Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite
•Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the compositi...
Saved in:
Published in | Geoderma Vol. 383; p. 114799 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the composition of soils should be differentiated.
Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings. |
---|---|
AbstractList | •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence and absence of Cd(II) were dependent on the structure of minerals.•The functions of different iron (oxyhydr)oxides in controlling the composition of soils should be differentiated.
Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings. Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work provides information about the macroscopic adsorption behaviors and microscopic mechanisms of typical cations and oxyanions (i.e., cadmium and phosphate) on three omnipresent iron (oxyhydr)oxides (i.e., ferrihydrite (Fh), goethite (Gt), and hematite (Hm)) in single- and double-solute systems, which can not only help in understanding the different adsorption behaviors of iron (oxyhydr)oxides, but also be important in developing robust and accurate surface complexation models. In both adsorption systems, Fh exhibited the strongest capacity in the uptake of phosphate and cadmium, followed by Gt and Hm; specifically, the adsorbed amounts of ions by Fh were ~ 6 times higher than those by Gt and Hm. Phosphate and cadmium can be synergistically adsorbed by the minerals. In situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra combining with the two-dimensional correlation spectroscopic (2D-COS) analysis were employed to unravel the bonding modes of phosphate on minerals. In the single-solute adsorption systems, although the primary species on Hm and Gt were similar, i.e., protonated and non-protonated bidentate phosphate complexes, more protonated complexes were found on Hm than on Gt; whereas the complexation modes of phosphate on Fh were diversified due to the complex nature of the surfaces, including monoprotonated bidentate, non-protonated bidentate, and outer-sphere complexes. The synergistic adsorption mechanisms of phosphate and cadmium on the three minerals were analogous, including electrostatic interaction, as well as the formation of phosphate-bridged ternary complexes and surface precipitation; nevertheless, the relative contributions of the mechanisms on the minerals were distinct: electrostatic attraction was the predominant co-adsorption mechanism for ions on Gt, while surface precipitation was the most significant on Fh among the three minerals. This study can be enlightening to understand the interaction between the soil constituents, which is crucial to evaluate the fate and transport of the environmentally important substances in different geological settings. |
ArticleNumber | 114799 |
Author | Parker, Stephen C. Liu, Jing Lin, Xiaoju Fu, Haoyang Zhu, Runliang Ma, Lingya Molinari, Marco |
Author_xml | – sequence: 1 givenname: Jing surname: Liu fullname: Liu, Jing organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China – sequence: 2 givenname: Runliang surname: Zhu fullname: Zhu, Runliang email: zhurl@gig.ac.cn organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China – sequence: 3 givenname: Lingya surname: Ma fullname: Ma, Lingya organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China – sequence: 4 givenname: Haoyang surname: Fu fullname: Fu, Haoyang organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China – sequence: 5 givenname: Xiaoju surname: Lin fullname: Lin, Xiaoju organization: CAS Key Laboratory of Mineralogy and Metallogeny, Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China – sequence: 6 givenname: Stephen C. surname: Parker fullname: Parker, Stephen C. organization: Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK – sequence: 7 givenname: Marco surname: Molinari fullname: Molinari, Marco organization: Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK |
BookMark | eNqFkDtv2zAURonCAWo7-QsFxxSIHD4sySwyxDCaBxAgSzITFHkZ0bBElaQD-9-XitslSxY-7j3fN5wZmvS-B4R-ULKghFbX28UbeAOhUwtGWB7SZS3ENzSlq5oVFSvFBE1JJouaVPQ7msW4zd86s1N0WJvow5Cc77G3eGh9HFqVAKveYK1M5_YdzjsX8nHpD8f2aMJPf3AG4i-8xtp3gwoquXfAMe3NcYQthOBG0CW4wm8eUvvxGjtb6DKd4BydWbWLcPHvnqPXu98vm4fi6fn-cbN-KtRyxVLRVMIsAbgtebVclZoxy0FwwhpuQYvGWANNQw1nJs9Lwyuq84ooXgPXyvI5ujz1DsH_2UNMsnNRw26nevD7KFlZUkHKlRAZvTmhOvgYA1ipXVKjmhSU20lK5ChcbuV_4XIULk_Cc7z6FB-C61Q4fh28PQUhe3h3EGTUDnoNxgXQSRrvvqr4CzmLpCA |
CitedBy_id | crossref_primary_10_1038_s43247_024_01211_2 crossref_primary_10_1007_s11356_023_27063_5 crossref_primary_10_1080_15320383_2024_2341061 crossref_primary_10_1016_j_chemosphere_2022_136749 crossref_primary_10_1016_j_jwpe_2024_104952 crossref_primary_10_1016_j_scitotenv_2024_174275 crossref_primary_10_3390_magnetochemistry9050119 crossref_primary_10_1021_acs_est_4c08847 crossref_primary_10_1016_j_jhazmat_2023_130863 crossref_primary_10_1016_j_geodrs_2022_e00575 crossref_primary_10_1016_j_jhazmat_2022_129518 crossref_primary_10_1016_j_chemgeo_2024_122101 crossref_primary_10_1016_j_seppur_2021_120151 crossref_primary_10_1016_j_scitotenv_2024_172025 crossref_primary_10_1021_acs_est_4c02726 crossref_primary_10_1021_acs_est_4c10093 crossref_primary_10_2138_am_2022_8520 crossref_primary_10_1016_j_jcis_2023_01_034 crossref_primary_10_1016_j_matchemphys_2023_127848 crossref_primary_10_1021_acsanm_2c04622 crossref_primary_10_1007_s11356_023_26612_2 crossref_primary_10_1016_j_jenvman_2022_117163 crossref_primary_10_1016_j_envpol_2021_118001 crossref_primary_10_1016_j_pce_2023_103538 crossref_primary_10_1016_j_clay_2024_107534 crossref_primary_10_1016_j_scitotenv_2021_149918 crossref_primary_10_1016_j_colsurfa_2024_133942 crossref_primary_10_1016_j_gca_2023_12_024 crossref_primary_10_1016_j_jece_2024_114136 crossref_primary_10_1038_s41467_024_47931_z crossref_primary_10_1016_j_earscirev_2022_104105 crossref_primary_10_1016_j_ecoenv_2022_113617 crossref_primary_10_1016_j_envpol_2025_125960 crossref_primary_10_1016_j_scitotenv_2023_161863 crossref_primary_10_1021_acsestwater_4c01016 crossref_primary_10_1016_j_geoderma_2023_116737 crossref_primary_10_1016_j_jece_2021_106756 crossref_primary_10_1016_j_seppur_2021_119023 crossref_primary_10_1007_s11356_022_20561_y crossref_primary_10_1016_j_jhazmat_2021_127659 crossref_primary_10_2138_am_2023_9281 crossref_primary_10_1016_j_envres_2024_119852 crossref_primary_10_3390_ma17112706 crossref_primary_10_1016_j_chemosphere_2024_143515 crossref_primary_10_1016_j_matchemphys_2023_127662 crossref_primary_10_1016_j_jece_2023_111233 crossref_primary_10_1134_S2070205122060119 crossref_primary_10_1039_D4EN00827H crossref_primary_10_3390_min13050647 crossref_primary_10_3390_ma15155418 crossref_primary_10_1007_s11368_023_03672_y crossref_primary_10_26848_rbgf_v18_1_p518_536 crossref_primary_10_1016_j_jhazmat_2023_131665 crossref_primary_10_1039_D0EN01241F crossref_primary_10_1016_j_geoderma_2023_116606 crossref_primary_10_1007_s10967_022_08223_2 crossref_primary_10_1016_j_chemosphere_2023_138171 crossref_primary_10_1016_j_jece_2024_113342 crossref_primary_10_1016_j_scitotenv_2022_155835 crossref_primary_10_1016_j_jece_2024_113741 crossref_primary_10_1016_j_scitotenv_2022_153259 crossref_primary_10_1016_j_scitotenv_2024_173667 crossref_primary_10_1016_j_scitotenv_2023_162929 crossref_primary_10_1016_j_watres_2023_119899 crossref_primary_10_1016_j_watres_2022_119534 crossref_primary_10_1038_s41467_023_44240_9 crossref_primary_10_1016_j_envres_2023_117468 crossref_primary_10_1021_acs_langmuir_4c04316 crossref_primary_10_1021_acs_inorgchem_3c01681 crossref_primary_10_1016_j_chemosphere_2022_135901 crossref_primary_10_1016_j_gca_2021_05_043 crossref_primary_10_1016_j_jece_2021_105721 crossref_primary_10_1007_s11270_022_05916_y crossref_primary_10_1016_j_chemgeo_2025_122675 crossref_primary_10_1016_j_colsurfa_2023_131958 crossref_primary_10_1039_D4EN00040D crossref_primary_10_1016_j_seppur_2023_124702 crossref_primary_10_1016_j_scitotenv_2024_169970 crossref_primary_10_1016_j_cej_2022_139072 crossref_primary_10_1016_j_jece_2024_113690 crossref_primary_10_1007_s11368_023_03481_3 crossref_primary_10_1080_00103624_2024_2430347 crossref_primary_10_1016_j_chemosphere_2022_135627 crossref_primary_10_1016_j_gca_2024_04_012 crossref_primary_10_1021_acs_est_3c01008 crossref_primary_10_1016_j_jclepro_2024_144283 crossref_primary_10_1016_j_jhazmat_2023_131004 crossref_primary_10_1021_acs_est_4c12515 crossref_primary_10_31857_S0044185624010031 crossref_primary_10_31857_S0044185622060110 crossref_primary_10_1039_D3EM00469D crossref_primary_10_1016_j_seppur_2024_127646 crossref_primary_10_1039_D3EN00891F crossref_primary_10_1039_D3RA05871A crossref_primary_10_1007_s13369_023_07821_w crossref_primary_10_1016_j_chemgeo_2024_122424 crossref_primary_10_1111_arcm_12977 crossref_primary_10_1039_D3CP01200J crossref_primary_10_1134_S2070205124701880 crossref_primary_10_1016_j_jwpe_2025_107488 crossref_primary_10_1021_acs_est_3c04727 crossref_primary_10_1061_JOEEDU_EEENG_7141 crossref_primary_10_1016_j_saa_2022_121636 crossref_primary_10_1016_j_jhazmat_2022_130242 crossref_primary_10_1016_j_scitotenv_2021_150839 crossref_primary_10_1021_acs_est_4c12049 crossref_primary_10_3390_toxics12050347 crossref_primary_10_1016_S1003_6326_22_65873_4 crossref_primary_10_1016_j_chemgeo_2024_121966 crossref_primary_10_1007_s11356_022_21303_w crossref_primary_10_1016_j_chemgeo_2023_121887 crossref_primary_10_1021_acs_est_4c11232 crossref_primary_10_1016_j_ecoenv_2024_116570 crossref_primary_10_1016_j_jes_2024_06_033 crossref_primary_10_1016_j_colsurfa_2021_127980 crossref_primary_10_1016_j_envres_2022_113353 crossref_primary_10_1016_j_colsurfa_2022_130771 crossref_primary_10_1016_j_jcis_2023_09_090 crossref_primary_10_1016_j_scitotenv_2024_178302 crossref_primary_10_1002_wer_10827 crossref_primary_10_1016_j_jhazmat_2022_129095 crossref_primary_10_1016_j_gca_2025_02_031 crossref_primary_10_1016_j_clay_2022_106468 crossref_primary_10_1016_j_jhazmat_2024_134992 crossref_primary_10_1039_D3EN00243H crossref_primary_10_1016_j_watres_2023_119804 crossref_primary_10_1039_D1EN01190A crossref_primary_10_1016_j_cej_2022_137519 crossref_primary_10_1016_j_clay_2022_106464 crossref_primary_10_3390_ma15103540 |
Cites_doi | 10.1007/s11368-015-1095-5 10.1021/es001644+ 10.1006/jcis.2000.7235 10.1016/j.colsurfa.2006.07.002 10.1016/j.jcis.2006.04.015 10.1016/j.chemosphere.2018.04.150 10.1021/es050889p 10.1016/j.gca.2006.02.021 10.1016/j.jcis.2016.03.016 10.1016/j.chemgeo.2015.06.011 10.1016/j.geoderma.2019.05.042 10.1016/0021-9797(85)90400-X 10.1016/j.chemgeo.2018.05.036 10.1016/j.gca.2018.07.017 10.1016/j.jcis.2006.12.061 10.1006/jcis.2000.7072 10.1097/SS.0b013e31828683f8 10.1021/acsearthspacechem.9b00261 10.1021/cr970105t 10.1021/es0719529 10.1021/es300494x 10.1016/j.chemosphere.2015.09.083 10.1039/c2dt11651k 10.1016/j.jhazmat.2013.08.030 10.1006/jcis.1999.6701 10.1016/j.gca.2013.04.003 10.1016/j.geoderma.2019.04.004 10.1016/S0269-7491(03)00262-8 10.1126/science.1148614 10.1016/j.gca.2013.06.012 10.1126/science.1142525 10.1016/j.gca.2008.12.007 10.1016/j.geoderma.2017.12.038 10.1021/acs.est.5b05450 10.1016/j.jcis.2013.10.054 10.1006/jcis.2001.7773 10.1016/j.geoderma.2017.11.039 10.1021/es001748k 10.1039/c1ee02093e 10.1021/la303111a 10.1016/j.watres.2019.04.055 10.1016/j.jcis.2010.07.064 10.1021/es00097a008 10.2138/gsrmg.49.1.1 10.1016/S0016-7037(99)00226-4 10.1021/la00093a015 10.1016/j.chemgeo.2017.12.004 10.1021/es020773i 10.1021/jp2058707 10.1021/es000210b 10.1021/cm9023875 10.1016/j.apcatb.2018.08.025 10.1006/jcis.1996.0051 10.1016/j.gca.2015.02.030 10.1021/la9702695 10.1016/j.geoderma.2015.09.015 10.1016/j.gca.2009.04.035 10.1016/j.cej.2016.10.001 10.1016/j.apgeochem.2012.10.026 10.1016/j.gca.2008.02.013 10.1016/S0003-2670(00)88444-5 10.1016/j.gca.2009.04.032 10.1016/j.molstruc.2014.01.025 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.geoderma.2020.114799 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | 10_1016_j_geoderma_2020_114799 S0016706120325544 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- RIG SEN SEP SEW SSH VH1 WUQ XPP Y6R ZMT 7S9 L.6 |
ID | FETCH-LOGICAL-a482t-b69d4ee3f536485c22f3e9302b3fec9bdfdebb1d32d3e95d361cb3f0a37e3caf3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Fri Jul 11 16:09:24 EDT 2025 Tue Jul 01 04:04:54 EDT 2025 Thu Apr 24 23:05:47 EDT 2025 Fri Feb 23 02:39:44 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hematite Synergistic adsorption Cadmium Ferrihydrite Goethite Phosphate |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a482t-b69d4ee3f536485c22f3e9302b3fec9bdfdebb1d32d3e95d361cb3f0a37e3caf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pure.hud.ac.uk/ws/files/28255017/Marco_Accepted_Version.pdf |
PQID | 2551905899 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2551905899 crossref_citationtrail_10_1016_j_geoderma_2020_114799 crossref_primary_10_1016_j_geoderma_2020_114799 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114799 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 2021-02-00 20210201 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Brown, Sturchio (b0035) 2002; 49 Pivovarov (b0220) 2001; 234 Kubicki, Paul, Kabalan, Zhu, Mrozik, Aryanpour, Pierre-Louis, Strongin (b0130) 2012; 28 Rout, Mohapatra, Anand (b0235) 2012; 41 Wang, Zhu, Fu, Hu (b0300) 2015 Lee, Kim, Kim, Baek (b0135) 2016; 270 Rietra, Hiemstra, Van Riemsdijk (b0230) 2001; 35 Cornell, Schwertmann (b0055) 2003 Pinney, Kubicki, Middlemiss, Grey, Morgan (b0215) 2009; 21 Villalobos, Trotz, Leckie (b0285) 2001; 35 Jiang, Liu, Roberts, Barrón, Torrent, Zhang (b0115) 2018; 46 Milton, Murata, Knechtel (b0180) 1944; 29 Elzinga, Kretzschmar (b0065) 2013; 117 Silva-Yumi, Escudey, Gacitua, Pizarro (b0245) 2018; 319 Wang, Liu, Tan, Li, Feng, Sparks (b0310) 2013; 178 Ler, Stanforth (b0140) 2003; 37 Nooney, Campbell, Murrell, Lin, Hossner, Chusuei, Goodman (b0200) 1998; 14 Arai, Sparks (b0015) 2001; 241 Liu, Zhu, Liang, Ma, Lin, Zhu, He, Parker, Molinari (b0160) 2018; 477 Tejedor-tejedor, Anderson (b0265) 1990; 6 Swedlund, Webster, Miskelly (b0260) 2009; 73 Ona-Nguema, Morin, Juillot, Calas, Brown (b0205) 2005; 39 Singh, Catalano, Ulrich, Giammar (b0255) 2012; 46 Wang, Cui, Zhang, Gomez, Wang, Jia (b0295) 2018; 206 Hiemstra, Riemsdijk, Rossberg, Ulrich (b0090) 2009; 73 Das, Hendry, Essilfie-Dughan (b0060) 2013; 28 Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B., 2007. The Structure of ferrihydrite, a nanocrystalline material. Science 316, 1726 LP–1729. Murphy, Riley (b0185) 1962; 27 Liu, Zhu, Xu, Xu, Ge, Xi, Zhu, He (b0165) 2016; 144 Li, Stanforth (b0145) 2000; 230 Xu, Zhu, Shang, Xia, Liu, Zhang (b0315) 2019; 159 Lin, Zhan, Wang, Chu, Wang, He, Wang (b0155) 2017; 309 Ostergren, Trainor, Bargar, Brown, Parks (b0210) 2000; 225 Elzinga, Sparks (b0070) 2007; 308 Zhang, Zeng, Zhang, Lin, Su, Wang, Bai, Wu (b0330) 2019; 352 Tiberg, Sjöstedt, Persson, Gustafsson (b0275) 2013; 120 Kim, Li, Philips, Grey (b0120) 2011; 4 Komárek, Antelo, Králová, Veselská, Číhalová, Chrastný, Ettler, Filip, Yu, Fein, Koretsky (b0125) 2018; 493 Jiang, Lv, Luo, Yang, Lin, Hu, Zhang, Zhang (b0110) 2013; 262 Antelo, Arce, Fiol (b0005) 2015; 410 Hiemstra (b0085) 2018; 238 Li, Zhang, Shan (b0150) 2007; 293 Farley, Dzombak, Morel (b0075) 1985; 106 Wade, Waterhouse, Roche, Horwath (b0290) 2018; 315 Tiberg, Gustafsson (b0270) 2016; 471 Carabante, Grahn, Holmgren, Hedlund (b0040) 2010; 351 Luengo, Brigante, Antelo, Avena (b0170) 2006; 300 Barrón, Torrent (b0020) 2013; 14 Trivedi, Axe (b0280) 2001; 35 Collins, Ragnarsdottir, Sherman (b0050) 1999; 63 Arai (b0010) 2008; 42 Hiemstra, Van Riemsdijk (b0095) 2009; 73 Benjamin, Leckie (b0030) 1982; 16 Zhu, Zhu, Yan, Fu, Xi, Zhou, Zhu, Zhu, He (b0335) 2018; 239 Yan, L., Zhu, R., Liu, J., Yang, Y., Zhu, J., Sun, H.J., He, H., 2020. Effects of fullerol and graphene oxide on the phase transformation of two-line ferrihydrite. ACS Earth Sp. Chem. Wang, Xing (b0305) 2004; 127 Foerstendorf, Jordan, Heim (b0080) 2014; 416 Hinkle, Wang, Giammar, Catalano (b0100) 2015; 158 Simanova, Loring, Persson (b0250) 2011; 115 Jambor, Dutrizac (b0105) 1998; 98 Yang, Wang, Xu, Zheng, Liu (b0325) 2016; 50 Noda (b0195) 2014; 1069 Ponthieu, Juillot, Hiemstra, van Riemsdijk, Benedetti (b0225) 2006; 70 Santoro, Martin, Persson, Lerda, Said-Pullicino, Magnacca, Celi (b0240) 2019; 348 Barrón, Torrent (b0025) 1996; 177 Catalano, Park, Fenter, Zhang (b0045) 2008; 72 Dean (bib336) 1999 Navrotsky, Mazeina, Majzlan (b0190) 2008; 319 Arai (10.1016/j.geoderma.2020.114799_b0010) 2008; 42 Catalano (10.1016/j.geoderma.2020.114799_b0045) 2008; 72 Pinney (10.1016/j.geoderma.2020.114799_b0215) 2009; 21 Trivedi (10.1016/j.geoderma.2020.114799_b0280) 2001; 35 Jiang (10.1016/j.geoderma.2020.114799_b0115) 2018; 46 Wang (10.1016/j.geoderma.2020.114799_b0310) 2013; 178 Wade (10.1016/j.geoderma.2020.114799_b0290) 2018; 315 Barrón (10.1016/j.geoderma.2020.114799_b0020) 2013; 14 Murphy (10.1016/j.geoderma.2020.114799_b0185) 1962; 27 Li (10.1016/j.geoderma.2020.114799_b0145) 2000; 230 Jiang (10.1016/j.geoderma.2020.114799_b0110) 2013; 262 Santoro (10.1016/j.geoderma.2020.114799_b0240) 2019; 348 Wang (10.1016/j.geoderma.2020.114799_b0295) 2018; 206 Ona-Nguema (10.1016/j.geoderma.2020.114799_b0205) 2005; 39 Ler (10.1016/j.geoderma.2020.114799_b0140) 2003; 37 Hiemstra (10.1016/j.geoderma.2020.114799_b0095) 2009; 73 Lin (10.1016/j.geoderma.2020.114799_b0155) 2017; 309 Benjamin (10.1016/j.geoderma.2020.114799_b0030) 1982; 16 Hiemstra (10.1016/j.geoderma.2020.114799_b0085) 2018; 238 Kubicki (10.1016/j.geoderma.2020.114799_b0130) 2012; 28 Carabante (10.1016/j.geoderma.2020.114799_b0040) 2010; 351 Villalobos (10.1016/j.geoderma.2020.114799_b0285) 2001; 35 Pivovarov (10.1016/j.geoderma.2020.114799_b0220) 2001; 234 Wang (10.1016/j.geoderma.2020.114799_b0305) 2004; 127 Lee (10.1016/j.geoderma.2020.114799_b0135) 2016; 270 Antelo (10.1016/j.geoderma.2020.114799_b0005) 2015; 410 Cornell (10.1016/j.geoderma.2020.114799_b0055) 2003 Farley (10.1016/j.geoderma.2020.114799_b0075) 1985; 106 Swedlund (10.1016/j.geoderma.2020.114799_b0260) 2009; 73 10.1016/j.geoderma.2020.114799_b0320 Rout (10.1016/j.geoderma.2020.114799_b0235) 2012; 41 Silva-Yumi (10.1016/j.geoderma.2020.114799_b0245) 2018; 319 Tiberg (10.1016/j.geoderma.2020.114799_b0275) 2013; 120 Das (10.1016/j.geoderma.2020.114799_b0060) 2013; 28 Kim (10.1016/j.geoderma.2020.114799_b0120) 2011; 4 Rietra (10.1016/j.geoderma.2020.114799_b0230) 2001; 35 Luengo (10.1016/j.geoderma.2020.114799_b0170) 2006; 300 Tiberg (10.1016/j.geoderma.2020.114799_b0270) 2016; 471 Collins (10.1016/j.geoderma.2020.114799_b0050) 1999; 63 Liu (10.1016/j.geoderma.2020.114799_b0160) 2018; 477 Komárek (10.1016/j.geoderma.2020.114799_b0125) 2018; 493 Barrón (10.1016/j.geoderma.2020.114799_b0025) 1996; 177 Elzinga (10.1016/j.geoderma.2020.114799_b0070) 2007; 308 10.1016/j.geoderma.2020.114799_b0175 Li (10.1016/j.geoderma.2020.114799_b0150) 2007; 293 Milton (10.1016/j.geoderma.2020.114799_b0180) 1944; 29 Hiemstra (10.1016/j.geoderma.2020.114799_b0090) 2009; 73 Hinkle (10.1016/j.geoderma.2020.114799_b0100) 2015; 158 Ostergren (10.1016/j.geoderma.2020.114799_b0210) 2000; 225 Arai (10.1016/j.geoderma.2020.114799_b0015) 2001; 241 Ponthieu (10.1016/j.geoderma.2020.114799_b0225) 2006; 70 Brown (10.1016/j.geoderma.2020.114799_b0035) 2002; 49 Navrotsky (10.1016/j.geoderma.2020.114799_b0190) 2008; 319 Xu (10.1016/j.geoderma.2020.114799_b0315) 2019; 159 Yang (10.1016/j.geoderma.2020.114799_b0325) 2016; 50 Elzinga (10.1016/j.geoderma.2020.114799_b0065) 2013; 117 Simanova (10.1016/j.geoderma.2020.114799_b0250) 2011; 115 Zhang (10.1016/j.geoderma.2020.114799_b0330) 2019; 352 Tejedor-tejedor (10.1016/j.geoderma.2020.114799_b0265) 1990; 6 Wang (10.1016/j.geoderma.2020.114799_b0300) 2015 Dean (10.1016/j.geoderma.2020.114799_bib336) 1999 Zhu (10.1016/j.geoderma.2020.114799_b0335) 2018; 239 Jambor (10.1016/j.geoderma.2020.114799_b0105) 1998; 98 Singh (10.1016/j.geoderma.2020.114799_b0255) 2012; 46 Noda (10.1016/j.geoderma.2020.114799_b0195) 2014; 1069 Nooney (10.1016/j.geoderma.2020.114799_b0200) 1998; 14 Foerstendorf (10.1016/j.geoderma.2020.114799_b0080) 2014; 416 Liu (10.1016/j.geoderma.2020.114799_b0165) 2016; 144 |
References_xml | – volume: 14 start-page: 297 year: 2013 end-page: 336 ident: b0020 article-title: Iron, manganese and aluminium oxides and oxyhydroxides publication-title: Eur. Mineral. Union Notes Mineral. – volume: 115 start-page: 21191 year: 2011 end-page: 21198 ident: b0250 article-title: Formation of ternary metal-oxalate surface complexes on α-FeOOH particles publication-title: J. Phys. Chem. C – volume: 319 start-page: 1635 year: 2008 end-page: 1638 ident: b0190 article-title: Size-driven structural and thermodynamic complexity in iron oxides publication-title: Science – volume: 50 start-page: 2938 year: 2016 end-page: 2945 ident: b0325 article-title: Molecular-scale study of aspartate adsorption on goethite and competition with phosphate publication-title: Environ. Sci. Technol. – volume: 98 start-page: 2549 year: 1998 end-page: 2586 ident: b0105 article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide publication-title: Chem. Rev. – volume: 6 start-page: 602 year: 1990 end-page: 611 ident: b0265 article-title: The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility publication-title: Langmuir – volume: 352 start-page: 22 year: 2019 end-page: 32 ident: b0330 article-title: The effect of the ferrihydrite dissolution/transformation process on mobility of arsenic in soils: investigated by coupling a two-step sequential extraction with the diffusive gradient in the thin films (DGT) technique publication-title: Geoderma – start-page: 1500 year: 2015 end-page: 1509 ident: b0300 article-title: Adsorption of phosphate on pure and humic acid-coated ferrihydrite publication-title: J. Soils Sediments – volume: 35 start-page: 3849 year: 2001 end-page: 3856 ident: b0285 article-title: Surface complexation modeling of carbonate effects on the adsorption of Cr (VI), Pb (II), and U (VI) on goethite publication-title: Environ. Sci. Technol. – volume: 16 start-page: 162 year: 1982 end-page: 170 ident: b0030 article-title: Effects of complexation by Cl, SO publication-title: Environ. Sci. Technol. – volume: 308 start-page: 53 year: 2007 end-page: 70 ident: b0070 article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation publication-title: J. Colloid Interface Sci. – volume: 41 start-page: 3302 year: 2012 end-page: 3312 ident: b0235 article-title: 2-Line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions publication-title: Dalt. Trans. – volume: 49 start-page: 1 year: 2002 end-page: 69 ident: b0035 article-title: An overview of synchrotron radiation applications to low temperature geochemistry and environmental science publication-title: Rev. Mineral. Geochem. – volume: 35 start-page: 1779 year: 2001 end-page: 1784 ident: b0280 article-title: Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides publication-title: Environ. Sci. Technol. – volume: 27 start-page: 31 year: 1962 end-page: 36 ident: b0185 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta – volume: 206 start-page: 33 year: 2018 end-page: 42 ident: b0295 article-title: Occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface: Mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy publication-title: Chemosphere – year: 1999 ident: bib336 publication-title: Lange’s Handbook of Chemistry – volume: 178 start-page: 1 year: 2013 end-page: 11 ident: b0310 article-title: Characteristics of phosphate adsorption-desorption onto ferrihydrite : comparison with well-crystalline Fe (hydr)oxides publication-title: Soil Sci. – volume: 225 start-page: 466 year: 2000 end-page: 482 ident: b0210 article-title: Inorganic ligand effects on Pb (II) sorption to goethite (α-FeOOH): I. Carbonate publication-title: J. Colloid Interface Sci. – volume: 46 start-page: 6594 year: 2012 end-page: 6603 ident: b0255 article-title: Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate publication-title: Environ. Sci. Technol. – volume: 239 start-page: 280 year: 2018 end-page: 289 ident: b0335 article-title: Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite publication-title: Appl. Catal. B Environ. – volume: 319 start-page: 70 year: 2018 end-page: 79 ident: b0245 article-title: Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: effect of iron oxide coating publication-title: Geoderma – volume: 238 start-page: 453 year: 2018 end-page: 476 ident: b0085 article-title: Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species publication-title: Geochim. Cosmochim. Acta – volume: 127 start-page: 13 year: 2004 end-page: 20 ident: b0305 article-title: Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite publication-title: Environ. Pollut. – volume: 234 start-page: 1 year: 2001 end-page: 8 ident: b0220 article-title: Adsorption of cadmium onto hematite: temperature dependence publication-title: J. Colloid Interface Sci. – year: 2003 ident: b0055 article-title: The iron Oxides: Structure, Properties, Reactions, Occurrences and Uses – volume: 21 start-page: 5727 year: 2009 end-page: 5742 ident: b0215 article-title: Density functional theory study of ferrihydrite and related Fe-oxyhydroxides publication-title: Chem. Mater. – volume: 42 start-page: 1151 year: 2008 end-page: 1156 ident: b0010 article-title: Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface publication-title: Environ. Sci. Technol. – volume: 35 start-page: 3369 year: 2001 end-page: 3374 ident: b0230 article-title: Interaction between calcium and phosphate adsorption on goethite publication-title: Env. Sci. Technol. – volume: 416 start-page: 133 year: 2014 end-page: 138 ident: b0080 article-title: Probing the surface speciation of uranium (VI) on iron (hydr)oxides by in situ ATR FTIR spectroscopy publication-title: J. Colloid Interface Sci. – volume: 158 start-page: 130 year: 2015 end-page: 146 ident: b0100 article-title: Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces publication-title: Geochim. Cosmochim. Acta – volume: 39 start-page: 9147 year: 2005 end-page: 9155 ident: b0205 article-title: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite publication-title: Environ. Sci. Technol. – volume: 293 start-page: 13 year: 2007 end-page: 19 ident: b0150 article-title: Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 241 start-page: 317 year: 2001 end-page: 326 ident: b0015 article-title: ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface publication-title: J. Colloid Interface Sci. – volume: 29 start-page: 92 year: 1944 end-page: 107 ident: b0180 article-title: Weinschenkite, yttrium phosphate dihydrate, from virginia publication-title: Am. Mineral. – volume: 63 start-page: 2989 year: 1999 end-page: 3002 ident: b0050 article-title: Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite publication-title: Geochim. Cosmochim. Acta – volume: 117 start-page: 53 year: 2013 end-page: 64 ident: b0065 article-title: In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite publication-title: Geochim. Cosmochim. Acta – volume: 309 start-page: 118 year: 2017 end-page: 129 ident: b0155 article-title: Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide publication-title: Chem. Eng. J. – volume: 177 start-page: 407 year: 1996 end-page: 410 ident: b0025 article-title: Surface Hydroxyl configuration of various crystal faces of hematite and goethite publication-title: J. Colloid Interface Sci. – volume: 477 start-page: 12 year: 2018 end-page: 21 ident: b0160 article-title: Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study publication-title: Chem. Geol. – volume: 300 start-page: 511 year: 2006 end-page: 518 ident: b0170 article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements publication-title: J. Colloid Interface Sci. – volume: 106 start-page: 226 year: 1985 end-page: 242 ident: b0075 article-title: A surface precipitation model for the sorption of cations on metal oxides publication-title: J. Colloid Interface Sci. – volume: 144 start-page: 1148 year: 2016 end-page: 1155 ident: b0165 article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite publication-title: Chemosphere – volume: 28 start-page: 14573 year: 2012 end-page: 14587 ident: b0130 article-title: ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite publication-title: Langmuir – volume: 37 start-page: 2694 year: 2003 end-page: 2700 ident: b0140 article-title: Evidence for surface precipitation of phosphate on goethite publication-title: Environ. Sci. Technol. – volume: 262 start-page: 55 year: 2013 end-page: 63 ident: b0110 article-title: Arsenate and cadmium co-adsorption and co-precipitation on goethite publication-title: J. Hazard. Mater. – volume: 351 start-page: 523 year: 2010 end-page: 531 ident: b0040 article-title: In situ ATR-FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite publication-title: J. Colloid Interface Sci. – volume: 70 start-page: 2679 year: 2006 end-page: 2698 ident: b0225 article-title: Metal ion binding to iron oxides publication-title: Geochim. Cosmochim. Acta – volume: 73 start-page: 4423 year: 2009 end-page: 4436 ident: b0095 article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density publication-title: Geochim. Cosmochim. Acta – volume: 410 start-page: 53 year: 2015 end-page: 62 ident: b0005 article-title: Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions publication-title: Chem. Geol. – volume: 471 start-page: 103 year: 2016 end-page: 111 ident: b0270 article-title: Phosphate effects on cadmium(II) sorption to ferrihydrite publication-title: J. Colloid Interface Sci. – volume: 120 start-page: 140 year: 2013 end-page: 157 ident: b0275 article-title: Phosphate effects on copper (II) and lead (II) sorption to ferrihydrite publication-title: Geochim. Cosmochim. Acta – volume: 73 start-page: 4437 year: 2009 end-page: 4451 ident: b0090 article-title: A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate publication-title: Geochim. Cosmochim. Acta – volume: 348 start-page: 168 year: 2019 end-page: 180 ident: b0240 article-title: Inorganic and organic P retention by coprecipitation during ferrous iron oxidation publication-title: Geoderma – volume: 230 start-page: 12 year: 2000 end-page: 21 ident: b0145 article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH) publication-title: J. Colloid Interface Sci. – volume: 315 start-page: 120 year: 2018 end-page: 129 ident: b0290 article-title: Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils publication-title: Geoderma – volume: 493 start-page: 189 year: 2018 end-page: 198 ident: b0125 article-title: Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides publication-title: Chem. Geol. – volume: 28 start-page: 185 year: 2013 end-page: 193 ident: b0060 article-title: Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions publication-title: Appl. Geochem. – volume: 270 start-page: 76 year: 2016 end-page: 82 ident: b0135 article-title: Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil publication-title: Geoderma – volume: 46 start-page: 987 year: 2018 end-page: 990 ident: b0115 article-title: A new model for transformation of ferrihydrite to hematite in soils and sediments publication-title: Geology – reference: Yan, L., Zhu, R., Liu, J., Yang, Y., Zhu, J., Sun, H.J., He, H., 2020. Effects of fullerol and graphene oxide on the phase transformation of two-line ferrihydrite. ACS Earth Sp. Chem. – volume: 4 start-page: 4298 year: 2011 end-page: 4305 ident: b0120 article-title: Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a publication-title: Energy Environ. Sci. – reference: Michel, F.M., Ehm, L., Antao, S.M., Lee, P.L., Chupas, P.J., Liu, G., Strongin, D.R., Schoonen, M.A.A., Phillips, B.L., Parise, J.B., 2007. The Structure of ferrihydrite, a nanocrystalline material. Science 316, 1726 LP–1729. – volume: 159 start-page: 10 year: 2019 end-page: 19 ident: b0315 article-title: Photochemical behavior of ferrihydrite-oxalate system: interfacial reaction mechanism and charge transfer process publication-title: Water Res. – volume: 72 start-page: 1986 year: 2008 end-page: 2004 ident: b0045 article-title: Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite publication-title: Geochim. Cosmochim. Acta – volume: 14 start-page: 2750 year: 1998 end-page: 2755 ident: b0200 article-title: Nucleation and growth of phosphate on metal oxide thin films publication-title: Langmuir – volume: 1069 start-page: 3 year: 2014 end-page: 22 ident: b0195 article-title: Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments publication-title: J. Mol. Struct. – volume: 73 start-page: 1548 year: 2009 end-page: 1562 ident: b0260 article-title: Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex publication-title: Geochim. Cosmochim. Acta – start-page: 1500 year: 2015 ident: 10.1016/j.geoderma.2020.114799_b0300 article-title: Adsorption of phosphate on pure and humic acid-coated ferrihydrite publication-title: J. Soils Sediments doi: 10.1007/s11368-015-1095-5 – volume: 35 start-page: 1779 year: 2001 ident: 10.1016/j.geoderma.2020.114799_b0280 article-title: Predicting divalent metal sorption to hydrous Al, Fe, and Mn oxides publication-title: Environ. Sci. Technol. doi: 10.1021/es001644+ – volume: 234 start-page: 1 year: 2001 ident: 10.1016/j.geoderma.2020.114799_b0220 article-title: Adsorption of cadmium onto hematite: temperature dependence publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7235 – volume: 293 start-page: 13 year: 2007 ident: 10.1016/j.geoderma.2020.114799_b0150 article-title: Surface modification of goethite by phosphate for enhancement of Cu and Cd adsorption publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2006.07.002 – year: 1999 ident: 10.1016/j.geoderma.2020.114799_bib336 – volume: 300 start-page: 511 year: 2006 ident: 10.1016/j.geoderma.2020.114799_b0170 article-title: Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.04.015 – volume: 206 start-page: 33 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0295 article-title: Occurrence state of co-existing arsenate and nickel ions at the ferrihydrite-water interface: Mechanisms of surface complexation and surface precipitation via ATR-IR spectroscopy publication-title: Chemosphere doi: 10.1016/j.chemosphere.2018.04.150 – volume: 29 start-page: 92 year: 1944 ident: 10.1016/j.geoderma.2020.114799_b0180 article-title: Weinschenkite, yttrium phosphate dihydrate, from virginia publication-title: Am. Mineral. – volume: 39 start-page: 9147 year: 2005 ident: 10.1016/j.geoderma.2020.114799_b0205 article-title: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite publication-title: Environ. Sci. Technol. doi: 10.1021/es050889p – volume: 70 start-page: 2679 year: 2006 ident: 10.1016/j.geoderma.2020.114799_b0225 article-title: Metal ion binding to iron oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2006.02.021 – volume: 471 start-page: 103 year: 2016 ident: 10.1016/j.geoderma.2020.114799_b0270 article-title: Phosphate effects on cadmium(II) sorption to ferrihydrite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.03.016 – volume: 410 start-page: 53 year: 2015 ident: 10.1016/j.geoderma.2020.114799_b0005 article-title: Arsenate and phosphate adsorption on ferrihydrite nanoparticles. Synergetic interaction with calcium ions publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2015.06.011 – volume: 352 start-page: 22 year: 2019 ident: 10.1016/j.geoderma.2020.114799_b0330 article-title: The effect of the ferrihydrite dissolution/transformation process on mobility of arsenic in soils: investigated by coupling a two-step sequential extraction with the diffusive gradient in the thin films (DGT) technique publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.042 – volume: 106 start-page: 226 year: 1985 ident: 10.1016/j.geoderma.2020.114799_b0075 article-title: A surface precipitation model for the sorption of cations on metal oxides publication-title: J. Colloid Interface Sci. doi: 10.1016/0021-9797(85)90400-X – volume: 493 start-page: 189 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0125 article-title: Revisiting models of Cd, Cu, Pb and Zn adsorption onto Fe(III) oxides publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2018.05.036 – volume: 238 start-page: 453 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0085 article-title: Ferrihydrite interaction with silicate and competing oxyanions: Geometry and Hydrogen bonding of surface species publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2018.07.017 – volume: 308 start-page: 53 year: 2007 ident: 10.1016/j.geoderma.2020.114799_b0070 article-title: Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2006.12.061 – volume: 230 start-page: 12 year: 2000 ident: 10.1016/j.geoderma.2020.114799_b0145 article-title: Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH) publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2000.7072 – volume: 178 start-page: 1 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0310 article-title: Characteristics of phosphate adsorption-desorption onto ferrihydrite : comparison with well-crystalline Fe (hydr)oxides publication-title: Soil Sci. doi: 10.1097/SS.0b013e31828683f8 – ident: 10.1016/j.geoderma.2020.114799_b0320 doi: 10.1021/acsearthspacechem.9b00261 – volume: 98 start-page: 2549 year: 1998 ident: 10.1016/j.geoderma.2020.114799_b0105 article-title: Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide publication-title: Chem. Rev. doi: 10.1021/cr970105t – volume: 42 start-page: 1151 year: 2008 ident: 10.1016/j.geoderma.2020.114799_b0010 article-title: Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface publication-title: Environ. Sci. Technol. doi: 10.1021/es0719529 – volume: 46 start-page: 6594 year: 2012 ident: 10.1016/j.geoderma.2020.114799_b0255 article-title: Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate publication-title: Environ. Sci. Technol. doi: 10.1021/es300494x – volume: 144 start-page: 1148 year: 2016 ident: 10.1016/j.geoderma.2020.114799_b0165 article-title: Co-adsorption of phosphate and zinc(II) on the surface of ferrihydrite publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.083 – year: 2003 ident: 10.1016/j.geoderma.2020.114799_b0055 – volume: 41 start-page: 3302 year: 2012 ident: 10.1016/j.geoderma.2020.114799_b0235 article-title: 2-Line ferrihydrite: Synthesis, characterization and its adsorption behaviour for removal of Pb(ii), Cd(ii), Cu(ii) and Zn(ii) from aqueous solutions publication-title: Dalt. Trans. doi: 10.1039/c2dt11651k – volume: 262 start-page: 55 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0110 article-title: Arsenate and cadmium co-adsorption and co-precipitation on goethite publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.08.030 – volume: 225 start-page: 466 issue: 2 year: 2000 ident: 10.1016/j.geoderma.2020.114799_b0210 article-title: Inorganic ligand effects on Pb (II) sorption to goethite (α-FeOOH): I. Carbonate publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1999.6701 – volume: 117 start-page: 53 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0065 article-title: In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.04.003 – volume: 348 start-page: 168 year: 2019 ident: 10.1016/j.geoderma.2020.114799_b0240 article-title: Inorganic and organic P retention by coprecipitation during ferrous iron oxidation publication-title: Geoderma doi: 10.1016/j.geoderma.2019.04.004 – volume: 127 start-page: 13 year: 2004 ident: 10.1016/j.geoderma.2020.114799_b0305 article-title: Mutual effects of cadmium and phosphate on their adsorption and desorption by goethite publication-title: Environ. Pollut. doi: 10.1016/S0269-7491(03)00262-8 – volume: 14 start-page: 297 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0020 article-title: Iron, manganese and aluminium oxides and oxyhydroxides publication-title: Eur. Mineral. Union Notes Mineral. – volume: 319 start-page: 1635 year: 2008 ident: 10.1016/j.geoderma.2020.114799_b0190 article-title: Size-driven structural and thermodynamic complexity in iron oxides publication-title: Science doi: 10.1126/science.1148614 – volume: 120 start-page: 140 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0275 article-title: Phosphate effects on copper (II) and lead (II) sorption to ferrihydrite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2013.06.012 – ident: 10.1016/j.geoderma.2020.114799_b0175 doi: 10.1126/science.1142525 – volume: 73 start-page: 1548 year: 2009 ident: 10.1016/j.geoderma.2020.114799_b0260 article-title: Goethite adsorption of Cu(II), Pb(II), Cd(II), and Zn(II) in the presence of sulfate: Properties of the ternary complex publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.12.007 – volume: 319 start-page: 70 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0245 article-title: Kinetics, adsorption and desorption of Cd(II) and Cu(II) on natural allophane: effect of iron oxide coating publication-title: Geoderma doi: 10.1016/j.geoderma.2017.12.038 – volume: 50 start-page: 2938 year: 2016 ident: 10.1016/j.geoderma.2020.114799_b0325 article-title: Molecular-scale study of aspartate adsorption on goethite and competition with phosphate publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.5b05450 – volume: 416 start-page: 133 year: 2014 ident: 10.1016/j.geoderma.2020.114799_b0080 article-title: Probing the surface speciation of uranium (VI) on iron (hydr)oxides by in situ ATR FTIR spectroscopy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2013.10.054 – volume: 241 start-page: 317 year: 2001 ident: 10.1016/j.geoderma.2020.114799_b0015 article-title: ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.2001.7773 – volume: 315 start-page: 120 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0290 article-title: Structural equation modeling reveals iron (hydr)oxides as a strong mediator of N mineralization in California agricultural soils publication-title: Geoderma doi: 10.1016/j.geoderma.2017.11.039 – volume: 35 start-page: 3849 year: 2001 ident: 10.1016/j.geoderma.2020.114799_b0285 article-title: Surface complexation modeling of carbonate effects on the adsorption of Cr (VI), Pb (II), and U (VI) on goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es001748k – volume: 4 start-page: 4298 year: 2011 ident: 10.1016/j.geoderma.2020.114799_b0120 article-title: Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): a 31P NMR Study publication-title: Energy Environ. Sci. doi: 10.1039/c1ee02093e – volume: 28 start-page: 14573 year: 2012 ident: 10.1016/j.geoderma.2020.114799_b0130 article-title: ATR-FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite publication-title: Langmuir doi: 10.1021/la303111a – volume: 159 start-page: 10 year: 2019 ident: 10.1016/j.geoderma.2020.114799_b0315 article-title: Photochemical behavior of ferrihydrite-oxalate system: interfacial reaction mechanism and charge transfer process publication-title: Water Res. doi: 10.1016/j.watres.2019.04.055 – volume: 351 start-page: 523 year: 2010 ident: 10.1016/j.geoderma.2020.114799_b0040 article-title: In situ ATR-FTIR studies on the competitive adsorption of arsenate and phosphate on ferrihydrite publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2010.07.064 – volume: 16 start-page: 162 year: 1982 ident: 10.1016/j.geoderma.2020.114799_b0030 article-title: Effects of complexation by Cl, SO4, and S2O3 on adsorption behavior of Cd on oxide surfaces publication-title: Environ. Sci. Technol. doi: 10.1021/es00097a008 – volume: 49 start-page: 1 year: 2002 ident: 10.1016/j.geoderma.2020.114799_b0035 article-title: An overview of synchrotron radiation applications to low temperature geochemistry and environmental science publication-title: Rev. Mineral. Geochem. doi: 10.2138/gsrmg.49.1.1 – volume: 63 start-page: 2989 year: 1999 ident: 10.1016/j.geoderma.2020.114799_b0050 article-title: Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/S0016-7037(99)00226-4 – volume: 46 start-page: 987 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0115 article-title: A new model for transformation of ferrihydrite to hematite in soils and sediments publication-title: Geology – volume: 6 start-page: 602 year: 1990 ident: 10.1016/j.geoderma.2020.114799_b0265 article-title: The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility publication-title: Langmuir doi: 10.1021/la00093a015 – volume: 477 start-page: 12 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0160 article-title: Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: an in situ ATR-FTIR/2D-COS study publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2017.12.004 – volume: 37 start-page: 2694 year: 2003 ident: 10.1016/j.geoderma.2020.114799_b0140 article-title: Evidence for surface precipitation of phosphate on goethite publication-title: Environ. Sci. Technol. doi: 10.1021/es020773i – volume: 115 start-page: 21191 year: 2011 ident: 10.1016/j.geoderma.2020.114799_b0250 article-title: Formation of ternary metal-oxalate surface complexes on α-FeOOH particles publication-title: J. Phys. Chem. C doi: 10.1021/jp2058707 – volume: 35 start-page: 3369 year: 2001 ident: 10.1016/j.geoderma.2020.114799_b0230 article-title: Interaction between calcium and phosphate adsorption on goethite publication-title: Env. Sci. Technol. doi: 10.1021/es000210b – volume: 21 start-page: 5727 year: 2009 ident: 10.1016/j.geoderma.2020.114799_b0215 article-title: Density functional theory study of ferrihydrite and related Fe-oxyhydroxides publication-title: Chem. Mater. doi: 10.1021/cm9023875 – volume: 239 start-page: 280 year: 2018 ident: 10.1016/j.geoderma.2020.114799_b0335 article-title: Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.08.025 – volume: 177 start-page: 407 year: 1996 ident: 10.1016/j.geoderma.2020.114799_b0025 article-title: Surface Hydroxyl configuration of various crystal faces of hematite and goethite publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1996.0051 – volume: 158 start-page: 130 year: 2015 ident: 10.1016/j.geoderma.2020.114799_b0100 article-title: Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2015.02.030 – volume: 14 start-page: 2750 year: 1998 ident: 10.1016/j.geoderma.2020.114799_b0200 article-title: Nucleation and growth of phosphate on metal oxide thin films publication-title: Langmuir doi: 10.1021/la9702695 – volume: 270 start-page: 76 year: 2016 ident: 10.1016/j.geoderma.2020.114799_b0135 article-title: Oxalate-based remediation of arsenic bound to amorphous Fe and Al hydrous oxides in soil publication-title: Geoderma doi: 10.1016/j.geoderma.2015.09.015 – volume: 73 start-page: 4437 year: 2009 ident: 10.1016/j.geoderma.2020.114799_b0090 article-title: A surface structural model for ferrihydrite II: adsorption of uranyl and carbonate publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.04.035 – volume: 309 start-page: 118 year: 2017 ident: 10.1016/j.geoderma.2020.114799_b0155 article-title: Effect of calcium ion on phosphate adsorption onto hydrous zirconium oxide publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.10.001 – volume: 28 start-page: 185 year: 2013 ident: 10.1016/j.geoderma.2020.114799_b0060 article-title: Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.10.026 – volume: 72 start-page: 1986 year: 2008 ident: 10.1016/j.geoderma.2020.114799_b0045 article-title: Simultaneous inner- and outer-sphere arsenate adsorption on corundum and hematite publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2008.02.013 – volume: 27 start-page: 31 year: 1962 ident: 10.1016/j.geoderma.2020.114799_b0185 article-title: A modified single solution method for the determination of phosphate in natural waters publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(00)88444-5 – volume: 73 start-page: 4423 year: 2009 ident: 10.1016/j.geoderma.2020.114799_b0095 article-title: A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2009.04.032 – volume: 1069 start-page: 3 year: 2014 ident: 10.1016/j.geoderma.2020.114799_b0195 article-title: Frontiers of two-dimensional correlation spectroscopy. Part 1. New concepts and noteworthy developments publication-title: J. Mol. Struct. doi: 10.1016/j.molstruc.2014.01.025 |
SSID | ssj0017020 |
Score | 2.6462693 |
Snippet | •Phosphate and Cd(II) were synergistically adsorbed with molar ratios related to surface charges of minerals.•The bonding modes of phosphate in the presence... Iron (oxyhydr)oxides participate in a variety of geochemical processes, and hence control the cycling of elements and quality of soils. The present work... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114799 |
SubjectTerms | adsorption Cadmium comparative study electrostatic interactions Ferrihydrite Fourier transform infrared spectroscopy Goethite Hematite iron Phosphate phosphates soil Synergistic adsorption |
Title | Adsorption of phosphate and cadmium on iron (oxyhydr)oxides: A comparative study on ferrihydrite, goethite, and hematite |
URI | https://dx.doi.org/10.1016/j.geoderma.2020.114799 https://www.proquest.com/docview/2551905899 |
Volume | 383 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhubSH0qYtTR9BhR5aqLu2HpadmwkJ25bm1EBuQo9RdkNiL_uAzaW_vRrZTh8UcujNSDPC6BvPjPDMJ0LeeTwlVEpkOXeQiULxrALJsry2zPioxFKX67ezcnouvlzIix1yPPbCYFnl4Pt7n5689TAyGXZzspjPsce3KBVG6JzHvFggJ6gQCq3804-7Mo9C5QM1Y1FmKP1bl_BVxAgvHEv8QyzR5qrEAfvPAPWXq07x5_QxeTQkjrTp3-0J2YF2nzxsLpcDeQY8JdvGr7pl8gG0C3Qx61aLWcwlqWk9dcbfzDc3NM5hZxt9321vZ7d--aHbzj2sjmhD3S8mcJpoZ1E4IHUjCsbc9CO97ACrFeMTrtkTvq7hGTk_Pfl-PM2GmxUyIyq2zmxZewHAg-SlqKRjLHCoec4sD-Bq64MHawvPmY_j0vOycHEqN1wBdybw52S37Vp4QahVOSDpW-0rJ2SI8MqgfM0griiNsQdEjtup3UA7jrdfXOuxvuxKjzBohEH3MByQyZ3eoifeuFejHtHSf5iQjtHhXt23I7w6fl_408S00G1WOppWzJlkPJa-_I_1X5EHDIthUrn3a7K7Xm7gTcxm1vYwmesh2Ws-f52e_QQqifgU |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHxFN98DASB5AIm_iRB7dVRbVA21Mr9WbZ8bi7FU1W-5C2F347M05SHkLqgVtke6zInz0zlme-Yeytp1tCWagklTUkKitkUoIWSVo5YT0KiZjlenyST87U13N9vsUOhlwYCqvsdX-n06O27ltG_WqO5rMZ5fhmeUEWOpXoFyt1h91VeHypjMHHHzdxHlmR9tyMWZ7Q8N_ShC8RJKo4FgmIROTNLSIJ7D8t1F-6Ohqgw0fsYe858nH3c4_ZFjRP2IPxxaJnz4CnbDP2y3YRlQBvA59P2-V8is4kt43ntfVXs_UVxz5KbePv2s319Nov3rebmYflJz7m9S8qcB55Z2lwIO5GGojO6Qd-0QKFK-IXzdkxvq7gGTs7_Hx6MEn60gqJVaVYJS6vvAKQQctclboWIkioZCqcDFBXzgcPzmVeCo_t2ss8q7ErtbIAWdsgn7Ptpm1gh3FXpECsb5Uva6UD4qtD4SsBOKO21u0yPSynqXvecSp_8d0MAWaXZoDBEAymg2GXjW7k5h3zxq0S1YCW-WMPGTQPt8q-GeA1eMDo1cQ20K6XBvcWOk0a76V7_zH_a3Zvcnp8ZI6-nHzbZ_cFRcbE2O8XbHu1WMNLdG1W7lXcuj8Bzj_5og |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adsorption+of+phosphate+and+cadmium+on+iron+%28oxyhydr%29oxides%3A+A+comparative+study+on+ferrihydrite%2C+goethite%2C+and+hematite&rft.jtitle=Geoderma&rft.au=Liu%2C+Jing&rft.au=Zhu%2C+Runliang&rft.au=Ma%2C+Lingya&rft.au=Fu%2C+Haoyang&rft.date=2021-02-01&rft.issn=0016-7061&rft.volume=383&rft.spage=114799&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |