POLARIS: A 30-meter probabilistic soil series map of the contiguous United States
A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSM...
Saved in:
Published in | Geoderma Vol. 274; pp. 54 - 67 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security.
•Development of the POLARIS map of soil series probabilities over CONUS•Spatial disaggregation, harmonization, and gap filling of SSURGO using DSMART-HPC•An innovative use of high performance computing in digital soil mapping•Understanding the role of environmental covariates in soil spatial patterns over CONUS•The probability of misclassification at each grid cell drives POLARIS' accuracy. |
---|---|
AbstractList | A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30 m) elevation data and coarse-scale (~ 2 km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security. A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security. A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named POLARIS, is constructed using available high-resolution geospatial environmental data and a state-of-the-art machine learning algorithm (DSMART-HPC) to remap the Soil Survey Geographic (SSURGO) database. This 9 billion grid cell database is possible using available high performance computing resources. POLARIS provides a spatially continuous, internally consistent, quantitative prediction of soil series. It offers potential solutions to the primary weaknesses in SSURGO: 1) unmapped areas are gap-filled using survey data from the surrounding regions, 2) the artificial discontinuities at political boundaries are removed, and 3) the use of high resolution environmental covariate data leads to a spatial disaggregation of the coarse polygons. The geospatial environmental covariates that have the largest role in assembling POLARIS over the contiguous United States (CONUS) are fine-scale (30m) elevation data and coarse-scale (~2km) estimates of the geographic distribution of uranium, thorium, and potassium. A preliminary validation of POLARIS using the NRCS National Soil Information System (NASIS) database shows variable performance over CONUS. In general, the best performance is obtained at grid cells where DSMART-HPC is most able to reduce the chance of misclassification. The important role of environmental covariates in limiting prediction uncertainty suggests including additional covariates is pivotal to improving POLARIS' accuracy. This database has the potential to improve the modeling of biogeochemical, water, and energy cycles in environmental models; enhance availability of data for precision agriculture; and assist hydrologic monitoring and forecasting to ensure food and water security. •Development of the POLARIS map of soil series probabilities over CONUS•Spatial disaggregation, harmonization, and gap filling of SSURGO using DSMART-HPC•An innovative use of high performance computing in digital soil mapping•Understanding the role of environmental covariates in soil spatial patterns over CONUS•The probability of misclassification at each grid cell drives POLARIS' accuracy. |
Author | Odgers, Nathan P. Chaney, Nathaniel W. Brungard, Colby W. McBratney, Alexander B. Hempel, Jonathan W. Wood, Eric F. Nauman, Travis W. |
Author_xml | – sequence: 1 givenname: Nathaniel W. surname: Chaney fullname: Chaney, Nathaniel W. email: nchaney@princeton.edu organization: Program in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA – sequence: 2 givenname: Eric F. surname: Wood fullname: Wood, Eric F. organization: Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA – sequence: 3 givenname: Alexander B. surname: McBratney fullname: McBratney, Alexander B. organization: Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney, Australia – sequence: 4 givenname: Jonathan W. surname: Hempel fullname: Hempel, Jonathan W. organization: National Soil Survey Center, NRCS, Lincoln, NE, USA – sequence: 5 givenname: Travis W. surname: Nauman fullname: Nauman, Travis W. organization: U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, USA – sequence: 6 givenname: Colby W. surname: Brungard fullname: Brungard, Colby W. organization: Department of Plants, Soils, and Climate, Utah State University, Logan, UT, USA – sequence: 7 givenname: Nathan P. surname: Odgers fullname: Odgers, Nathan P. organization: Department of Environmental Sciences, Faculty of Agriculture and Environment, The University of Sydney, Sydney, Australia |
BookMark | eNqNUctKLDEUDKLgOPoLkqWbbvPqdFpcOIjeKwz4Xod0-rRm6O6MSUa4f29kvBs3ujoUp6ooqg7Q7uQnQOiYkpISKk9X5Qv4DsJoSpZxSXhJWLWDZlTVrJCsanbRjORPURNJ99FBjKsMa8LIDN3f3S4XDzePZ3iBOSlGSBDwOvjWtG5wMTmLo3cDjhAcRDyaNfY9Tq-ArZ-Se9n4TcTPk0vQ4cdkEsRDtNebIcLR152j5-urp8u_xfL2z83lYlkYoVgqoGKCNbJvRW15DiMFg4bUpGmNNUrVPe0UlVw2rQLayr6TvOkNN4rQXghp-RydbH1z2rcNxKRHFy0Mg5kgh9JUcSmFZKL6BZVVQlQ5zi-oRMmmaqo6U-WWaoOPMUCv18GNJvzTlOjPZfRK_19Gfy6jCdd5mSw8_ya0LlfncqHBuOFn-cVWDrnddwdBR-tgstC5ADbpzrufLD4AP42uFw |
CitedBy_id | crossref_primary_10_1002_ecs2_3538 crossref_primary_10_1002_ecs2_4625 crossref_primary_10_1016_j_rama_2023_04_011 crossref_primary_10_3390_rs15184601 crossref_primary_10_1002_ajb2_1235 crossref_primary_10_1002_saj2_20702 crossref_primary_10_1186_s42408_018_0018_4 crossref_primary_10_1016_j_geoderma_2019_06_013 crossref_primary_10_1029_2021EF002518 crossref_primary_10_3389_fpls_2021_727021 crossref_primary_10_1016_j_earscirev_2020_103466 crossref_primary_10_2478_johh_2024_0013 crossref_primary_10_1111_csp2_13179 crossref_primary_10_3390_rs16224258 crossref_primary_10_1016_j_catena_2020_104806 crossref_primary_10_5194_soil_6_371_2020 crossref_primary_10_1007_s11258_022_01228_7 crossref_primary_10_2136_sssaj2016_08_0258 crossref_primary_10_3389_fpls_2025_1512598 crossref_primary_10_5194_hess_23_2615_2019 crossref_primary_10_1016_j_geoderma_2016_12_001 crossref_primary_10_1186_s13104_021_05729_y crossref_primary_10_1556_0088_2019_00031 crossref_primary_10_1016_j_geodrs_2020_e00342 crossref_primary_10_1016_j_ecolind_2018_09_037 crossref_primary_10_1002_2017RG000581 crossref_primary_10_1656_058_021_0106 crossref_primary_10_1029_2018WR022797 crossref_primary_10_1371_journal_pclm_0000363 crossref_primary_10_2136_sssaj2016_09_0301 crossref_primary_10_1016_j_scitotenv_2018_07_353 crossref_primary_10_1002_ecs2_4170 crossref_primary_10_1002_ecs2_4974 crossref_primary_10_5194_hess_25_4681_2021 crossref_primary_10_1038_s41545_024_00417_3 crossref_primary_10_3390_hydrology9100179 crossref_primary_10_5194_hess_20_3859_2016 crossref_primary_10_1038_s41598_018_26284_w crossref_primary_10_1016_j_ecolind_2019_105872 crossref_primary_10_1016_j_catena_2024_108074 crossref_primary_10_1029_2023JD039938 crossref_primary_10_1016_j_ecolind_2021_108447 crossref_primary_10_1111_jbi_14515 crossref_primary_10_1016_j_geoderma_2017_10_015 crossref_primary_10_1002_hyp_10891 crossref_primary_10_2136_sssaj2016_05_0151 crossref_primary_10_1016_j_agwat_2024_108892 crossref_primary_10_1002_ecs2_2780 crossref_primary_10_1029_2021MS002602 crossref_primary_10_1016_j_geoderma_2017_11_004 crossref_primary_10_1029_2022MS003073 crossref_primary_10_1016_j_geoderma_2018_03_009 crossref_primary_10_1016_j_hydroa_2022_100131 crossref_primary_10_5194_hess_21_4323_2017 crossref_primary_10_1111_ajae_12338 crossref_primary_10_5194_hess_21_1051_2017 crossref_primary_10_1007_s40899_022_00704_2 crossref_primary_10_1029_2023WR036008 crossref_primary_10_1016_j_geoderma_2016_09_022 crossref_primary_10_35595_2414_9179_2021_2_27_394_448 crossref_primary_10_1002_2016WR019967 crossref_primary_10_1016_j_geodrs_2022_e00495 crossref_primary_10_5194_hess_26_429_2022 crossref_primary_10_1029_2019MS001784 crossref_primary_10_1016_j_earscirev_2019_103028 crossref_primary_10_1111_ejss_13244 crossref_primary_10_3390_rs14081947 crossref_primary_10_1016_j_geoderma_2020_114383 crossref_primary_10_2136_sssaj2016_07_0206 crossref_primary_10_5194_hess_21_5293_2017 crossref_primary_10_1088_1748_9326_acd5e4 crossref_primary_10_3390_w17050670 crossref_primary_10_1007_s11442_024_2249_4 crossref_primary_10_1016_j_pedsph_2023_12_004 crossref_primary_10_5194_hess_22_3311_2018 crossref_primary_10_5194_hess_21_1263_2017 crossref_primary_10_3390_soilsystems7010027 crossref_primary_10_1016_j_jhydrol_2019_06_026 crossref_primary_10_1029_2021MS002818 crossref_primary_10_5194_hess_26_1145_2022 crossref_primary_10_1016_j_eja_2022_126718 crossref_primary_10_1111_gcb_14628 crossref_primary_10_1002_saj2_20769 crossref_primary_10_1002_2016WR019034 crossref_primary_10_1016_j_geoderma_2022_115802 crossref_primary_10_1590_0001_3765201820180423 crossref_primary_10_1016_j_geoderma_2019_114061 crossref_primary_10_1016_j_jhydrol_2021_126722 crossref_primary_10_1002_saj2_20080 crossref_primary_10_1016_j_catena_2021_105854 crossref_primary_10_1016_j_rala_2021_09_004 crossref_primary_10_1029_2020AV000298 crossref_primary_10_1111_ddi_13402 crossref_primary_10_1186_s42408_022_00145_4 crossref_primary_10_1016_j_geoderma_2020_114244 crossref_primary_10_1029_2020WR027639 crossref_primary_10_3390_rs13112040 crossref_primary_10_1016_j_geoderma_2023_116769 crossref_primary_10_1016_j_jhydrol_2021_126584 crossref_primary_10_1371_journal_pone_0270176 crossref_primary_10_2136_vzj2017_04_0086 crossref_primary_10_2136_vzj2017_04_0085 crossref_primary_10_3390_rs16234440 crossref_primary_10_1016_j_geoderma_2020_114452 crossref_primary_10_1029_2019WR024892 crossref_primary_10_1029_2023WR034431 crossref_primary_10_1016_j_geoderma_2019_01_048 crossref_primary_10_5194_hess_21_3879_2017 crossref_primary_10_1111_tgis_12730 crossref_primary_10_1016_j_scitotenv_2016_11_078 crossref_primary_10_1016_j_geodrs_2020_e00294 crossref_primary_10_2166_wcc_2023_279 crossref_primary_10_1002_hyp_13296 crossref_primary_10_3390_rs14040807 crossref_primary_10_1016_j_geoderma_2019_113907 crossref_primary_10_1093_aob_mcad041 crossref_primary_10_3390_f14030526 crossref_primary_10_1002_2017WR020401 crossref_primary_10_1139_cjss_2021_0091 crossref_primary_10_1139_cjss_2021_0090 crossref_primary_10_1029_2023EF004120 crossref_primary_10_1002_ecs2_2827 crossref_primary_10_1002_csc2_20845 crossref_primary_10_2134_jeq2017_08_0318 crossref_primary_10_1016_j_geoderma_2019_01_018 crossref_primary_10_1016_j_rama_2021_06_007 crossref_primary_10_2139_ssrn_4060872 crossref_primary_10_1088_1748_9326_abe4f4 crossref_primary_10_1016_j_geoderma_2021_115041 crossref_primary_10_1134_S1064229319050107 crossref_primary_10_1016_j_geoderma_2020_114556 crossref_primary_10_1007_s11119_016_9488_z crossref_primary_10_3390_rs16081318 crossref_primary_10_1088_1748_9326_ad3f32 crossref_primary_10_1007_s10980_023_01647_5 crossref_primary_10_2134_jeq2016_10_0416 crossref_primary_10_1111_jbi_14136 crossref_primary_10_1016_j_ecoinf_2020_101170 crossref_primary_10_1111_avsc_12547 crossref_primary_10_1016_j_jhydrol_2022_128277 crossref_primary_10_1002_wat2_1533 crossref_primary_10_1029_2018WR022606 crossref_primary_10_1016_j_eja_2021_126285 crossref_primary_10_1016_j_geodrs_2024_e00833 crossref_primary_10_1111_1365_2745_13999 crossref_primary_10_1111_1365_2745_13634 crossref_primary_10_1016_j_geoderma_2024_117152 crossref_primary_10_1016_j_jhydrol_2021_126917 crossref_primary_10_1016_j_geoderma_2019_01_038 crossref_primary_10_3390_w11020301 crossref_primary_10_1016_j_geoderma_2018_11_003 crossref_primary_10_1007_s10980_023_01672_4 crossref_primary_10_1016_j_scitotenv_2017_01_034 crossref_primary_10_1016_j_rama_2024_01_006 crossref_primary_10_1016_j_advwatres_2020_103682 crossref_primary_10_5194_hess_21_2301_2017 crossref_primary_10_5194_hess_26_2519_2022 crossref_primary_10_1016_j_envsoft_2021_105139 crossref_primary_10_3390_rs14010004 crossref_primary_10_3398_064_083_0301 crossref_primary_10_1016_j_jhydrol_2021_126423 crossref_primary_10_1016_j_agrformet_2024_110169 crossref_primary_10_1111_ejss_13086 crossref_primary_10_1371_journal_pone_0226926 crossref_primary_10_1038_s41597_022_01481_5 crossref_primary_10_1111_ejss_12790 crossref_primary_10_3390_rs10121968 crossref_primary_10_1002_saj2_20119 crossref_primary_10_3389_fevo_2019_00188 crossref_primary_10_3390_s25020543 crossref_primary_10_1016_j_scitotenv_2020_140972 crossref_primary_10_3390_land11101856 crossref_primary_10_3389_fpls_2021_675410 crossref_primary_10_1016_j_rama_2020_03_009 crossref_primary_10_3389_fclim_2021_689945 crossref_primary_10_1016_j_geodrs_2021_e00366 crossref_primary_10_1016_j_epsl_2025_119239 crossref_primary_10_1002_saj2_20487 crossref_primary_10_1016_j_fcr_2019_04_013 crossref_primary_10_1071_SR20288 crossref_primary_10_1016_j_geodrs_2019_e00215 crossref_primary_10_1029_2023WR035543 crossref_primary_10_1002_vzj2_20244 crossref_primary_10_1016_j_rse_2020_111668 crossref_primary_10_1029_2020GL089858 crossref_primary_10_1111_geb_13174 crossref_primary_10_2136_sssaj2017_04_0122 crossref_primary_10_5194_hess_21_3427_2017 crossref_primary_10_1016_j_geomat_2024_100028 crossref_primary_10_1175_JHM_D_19_0075_1 crossref_primary_10_1029_2018WR022643 crossref_primary_10_1029_2022WR032336 crossref_primary_10_1016_j_geoderma_2023_116360 crossref_primary_10_1016_j_geoderma_2024_116781 crossref_primary_10_1088_1748_9326_ad9035 crossref_primary_10_1016_j_scitotenv_2023_166422 crossref_primary_10_1002_ecs2_3311 crossref_primary_10_1139_cjss_2021_0154 crossref_primary_10_1007_s00271_023_00848_9 crossref_primary_10_15302_J_FASE_2024567 |
Cites_doi | 10.1016/j.geoderma.2007.08.022 10.1002/2013WR014964 10.1029/97WR02174 10.1002/hyp.10391 10.1016/j.geoderma.2013.09.024 10.2136/sssaj2010.0002 10.2136/sssaj2012.0321 10.1016/j.soilbio.2009.02.031 10.14358/PERS.80.4.353 10.2136/sssaj2001.6551463x 10.1002/hyp.10383 10.1109/JSTARS.2011.2162643 10.1029/2002WR001426 10.1890/13-0600.1 10.1029/2010WR010090 10.2136/sh2009.2.0062 10.1142/S0129626408003557 10.1016/j.geoderma.2013.08.024 10.1016/S0016-7061(97)00018-9 10.2136/sssaj1992.03615995005600030027x 10.1145/2425676.2425684 10.1201/b12728-21 10.1016/j.geoderma.2013.08.018 10.1016/j.geoderma.2009.01.013 10.1029/2003JD003823 10.1016/S0016-7061(03)00223-4 10.1016/S0016-7061(01)00070-2 10.1371/journal.pone.0105992 10.1016/j.cageo.2015.06.023 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
DOI | 10.1016/j.geoderma.2016.03.025 |
DatabaseName | CrossRef Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
EndPage | 67 |
ExternalDocumentID | 10_1016_j_geoderma_2016_03_025 S0016706116301434 |
GeographicLocations | USA United States |
GeographicLocations_xml | – name: USA – name: United States |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7UA C1K F1W H96 L.G 8FD FR3 KR7 7S9 L.6 |
ID | FETCH-LOGICAL-a482t-e524296fb47c3170642e90709baca887f1d816369b8e1b6fd639fa3a801f446c3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 03:53:01 EDT 2025 Fri Jul 11 03:34:43 EDT 2025 Fri Jul 11 00:01:16 EDT 2025 Tue Jul 01 04:04:41 EDT 2025 Thu Apr 24 23:05:40 EDT 2025 Fri Feb 23 02:27:13 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Digital soil mapping Environmental modeling High performance computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a482t-e524296fb47c3170642e90709baca887f1d816369b8e1b6fd639fa3a801f446c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0016706116301434?via%3Dihub |
PQID | 1808695957 |
PQPubID | 23462 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1836646245 proquest_miscellaneous_1825445296 proquest_miscellaneous_1808695957 crossref_primary_10_1016_j_geoderma_2016_03_025 crossref_citationtrail_10_1016_j_geoderma_2016_03_025 elsevier_sciencedirect_doi_10_1016_j_geoderma_2016_03_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-15 |
PublicationDateYYYYMMDD | 2016-07-15 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Geoderma |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Burrough, van Gaans, Hootsmans (bb0035) 1997; 77 Daly, Halbleib, Smith, Gibson, Doggett, Taylor, Curtis, Pasteris (bb0050) 2008; 28 Fry, Xian, Jin, Dewitz, Homer, Yang, Barnes, Herold, Wickham (bb0080) 2011; 77 Plaza, Chang (bb0195) 2007 Brady, Weil (bb0020) 2008 Wei, McBratney, Hempel, Minasny, Malone, D'Avello, Burras, Thompson (bb0230) 2010 Subburayalu, Slater (bb0210) 2013; 77 Bierkens (bb0010) 2014; 29 Lichstein, Golaz, Malyshev, Shevliakova, Zhang, Sheffield, Birdsey, Sarmiento, Pacala (bb0135) 2014; 24 Crow, Berg, Cosh, Loew, Mohanty, Panciera, de Rosnay, Ryu, Walker (bb0045) 2012; 50 Nauman, Thompson, Rasmussen (bb0175) 2014; 80 Gallant, Dowling (bb0085) 2003; 39 Meirik, Frazier, Brown, Roberts, Rupp (bb0150) 2010 Bui, Moran (bb0030) 2001; 103 Balaji (bb0005) 2013; 19 Nauman, Thompson (bb0170) 2014; 213 Dobos, Bialko, Micheli, Kobza (bb0055) 2010 Bode, Butler, Dunning, Gropp, Hoefler, Hwu, Kramer (bb0015) 2013 Subburayalu, Jenhani, Slater (bb0215) 2014; 213 Gatzke, Beaudette, Ficklin, Luo, O'Geen, Zhang (bb0090) 2011; 75 Hudson (bb0120) 1992; 56 Frazier, Rodgers, Briggs, Rupp (bb0075) 2009; 50 Michalakes, Vachharajani (bb0155) 2008; 18 Thompson J. A., T. W. Nauman, N. P. Odgers, N. Libohova, J. Hempel (2012), Harmonization of Legacy Soil Maps in North America: Status, Trends, and Implications for Digital Soil Mapping Efforts, in The 5th Global Workshop on Digital Soil Mapping, Digital Soil Assessments and Beyond, edited by A. B. McBratney, B. Minasny, B. Malone, Sydney, Australia. Gesch, Evans, Mauck, Hutchinson, Carswell (bb0095) 2009 Jenny (bb0125) 1941 Breiman, Friedman, Olshen, Stone (bb0025) 1984 Duval, Carson, Holman, Darnley (bb0065) 2005 Mitchell, Lohmann, Houser, Wood, Schaake (bb0165) 2004; 109 Zhu, Hudson, Burt, Lubich, Simonson (bb0245) 2001; 65 McBratney, Mendonca Santos, Minasny (bb0145) 2003; 117 Padarian, Minasny, McBratney (bb0185) 2015; 83 Odgers, Sun, McBratney, Minasny, Clifford (bb0180) 2014; 214 Hansen, Brown, Dennison, Graves, Bricklemyer (bb0105) 2009; 150 Wood (bb0235) 2011; 47 Chaney, Roundy, Herrera Estrada, Wood (bb0040) 2014; 51 Yang, Jiao, Fahmy, Zhu, Hann, Burt, Qi (bb0240) 2011; 75 Hengl, de Jesus, MacMillan, Batjes, Heuvenlink (bb0115) 2014; 9 Grayson, Western, Chiew Francis, Blöschl (bb0100) 1997; 33 Minasny, McBratney (bb0160) 2007; 142 Soil Survey Staff (bb0205) 2014 Lee, Gasster, Plaza, Chang, Huang (bb0130) 2011; 4 Ferziger, Peric (bb0070) 2012 Rodriguez-Iturbe, Porporato (bb0200) 2004 Manzoni, Porporato (bb0140) 2009; 41 (bb0110) 2008; 33 Thompson, Prescott, Moore, Bell, Kautz, Hempel, Waltman, Perry (bb0220) 2010 Pedregosa (bb0190) 2011; 12 Du, Zhu, Band, Liu (bb0060) 2014; 29 (10.1016/j.geoderma.2016.03.025_bb0110) 2008; 33 Grayson (10.1016/j.geoderma.2016.03.025_bb0100) 1997; 33 Jenny (10.1016/j.geoderma.2016.03.025_bb0125) 1941 Lee (10.1016/j.geoderma.2016.03.025_bb0130) 2011; 4 Bui (10.1016/j.geoderma.2016.03.025_bb0030) 2001; 103 Burrough (10.1016/j.geoderma.2016.03.025_bb0035) 1997; 77 Gallant (10.1016/j.geoderma.2016.03.025_bb0085) 2003; 39 Minasny (10.1016/j.geoderma.2016.03.025_bb0160) 2007; 142 Ferziger (10.1016/j.geoderma.2016.03.025_bb0070) 2012 Nauman (10.1016/j.geoderma.2016.03.025_bb0175) 2014; 80 Gesch (10.1016/j.geoderma.2016.03.025_bb0095) 2009 Brady (10.1016/j.geoderma.2016.03.025_bb0020) 2008 Subburayalu (10.1016/j.geoderma.2016.03.025_bb0210) 2013; 77 Frazier (10.1016/j.geoderma.2016.03.025_bb0075) 2009; 50 Padarian (10.1016/j.geoderma.2016.03.025_bb0185) 2015; 83 Lichstein (10.1016/j.geoderma.2016.03.025_bb0135) 2014; 24 Bode (10.1016/j.geoderma.2016.03.025_bb0015) 2013 Michalakes (10.1016/j.geoderma.2016.03.025_bb0155) 2008; 18 Manzoni (10.1016/j.geoderma.2016.03.025_bb0140) 2009; 41 Zhu (10.1016/j.geoderma.2016.03.025_bb0245) 2001; 65 Rodriguez-Iturbe (10.1016/j.geoderma.2016.03.025_bb0200) 2004 Plaza (10.1016/j.geoderma.2016.03.025_bb0195) 2007 Mitchell (10.1016/j.geoderma.2016.03.025_bb0165) 2004; 109 10.1016/j.geoderma.2016.03.025_bb0225 Gatzke (10.1016/j.geoderma.2016.03.025_bb0090) 2011; 75 Duval (10.1016/j.geoderma.2016.03.025_bb0065) Subburayalu (10.1016/j.geoderma.2016.03.025_bb0215) 2014; 213 Daly (10.1016/j.geoderma.2016.03.025_bb0050) 2008; 28 Thompson (10.1016/j.geoderma.2016.03.025_bb0220) 2010 Odgers (10.1016/j.geoderma.2016.03.025_bb0180) 2014; 214 Soil Survey Staff (10.1016/j.geoderma.2016.03.025_bb0205) Crow (10.1016/j.geoderma.2016.03.025_bb0045) 2012; 50 Wood (10.1016/j.geoderma.2016.03.025_bb0235) 2011; 47 Balaji (10.1016/j.geoderma.2016.03.025_bb0005) 2013; 19 Pedregosa (10.1016/j.geoderma.2016.03.025_bb0190) 2011; 12 Wei (10.1016/j.geoderma.2016.03.025_bb0230) 2010 Du (10.1016/j.geoderma.2016.03.025_bb0060) 2014; 29 Nauman (10.1016/j.geoderma.2016.03.025_bb0170) 2014; 213 Chaney (10.1016/j.geoderma.2016.03.025_bb0040) 2014; 51 Hansen (10.1016/j.geoderma.2016.03.025_bb0105) 2009; 150 Hengl (10.1016/j.geoderma.2016.03.025_bb0115) 2014; 9 Bierkens (10.1016/j.geoderma.2016.03.025_bb0010) 2014; 29 Yang (10.1016/j.geoderma.2016.03.025_bb0240) 2011; 75 Fry (10.1016/j.geoderma.2016.03.025_bb0080) 2011; 77 McBratney (10.1016/j.geoderma.2016.03.025_bb0145) 2003; 117 Hudson (10.1016/j.geoderma.2016.03.025_bb0120) 1992; 56 Meirik (10.1016/j.geoderma.2016.03.025_bb0150) 2010 Breiman (10.1016/j.geoderma.2016.03.025_bb0025) 1984 Dobos (10.1016/j.geoderma.2016.03.025_bb0055) 2010 |
References_xml | – year: 1984 ident: bb0025 article-title: Classification and Regression Trees – year: 2004 ident: bb0200 article-title: Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics – volume: 75 start-page: 1044 year: 2011 end-page: 1053 ident: bb0240 article-title: Updating conventional soil maps through digital soil mapping publication-title: Soil Sci. Soc. Am. J. – volume: 19 year: 2013 ident: bb0005 article-title: Scientific computing in the age of complexity publication-title: XRDS – volume: 39 start-page: 1347 year: 2003 end-page: 1360 ident: bb0085 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. – volume: 29 start-page: 310 year: 2014 end-page: 320 ident: bb0010 article-title: Hyper-resolution global hydrological modeling: what's next publication-title: Hydrol. Process. – year: 2012 ident: bb0070 article-title: Computational Methods for Fluid Dynamics – volume: 4 year: 2011 ident: bb0130 article-title: Recent developments in high performance computing for remote sensing: a review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Thompson J. A., T. W. Nauman, N. P. Odgers, N. Libohova, J. Hempel (2012), Harmonization of Legacy Soil Maps in North America: Status, Trends, and Implications for Digital Soil Mapping Efforts, in The 5th Global Workshop on Digital Soil Mapping, Digital Soil Assessments and Beyond, edited by A. B. McBratney, B. Minasny, B. Malone, Sydney, Australia. – year: 2010 ident: bb0220 article-title: Regional Apprach to Soil Property Mapping Using Legacy Data and Spatial Disaggregation Techniques, in 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia – volume: 50 start-page: 62 year: 2009 end-page: 67 ident: bb0075 article-title: Remote area soil proxy modeling technique publication-title: Soil Surv. Horizons – year: 2013 ident: bb0015 publication-title: The Blue Waters Super-System for Super-Science, in Contemporary HPC Architectures – volume: 109 year: 2004 ident: bb0165 article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res. – volume: 83 start-page: 80 year: 2015 end-page: 88 ident: bb0185 article-title: Using Google's cloud-based platform for digital soil mapping publication-title: Comput. Geosci. – year: 1941 ident: bb0125 article-title: Factors of Soil Formation, A System of Quantitative Pedology – volume: 9 year: 2014 ident: bb0115 article-title: SoilGrids1km-Global soil information based on automated mapping publication-title: PLoS One – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: bb0145 article-title: On digital soil mapping publication-title: Geoderma – volume: 65 start-page: 1463 year: 2001 end-page: 1472 ident: bb0245 article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic publication-title: Soil Sci. Soc. Am. J. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bb0190 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 2010 ident: bb0055 publication-title: Legacy Soil Data Harmonization and Database Development, in Digital Soil Mapping, Progress in Soil Science 2 – volume: 77 start-page: 1254 year: 2013 end-page: 1268 ident: bb0210 article-title: Soil series mapping by knowledge discovery from an Ohio county soil map publication-title: Soil Sci. Soc. Am. J. – volume: 142 start-page: 285 year: 2007 end-page: 293 ident: bb0160 article-title: Incorporating taxonomic distance into spatial prediction and digital soil mapping of soil classes publication-title: Geoderma – volume: 51 start-page: 619 year: 2014 end-page: 638 ident: bb0040 article-title: High-resolution modeling of the spatial heterogeneity of soil moisture: applications in network design publication-title: Water Resour. Res. – volume: 47 year: 2011 ident: bb0235 article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water publication-title: Water Resour. Res. – volume: 24 year: 2014 ident: bb0135 article-title: Confronting terrestrial biosphere models with forest inventory data publication-title: Ecol. Appl. – volume: 213 start-page: 334 year: 2014 end-page: 335 ident: bb0215 article-title: Disaggregation of component soil series on an Ohio county soil survey map using possibilistic decision trees publication-title: Geoderma – volume: 103 start-page: 79 year: 2001 end-page: 94 ident: bb0030 article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data publication-title: Geoderma – volume: 77 start-page: 115 year: 1997 end-page: 135 ident: bb0035 article-title: Continuous classification in soil survey: spatial correlation, confusion and boundaries publication-title: Geoderma – volume: 150 start-page: 72 year: 2009 end-page: 84 ident: bb0105 article-title: Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data publication-title: Geoderma – volume: 80 start-page: 353 year: 2014 end-page: 366 ident: bb0175 article-title: Semi-automated disaggregation of a conventional soil map using knowledge driven data mining and Random Forests in the Sonoran Desert, USA publication-title: PE&RS – year: 2009 ident: bb0095 article-title: The National Map-Elevation: U.S. Geological Survey fact sheet, (2009-3053) – volume: 75 year: 2011 ident: bb0090 article-title: Aggregation strategies for SSURGO data: effects on SWAT soil input and hydrologic outputs publication-title: Soil Water Manag. Conserv. – volume: 29 start-page: 2491 year: 2014 end-page: 2503 ident: bb0060 article-title: Soil property variation mapping through data mining of soil category maps publication-title: Hydrol. Process. – year: 2007 ident: bb0195 article-title: High Performace Computing in Remote Sensing – volume: 41 start-page: 1355 year: 2009 end-page: 1379 ident: bb0140 article-title: Soil carbon and nitrogen mineralization: theory and models across scales publication-title: Soil Biol. Biochem. – volume: 18 year: 2008 ident: bb0155 article-title: GPU acceleration of numerical weather prediction publication-title: Parallel Process. Lett. – volume: 33 start-page: 2897 year: 1997 end-page: 2908 ident: bb0100 article-title: Prefered states in spatial soil moisture patterns: local and nonlocal controls publication-title: Water Resour. Res. – year: 2005 ident: bb0065 article-title: Terrestrial Radioactivity and Gamma-Ray Exposure in the United States and Canada: U.S. Geological Survey Open-File Report 2005-1413 – volume: 213 start-page: 385 year: 2014 end-page: 399 ident: bb0170 article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees publication-title: Geoderma – volume: 77 start-page: 858 year: 2011 end-page: 864 ident: bb0080 article-title: Completion of the 2006 National Land Cover Database for the Conterminous United States publication-title: PE&RS – volume: 33 start-page: 772 year: 2008 ident: bb0110 publication-title: Geomorphometry: concepts, software, applications – year: 2008 ident: bb0020 article-title: The Nature and Properties of Soils – volume: 28 year: 2008 ident: bb0050 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: Int. J. Climatol. – year: 2014 ident: bb0205 article-title: Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States. United States Department of Agriculture, Natural Resources Conservation Service – year: 2010 ident: bb0150 publication-title: ASTER-based vegetation map to improve soil modeling in remote areas, in Digital Soil Mapping: Bridging Research, Environmental Application, and Operation – volume: 50 year: 2012 ident: bb0045 article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products publication-title: Rev. Geophys. – year: 2010 ident: bb0230 article-title: Digital Harmonisation of Adjacent Soil Survey Areas — 4 Iowa Counties, in Proceedings of the 19th World Congress of Soil Science, Soils Solutions for a Changing World – volume: 56 start-page: 836 year: 1992 end-page: 841 ident: bb0120 article-title: The soil survey as paradigm-based science publication-title: Soil Sci. Soc. Am. J. – volume: 214 start-page: 91 year: 2014 end-page: 100 ident: bb0180 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma – volume: 142 start-page: 285 issue: 3–4 year: 2007 ident: 10.1016/j.geoderma.2016.03.025_bb0160 article-title: Incorporating taxonomic distance into spatial prediction and digital soil mapping of soil classes publication-title: Geoderma doi: 10.1016/j.geoderma.2007.08.022 – volume: 51 start-page: 619 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0040 article-title: High-resolution modeling of the spatial heterogeneity of soil moisture: applications in network design publication-title: Water Resour. Res. doi: 10.1002/2013WR014964 – volume: 75 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0090 article-title: Aggregation strategies for SSURGO data: effects on SWAT soil input and hydrologic outputs publication-title: Soil Water Manag. Conserv. – volume: 33 start-page: 2897 issue: 12 year: 1997 ident: 10.1016/j.geoderma.2016.03.025_bb0100 article-title: Prefered states in spatial soil moisture patterns: local and nonlocal controls publication-title: Water Resour. Res. doi: 10.1029/97WR02174 – volume: 29 start-page: 310 issue: 2 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0010 article-title: Hyper-resolution global hydrological modeling: what's next publication-title: Hydrol. Process. doi: 10.1002/hyp.10391 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0190 article-title: Scikit-learn: machine learning in Python publication-title: J. Mach. Learn. Res. – year: 1941 ident: 10.1016/j.geoderma.2016.03.025_bb0125 – volume: 214 start-page: 91 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0180 article-title: Disaggregating and harmonising soil map units through resampled classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.09.024 – year: 2004 ident: 10.1016/j.geoderma.2016.03.025_bb0200 – volume: 75 start-page: 1044 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0240 article-title: Updating conventional soil maps through digital soil mapping publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2010.0002 – volume: 77 start-page: 1254 issue: 4 year: 2013 ident: 10.1016/j.geoderma.2016.03.025_bb0210 article-title: Soil series mapping by knowledge discovery from an Ohio county soil map publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2012.0321 – volume: 41 start-page: 1355 year: 2009 ident: 10.1016/j.geoderma.2016.03.025_bb0140 article-title: Soil carbon and nitrogen mineralization: theory and models across scales publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.02.031 – volume: 80 start-page: 353 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0175 article-title: Semi-automated disaggregation of a conventional soil map using knowledge driven data mining and Random Forests in the Sonoran Desert, USA publication-title: PE&RS doi: 10.14358/PERS.80.4.353 – volume: 65 start-page: 1463 issue: 5 year: 2001 ident: 10.1016/j.geoderma.2016.03.025_bb0245 article-title: Soil mapping using GIS, expert knowledge, and fuzzy logic publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.6551463x – volume: 29 start-page: 2491 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0060 article-title: Soil property variation mapping through data mining of soil category maps publication-title: Hydrol. Process. doi: 10.1002/hyp.10383 – volume: 4 issue: 3 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0130 article-title: Recent developments in high performance computing for remote sensing: a review publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2011.2162643 – year: 2007 ident: 10.1016/j.geoderma.2016.03.025_bb0195 – year: 2010 ident: 10.1016/j.geoderma.2016.03.025_bb0055 – year: 2008 ident: 10.1016/j.geoderma.2016.03.025_bb0020 – volume: 39 start-page: 1347 issue: 12 year: 2003 ident: 10.1016/j.geoderma.2016.03.025_bb0085 article-title: A multiresolution index of valley bottom flatness for mapping depositional areas publication-title: Water Resour. Res. doi: 10.1029/2002WR001426 – volume: 24 issue: 4 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0135 article-title: Confronting terrestrial biosphere models with forest inventory data publication-title: Ecol. Appl. doi: 10.1890/13-0600.1 – volume: 47 issue: 5 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0235 article-title: Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water publication-title: Water Resour. Res. doi: 10.1029/2010WR010090 – volume: 50 start-page: 62 year: 2009 ident: 10.1016/j.geoderma.2016.03.025_bb0075 article-title: Remote area soil proxy modeling technique publication-title: Soil Surv. Horizons doi: 10.2136/sh2009.2.0062 – volume: 18 issue: 4 year: 2008 ident: 10.1016/j.geoderma.2016.03.025_bb0155 article-title: GPU acceleration of numerical weather prediction publication-title: Parallel Process. Lett. doi: 10.1142/S0129626408003557 – year: 2009 ident: 10.1016/j.geoderma.2016.03.025_bb0095 – year: 2010 ident: 10.1016/j.geoderma.2016.03.025_bb0220 – year: 2013 ident: 10.1016/j.geoderma.2016.03.025_bb0015 – volume: 50 issue: RG2002 year: 2012 ident: 10.1016/j.geoderma.2016.03.025_bb0045 article-title: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products publication-title: Rev. Geophys. – volume: 77 start-page: 858 issue: 9 year: 2011 ident: 10.1016/j.geoderma.2016.03.025_bb0080 article-title: Completion of the 2006 National Land Cover Database for the Conterminous United States publication-title: PE&RS – volume: 213 start-page: 385 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0170 article-title: Semi-automated disaggregation of conventional soil maps using knowledge driven data mining and classification trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.08.024 – volume: 77 start-page: 115 issue: 2–4 year: 1997 ident: 10.1016/j.geoderma.2016.03.025_bb0035 article-title: Continuous classification in soil survey: spatial correlation, confusion and boundaries publication-title: Geoderma doi: 10.1016/S0016-7061(97)00018-9 – volume: 56 start-page: 836 issue: 3 year: 1992 ident: 10.1016/j.geoderma.2016.03.025_bb0120 article-title: The soil survey as paradigm-based science publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1992.03615995005600030027x – volume: 19 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2016.03.025_bb0005 article-title: Scientific computing in the age of complexity publication-title: XRDS doi: 10.1145/2425676.2425684 – ident: 10.1016/j.geoderma.2016.03.025_bb0225 doi: 10.1201/b12728-21 – volume: 28 issue: 16 year: 2008 ident: 10.1016/j.geoderma.2016.03.025_bb0050 article-title: Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States publication-title: Int. J. Climatol. – volume: 213 start-page: 334 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0215 article-title: Disaggregation of component soil series on an Ohio county soil survey map using possibilistic decision trees publication-title: Geoderma doi: 10.1016/j.geoderma.2013.08.018 – volume: 150 start-page: 72 issue: 1–2 year: 2009 ident: 10.1016/j.geoderma.2016.03.025_bb0105 article-title: Inductively mapping expert-derived soil-landscape units within dambo wetland catenae using multispectral and topographic data publication-title: Geoderma doi: 10.1016/j.geoderma.2009.01.013 – year: 1984 ident: 10.1016/j.geoderma.2016.03.025_bb0025 – volume: 109 year: 2004 ident: 10.1016/j.geoderma.2016.03.025_bb0165 article-title: The multi-institution North American Land Data Assimilation System (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system publication-title: J. Geophys. Res. doi: 10.1029/2003JD003823 – ident: 10.1016/j.geoderma.2016.03.025_bb0065 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.geoderma.2016.03.025_bb0145 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 103 start-page: 79 issue: 1–2 year: 2001 ident: 10.1016/j.geoderma.2016.03.025_bb0030 article-title: Disaggregation of polygons of surficial geology and soil maps using spatial modelling and legacy data publication-title: Geoderma doi: 10.1016/S0016-7061(01)00070-2 – ident: 10.1016/j.geoderma.2016.03.025_bb0205 – volume: 33 start-page: 772 year: 2008 ident: 10.1016/j.geoderma.2016.03.025_bb0110 publication-title: Dev. Soil Sci. – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.geoderma.2016.03.025_bb0115 article-title: SoilGrids1km-Global soil information based on automated mapping publication-title: PLoS One doi: 10.1371/journal.pone.0105992 – year: 2012 ident: 10.1016/j.geoderma.2016.03.025_bb0070 – year: 2010 ident: 10.1016/j.geoderma.2016.03.025_bb0150 – year: 2010 ident: 10.1016/j.geoderma.2016.03.025_bb0230 – volume: 83 start-page: 80 year: 2015 ident: 10.1016/j.geoderma.2016.03.025_bb0185 article-title: Using Google's cloud-based platform for digital soil mapping publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2015.06.023 |
SSID | ssj0017020 |
Score | 2.5723176 |
Snippet | A new complete map of soil series probabilities has been produced for the contiguous United States at a 30m spatial resolution. This innovative database, named... A new complete map of soil series probabilities has been produced for the contiguous United States at a 30 m spatial resolution. This innovative database,... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 54 |
SubjectTerms | algorithms artificial intelligence Availability Computer information security Data base management systems Digital soil mapping Discontinuity energy Environment models Environmental modeling environmental models geographical distribution High performance computing hydrology information systems Mathematical models monitoring politics potassium precision agriculture prediction soil Soil (material) soil map soil surveys thorium uncertainty United States uranium |
Title | POLARIS: A 30-meter probabilistic soil series map of the contiguous United States |
URI | https://dx.doi.org/10.1016/j.geoderma.2016.03.025 https://www.proquest.com/docview/1808695957 https://www.proquest.com/docview/1825445296 https://www.proquest.com/docview/1836646245 |
Volume | 274 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEF6KvuiDeOJZVvA1NpvsbhLfQrHUq54F35bNdlNaetHj1d_uTI6iIvXBx4RZCN9M5khmviHkwkJKz6TxHC2gNuEB1w6upnRSCJ2B2_FDL8Fp5IeWbLb57bt4r5B6OQuDbZWF7899euatizu1As3apNfDGV8mAwhHkFEgSR1ygnIeoJVffizbPFjgFtSMTDoo_WVKuA86woVjGf8QkxnZKa7M_j1A_XDVWfxpbJOtInGkcf5sO6RiR7tkM-5OC_IMu0eenx7v45eb1ysaU991htjpQnFjTMaii4TMdDbuDShanZ3RoZ7QcUohA6TYsN7rLsaLGc2TUJonofuk3bh-qzedYmWCo3nozR0rIORGMk14YHxkxuGehfLXjRJtNPiTlHVCwEtGSWhZItMOJCip9jXEqRQKQ-MfkLXReGQPCQ18w5IQFCeMy430QCoJPS20K1LJjTkiosRJmYJPHNdaDFTZONZXJb4K8VWurwDfI1JbnpvkjBp_nohKNahvtqHA7f959rzUm4IXB_-G6JEFOBULoZqLRCSCVTIZgxsgukrGl5JLj4vjfzznCdnAK_xqzMQpWZtPF_YM0p15Us3suUrW45u7ZusTfcv9XA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsABsYqyGolraJzYTsKtQqACbdml3izHdapW3UTbK9_OTJYKEGoPXJOxZL2xZ0lm3hByYSGkZ9J4jhaQm_CAawdHUzoJuM7AbfmhF2M3cr0hq-_8vimaS-S66IXBssrc9mc2PbXW-ZNyjmZ51Olgjy-TAbgjiCiQpI4vk1UO1xfHGFx-zuo8WODm3IxMOij-rU24C0rCiWMpARGTKdspzsz-20P9stWpA7rdIpt55Egr2ea2yZId7JCNSvsjZ8-wu-T56bFWebl7vaIV6rtOH0tdKI6MSWl0kZGZjoedHsVjZ8e0r0d0mFAIASlWrHfa0-F0TLMolGZR6B55v715u646-cwER_PQmzhWgM-NZBLzwPhIjcM9C_mvG8XaaDAoCWuFAJiM4tCyWCYtiFAS7WtwVAlkhsbfJyuD4cAeEBr4hsUhaE4YlxvpgVQcelpoVySSG1MiosBJmZxQHOda9FRROdZVBb4K8VWurwDfEinP1o0ySo2FK6JCDerH4VBg9xeuPS_0puDm4O8QPbAAp2IhpHORiEQwTyalcANE58n4UnLpcXH4j32ekbXqW72maneNhyOyjm_wEzITx2Rl8jG1JxD7TOLT9Gx_ATwQ_uo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=POLARIS%3A+A+30-meter+probabilistic+soil+series+map+of+the+contiguous+United+States&rft.jtitle=Geoderma&rft.au=Chaney%2C+Nathaniel+W.&rft.au=Wood%2C+Eric+F.&rft.au=McBratney%2C+Alexander+B.&rft.au=Hempel%2C+Jonathan+W.&rft.date=2016-07-15&rft.pub=Elsevier+B.V&rft.issn=0016-7061&rft.eissn=1872-6259&rft.volume=274&rft.spage=54&rft.epage=67&rft_id=info:doi/10.1016%2Fj.geoderma.2016.03.025&rft.externalDocID=S0016706116301434 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |