Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields

Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally orient...

Full description

Saved in:
Bibliographic Details
Published inLangmuir Vol. 38; no. 20; pp. 6305 - 6321
Main Authors Fauvel, Matthieu, Trybala, Anna, Tseluiko, Dmitri, Starov, Victor Mikhilovich, Bandulasena, Himiyage Chaminda Hemaka
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 24.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.
AbstractList Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas-liquid and solid-liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas-liquid and solid-liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.
Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.
Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce fluid flows within the foam structure and impact its stability. The impact of external electric fields on the stability of a horizontally oriented monolayer of foam (2D foam) composed of anionic, cationic, non-ionic, and zwitterionic surfactants was investigated, probing the effects of changing the gas–liquid and solid–liquid interfaces. Time-lapse recordings were analyzed to investigate the evolution of foam over time subject to varying electric field strengths. Numerical simulations of electroosmotic flow of the same system were performed using the finite element method. Foam stability was affected by the presence of an external electric field in all cases and depended on the surfactant type, strength of the electric field, and the solid material used to construct the foam cell. For the myristyltrimethylammonium bromide (MTAB) foam in a glass cell, the time to collapse 50% of the foam was increased from ∼25 min under no electric field to ∼85 min under an electric field strength of 2000 V/m. In comparison, all other surfactants trialed exhibited faster foam collapse under external electric fields. Numerical simulations provided insight as to how different zeta potentials at the gas–liquid and solid–liquid interfaces affect fluid flow in different elements of the foam structure under external electric fields, leading to a more stable or unstable foam.
Author Starov, Victor Mikhilovich
Tseluiko, Dmitri
Trybala, Anna
Bandulasena, Himiyage Chaminda Hemaka
Fauvel, Matthieu
AuthorAffiliation Department of Chemical Engineering
Department of Mathematics
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: Department of Mathematics
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Fauvel
  fullname: Fauvel, Matthieu
  organization: Department of Chemical Engineering
– sequence: 2
  givenname: Anna
  orcidid: 0000-0003-2057-3327
  surname: Trybala
  fullname: Trybala, Anna
  organization: Department of Chemical Engineering
– sequence: 3
  givenname: Dmitri
  surname: Tseluiko
  fullname: Tseluiko, Dmitri
  organization: Department of Mathematics
– sequence: 4
  givenname: Victor Mikhilovich
  orcidid: 0000-0003-0814-8870
  surname: Starov
  fullname: Starov, Victor Mikhilovich
  organization: Department of Chemical Engineering
– sequence: 5
  givenname: Himiyage Chaminda Hemaka
  orcidid: 0000-0001-7213-003X
  surname: Bandulasena
  fullname: Bandulasena, Himiyage Chaminda Hemaka
  email: H.C.H.Bandulasena@lboro.ac.uk
  organization: Department of Chemical Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35546544$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1rFDEYx4NU7Lb6DURy9DJr3jPjQSh1txYWClrPIZtkakpmsk0y6n77ZtltsR60pxD-LzzP8zsBR2McHQBvMZpjRPAHbfI86PFmmHyaE4MQIuIFmGFOUMNbIo_ADElGG8kEPQYnOd9WS0dZ9wocU86Z4IzNwNdvRa998GULYw-vf8Xmsx_cmH0cdYArfzd5C5dRDxlOo3UJLn4Xl6oWtvBsswneWbgIzpTkDVx6F2x-DV72OmT35vCegu_LxfX5l2Z1dXF5frZqNGtJaWTPEEPWacI6i5w2lGixtqhtpSWYU9PqtjNkjXurO8yR0HUTSWn9216ajp6CT_vezbQenDVuLEkHtUl-0GmrovbqqTL6H-om_lQdpowjXAveHwpSvJtcLmrw2bhQr-rilBURkvNWEMGeYRVMtqLju9Z3f471OM_DzauB7Q0mxZyT6x8tGKkdWlXRqge06oC2xj7-FTO-6FJB1eV8-F8Y7cM79TZOO4L535F7J2K_5g
CitedBy_id crossref_primary_10_1039_D3SM00684K
crossref_primary_10_1016_j_cis_2024_103109
crossref_primary_10_1021_acs_langmuir_2c02228
crossref_primary_10_3390_colloids7020044
crossref_primary_10_1063_5_0243581
Cites_doi 10.1016/S0009-2509(02)00311-1
10.1140/epjst/e2015-02374-2
10.1006/jcis.1995.1234
10.1016/0009-2509(93)80300-F
10.1063/1.1580479
10.1063/1.2149979
10.1039/c8sm00755a
10.1016/j.jcis.2013.09.029
10.1007/s11204-017-9432-x
10.1039/b809149h
10.1016/0021-9797(83)90196-0
10.1021/jp964014w
10.1103/PhysRevFluids.3.110505
10.1016/j.electacta.2015.11.076
10.1021/la047763a
10.1021/acs.langmuir.9b03852
10.1016/S0021-9797(03)00199-1
10.1016/s0001-8686(97)00031-6
10.1039/c5sm00377f
10.1016/j.colsurfa.2016.07.097
10.1016/0021-9797(74)90030-7
10.1016/0021-9797(86)90178-5
10.1021/la970483t
10.1016/S0001-8686(03)00002-2
10.1016/j.colsurfa.2005.06.063
10.1002/elps.201600549
10.1039/c001349h
10.1016/j.cis.2009.10.001
10.1039/c7sm02508d
10.1002/elps.201100259
10.1088/0953-8984/8/21/002
10.1016/j.fluid.2012.03.018
10.1021/jp9506494
10.1186/1477-3155-4-12
10.1007/BF01059289
10.1016/0021-9797(87)90165-2
10.1016/j.cemconres.2014.02.008
10.1021/acs.langmuir.7b02487
10.1021/la303880m
10.1006/jcis.1998.5520
10.1021/la1044656
10.1016/0021-9797(90)90351-N
10.1016/j.cis.2004.03.001
10.1039/b408382m
10.1103/PhysRevLett.122.088002
10.1039/c3ay41364k
10.1209/0295-5075/83/64006
10.1007/s00396-007-1813-7
10.1146/annurev-anchem-061417-125758
10.1021/jp801337n
10.1038/nature14340
10.1016/j.apsusc.2013.07.057
10.1039/b820266b
10.1103/PhysRevE.91.042301
10.1103/PhysRevX.10.021015
10.3390/colloids2010008
10.1039/b602975b
10.1016/j.colsurfa.2015.08.039
10.1016/j.cis.2017.06.005
ContentType Journal Article
Copyright 2022 The Authors. Published by American Chemical Society
2022 The Authors. Published by American Chemical Society 2022 The Authors
Copyright_xml – notice: 2022 The Authors. Published by American Chemical Society
– notice: 2022 The Authors. Published by American Chemical Society 2022 The Authors
DBID AAYXX
CITATION
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.langmuir.2c00026
DatabaseName CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5827
EndPage 6321
ExternalDocumentID PMC9134501
35546544
10_1021_acs_langmuir_2c00026
c991549202
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: NA
GroupedDBID -
02
4.4
55A
5GY
5VS
7~N
AABXI
ABFLS
ABFRP
ABMVS
ABPTK
ABUCX
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
F5P
GGK
GNL
IH9
IHE
JG
K2
RNS
ROL
TN5
UI2
UPT
VF5
VG9
W1F
X
YQT
---
-~X
.K2
53G
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
CITATION
CUPRZ
ED~
JG~
~02
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a482t-7f4040dea249d0eac32a6bd0887d2153c8a89c2b1fda91506a7467331fddf7c93
IEDL.DBID ACS
ISSN 0743-7463
1520-5827
IngestDate Thu Aug 21 18:09:05 EDT 2025
Thu Jul 10 19:57:02 EDT 2025
Fri Jul 11 07:22:24 EDT 2025
Thu Apr 03 07:03:59 EDT 2025
Tue Jul 01 03:28:12 EDT 2025
Thu Apr 24 23:08:55 EDT 2025
Thu May 26 04:24:18 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License https://creativecommons.org/licenses/by/4.0
Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a482t-7f4040dea249d0eac32a6bd0887d2153c8a89c2b1fda91506a7467331fddf7c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7213-003X
0000-0003-0814-8870
0000-0003-2057-3327
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9134501
PMID 35546544
PQID 2664786951
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9134501
proquest_miscellaneous_2675586264
proquest_miscellaneous_2664786951
pubmed_primary_35546544
crossref_primary_10_1021_acs_langmuir_2c00026
crossref_citationtrail_10_1021_acs_langmuir_2c00026
acs_journals_10_1021_acs_langmuir_2c00026
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-24
PublicationDateYYYYMMDD 2022-05-24
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Langmuir
PublicationTitleAlternate Langmuir
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
Hunter R. J. (ref35/cit35) 1981
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1016/S0009-2509(02)00311-1
– ident: ref20/cit20
  doi: 10.1140/epjst/e2015-02374-2
– ident: ref51/cit51
  doi: 10.1006/jcis.1995.1234
– ident: ref18/cit18
  doi: 10.1016/0009-2509(93)80300-F
– ident: ref33/cit33
  doi: 10.1063/1.1580479
– ident: ref7/cit7
  doi: 10.1063/1.2149979
– ident: ref47/cit47
  doi: 10.1039/c8sm00755a
– ident: ref46/cit46
  doi: 10.1016/j.jcis.2013.09.029
– ident: ref56/cit56
  doi: 10.1007/s11204-017-9432-x
– ident: ref52/cit52
  doi: 10.1039/b809149h
– ident: ref23/cit23
  doi: 10.1016/0021-9797(83)90196-0
– ident: ref48/cit48
  doi: 10.1021/jp964014w
– ident: ref12/cit12
  doi: 10.1103/PhysRevFluids.3.110505
– ident: ref11/cit11
  doi: 10.1016/j.electacta.2015.11.076
– ident: ref31/cit31
  doi: 10.1021/la047763a
– volume-title: Zeta Potential in Colloid Science: Principles and Applications
  year: 1981
  ident: ref35/cit35
– ident: ref21/cit21
  doi: 10.1021/acs.langmuir.9b03852
– ident: ref53/cit53
  doi: 10.1016/S0021-9797(03)00199-1
– ident: ref60/cit60
  doi: 10.1016/s0001-8686(97)00031-6
– ident: ref14/cit14
  doi: 10.1039/c5sm00377f
– ident: ref15/cit15
  doi: 10.1016/j.colsurfa.2016.07.097
– ident: ref24/cit24
  doi: 10.1016/0021-9797(74)90030-7
– ident: ref38/cit38
  doi: 10.1016/0021-9797(86)90178-5
– ident: ref30/cit30
  doi: 10.1021/la970483t
– ident: ref43/cit43
  doi: 10.1016/S0001-8686(03)00002-2
– ident: ref59/cit59
  doi: 10.1016/j.colsurfa.2005.06.063
– ident: ref13/cit13
  doi: 10.1002/elps.201600549
– ident: ref6/cit6
  doi: 10.1039/c001349h
– ident: ref58/cit58
  doi: 10.1016/j.cis.2009.10.001
– ident: ref37/cit37
  doi: 10.1039/c7sm02508d
– ident: ref49/cit49
  doi: 10.1002/elps.201100259
– ident: ref19/cit19
  doi: 10.1088/0953-8984/8/21/002
– ident: ref26/cit26
  doi: 10.1016/j.fluid.2012.03.018
– ident: ref25/cit25
  doi: 10.1021/jp9506494
– ident: ref2/cit2
  doi: 10.1186/1477-3155-4-12
– ident: ref50/cit50
  doi: 10.1007/BF01059289
– ident: ref42/cit42
  doi: 10.1016/0021-9797(87)90165-2
– ident: ref8/cit8
  doi: 10.1016/j.cemconres.2014.02.008
– ident: ref45/cit45
  doi: 10.1021/acs.langmuir.7b02487
– ident: ref32/cit32
  doi: 10.1021/la303880m
– ident: ref54/cit54
  doi: 10.1006/jcis.1998.5520
– ident: ref16/cit16
  doi: 10.1021/la1044656
– ident: ref17/cit17
  doi: 10.1016/0021-9797(90)90351-N
– ident: ref41/cit41
  doi: 10.1016/j.cis.2004.03.001
– ident: ref57/cit57
  doi: 10.1039/b408382m
– ident: ref61/cit61
  doi: 10.1103/PhysRevLett.122.088002
– ident: ref4/cit4
  doi: 10.1039/c3ay41364k
– ident: ref29/cit29
  doi: 10.1209/0295-5075/83/64006
– ident: ref36/cit36
  doi: 10.1007/s00396-007-1813-7
– ident: ref3/cit3
  doi: 10.1146/annurev-anchem-061417-125758
– ident: ref1/cit1
– ident: ref27/cit27
  doi: 10.1021/jp801337n
– ident: ref9/cit9
  doi: 10.1038/nature14340
– ident: ref44/cit44
  doi: 10.1016/j.apsusc.2013.07.057
– ident: ref5/cit5
  doi: 10.1039/b820266b
– ident: ref28/cit28
  doi: 10.1103/PhysRevE.91.042301
– ident: ref22/cit22
  doi: 10.1103/PhysRevX.10.021015
– ident: ref39/cit39
  doi: 10.3390/colloids2010008
– ident: ref55/cit55
  doi: 10.1039/b602975b
– ident: ref40/cit40
  doi: 10.1016/j.colsurfa.2015.08.039
– ident: ref10/cit10
  doi: 10.1016/j.cis.2017.06.005
SSID ssj0009349
Score 2.419649
Snippet Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce...
Liquid foams are highly complex systems consisting of gas bubbles trapped within a solution of surfactant. Electroosmotic effects may be employed to induce...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6305
SubjectTerms electric field
electroosmosis
finite element analysis
foam cells
foams
glass
liquids
surfactants
zwitterions
Title Stability of Two-Dimensional Liquid Foams under Externally Applied Electric Fields
URI http://dx.doi.org/10.1021/acs.langmuir.2c00026
https://www.ncbi.nlm.nih.gov/pubmed/35546544
https://www.proquest.com/docview/2664786951
https://www.proquest.com/docview/2675586264
https://pubmed.ncbi.nlm.nih.gov/PMC9134501
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swELdG97C9wNgHFAbypL3swV1jO07yWJVWaIJN2kDiLXIcW4tWEmgaIfjructHoaCN8ZjETpTznf07--53hHw22mgnPcm0kJbJwIJJhX7KEqO01mHkrMME5-Pv6vBUfjvzz-4cxYcn-Nz7qk05wL278yqbD7hBE1Zr5CVXYYDO1mj8645kVzRwF2k3A6lElyr3l7fggmTK1QXpEcp8GCx5b_WZbpAfXQ5PE3TyZ1AtkoG5eUzp-J8_9oast0CUjhrN2SQvbP6WvBp39d_ekZ-AQ-vI2WtaOHpyVbADrATQsHjQo-yyylI6LfR5STERbU4nLaH07Jq22JZO6iI7maFTDJQr35PT6eRkfMjaCgxMy5AvWOAkGHlqNThp6RDmaMG1SlKcmVLACsKEMJyGJ55LdYRchRqrlwgB16kLTCQ-kF5e5HabUBU534FDHIW46QgwwSYhN4C3sGxRxG2ffAGBxK0FlXF9OM69GG92UopbKfWJ6IYsNi2VOVbUmD3Riy17XTRUHk-0_9RpQwyix4MUnduiKmMANTIIFYDTf7UJfB_dRdknW40GLb-KGE_5Ep4EK7q1bICc36tP8ux3zf2NgRL-0Nt5hrR2yWuOORtDn3H5kfQW88ruAZJaJPu1-dwC7agdag
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VcigXKO-FFozEhYOXjWPncay2u1pg2wNsUW-R49hqRJvAZiNUfj0zeWzZIqh6jGM7zthjf7ZnvgF4a7TRTnqSa19aLkOLKhWpjKcm0FpHsbOOHJyPjoPZifx4qk63QPW-MNiICmuqmkv8K3YB7z2l0RHeRZ0vh8KQJgd34C7iEUF7roPxlyuuXb9FvcS-GcrA7z3m_lELrUum2lyX_gKb120m_1iEpg_g67r5je3Jt2G9Sofm1zVmx1v_3y7c72ApO2jH0UPYssUj2Bn30eAew2dEpY0d7SUrHVv8LPkhxQVoOT3YPP9R5xmblvqiYuSWtmSTjl76_JJ1SJdNmpA7uWFTMpurnsDJdLIYz3gXj4FrGYkVD51Elc-sxi1bNsIZ2xc6SDOapzJEDr6JsHONSD2X6ZiYCzXFMvF9fM5caGL_KWwXZWGfAwtipxxuj-OIjiARNNg0EgbRFwUxioUdwDsUSNLpU5U0V-XCSyixl1LSSWkAft9ziemIzSm-xvkNpfi61PeW2OOG_G_6QZGg6OlaRRe2rKsEIY4MowCh6v_yhErR5lEO4Fk7kNZfJcQXKIlvwo0hts5ADOCbb4r8rGECJ7MJNfJe3EJar2FntjiaJ_MPx59ewj1B3hwjxYXcg-3Vsrb7iLFW6atGo34D61Ulyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZakFouFPqApQ9cqZcevN3YzuuIlo1oS1HVgoR6iRw_RAQksNkIwa_vTB5blqpF7TGO7cRjj_2NPf6GkHdaaeWkJ5kS0jIZWlCpyDcs04FSKoqddXjB-ctBsHckPx37x7dCfcFPVFBT1Rzio1ZfGNcxDHgfMB238c7rfDrkGrU5eEiW8eQO7a6d8fdffLuiRb7IwBnKQPS35v5QC65Nulpcm34DnHf9Jm8tRMkT8mPehMb_5HRYz7KhvrnD7vhfbVwjqx08pTvteFonD2zxlDwe91HhnpFvgE4bf9prWjp6eFWyXYwP0HJ70P38ss4NTUp1XlG8njalk45m-uyadoiXTprQO7mmCbrPVc_JUTI5HO-xLi4DUzLiMxY6CapvrALTzYxg5hZcBZnB-coAghA6gk7WPPOcUTEyGCqMaSIEPBsX6li8IEtFWdhNQoPY-Q7M5DjCrUgADzaLuAYUhsGMYm4H5D0IJO30qkqbI3PupZjYSyntpDQgou-9VHcE5xhn4-yeUmxe6qIl-Lgn_9t-YKQgejxeUYUt6yoFqCPDKADI-rc8oe-jESkHZKMdTPOvIvILfAlvwoVhNs-ATOCLb4r8pGEER_cJf-Rt_YO0tsmjr7tJuv_x4PNLssLxUsfIZ1y-IkuzaW1fA9SaZW8apfoJOqUoTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+of+Two-Dimensional+Liquid+Foams+under+Externally+Applied+Electric+Fields&rft.jtitle=Langmuir&rft.au=Fauvel%2C+Matthieu&rft.au=Trybala%2C+Anna&rft.au=Tseluiko%2C+Dmitri&rft.au=Starov%2C+Victor+Mikhilovich&rft.date=2022-05-24&rft.pub=American+Chemical+Society&rft.issn=0743-7463&rft.eissn=1520-5827&rft.volume=38&rft.issue=20&rft.spage=6305&rft.epage=6321&rft_id=info:doi/10.1021%2Facs.langmuir.2c00026&rft.externalDocID=c991549202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0743-7463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0743-7463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0743-7463&client=summon