Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite

•Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the compositi...

Full description

Saved in:
Bibliographic Details
Published inGeoderma Vol. 383; p. 114799
Main Authors Liu, Jing, Zhu, Runliang, Ma, Lingya, Fu, Haoyang, Lin, Xiaoju, Parker, Stephen C., Molinari, Marco
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the composition of soils should be differentiated. Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings.
AbstractList •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the composition of soils should be differentiated. Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings.
Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings.
ArticleNumber 114799
Author Parker, Stephen C.
Liu, Jing
Lin, Xiaoju
Fu, Haoyang
Zhu, Runliang
Ma, Lingya
Molinari, Marco
Author_xml – sequence: 1
  givenname: Jing
  surname: Liu
  fullname: Liu, Jing
  organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
– sequence: 2
  givenname: Runliang
  surname: Zhu
  fullname: Zhu, Runliang
  email: zhurl@gig.ac.cn
  organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
– sequence: 3
  givenname: Lingya
  surname: Ma
  fullname: Ma, Lingya
  organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
– sequence: 4
  givenname: Haoyang
  surname: Fu
  fullname: Fu, Haoyang
  organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
– sequence: 5
  givenname: Xiaoju
  surname: Lin
  fullname: Lin, Xiaoju
  organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
– sequence: 6
  givenname: Stephen C.
  surname: Parker
  fullname: Parker, Stephen C.
  organization: Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
– sequence: 7
  givenname: Marco
  surname: Molinari
  fullname: Molinari, Marco
  organization: Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
BookMark eNqFkDtv2zAURonCAWo7-QsFxxSIHD4sySwyxDCaBxAgSzITFHkZ0bBElaQD-9-XitslSxY-7j3fN5wZmvS-B4R-ULKghFbX28UbeAOhUwtGWB7SZS3ENzSlq5oVFSvFBE1JJouaVPQ7msW4zd86s1N0WJvow5Cc77G3eGh9HFqVAKveYK1M5_YdzjsX8nHpD8f2aMJPf3AG4i-8xtp3gwoquXfAMe3NcYQthOBG0CW4wm8eUvvxGjtb6DKd4BydWbWLcPHvnqPXu98vm4fi6fn-cbN-KtRyxVLRVMIsAbgtebVclZoxy0FwwhpuQYvGWANNQw1nJs9Lwyuq84ooXgPXyvI5ujz1DsH_2UNMsnNRw26nevD7KFlZUkHKlRAZvTmhOvgYA1ipXVKjmhSU20lK5ChcbuV_4XIULk_Cc7z6FB-C61Q4fh28PQUhe3h3EGTUDnoNxgXQSRrvvqr4CzmLpCA
CitedBy_id crossref_primary_10_1038_s43247_024_01211_2
crossref_primary_10_1007_s11356_023_27063_5
crossref_primary_10_1080_15320383_2024_2341061
crossref_primary_10_1016_j_chemosphere_2022_136749
crossref_primary_10_1016_j_jwpe_2024_104952
crossref_primary_10_1016_j_scitotenv_2024_174275
crossref_primary_10_3390_magnetochemistry9050119
crossref_primary_10_1021_acs_est_4c08847
crossref_primary_10_1016_j_jhazmat_2023_130863
crossref_primary_10_1016_j_geodrs_2022_e00575
crossref_primary_10_1016_j_jhazmat_2022_129518
crossref_primary_10_1016_j_chemgeo_2024_122101
crossref_primary_10_1016_j_seppur_2021_120151
crossref_primary_10_1016_j_scitotenv_2024_172025
crossref_primary_10_1021_acs_est_4c02726
crossref_primary_10_1021_acs_est_4c10093
crossref_primary_10_2138_am_2022_8520
crossref_primary_10_1016_j_jcis_2023_01_034
crossref_primary_10_1016_j_matchemphys_2023_127848
crossref_primary_10_1021_acsanm_2c04622
crossref_primary_10_1007_s11356_023_26612_2
crossref_primary_10_1016_j_jenvman_2022_117163
crossref_primary_10_1016_j_envpol_2021_118001
crossref_primary_10_1016_j_pce_2023_103538
crossref_primary_10_1016_j_clay_2024_107534
crossref_primary_10_1016_j_scitotenv_2021_149918
crossref_primary_10_1016_j_colsurfa_2024_133942
crossref_primary_10_1016_j_gca_2023_12_024
crossref_primary_10_1016_j_jece_2024_114136
crossref_primary_10_1038_s41467_024_47931_z
crossref_primary_10_1016_j_earscirev_2022_104105
crossref_primary_10_1016_j_ecoenv_2022_113617
crossref_primary_10_1016_j_envpol_2025_125960
crossref_primary_10_1016_j_scitotenv_2023_161863
crossref_primary_10_1021_acsestwater_4c01016
crossref_primary_10_1016_j_geoderma_2023_116737
crossref_primary_10_1016_j_jece_2021_106756
crossref_primary_10_1016_j_seppur_2021_119023
crossref_primary_10_1007_s11356_022_20561_y
crossref_primary_10_1016_j_jhazmat_2021_127659
crossref_primary_10_2138_am_2023_9281
crossref_primary_10_1016_j_envres_2024_119852
crossref_primary_10_3390_ma17112706
crossref_primary_10_1016_j_chemosphere_2024_143515
crossref_primary_10_1016_j_matchemphys_2023_127662
crossref_primary_10_1016_j_jece_2023_111233
crossref_primary_10_1134_S2070205122060119
crossref_primary_10_1039_D4EN00827H
crossref_primary_10_3390_min13050647
crossref_primary_10_3390_ma15155418
crossref_primary_10_1007_s11368_023_03672_y
crossref_primary_10_26848_rbgf_v18_1_p518_536
crossref_primary_10_1016_j_jhazmat_2023_131665
crossref_primary_10_1039_D0EN01241F
crossref_primary_10_1016_j_geoderma_2023_116606
crossref_primary_10_1007_s10967_022_08223_2
crossref_primary_10_1016_j_chemosphere_2023_138171
crossref_primary_10_1016_j_jece_2024_113342
crossref_primary_10_1016_j_scitotenv_2022_155835
crossref_primary_10_1016_j_jece_2024_113741
crossref_primary_10_1016_j_scitotenv_2022_153259
crossref_primary_10_1016_j_scitotenv_2024_173667
crossref_primary_10_1016_j_scitotenv_2023_162929
crossref_primary_10_1016_j_watres_2023_119899
crossref_primary_10_1016_j_watres_2022_119534
crossref_primary_10_1038_s41467_023_44240_9
crossref_primary_10_1016_j_envres_2023_117468
crossref_primary_10_1021_acs_langmuir_4c04316
crossref_primary_10_1021_acs_inorgchem_3c01681
crossref_primary_10_1016_j_chemosphere_2022_135901
crossref_primary_10_1016_j_gca_2021_05_043
crossref_primary_10_1016_j_jece_2021_105721
crossref_primary_10_1007_s11270_022_05916_y
crossref_primary_10_1016_j_chemgeo_2025_122675
crossref_primary_10_1016_j_colsurfa_2023_131958
crossref_primary_10_1039_D4EN00040D
crossref_primary_10_1016_j_seppur_2023_124702
crossref_primary_10_1016_j_scitotenv_2024_169970
crossref_primary_10_1016_j_cej_2022_139072
crossref_primary_10_1016_j_jece_2024_113690
crossref_primary_10_1007_s11368_023_03481_3
crossref_primary_10_1080_00103624_2024_2430347
crossref_primary_10_1016_j_chemosphere_2022_135627
crossref_primary_10_1016_j_gca_2024_04_012
crossref_primary_10_1021_acs_est_3c01008
crossref_primary_10_1016_j_jclepro_2024_144283
crossref_primary_10_1016_j_jhazmat_2023_131004
crossref_primary_10_1021_acs_est_4c12515
crossref_primary_10_31857_S0044185624010031
crossref_primary_10_31857_S0044185622060110
crossref_primary_10_1039_D3EM00469D
crossref_primary_10_1016_j_seppur_2024_127646
crossref_primary_10_1039_D3EN00891F
crossref_primary_10_1039_D3RA05871A
crossref_primary_10_1007_s13369_023_07821_w
crossref_primary_10_1016_j_chemgeo_2024_122424
crossref_primary_10_1111_arcm_12977
crossref_primary_10_1039_D3CP01200J
crossref_primary_10_1134_S2070205124701880
crossref_primary_10_1016_j_jwpe_2025_107488
crossref_primary_10_1021_acs_est_3c04727
crossref_primary_10_1061_JOEEDU_EEENG_7141
crossref_primary_10_1016_j_saa_2022_121636
crossref_primary_10_1016_j_jhazmat_2022_130242
crossref_primary_10_1016_j_scitotenv_2021_150839
crossref_primary_10_1021_acs_est_4c12049
crossref_primary_10_3390_toxics12050347
crossref_primary_10_1016_S1003_6326_22_65873_4
crossref_primary_10_1016_j_chemgeo_2024_121966
crossref_primary_10_1007_s11356_022_21303_w
crossref_primary_10_1016_j_chemgeo_2023_121887
crossref_primary_10_1021_acs_est_4c11232
crossref_primary_10_1016_j_ecoenv_2024_116570
crossref_primary_10_1016_j_jes_2024_06_033
crossref_primary_10_1016_j_colsurfa_2021_127980
crossref_primary_10_1016_j_envres_2022_113353
crossref_primary_10_1016_j_colsurfa_2022_130771
crossref_primary_10_1016_j_jcis_2023_09_090
crossref_primary_10_1016_j_scitotenv_2024_178302
crossref_primary_10_1002_wer_10827
crossref_primary_10_1016_j_jhazmat_2022_129095
crossref_primary_10_1016_j_gca_2025_02_031
crossref_primary_10_1016_j_clay_2022_106468
crossref_primary_10_1016_j_jhazmat_2024_134992
crossref_primary_10_1039_D3EN00243H
crossref_primary_10_1016_j_watres_2023_119804
crossref_primary_10_1039_D1EN01190A
crossref_primary_10_1016_j_cej_2022_137519
crossref_primary_10_1016_j_clay_2022_106464
crossref_primary_10_3390_ma15103540
Cites_doi 10.1007/s11368-015-1095-5
10.1021/es001644+
10.1006/jcis.2000.7235
10.1016/j.colsurfa.2006.07.002
10.1016/j.jcis.2006.04.015
10.1016/j.chemosphere.2018.04.150
10.1021/es050889p
10.1016/j.gca.2006.02.021
10.1016/j.jcis.2016.03.016
10.1016/j.chemgeo.2015.06.011
10.1016/j.geoderma.2019.05.042
10.1016/0021-9797(85)90400-X
10.1016/j.chemgeo.2018.05.036
10.1016/j.gca.2018.07.017
10.1016/j.jcis.2006.12.061
10.1006/jcis.2000.7072
10.1097/SS.0b013e31828683f8
10.1021/acsearthspacechem.9b00261
10.1021/cr970105t
10.1021/es0719529
10.1021/es300494x
10.1016/j.chemosphere.2015.09.083
10.1039/c2dt11651k
10.1016/j.jhazmat.2013.08.030
10.1006/jcis.1999.6701
10.1016/j.gca.2013.04.003
10.1016/j.geoderma.2019.04.004
10.1016/S0269-7491(03)00262-8
10.1126/science.1148614
10.1016/j.gca.2013.06.012
10.1126/science.1142525
10.1016/j.gca.2008.12.007
10.1016/j.geoderma.2017.12.038
10.1021/acs.est.5b05450
10.1016/j.jcis.2013.10.054
10.1006/jcis.2001.7773
10.1016/j.geoderma.2017.11.039
10.1021/es001748k
10.1039/c1ee02093e
10.1021/la303111a
10.1016/j.watres.2019.04.055
10.1016/j.jcis.2010.07.064
10.1021/es00097a008
10.2138/gsrmg.49.1.1
10.1016/S0016-7037(99)00226-4
10.1021/la00093a015
10.1016/j.chemgeo.2017.12.004
10.1021/es020773i
10.1021/jp2058707
10.1021/es000210b
10.1021/cm9023875
10.1016/j.apcatb.2018.08.025
10.1006/jcis.1996.0051
10.1016/j.gca.2015.02.030
10.1021/la9702695
10.1016/j.geoderma.2015.09.015
10.1016/j.gca.2009.04.035
10.1016/j.cej.2016.10.001
10.1016/j.apgeochem.2012.10.026
10.1016/j.gca.2008.02.013
10.1016/S0003-2670(00)88444-5
10.1016/j.gca.2009.04.032
10.1016/j.molstruc.2014.01.025
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114799
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114799
S0016706120325544
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
RIG
SEN
SEP
SEW
SSH
VH1
WUQ
XPP
Y6R
ZMT
7S9
L.6
ID FETCH-LOGICAL-a482t-b69d4ee3f536485c22f3e9302b3fec9bdfdebb1d32d3e95d361cb3f0a37e3caf3
IEDL.DBID .~1
ISSN 0016-7061
IngestDate Fri Jul 11 16:09:24 EDT 2025
Tue Jul 01 04:04:54 EDT 2025
Thu Apr 24 23:05:47 EDT 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Hematite
Synergistic adsorption
Cadmium
Ferrihydrite
Goethite
Phosphate
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a482t-b69d4ee3f536485c22f3e9302b3fec9bdfdebb1d32d3e95d361cb3f0a37e3caf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pure.hud.ac.uk/ws/files/28255017/Marco_Accepted_Version.pdf
PQID 2551905899
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2551905899
crossref_citationtrail_10_1016_j_geoderma_2020_114799
crossref_primary_10_1016_j_geoderma_2020_114799
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114799
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
2021-02-00
20210201
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Brown, Sturchio (b0035) 2002; 49
Pivovarov (b0220) 2001; 234
Kubicki, Paul, Kabalan, Zhu, Mrozik, Aryanpour, Pierre-Louis, Strongin (b0130) 2012; 28
Rout, Mohapatra, Anand (b0235) 2012; 41
Wang, Zhu, Fu, Hu (b0300) 2015
Lee, Kim, Kim, Baek (b0135) 2016; 270
Rietra, Hiemstra, Van Riemsdijk (b0230) 2001; 35
Cornell, Schwertmann (b0055) 2003
Pinney, Kubicki, Middlemiss, Grey, Morgan (b0215) 2009; 21
Villalobos, Trotz, Leckie (b0285) 2001; 35
Jiang, Liu, Roberts, Barrón, Torrent, Zhang (b0115) 2018; 46
Milton, Murata, Knechtel (b0180) 1944; 29
Elzinga, Kretzschmar (b0065) 2013; 117
Silva-Yumi, Escudey, Gacitua, Pizarro (b0245) 2018; 319
Wang, Liu, Tan, Li, Feng, Sparks (b0310) 2013; 178
Ler, Stanforth (b0140) 2003; 37
Nooney, Campbell, Murrell, Lin, Hossner, Chusuei, Goodman (b0200) 1998; 14
Arai, Sparks (b0015) 2001; 241
Liu, Zhu, Liang, Ma, Lin, Zhu, He, Parker, Molinari (b0160) 2018; 477
Tejedor-tejedor, Anderson (b0265) 1990; 6
Swedlund, Webster, Miskelly (b0260) 2009; 73
Ona-Nguema, Morin, Juillot, Calas, Brown (b0205) 2005; 39
Singh, Catalano, Ulrich, Giammar (b0255) 2012; 46
Wang, Cui, Zhang, Gomez, Wang, Jia (b0295) 2018; 206
Hiemstra, Riemsdijk, Rossberg, Ulrich (b0090) 2009; 73
Das, Hendry, Essilfie-Dughan (b0060) 2013; 28
Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B., 2007. The Structure of ferrihydrite, a nanocrystalline material. Science 316, 1726 LP–1729.
Murphy, Riley (b0185) 1962; 27
Liu, Zhu, Xu, Xu, Ge, Xi, Zhu, He (b0165) 2016; 144
Li, Stanforth (b0145) 2000; 230
Xu, Zhu, Shang, Xia, Liu, Zhang (b0315) 2019; 159
Lin, Zhan, Wang, Chu, Wang, He, Wang (b0155) 2017; 309
Ostergren, Trainor, Bargar, Brown, Parks (b0210) 2000; 225
Elzinga, Sparks (b0070) 2007; 308
Zhang, Zeng, Zhang, Lin, Su, Wang, Bai, Wu (b0330) 2019; 352
Tiberg, Sjöstedt, Persson, Gustafsson (b0275) 2013; 120
Kim, Li, Philips, Grey (b0120) 2011; 4
Komárek, Antelo, Králová, Veselská, Číhalová, Chrastný, Ettler, Filip, Yu, Fein, Koretsky (b0125) 2018; 493
Jiang, Lv, Luo, Yang, Lin, Hu, Zhang, Zhang (b0110) 2013; 262
Antelo, Arce, Fiol (b0005) 2015; 410
Hiemstra (b0085) 2018; 238
Li, Zhang, Shan (b0150) 2007; 293
Farley, Dzombak, Morel (b0075) 1985; 106
Wade, Waterhouse, Roche, Horwath (b0290) 2018; 315
Tiberg, Gustafsson (b0270) 2016; 471
Carabante, Grahn, Holmgren, Hedlund (b0040) 2010; 351
Luengo, Brigante, Antelo, Avena (b0170) 2006; 300
Barrón, Torrent (b0020) 2013; 14
Trivedi, Axe (b0280) 2001; 35
Collins, Ragnarsdottir, Sherman (b0050) 1999; 63
Arai (b0010) 2008; 42
Hiemstra, Van Riemsdijk (b0095) 2009; 73
Benjamin, Leckie (b0030) 1982; 16
Zhu, Zhu, Yan, Fu, Xi, Zhou, Zhu, Zhu, He (b0335) 2018; 239
Yan, L., Zhu, R., Liu, J., Yang, Y., Zhu, J., Sun, H.J., He, H., 2020. Effects of fullerol and graphene oxide on the phase transformation of two-line ferrihydrite. ACS Earth Sp. Chem.
Wang, Xing (b0305) 2004; 127
Foerstendorf, Jordan, Heim (b0080) 2014; 416
Hinkle, Wang, Giammar, Catalano (b0100) 2015; 158
Simanova, Loring, Persson (b0250) 2011; 115
Jambor, Dutrizac (b0105) 1998; 98
Yang, Wang, Xu, Zheng, Liu (b0325) 2016; 50
Noda (b0195) 2014; 1069
Ponthieu, Juillot, Hiemstra, van Riemsdijk, Benedetti (b0225) 2006; 70
Santoro, Martin, Persson, Lerda, Said-Pullicino, Magnacca, Celi (b0240) 2019; 348
Barrón, Torrent (b0025) 1996; 177
Catalano, Park, Fenter, Zhang (b0045) 2008; 72
Dean (bib336) 1999
Navrotsky, Mazeina, Majzlan (b0190) 2008; 319
Arai (10.1016/j.geoderma.2020.114799_b0010) 2008; 42
Catalano (10.1016/j.geoderma.2020.114799_b0045) 2008; 72
Pinney (10.1016/j.geoderma.2020.114799_b0215) 2009; 21
Trivedi (10.1016/j.geoderma.2020.114799_b0280) 2001; 35
Jiang (10.1016/j.geoderma.2020.114799_b0115) 2018; 46
Wang (10.1016/j.geoderma.2020.114799_b0310) 2013; 178
Wade (10.1016/j.geoderma.2020.114799_b0290) 2018; 315
Barrón (10.1016/j.geoderma.2020.114799_b0020) 2013; 14
Murphy (10.1016/j.geoderma.2020.114799_b0185) 1962; 27
Li (10.1016/j.geoderma.2020.114799_b0145) 2000; 230
Jiang (10.1016/j.geoderma.2020.114799_b0110) 2013; 262
Santoro (10.1016/j.geoderma.2020.114799_b0240) 2019; 348
Wang (10.1016/j.geoderma.2020.114799_b0295) 2018; 206
Ona-Nguema (10.1016/j.geoderma.2020.114799_b0205) 2005; 39
Ler (10.1016/j.geoderma.2020.114799_b0140) 2003; 37
Hiemstra (10.1016/j.geoderma.2020.114799_b0095) 2009; 73
Lin (10.1016/j.geoderma.2020.114799_b0155) 2017; 309
Benjamin (10.1016/j.geoderma.2020.114799_b0030) 1982; 16
Hiemstra (10.1016/j.geoderma.2020.114799_b0085) 2018; 238
Kubicki (10.1016/j.geoderma.2020.114799_b0130) 2012; 28
Carabante (10.1016/j.geoderma.2020.114799_b0040) 2010; 351
Villalobos (10.1016/j.geoderma.2020.114799_b0285) 2001; 35
Pivovarov (10.1016/j.geoderma.2020.114799_b0220) 2001; 234
Wang (10.1016/j.geoderma.2020.114799_b0305) 2004; 127
Lee (10.1016/j.geoderma.2020.114799_b0135) 2016; 270
Antelo (10.1016/j.geoderma.2020.114799_b0005) 2015; 410
Cornell (10.1016/j.geoderma.2020.114799_b0055) 2003
Farley (10.1016/j.geoderma.2020.114799_b0075) 1985; 106
Swedlund (10.1016/j.geoderma.2020.114799_b0260) 2009; 73
10.1016/j.geoderma.2020.114799_b0320
Rout (10.1016/j.geoderma.2020.114799_b0235) 2012; 41
Silva-Yumi (10.1016/j.geoderma.2020.114799_b0245) 2018; 319
Tiberg (10.1016/j.geoderma.2020.114799_b0275) 2013; 120
Das (10.1016/j.geoderma.2020.114799_b0060) 2013; 28
Kim (10.1016/j.geoderma.2020.114799_b0120) 2011; 4
Rietra (10.1016/j.geoderma.2020.114799_b0230) 2001; 35
Luengo (10.1016/j.geoderma.2020.114799_b0170) 2006; 300
Tiberg (10.1016/j.geoderma.2020.114799_b0270) 2016; 471
Collins (10.1016/j.geoderma.2020.114799_b0050) 1999; 63
Liu (10.1016/j.geoderma.2020.114799_b0160) 2018; 477
Komárek (10.1016/j.geoderma.2020.114799_b0125) 2018; 493
Barrón (10.1016/j.geoderma.2020.114799_b0025) 1996; 177
Elzinga (10.1016/j.geoderma.2020.114799_b0070) 2007; 308
10.1016/j.geoderma.2020.114799_b0175
Li (10.1016/j.geoderma.2020.114799_b0150) 2007; 293
Milton (10.1016/j.geoderma.2020.114799_b0180) 1944; 29
Hiemstra (10.1016/j.geoderma.2020.114799_b0090) 2009; 73
Hinkle (10.1016/j.geoderma.2020.114799_b0100) 2015; 158
Ostergren (10.1016/j.geoderma.2020.114799_b0210) 2000; 225
Arai (10.1016/j.geoderma.2020.114799_b0015) 2001; 241
Ponthieu (10.1016/j.geoderma.2020.114799_b0225) 2006; 70
Brown (10.1016/j.geoderma.2020.114799_b0035) 2002; 49
Navrotsky (10.1016/j.geoderma.2020.114799_b0190) 2008; 319
Xu (10.1016/j.geoderma.2020.114799_b0315) 2019; 159
Yang (10.1016/j.geoderma.2020.114799_b0325) 2016; 50
Elzinga (10.1016/j.geoderma.2020.114799_b0065) 2013; 117
Simanova (10.1016/j.geoderma.2020.114799_b0250) 2011; 115
Zhang (10.1016/j.geoderma.2020.114799_b0330) 2019; 352
Tejedor-tejedor (10.1016/j.geoderma.2020.114799_b0265) 1990; 6
Wang (10.1016/j.geoderma.2020.114799_b0300) 2015
Dean (10.1016/j.geoderma.2020.114799_bib336) 1999
Zhu (10.1016/j.geoderma.2020.114799_b0335) 2018; 239
Jambor (10.1016/j.geoderma.2020.114799_b0105) 1998; 98
Singh (10.1016/j.geoderma.2020.114799_b0255) 2012; 46
Noda (10.1016/j.geoderma.2020.114799_b0195) 2014; 1069
Nooney (10.1016/j.geoderma.2020.114799_b0200) 1998; 14
Foerstendorf (10.1016/j.geoderma.2020.114799_b0080) 2014; 416
Liu (10.1016/j.geoderma.2020.114799_b0165) 2016; 144
References_xml – volume: 14
  start-page: 297
  year: 2013
  end-page: 336
  ident: b0020
  article-title: Iron, manganese and aluminium oxides and oxyhydroxides
  publication-title: Eur. Mineral. Union Notes Mineral.
– volume: 115
  start-page: 21191
  year: 2011
  end-page: 21198
  ident: b0250
  article-title: Formation of ternary metal-oxalate surface complexes on α-FeOOH particles
  publication-title: J. Phys. Chem. C
– volume: 319
  start-page: 1635
  year: 2008
  end-page: 1638
  ident: b0190
  article-title: Size-driven structural and thermodynamic complexity in iron oxides
  publication-title: Science
– volume: 50
  start-page: 2938
  year: 2016
  end-page: 2945
  ident: b0325
  article-title: Molecular-scale study of aspartate adsorption on goethite and competition with phosphate
  publication-title: Environ. Sci. Technol.
– volume: 98
  start-page: 2549
  year: 1998
  end-page: 2586
  ident: b0105
  article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide
  publication-title: Chem. Rev.
– volume: 6
  start-page: 602
  year: 1990
  end-page: 611
  ident: b0265
  article-title: The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility
  publication-title: Langmuir
– volume: 352
  start-page: 22
  year: 2019
  end-page: 32
  ident: b0330
  article-title: The effect of the ferrihydrite dissolution/transformation process on mobility of arsenic in soils: investigated by coupling a two-step sequential extraction with the diffusive gradient in the thin films (DGT) technique
  publication-title: Geoderma
– start-page: 1500
  year: 2015
  end-page: 1509
  ident: b0300
  article-title: Adsorption of phosphate on pure and humic acid-coated ferrihydrite
  publication-title: J. Soils Sediments
– volume: 35
  start-page: 3849
  year: 2001
  end-page: 3856
  ident: b0285
  article-title: Surface complexation modeling of carbonate effects on the adsorption of Cr (VI), Pb (II), and U (VI) on goethite
  publication-title: Environ. Sci. Technol.
– volume: 16
  start-page: 162
  year: 1982
  end-page: 170
  ident: b0030
  article-title: Effects of complexation by Cl, SO
  publication-title: Environ. Sci. Technol.
– volume: 308
  start-page: 53
  year: 2007
  end-page: 70
  ident: b0070
  article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation
  publication-title: J. Colloid Interface Sci.
– volume: 41
  start-page: 3302
  year: 2012
  end-page: 3312
  ident: b0235
  article-title: 2-Line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions
  publication-title: Dalt. Trans.
– volume: 49
  start-page: 1
  year: 2002
  end-page: 69
  ident: b0035
  article-title: An overview of synchrotron radiation applications to low temperature geochemistry and environmental science
  publication-title: Rev. Mineral. Geochem.
– volume: 35
  start-page: 1779
  year: 2001
  end-page: 1784
  ident: b0280
  article-title: Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides
  publication-title: Environ. Sci. Technol.
– volume: 27
  start-page: 31
  year: 1962
  end-page: 36
  ident: b0185
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
– volume: 206
  start-page: 33
  year: 2018
  end-page: 42
  ident: b0295
  article-title: Occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface: Mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy
  publication-title: Chemosphere
– year: 1999
  ident: bib336
  publication-title: Lange’s Handbook of Chemistry
– volume: 178
  start-page: 1
  year: 2013
  end-page: 11
  ident: b0310
  article-title: Characteristics of phosphate adsorption-desorption onto ferrihydrite : comparison with well-crystalline Fe (hydr)oxides
  publication-title: Soil Sci.
– volume: 225
  start-page: 466
  year: 2000
  end-page: 482
  ident: b0210
  article-title: Inorganic ligand effects on Pb (II) sorption to goethite (α-FeOOH): I. Carbonate
  publication-title: J. Colloid Interface Sci.
– volume: 46
  start-page: 6594
  year: 2012
  end-page: 6603
  ident: b0255
  article-title: Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate
  publication-title: Environ. Sci. Technol.
– volume: 239
  start-page: 280
  year: 2018
  end-page: 289
  ident: b0335
  article-title: Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite
  publication-title: Appl. Catal. B Environ.
– volume: 319
  start-page: 70
  year: 2018
  end-page: 79
  ident: b0245
  article-title: Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: effect of iron oxide coating
  publication-title: Geoderma
– volume: 238
  start-page: 453
  year: 2018
  end-page: 476
  ident: b0085
  article-title: Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species
  publication-title: Geochim. Cosmochim. Acta
– volume: 127
  start-page: 13
  year: 2004
  end-page: 20
  ident: b0305
  article-title: Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite
  publication-title: Environ. Pollut.
– volume: 234
  start-page: 1
  year: 2001
  end-page: 8
  ident: b0220
  article-title: Adsorption of cadmium onto hematite: temperature dependence
  publication-title: J. Colloid Interface Sci.
– year: 2003
  ident: b0055
  article-title: The iron Oxides: Structure, Properties, Reactions, Occurrences and Uses
– volume: 21
  start-page: 5727
  year: 2009
  end-page: 5742
  ident: b0215
  article-title: Density functional theory study of ferrihydrite and related Fe-oxyhydroxides
  publication-title: Chem. Mater.
– volume: 42
  start-page: 1151
  year: 2008
  end-page: 1156
  ident: b0010
  article-title: Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface
  publication-title: Environ. Sci. Technol.
– volume: 35
  start-page: 3369
  year: 2001
  end-page: 3374
  ident: b0230
  article-title: Interaction between calcium and phosphate adsorption on goethite
  publication-title: Env. Sci. Technol.
– volume: 416
  start-page: 133
  year: 2014
  end-page: 138
  ident: b0080
  article-title: Probing the surface speciation of uranium (VI) on iron (hydr)oxides by in situ ATR FTIR spectroscopy
  publication-title: J. Colloid Interface Sci.
– volume: 158
  start-page: 130
  year: 2015
  end-page: 146
  ident: b0100
  article-title: Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces
  publication-title: Geochim. Cosmochim. Acta
– volume: 39
  start-page: 9147
  year: 2005
  end-page: 9155
  ident: b0205
  article-title: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite
  publication-title: Environ. Sci. Technol.
– volume: 293
  start-page: 13
  year: 2007
  end-page: 19
  ident: b0150
  article-title: Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 241
  start-page: 317
  year: 2001
  end-page: 326
  ident: b0015
  article-title: ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface
  publication-title: J. Colloid Interface Sci.
– volume: 29
  start-page: 92
  year: 1944
  end-page: 107
  ident: b0180
  article-title: Weinschenkite, yttrium phosphate dihydrate, from virginia
  publication-title: Am. Mineral.
– volume: 63
  start-page: 2989
  year: 1999
  end-page: 3002
  ident: b0050
  article-title: Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite
  publication-title: Geochim. Cosmochim. Acta
– volume: 117
  start-page: 53
  year: 2013
  end-page: 64
  ident: b0065
  article-title: In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite
  publication-title: Geochim. Cosmochim. Acta
– volume: 309
  start-page: 118
  year: 2017
  end-page: 129
  ident: b0155
  article-title: Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide
  publication-title: Chem. Eng. J.
– volume: 177
  start-page: 407
  year: 1996
  end-page: 410
  ident: b0025
  article-title: Surface Hydroxyl configuration of various crystal faces of hematite and goethite
  publication-title: J. Colloid Interface Sci.
– volume: 477
  start-page: 12
  year: 2018
  end-page: 21
  ident: b0160
  article-title: Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study
  publication-title: Chem. Geol.
– volume: 300
  start-page: 511
  year: 2006
  end-page: 518
  ident: b0170
  article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements
  publication-title: J. Colloid Interface Sci.
– volume: 106
  start-page: 226
  year: 1985
  end-page: 242
  ident: b0075
  article-title: A surface precipitation model for the sorption of cations on metal oxides
  publication-title: J. Colloid Interface Sci.
– volume: 144
  start-page: 1148
  year: 2016
  end-page: 1155
  ident: b0165
  article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite
  publication-title: Chemosphere
– volume: 28
  start-page: 14573
  year: 2012
  end-page: 14587
  ident: b0130
  article-title: ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite
  publication-title: Langmuir
– volume: 37
  start-page: 2694
  year: 2003
  end-page: 2700
  ident: b0140
  article-title: Evidence for surface precipitation of phosphate on goethite
  publication-title: Environ. Sci. Technol.
– volume: 262
  start-page: 55
  year: 2013
  end-page: 63
  ident: b0110
  article-title: Arsenate and cadmium co-adsorption and co-precipitation on goethite
  publication-title: J. Hazard. Mater.
– volume: 351
  start-page: 523
  year: 2010
  end-page: 531
  ident: b0040
  article-title: In situ ATR-FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite
  publication-title: J. Colloid Interface Sci.
– volume: 70
  start-page: 2679
  year: 2006
  end-page: 2698
  ident: b0225
  article-title: Metal ion binding to iron oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 73
  start-page: 4423
  year: 2009
  end-page: 4436
  ident: b0095
  article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density
  publication-title: Geochim. Cosmochim. Acta
– volume: 410
  start-page: 53
  year: 2015
  end-page: 62
  ident: b0005
  article-title: Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions
  publication-title: Chem. Geol.
– volume: 471
  start-page: 103
  year: 2016
  end-page: 111
  ident: b0270
  article-title: Phosphate effects on cadmium(II) sorption to ferrihydrite
  publication-title: J. Colloid Interface Sci.
– volume: 120
  start-page: 140
  year: 2013
  end-page: 157
  ident: b0275
  article-title: Phosphate effects on copper (II) and lead (II) sorption to ferrihydrite
  publication-title: Geochim. Cosmochim. Acta
– volume: 73
  start-page: 4437
  year: 2009
  end-page: 4451
  ident: b0090
  article-title: A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate
  publication-title: Geochim. Cosmochim. Acta
– volume: 348
  start-page: 168
  year: 2019
  end-page: 180
  ident: b0240
  article-title: Inorganic and organic P retention by coprecipitation during ferrous iron oxidation
  publication-title: Geoderma
– volume: 230
  start-page: 12
  year: 2000
  end-page: 21
  ident: b0145
  article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH)
  publication-title: J. Colloid Interface Sci.
– volume: 315
  start-page: 120
  year: 2018
  end-page: 129
  ident: b0290
  article-title: Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils
  publication-title: Geoderma
– volume: 493
  start-page: 189
  year: 2018
  end-page: 198
  ident: b0125
  article-title: Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides
  publication-title: Chem. Geol.
– volume: 28
  start-page: 185
  year: 2013
  end-page: 193
  ident: b0060
  article-title: Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions
  publication-title: Appl. Geochem.
– volume: 270
  start-page: 76
  year: 2016
  end-page: 82
  ident: b0135
  article-title: Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil
  publication-title: Geoderma
– volume: 46
  start-page: 987
  year: 2018
  end-page: 990
  ident: b0115
  article-title: A new model for transformation of ferrihydrite to hematite in soils and sediments
  publication-title: Geology
– reference: Yan, L., Zhu, R., Liu, J., Yang, Y., Zhu, J., Sun, H.J., He, H., 2020. Effects of fullerol and graphene oxide on the phase transformation of two-line ferrihydrite. ACS Earth Sp. Chem.
– volume: 4
  start-page: 4298
  year: 2011
  end-page: 4305
  ident: b0120
  article-title: Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a
  publication-title: Energy Environ. Sci.
– reference: Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B., 2007. The Structure of ferrihydrite, a nanocrystalline material. Science 316, 1726 LP–1729.
– volume: 159
  start-page: 10
  year: 2019
  end-page: 19
  ident: b0315
  article-title: Photochemical behavior of ferrihydrite-oxalate system: interfacial reaction mechanism and charge transfer process
  publication-title: Water Res.
– volume: 72
  start-page: 1986
  year: 2008
  end-page: 2004
  ident: b0045
  article-title: Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite
  publication-title: Geochim. Cosmochim. Acta
– volume: 14
  start-page: 2750
  year: 1998
  end-page: 2755
  ident: b0200
  article-title: Nucleation and growth of phosphate on metal oxide thin films
  publication-title: Langmuir
– volume: 1069
  start-page: 3
  year: 2014
  end-page: 22
  ident: b0195
  article-title: Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments
  publication-title: J. Mol. Struct.
– volume: 73
  start-page: 1548
  year: 2009
  end-page: 1562
  ident: b0260
  article-title: Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex
  publication-title: Geochim. Cosmochim. Acta
– start-page: 1500
  year: 2015
  ident: 10.1016/j.geoderma.2020.114799_b0300
  article-title: Adsorption of phosphate on pure and humic acid-coated ferrihydrite
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-015-1095-5
– volume: 35
  start-page: 1779
  year: 2001
  ident: 10.1016/j.geoderma.2020.114799_b0280
  article-title: Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001644+
– volume: 234
  start-page: 1
  year: 2001
  ident: 10.1016/j.geoderma.2020.114799_b0220
  article-title: Adsorption of cadmium onto hematite: temperature dependence
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7235
– volume: 293
  start-page: 13
  year: 2007
  ident: 10.1016/j.geoderma.2020.114799_b0150
  article-title: Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2006.07.002
– year: 1999
  ident: 10.1016/j.geoderma.2020.114799_bib336
– volume: 300
  start-page: 511
  year: 2006
  ident: 10.1016/j.geoderma.2020.114799_b0170
  article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.04.015
– volume: 206
  start-page: 33
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0295
  article-title: Occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface: Mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2018.04.150
– volume: 29
  start-page: 92
  year: 1944
  ident: 10.1016/j.geoderma.2020.114799_b0180
  article-title: Weinschenkite, yttrium phosphate dihydrate, from virginia
  publication-title: Am. Mineral.
– volume: 39
  start-page: 9147
  year: 2005
  ident: 10.1016/j.geoderma.2020.114799_b0205
  article-title: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es050889p
– volume: 70
  start-page: 2679
  year: 2006
  ident: 10.1016/j.geoderma.2020.114799_b0225
  article-title: Metal ion binding to iron oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2006.02.021
– volume: 471
  start-page: 103
  year: 2016
  ident: 10.1016/j.geoderma.2020.114799_b0270
  article-title: Phosphate effects on cadmium(II) sorption to ferrihydrite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.03.016
– volume: 410
  start-page: 53
  year: 2015
  ident: 10.1016/j.geoderma.2020.114799_b0005
  article-title: Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2015.06.011
– volume: 352
  start-page: 22
  year: 2019
  ident: 10.1016/j.geoderma.2020.114799_b0330
  article-title: The effect of the ferrihydrite dissolution/transformation process on mobility of arsenic in soils: investigated by coupling a two-step sequential extraction with the diffusive gradient in the thin films (DGT) technique
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.042
– volume: 106
  start-page: 226
  year: 1985
  ident: 10.1016/j.geoderma.2020.114799_b0075
  article-title: A surface precipitation model for the sorption of cations on metal oxides
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0021-9797(85)90400-X
– volume: 493
  start-page: 189
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0125
  article-title: Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2018.05.036
– volume: 238
  start-page: 453
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0085
  article-title: Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2018.07.017
– volume: 308
  start-page: 53
  year: 2007
  ident: 10.1016/j.geoderma.2020.114799_b0070
  article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2006.12.061
– volume: 230
  start-page: 12
  year: 2000
  ident: 10.1016/j.geoderma.2020.114799_b0145
  article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH)
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2000.7072
– volume: 178
  start-page: 1
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0310
  article-title: Characteristics of phosphate adsorption-desorption onto ferrihydrite : comparison with well-crystalline Fe (hydr)oxides
  publication-title: Soil Sci.
  doi: 10.1097/SS.0b013e31828683f8
– ident: 10.1016/j.geoderma.2020.114799_b0320
  doi: 10.1021/acsearthspacechem.9b00261
– volume: 98
  start-page: 2549
  year: 1998
  ident: 10.1016/j.geoderma.2020.114799_b0105
  article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide
  publication-title: Chem. Rev.
  doi: 10.1021/cr970105t
– volume: 42
  start-page: 1151
  year: 2008
  ident: 10.1016/j.geoderma.2020.114799_b0010
  article-title: Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0719529
– volume: 46
  start-page: 6594
  year: 2012
  ident: 10.1016/j.geoderma.2020.114799_b0255
  article-title: Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300494x
– volume: 144
  start-page: 1148
  year: 2016
  ident: 10.1016/j.geoderma.2020.114799_b0165
  article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.09.083
– year: 2003
  ident: 10.1016/j.geoderma.2020.114799_b0055
– volume: 41
  start-page: 3302
  year: 2012
  ident: 10.1016/j.geoderma.2020.114799_b0235
  article-title: 2-Line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions
  publication-title: Dalt. Trans.
  doi: 10.1039/c2dt11651k
– volume: 262
  start-page: 55
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0110
  article-title: Arsenate and cadmium co-adsorption and co-precipitation on goethite
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.08.030
– volume: 225
  start-page: 466
  issue: 2
  year: 2000
  ident: 10.1016/j.geoderma.2020.114799_b0210
  article-title: Inorganic ligand effects on Pb (II) sorption to goethite (α-FeOOH): I. Carbonate
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1999.6701
– volume: 117
  start-page: 53
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0065
  article-title: In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.04.003
– volume: 348
  start-page: 168
  year: 2019
  ident: 10.1016/j.geoderma.2020.114799_b0240
  article-title: Inorganic and organic P retention by coprecipitation during ferrous iron oxidation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.04.004
– volume: 127
  start-page: 13
  year: 2004
  ident: 10.1016/j.geoderma.2020.114799_b0305
  article-title: Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite
  publication-title: Environ. Pollut.
  doi: 10.1016/S0269-7491(03)00262-8
– volume: 14
  start-page: 297
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0020
  article-title: Iron, manganese and aluminium oxides and oxyhydroxides
  publication-title: Eur. Mineral. Union Notes Mineral.
– volume: 319
  start-page: 1635
  year: 2008
  ident: 10.1016/j.geoderma.2020.114799_b0190
  article-title: Size-driven structural and thermodynamic complexity in iron oxides
  publication-title: Science
  doi: 10.1126/science.1148614
– volume: 120
  start-page: 140
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0275
  article-title: Phosphate effects on copper (II) and lead (II) sorption to ferrihydrite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2013.06.012
– ident: 10.1016/j.geoderma.2020.114799_b0175
  doi: 10.1126/science.1142525
– volume: 73
  start-page: 1548
  year: 2009
  ident: 10.1016/j.geoderma.2020.114799_b0260
  article-title: Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.12.007
– volume: 319
  start-page: 70
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0245
  article-title: Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: effect of iron oxide coating
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.12.038
– volume: 50
  start-page: 2938
  year: 2016
  ident: 10.1016/j.geoderma.2020.114799_b0325
  article-title: Molecular-scale study of aspartate adsorption on goethite and competition with phosphate
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.5b05450
– volume: 416
  start-page: 133
  year: 2014
  ident: 10.1016/j.geoderma.2020.114799_b0080
  article-title: Probing the surface speciation of uranium (VI) on iron (hydr)oxides by in situ ATR FTIR spectroscopy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2013.10.054
– volume: 241
  start-page: 317
  year: 2001
  ident: 10.1016/j.geoderma.2020.114799_b0015
  article-title: ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.2001.7773
– volume: 315
  start-page: 120
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0290
  article-title: Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.11.039
– volume: 35
  start-page: 3849
  year: 2001
  ident: 10.1016/j.geoderma.2020.114799_b0285
  article-title: Surface complexation modeling of carbonate effects on the adsorption of Cr (VI), Pb (II), and U (VI) on goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001748k
– volume: 4
  start-page: 4298
  year: 2011
  ident: 10.1016/j.geoderma.2020.114799_b0120
  article-title: Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR Study
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee02093e
– volume: 28
  start-page: 14573
  year: 2012
  ident: 10.1016/j.geoderma.2020.114799_b0130
  article-title: ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite
  publication-title: Langmuir
  doi: 10.1021/la303111a
– volume: 159
  start-page: 10
  year: 2019
  ident: 10.1016/j.geoderma.2020.114799_b0315
  article-title: Photochemical behavior of ferrihydrite-oxalate system: interfacial reaction mechanism and charge transfer process
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.04.055
– volume: 351
  start-page: 523
  year: 2010
  ident: 10.1016/j.geoderma.2020.114799_b0040
  article-title: In situ ATR-FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2010.07.064
– volume: 16
  start-page: 162
  year: 1982
  ident: 10.1016/j.geoderma.2020.114799_b0030
  article-title: Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00097a008
– volume: 49
  start-page: 1
  year: 2002
  ident: 10.1016/j.geoderma.2020.114799_b0035
  article-title: An overview of synchrotron radiation applications to low temperature geochemistry and environmental science
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/gsrmg.49.1.1
– volume: 63
  start-page: 2989
  year: 1999
  ident: 10.1016/j.geoderma.2020.114799_b0050
  article-title: Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/S0016-7037(99)00226-4
– volume: 46
  start-page: 987
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0115
  article-title: A new model for transformation of ferrihydrite to hematite in soils and sediments
  publication-title: Geology
– volume: 6
  start-page: 602
  year: 1990
  ident: 10.1016/j.geoderma.2020.114799_b0265
  article-title: The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility
  publication-title: Langmuir
  doi: 10.1021/la00093a015
– volume: 477
  start-page: 12
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0160
  article-title: Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2017.12.004
– volume: 37
  start-page: 2694
  year: 2003
  ident: 10.1016/j.geoderma.2020.114799_b0140
  article-title: Evidence for surface precipitation of phosphate on goethite
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es020773i
– volume: 115
  start-page: 21191
  year: 2011
  ident: 10.1016/j.geoderma.2020.114799_b0250
  article-title: Formation of ternary metal-oxalate surface complexes on α-FeOOH particles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2058707
– volume: 35
  start-page: 3369
  year: 2001
  ident: 10.1016/j.geoderma.2020.114799_b0230
  article-title: Interaction between calcium and phosphate adsorption on goethite
  publication-title: Env. Sci. Technol.
  doi: 10.1021/es000210b
– volume: 21
  start-page: 5727
  year: 2009
  ident: 10.1016/j.geoderma.2020.114799_b0215
  article-title: Density functional theory study of ferrihydrite and related Fe-oxyhydroxides
  publication-title: Chem. Mater.
  doi: 10.1021/cm9023875
– volume: 239
  start-page: 280
  year: 2018
  ident: 10.1016/j.geoderma.2020.114799_b0335
  article-title: Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.08.025
– volume: 177
  start-page: 407
  year: 1996
  ident: 10.1016/j.geoderma.2020.114799_b0025
  article-title: Surface Hydroxyl configuration of various crystal faces of hematite and goethite
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1996.0051
– volume: 158
  start-page: 130
  year: 2015
  ident: 10.1016/j.geoderma.2020.114799_b0100
  article-title: Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2015.02.030
– volume: 14
  start-page: 2750
  year: 1998
  ident: 10.1016/j.geoderma.2020.114799_b0200
  article-title: Nucleation and growth of phosphate on metal oxide thin films
  publication-title: Langmuir
  doi: 10.1021/la9702695
– volume: 270
  start-page: 76
  year: 2016
  ident: 10.1016/j.geoderma.2020.114799_b0135
  article-title: Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2015.09.015
– volume: 73
  start-page: 4437
  year: 2009
  ident: 10.1016/j.geoderma.2020.114799_b0090
  article-title: A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.04.035
– volume: 309
  start-page: 118
  year: 2017
  ident: 10.1016/j.geoderma.2020.114799_b0155
  article-title: Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.10.001
– volume: 28
  start-page: 185
  year: 2013
  ident: 10.1016/j.geoderma.2020.114799_b0060
  article-title: Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.10.026
– volume: 72
  start-page: 1986
  year: 2008
  ident: 10.1016/j.geoderma.2020.114799_b0045
  article-title: Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2008.02.013
– volume: 27
  start-page: 31
  year: 1962
  ident: 10.1016/j.geoderma.2020.114799_b0185
  article-title: A modified single solution method for the determination of phosphate in natural waters
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(00)88444-5
– volume: 73
  start-page: 4423
  year: 2009
  ident: 10.1016/j.geoderma.2020.114799_b0095
  article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2009.04.032
– volume: 1069
  start-page: 3
  year: 2014
  ident: 10.1016/j.geoderma.2020.114799_b0195
  article-title: Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments
  publication-title: J. Mol. Struct.
  doi: 10.1016/j.molstruc.2014.01.025
SSID ssj0017020
Score 2.6462693
Snippet •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence...
Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114799
SubjectTerms adsorption
Cadmium
comparative study
electrostatic interactions
Ferrihydrite
Fourier transform infrared spectroscopy
Goethite
Hematite
iron
Phosphate
phosphates
soil
Synergistic adsorption
Title Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite
URI https://dx.doi.org/10.1016/j.geoderma.2020.114799
https://www.proquest.com/docview/2551905899
Volume 383
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSH0qYtTR9BhR5aqLu2HpadmwkJ25bm1EBuQo9RdkNiL_uAzaW_vRrZTh8UcujNSDPC6BvPjPDMJ0LeeTwlVEpkOXeQiULxrALJsry2zPioxFKX67ezcnouvlzIix1yPPbCYFnl4Pt7n5689TAyGXZzspjPsce3KBVG6JzHvFggJ6gQCq3804-7Mo9C5QM1Y1FmKP1bl_BVxAgvHEv8QyzR5qrEAfvPAPWXq07x5_QxeTQkjrTp3-0J2YF2nzxsLpcDeQY8JdvGr7pl8gG0C3Qx61aLWcwlqWk9dcbfzDc3NM5hZxt9321vZ7d--aHbzj2sjmhD3S8mcJpoZ1E4IHUjCsbc9CO97ACrFeMTrtkTvq7hGTk_Pfl-PM2GmxUyIyq2zmxZewHAg-SlqKRjLHCoec4sD-Bq64MHawvPmY_j0vOycHEqN1wBdybw52S37Vp4QahVOSDpW-0rJ2SI8MqgfM0griiNsQdEjtup3UA7jrdfXOuxvuxKjzBohEH3MByQyZ3eoifeuFejHtHSf5iQjtHhXt23I7w6fl_408S00G1WOppWzJlkPJa-_I_1X5EHDIthUrn3a7K7Xm7gTcxm1vYwmesh2Ws-f52e_QQqifgU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFN98DASB5AIm_iRB7dVRbVA21Mr9WbZ8bi7FU1W-5C2F347M05SHkLqgVtke6zInz0zlme-Yeytp1tCWagklTUkKitkUoIWSVo5YT0KiZjlenyST87U13N9vsUOhlwYCqvsdX-n06O27ltG_WqO5rMZ5fhmeUEWOpXoFyt1h91VeHypjMHHHzdxHlmR9tyMWZ7Q8N_ShC8RJKo4FgmIROTNLSIJ7D8t1F-6Ohqgw0fsYe858nH3c4_ZFjRP2IPxxaJnz4CnbDP2y3YRlQBvA59P2-V8is4kt43ntfVXs_UVxz5KbePv2s319Nov3rebmYflJz7m9S8qcB55Z2lwIO5GGojO6Qd-0QKFK-IXzdkxvq7gGTs7_Hx6MEn60gqJVaVYJS6vvAKQQctclboWIkioZCqcDFBXzgcPzmVeCo_t2ss8q7ErtbIAWdsgn7Ptpm1gh3FXpECsb5Uva6UD4qtD4SsBOKO21u0yPSynqXvecSp_8d0MAWaXZoDBEAymg2GXjW7k5h3zxq0S1YCW-WMPGTQPt8q-GeA1eMDo1cQ20K6XBvcWOk0a76V7_zH_a3Zvcnp8ZI6-nHzbZ_cFRcbE2O8XbHu1WMNLdG1W7lXcuj8Bzj_5og
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+phosphate+and+cadmium+on+iron+%28oxyhydr%29oxides%3A+A+comparative+study+on+ferrihydrite%2C+goethite%2C+and+hematite&rft.jtitle=Geoderma&rft.au=Liu%2C+Jing&rft.au=Zhu%2C+Runliang&rft.au=Ma%2C+Lingya&rft.au=Fu%2C+Haoyang&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114799&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon