCNSvsjZ8-wu-T56bFWebl7vaIV6rtOH0tdKI6MSWl0kZGZjoedHsVjZ8e0r0d0mFAIASlWrHfa0-F0TLMolGZR6B55v715u646-cwER_PQmzhWgM-NZBLzwPhIjcM9C_mvG8XaaDAoCWuFAJiM4tCyWCYtiFAS7WtwVAlkhsbfJyuD4cAeEBr4hsUhaE4YlxvpgVQcelpoVySSG1MiosBJmZxQHOda9FRROdZVBb4K8VWurwDfEinP1o0ySo2FK6JCDerH4VBg9xeuPS_0puDm4O8QPbAAp2IhpHORiEQwTyalcANE58n4UnLpcXH4j32ekbXqW72maneNhyOyjm_wEzITx2Rl8jG1JxD7TOLT9Gx_ATwQ_uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POLARIS%3A+A+30-meter+probabilistic+soil+series+map+of+the+contiguous+United+States&rft.jtitle=Geoderma&rft.au=Chaney%2C+Nathaniel+W.&rft.au=Wood%2C+Eric+F.&rft.au=McBratney%2C+Alexander+B.&rft.au=Hempel%2C+Jonathan+W.&rft.date=2016-07-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=274&rft.spage=54&rft.epage=67&rft_id=info:doi/10.1016%2Fj.geoderma.2016.03.025&rft.externalDocID=S0016706116301434
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon