Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields
Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally orient...
Saved in:
Published in | Langmuir Vol. 38; no. 20; pp. 6305 - 6321 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
24.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam. |
---|---|
AbstractList | Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam. Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam. Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam. |
Author | Starov, Victor Mikhilovich Tseluiko, Dmitri Trybala, Anna Bandulasena, Himiyage Chaminda Hemaka Fauvel, Matthieu |
AuthorAffiliation | Department of Chemical Engineering Department of Mathematics |
AuthorAffiliation_xml | – name: Department of Chemical Engineering – name: Department of Mathematics |
Author_xml | – sequence: 1 givenname: Matthieu surname: Fauvel fullname: Fauvel, Matthieu organization: Department of Chemical Engineering – sequence: 2 givenname: Anna orcidid: 0000-0003-2057-3327 surname: Trybala fullname: Trybala, Anna organization: Department of Chemical Engineering – sequence: 3 givenname: Dmitri surname: Tseluiko fullname: Tseluiko, Dmitri organization: Department of Mathematics – sequence: 4 givenname: Victor Mikhilovich orcidid: 0000-0003-0814-8870 surname: Starov fullname: Starov, Victor Mikhilovich organization: Department of Chemical Engineering – sequence: 5 givenname: Himiyage Chaminda Hemaka orcidid: 0000-0001-7213-003X surname: Bandulasena fullname: Bandulasena, Himiyage Chaminda Hemaka email: H.C.H.Bandulasena@lboro.ac.uk organization: Department of Chemical Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35546544$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1rFDEYx4NU7Lb6DURy9DJr3jPjQSh1txYWClrPIZtkakpmsk0y6n77ZtltsR60pxD-LzzP8zsBR2McHQBvMZpjRPAHbfI86PFmmHyaE4MQIuIFmGFOUMNbIo_ADElGG8kEPQYnOd9WS0dZ9wocU86Z4IzNwNdvRa998GULYw-vf8Xmsx_cmH0cdYArfzd5C5dRDxlOo3UJLn4Xl6oWtvBsswneWbgIzpTkDVx6F2x-DV72OmT35vCegu_LxfX5l2Z1dXF5frZqNGtJaWTPEEPWacI6i5w2lGixtqhtpSWYU9PqtjNkjXurO8yR0HUTSWn9216ajp6CT_vezbQenDVuLEkHtUl-0GmrovbqqTL6H-om_lQdpowjXAveHwpSvJtcLmrw2bhQr-rilBURkvNWEMGeYRVMtqLju9Z3f471OM_DzauB7Q0mxZyT6x8tGKkdWlXRqge06oC2xj7-FTO-6FJB1eV8-F8Y7cM79TZOO4L535F7J2K_5g |
CitedBy_id | crossref_primary_10_1039_D3SM00684K crossref_primary_10_1016_j_cis_2024_103109 crossref_primary_10_1021_acs_langmuir_2c02228 crossref_primary_10_3390_colloids7020044 crossref_primary_10_1063_5_0243581 |
Cites_doi | 10.1016/S0009-2509(02)00311-1 10.1140/epjst/e2015-02374-2 10.1006/jcis.1995.1234 10.1016/0009-2509(93)80300-F 10.1063/1.1580479 10.1063/1.2149979 10.1039/c8sm00755a 10.1016/j.jcis.2013.09.029 10.1007/s11204-017-9432-x 10.1039/b809149h 10.1016/0021-9797(83)90196-0 10.1021/jp964014w 10.1103/PhysRevFluids.3.110505 10.1016/j.electacta.2015.11.076 10.1021/la047763a 10.1021/acs.langmuir.9b03852 10.1016/S0021-9797(03)00199-1 10.1016/s0001-8686(97)00031-6 10.1039/c5sm00377f 10.1016/j.colsurfa.2016.07.097 10.1016/0021-9797(74)90030-7 10.1016/0021-9797(86)90178-5 10.1021/la970483t 10.1016/S0001-8686(03)00002-2 10.1016/j.colsurfa.2005.06.063 10.1002/elps.201600549 10.1039/c001349h 10.1016/j.cis.2009.10.001 10.1039/c7sm02508d 10.1002/elps.201100259 10.1088/0953-8984/8/21/002 10.1016/j.fluid.2012.03.018 10.1021/jp9506494 10.1186/1477-3155-4-12 10.1007/BF01059289 10.1016/0021-9797(87)90165-2 10.1016/j.cemconres.2014.02.008 10.1021/acs.langmuir.7b02487 10.1021/la303880m 10.1006/jcis.1998.5520 10.1021/la1044656 10.1016/0021-9797(90)90351-N 10.1016/j.cis.2004.03.001 10.1039/b408382m 10.1103/PhysRevLett.122.088002 10.1039/c3ay41364k 10.1209/0295-5075/83/64006 10.1007/s00396-007-1813-7 10.1146/annurev-anchem-061417-125758 10.1021/jp801337n 10.1038/nature14340 10.1016/j.apsusc.2013.07.057 10.1039/b820266b 10.1103/PhysRevE.91.042301 10.1103/PhysRevX.10.021015 10.3390/colloids2010008 10.1039/b602975b 10.1016/j.colsurfa.2015.08.039 10.1016/j.cis.2017.06.005 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Published by American Chemical Society 2022 The Authors. Published by American Chemical Society 2022 The Authors |
Copyright_xml | – notice: 2022 The Authors. Published by American Chemical Society – notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors |
DBID | AAYXX CITATION NPM 7X8 7S9 L.6 5PM |
DOI | 10.1021/acs.langmuir.2c00026 |
DatabaseName | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-5827 |
EndPage | 6321 |
ExternalDocumentID | PMC9134501 35546544 10_1021_acs_langmuir_2c00026 c991549202 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: NA |
GroupedDBID | - 02 4.4 55A 5GY 5VS 7~N AABXI ABFLS ABFRP ABMVS ABPTK ABUCX ACGFS ACJ ACNCT ACS AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 DU5 EBS ED F5P GGK GNL IH9 IHE JG K2 RNS ROL TN5 UI2 UPT VF5 VG9 W1F X YQT --- -~X .K2 53G AAHBH AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV CITATION CUPRZ ED~ JG~ ~02 NPM 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-a482t-7f4040dea249d0eac32a6bd0887d2153c8a89c2b1fda91506a7467331fddf7c93 |
IEDL.DBID | ACS |
ISSN | 0743-7463 1520-5827 |
IngestDate | Thu Aug 21 18:09:05 EDT 2025 Thu Jul 10 19:57:02 EDT 2025 Fri Jul 11 07:22:24 EDT 2025 Thu Apr 03 07:03:59 EDT 2025 Tue Jul 01 03:28:12 EDT 2025 Thu Apr 24 23:08:55 EDT 2025 Thu May 26 04:24:18 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a482t-7f4040dea249d0eac32a6bd0887d2153c8a89c2b1fda91506a7467331fddf7c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7213-003X 0000-0003-0814-8870 0000-0003-2057-3327 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9134501 |
PMID | 35546544 |
PQID | 2664786951 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9134501 proquest_miscellaneous_2675586264 proquest_miscellaneous_2664786951 pubmed_primary_35546544 crossref_primary_10_1021_acs_langmuir_2c00026 crossref_citationtrail_10_1021_acs_langmuir_2c00026 acs_journals_10_1021_acs_langmuir_2c00026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-24 |
PublicationDateYYYYMMDD | 2022-05-24 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Langmuir |
PublicationTitleAlternate | Langmuir |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref17/cit17 ref10/cit10 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 Hunter R. J. (ref35/cit35) 1981 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref34/cit34 doi: 10.1016/S0009-2509(02)00311-1 – ident: ref20/cit20 doi: 10.1140/epjst/e2015-02374-2 – ident: ref51/cit51 doi: 10.1006/jcis.1995.1234 – ident: ref18/cit18 doi: 10.1016/0009-2509(93)80300-F – ident: ref33/cit33 doi: 10.1063/1.1580479 – ident: ref7/cit7 doi: 10.1063/1.2149979 – ident: ref47/cit47 doi: 10.1039/c8sm00755a – ident: ref46/cit46 doi: 10.1016/j.jcis.2013.09.029 – ident: ref56/cit56 doi: 10.1007/s11204-017-9432-x – ident: ref52/cit52 doi: 10.1039/b809149h – ident: ref23/cit23 doi: 10.1016/0021-9797(83)90196-0 – ident: ref48/cit48 doi: 10.1021/jp964014w – ident: ref12/cit12 doi: 10.1103/PhysRevFluids.3.110505 – ident: ref11/cit11 doi: 10.1016/j.electacta.2015.11.076 – ident: ref31/cit31 doi: 10.1021/la047763a – volume-title: Zeta Potential in Colloid Science: Principles and Applications year: 1981 ident: ref35/cit35 – ident: ref21/cit21 doi: 10.1021/acs.langmuir.9b03852 – ident: ref53/cit53 doi: 10.1016/S0021-9797(03)00199-1 – ident: ref60/cit60 doi: 10.1016/s0001-8686(97)00031-6 – ident: ref14/cit14 doi: 10.1039/c5sm00377f – ident: ref15/cit15 doi: 10.1016/j.colsurfa.2016.07.097 – ident: ref24/cit24 doi: 10.1016/0021-9797(74)90030-7 – ident: ref38/cit38 doi: 10.1016/0021-9797(86)90178-5 – ident: ref30/cit30 doi: 10.1021/la970483t – ident: ref43/cit43 doi: 10.1016/S0001-8686(03)00002-2 – ident: ref59/cit59 doi: 10.1016/j.colsurfa.2005.06.063 – ident: ref13/cit13 doi: 10.1002/elps.201600549 – ident: ref6/cit6 doi: 10.1039/c001349h – ident: ref58/cit58 doi: 10.1016/j.cis.2009.10.001 – ident: ref37/cit37 doi: 10.1039/c7sm02508d – ident: ref49/cit49 doi: 10.1002/elps.201100259 – ident: ref19/cit19 doi: 10.1088/0953-8984/8/21/002 – ident: ref26/cit26 doi: 10.1016/j.fluid.2012.03.018 – ident: ref25/cit25 doi: 10.1021/jp9506494 – ident: ref2/cit2 doi: 10.1186/1477-3155-4-12 – ident: ref50/cit50 doi: 10.1007/BF01059289 – ident: ref42/cit42 doi: 10.1016/0021-9797(87)90165-2 – ident: ref8/cit8 doi: 10.1016/j.cemconres.2014.02.008 – ident: ref45/cit45 doi: 10.1021/acs.langmuir.7b02487 – ident: ref32/cit32 doi: 10.1021/la303880m – ident: ref54/cit54 doi: 10.1006/jcis.1998.5520 – ident: ref16/cit16 doi: 10.1021/la1044656 – ident: ref17/cit17 doi: 10.1016/0021-9797(90)90351-N – ident: ref41/cit41 doi: 10.1016/j.cis.2004.03.001 – ident: ref57/cit57 doi: 10.1039/b408382m – ident: ref61/cit61 doi: 10.1103/PhysRevLett.122.088002 – ident: ref4/cit4 doi: 10.1039/c3ay41364k – ident: ref29/cit29 doi: 10.1209/0295-5075/83/64006 – ident: ref36/cit36 doi: 10.1007/s00396-007-1813-7 – ident: ref3/cit3 doi: 10.1146/annurev-anchem-061417-125758 – ident: ref1/cit1 – ident: ref27/cit27 doi: 10.1021/jp801337n – ident: ref9/cit9 doi: 10.1038/nature14340 – ident: ref44/cit44 doi: 10.1016/j.apsusc.2013.07.057 – ident: ref5/cit5 doi: 10.1039/b820266b – ident: ref28/cit28 doi: 10.1103/PhysRevE.91.042301 – ident: ref22/cit22 doi: 10.1103/PhysRevX.10.021015 – ident: ref39/cit39 doi: 10.3390/colloids2010008 – ident: ref55/cit55 doi: 10.1039/b602975b – ident: ref40/cit40 doi: 10.1016/j.colsurfa.2015.08.039 – ident: ref10/cit10 doi: 10.1016/j.cis.2017.06.005 |
SSID | ssj0009349 |
Score | 2.419649 |
Snippet | Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce... Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce... |
SourceID | pubmedcentral proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6305 |
SubjectTerms | electric field electroosmosis finite element analysis foam cells foams glass liquids surfactants zwitterions |
Title | Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields |
URI | http://dx.doi.org/10.1021/acs.langmuir.2c00026 https://www.ncbi.nlm.nih.gov/pubmed/35546544 https://www.proquest.com/docview/2664786951 https://www.proquest.com/docview/2675586264 https://pubmed.ncbi.nlm.nih.gov/PMC9134501 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdG97C9wNgHFAbypL3swV1jO07yWJVWaIJN2kDiLXIcW4tWEmgaIfjructHoaCN8ZjETpTznf07--53hHw22mgnPcm0kJbJwIJJhX7KEqO01mHkrMME5-Pv6vBUfjvzz-4cxYcn-Nz7qk05wL278yqbD7hBE1Zr5CVXYYDO1mj8645kVzRwF2k3A6lElyr3l7fggmTK1QXpEcp8GCx5b_WZbpAfXQ5PE3TyZ1AtkoG5eUzp-J8_9oast0CUjhrN2SQvbP6WvBp39d_ekZ-AQ-vI2WtaOHpyVbADrATQsHjQo-yyylI6LfR5STERbU4nLaH07Jq22JZO6iI7maFTDJQr35PT6eRkfMjaCgxMy5AvWOAkGHlqNThp6RDmaMG1SlKcmVLACsKEMJyGJ55LdYRchRqrlwgB16kLTCQ-kF5e5HabUBU534FDHIW46QgwwSYhN4C3sGxRxG2ffAGBxK0FlXF9OM69GG92UopbKfWJ6IYsNi2VOVbUmD3Riy17XTRUHk-0_9RpQwyix4MUnduiKmMANTIIFYDTf7UJfB_dRdknW40GLb-KGE_5Ep4EK7q1bICc36tP8ux3zf2NgRL-0Nt5hrR2yWuOORtDn3H5kfQW88ruAZJaJPu1-dwC7agdag |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigXKO-FFozEhYOXjWPncay2u1pg2wNsUW-R49hqRJvAZiNUfj0zeWzZIqh6jGM7zthjf7ZnvgF4a7TRTnqSa19aLkOLKhWpjKcm0FpHsbOOHJyPjoPZifx4qk63QPW-MNiICmuqmkv8K3YB7z2l0RHeRZ0vh8KQJgd34C7iEUF7roPxlyuuXb9FvcS-GcrA7z3m_lELrUum2lyX_gKb120m_1iEpg_g67r5je3Jt2G9Sofm1zVmx1v_3y7c72ApO2jH0UPYssUj2Bn30eAew2dEpY0d7SUrHVv8LPkhxQVoOT3YPP9R5xmblvqiYuSWtmSTjl76_JJ1SJdNmpA7uWFTMpurnsDJdLIYz3gXj4FrGYkVD51Elc-sxi1bNsIZ2xc6SDOapzJEDr6JsHONSD2X6ZiYCzXFMvF9fM5caGL_KWwXZWGfAwtipxxuj-OIjiARNNg0EgbRFwUxioUdwDsUSNLpU5U0V-XCSyixl1LSSWkAft9ziemIzSm-xvkNpfi61PeW2OOG_G_6QZGg6OlaRRe2rKsEIY4MowCh6v_yhErR5lEO4Fk7kNZfJcQXKIlvwo0hts5ADOCbb4r8rGECJ7MJNfJe3EJar2FntjiaJ_MPx59ewj1B3hwjxYXcg-3Vsrb7iLFW6atGo34D61Ulyw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakFouFPqApQ9cqZcevN3YzuuIlo1oS1HVgoR6iRw_RAQksNkIwa_vTB5blqpF7TGO7cRjj_2NPf6GkHdaaeWkJ5kS0jIZWlCpyDcs04FSKoqddXjB-ctBsHckPx37x7dCfcFPVFBT1Rzio1ZfGNcxDHgfMB238c7rfDrkGrU5eEiW8eQO7a6d8fdffLuiRb7IwBnKQPS35v5QC65Nulpcm34DnHf9Jm8tRMkT8mPehMb_5HRYz7KhvrnD7vhfbVwjqx08pTvteFonD2zxlDwe91HhnpFvgE4bf9prWjp6eFWyXYwP0HJ70P38ss4NTUp1XlG8njalk45m-uyadoiXTprQO7mmCbrPVc_JUTI5HO-xLi4DUzLiMxY6CapvrALTzYxg5hZcBZnB-coAghA6gk7WPPOcUTEyGCqMaSIEPBsX6li8IEtFWdhNQoPY-Q7M5DjCrUgADzaLuAYUhsGMYm4H5D0IJO30qkqbI3PupZjYSyntpDQgou-9VHcE5xhn4-yeUmxe6qIl-Lgn_9t-YKQgejxeUYUt6yoFqCPDKADI-rc8oe-jESkHZKMdTPOvIvILfAlvwoVhNs-ATOCLb4r8pGEER_cJf-Rt_YO0tsmjr7tJuv_x4PNLssLxUsfIZ1y-IkuzaW1fA9SaZW8apfoJOqUoTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Two-Dimensional+Liquid+Foams+under+Externally+Applied+Electric+Fields&rft.jtitle=Langmuir&rft.au=Fauvel%2C+Matthieu&rft.au=Trybala%2C+Anna&rft.au=Tseluiko%2C+Dmitri&rft.au=Starov%2C+Victor+Mikhilovich&rft.date=2022-05-24&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=38&rft.issue=20&rft.spage=6305&rft.epage=6321&rft_id=info:doi/10.1021%2Facs.langmuir.2c00026&rft.externalDocID=c991549202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon |