The Elephant in the Room of Density Functional Theory Calculations

Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of st...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry letters Vol. 8; no. 7; pp. 1449 - 1457
Main Authors Jensen, Stig Rune, Saha, Santanu, Flores-Livas, José A, Huhn, William, Blum, Volker, Goedecker, Stefan, Frediani, Luca
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.04.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζ quality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζ basis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here.
AbstractList Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζ quality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζ basis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here.
Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζ quality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζ basis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here.Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set of 211 molecules with an unprecedented and guaranteed μHartree accuracy. These quasi-exact references allow us to quantify the accuracy of standard all-electron basis sets that are believed to be highly accurate for molecules, such as Gaussian-type orbitals (GTOs), all-electron numeric atom-centered orbitals (NAOs), and full-potential augmented plane wave (APW) methods. We show that NAOs are able to achieve the so-called chemical accuracy (1 kcal/mol) for the typical basis set sizes used in applications, for both total and atomization energies. For GTOs, a triple-ζ quality basis has mean errors of ∼10 kcal/mol in total energies, while chemical accuracy is almost reached for a quintuple-ζ basis. Due to systematic error cancellations, atomization energy errors are reduced by almost an order of magnitude, placing chemical accuracy within reach also for medium to large GTO bases, albeit with significant outliers. In order to check the accuracy of the computed densities, we have also investigated the dipole moments, where in general only the largest NAO and GTO bases are able to yield errors below 0.01 D. The observed errors are similar across the different functionals considered here.
Author Huhn, William
Saha, Santanu
Jensen, Stig Rune
Flores-Livas, José A
Frediani, Luca
Goedecker, Stefan
Blum, Volker
AuthorAffiliation Department of Chemistry
Duke University
Universität Basel
Department of Mechanical Engineering and Materials Science
Department of Physics
AuthorAffiliation_xml – name: Duke University
– name: Department of Physics
– name: Department of Chemistry
– name: Department of Mechanical Engineering and Materials Science
– name: Universität Basel
Author_xml – sequence: 1
  givenname: Stig Rune
  orcidid: 0000-0002-2175-5723
  surname: Jensen
  fullname: Jensen, Stig Rune
  email: stig.r.jensen@uit.no
  organization: Department of Chemistry
– sequence: 2
  givenname: Santanu
  surname: Saha
  fullname: Saha, Santanu
  organization: Universität Basel
– sequence: 3
  givenname: José A
  surname: Flores-Livas
  fullname: Flores-Livas, José A
  organization: Universität Basel
– sequence: 4
  givenname: William
  surname: Huhn
  fullname: Huhn, William
  organization: Duke University
– sequence: 5
  givenname: Volker
  orcidid: 0000-0001-8660-7230
  surname: Blum
  fullname: Blum, Volker
  organization: Duke University
– sequence: 6
  givenname: Stefan
  surname: Goedecker
  fullname: Goedecker, Stefan
  organization: Universität Basel
– sequence: 7
  givenname: Luca
  surname: Frediani
  fullname: Frediani, Luca
  organization: Department of Chemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28291362$$D View this record in MEDLINE/PubMed
BookMark eNqFkMtKAzEUQIMotlW_QNBZummbx0yTLLU-QRBE1-FOJoMpaVKTzKJ_79RWERe6yuucGzgjtO-DNwidEjwhmJIp6DRZrLQzOU94jTGtqj00JLIUY05Etf9jP0CjlBYYzyQW_BANqKCSsBkdoquXN1PcOLN6A58L64vcn59DWBahLa6NTzavi9vO62yDB1f0eIjrYg5Odw42l-kYHbTgkjnZrUfo9fbmZX4_fny6e5hfPo6hFDiPW942uATCaA3cCKBU6wbaWnAg5azhFdVtqYER2VDMDeOaMIJrWcq21rWZsSN0vp2ro03ZeuVDBEUwZlwRxkrcExdbYhXDe2dSVkubtHEOvAldUkRwLios5QY926FdvTSNWkW7hLhWX2V6gH39FlKKpv1GCFab_qrvr3b91a5_b8lflrb5M1OOYN0_7nTrfj6GLva905_GB7SFnZs
CitedBy_id crossref_primary_10_1088_2399_6528_ac82a5
crossref_primary_10_1021_acs_jpca_2c02199
crossref_primary_10_1063_5_0251833
crossref_primary_10_1021_acsearthspacechem_0c00341
crossref_primary_10_1021_acs_jctc_3c00668
crossref_primary_10_1063_1_5123290
crossref_primary_10_1021_acs_chemmater_9b05107
crossref_primary_10_1038_s41597_020_0385_y
crossref_primary_10_1021_acs_jpclett_7b00987
crossref_primary_10_1038_s41467_020_18485_7
crossref_primary_10_1021_acs_inorgchem_1c03805
crossref_primary_10_1021_acs_jctc_4c00394
crossref_primary_10_1002_cphc_202100204
crossref_primary_10_1021_acs_jctc_4c01245
crossref_primary_10_1021_acs_chemmater_3c02218
crossref_primary_10_1063_5_0059356
crossref_primary_10_1063_5_0203401
crossref_primary_10_1021_acs_jpca_4c00283
crossref_primary_10_1063_5_0121187
crossref_primary_10_1016_j_physrep_2020_02_003
crossref_primary_10_1021_acs_jctc_2c01191
crossref_primary_10_1103_PhysRevE_108_025307
crossref_primary_10_1103_PhysRevMaterials_7_L063001
crossref_primary_10_1557_s43577_022_00339_w
crossref_primary_10_1039_D0CP06085B
crossref_primary_10_1002_chir_22773
crossref_primary_10_1088_2516_1075_ad45d4
crossref_primary_10_1021_acs_jctc_1c00237
crossref_primary_10_1021_acs_jcim_7b00542
crossref_primary_10_1021_acs_jctc_3c00693
crossref_primary_10_1021_acs_jpclett_0c03410
crossref_primary_10_1021_acs_jpca_4c06708
crossref_primary_10_1002_chem_202302643
crossref_primary_10_1080_00268976_2018_1542164
crossref_primary_10_1021_acs_jctc_3c00183
crossref_primary_10_1063_5_0066753
crossref_primary_10_1016_j_cpc_2017_09_007
crossref_primary_10_1103_PhysRevB_108_115112
crossref_primary_10_1016_j_cpc_2024_109436
crossref_primary_10_1021_acs_jpca_8b00392
crossref_primary_10_1063_5_0150864
crossref_primary_10_1021_acs_jctc_8b01071
crossref_primary_10_1002_jcc_25838
crossref_primary_10_1021_acs_jpca_7b04760
crossref_primary_10_1098_rsta_2022_0248
crossref_primary_10_1021_acs_jpca_8b11310
crossref_primary_10_1063_5_0012519
crossref_primary_10_1063_5_0190779
crossref_primary_10_1038_s42004_024_01348_3
crossref_primary_10_1002_chir_23393
crossref_primary_10_1063_5_0125637
crossref_primary_10_1098_rspa_2018_0901
crossref_primary_10_1103_PhysRevB_103_245144
crossref_primary_10_1021_acs_jctc_1c00904
crossref_primary_10_1021_acs_jpcb_0c01169
crossref_primary_10_1021_acs_jctc_3c01056
crossref_primary_10_1021_acs_jctc_1c00829
crossref_primary_10_7566_JPSJ_87_041012
crossref_primary_10_1021_acs_jpclett_0c00333
crossref_primary_10_1038_s41467_021_21885_y
crossref_primary_10_1103_PhysRevB_104_085112
crossref_primary_10_1021_acs_jctc_0c00725
crossref_primary_10_1063_1_5144964
crossref_primary_10_1088_2516_1075_ac572f
crossref_primary_10_1515_pac_2017_0803
crossref_primary_10_1088_2515_7655_ad139d
crossref_primary_10_1021_acs_jctc_2c01098
crossref_primary_10_1103_PhysRevMaterials_1_033803
crossref_primary_10_1021_acs_chemmater_7b02638
crossref_primary_10_1021_acs_jctc_2c01052
crossref_primary_10_1021_acs_jctc_8b00456
crossref_primary_10_1103_PhysRevB_97_161105
crossref_primary_10_1021_acs_jctc_0c00128
crossref_primary_10_1063_5_0167763
crossref_primary_10_1088_2516_1075_ad31ca
crossref_primary_10_1002_qua_25968
crossref_primary_10_3390_ijms26020658
crossref_primary_10_1016_j_comptc_2024_114948
crossref_primary_10_1007_s00211_019_01082_2
crossref_primary_10_1063_5_0046023
crossref_primary_10_1002_qua_26332
crossref_primary_10_1021_acsearthspacechem_3c00346
crossref_primary_10_1088_1361_648X_aaa8c9
crossref_primary_10_1021_acs_jctc_3c01095
crossref_primary_10_1021_acs_jctc_9b00511
crossref_primary_10_1039_D1RA03187B
crossref_primary_10_1103_PhysRevB_106_165101
crossref_primary_10_1039_C9SC05835D
crossref_primary_10_1016_j_cpc_2020_107314
crossref_primary_10_1021_acs_inorgchem_1c01416
crossref_primary_10_1021_acs_jctc_7b00694
crossref_primary_10_1021_acs_jctc_7b00695
crossref_primary_10_1039_D1CP03406E
crossref_primary_10_1039_D1SC03701C
crossref_primary_10_1103_PhysRevMaterials_5_013807
crossref_primary_10_1021_acscombsci_9b00028
Cites_doi 10.1002/jcc.10108
10.1137/0524016
10.1063/1.476438
10.1088/0965-0393/13/3/R01
10.1039/C6CP01294A
10.1063/1.3484283
10.1063/1.464303
10.1063/1.1677527
10.1126/science.aah5975
10.1063/1.1790931
10.1016/j.acha.2005.01.003
10.1103/PhysRevB.59.1743
10.1063/1.1465405
10.1016/S0009-2614(00)00198-6
10.1021/ct900489g
10.1002/qua.20275
10.1080/00268970412331319236
10.1039/C4CP05821F
10.1103/PhysRev.128.1791
10.1063/1.4952647
10.1021/acs.jctc.6b01207
10.1016/j.jcp.2011.11.032
10.1073/pnas.112329799
10.1006/acha.1997.0227
10.1063/1.1413524
10.1103/PhysRev.136.B864
10.1002/qua.24849
10.1039/C5CP00345H
10.1039/C5CP01173F
10.1021/ct100117s
10.1088/1742-6596/352/1/012014
10.1016/j.acha.2007.08.001
10.1103/PhysRev.140.A1133
10.1063/1.430801
10.1063/1.462066
10.1063/1.444267
10.1137/0914010
10.1021/ci600510j
10.1103/PhysRevLett.77.3865
10.1103/PhysRevA.49.3453
10.1088/0953-8984/26/36/363202
10.1063/1.2955730
10.1016/j.cpc.2009.06.022
10.1016/j.acha.2007.01.001
10.1021/jp3098268
10.1002/wcms.1123
10.1126/science.aad3000
10.1007/3-540-44864-0_11
10.1147/rd.482.0161
10.1016/j.cpc.2009.08.006
10.1002/jcc.540141112
10.1021/jp801805p
10.1103/PhysRevA.45.88
10.1063/1.470645
10.1039/C5CP90198G
10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
10.1063/1.1926272
10.1103/PhysRevLett.114.053001
10.1103/PhysRevLett.115.036402
10.1021/jp050536c
10.1063/1.478522
10.1139/p80-159
10.1098/rsta.2012.0476
10.1063/1.458452
10.1016/j.theochem.2006.05.010
10.1063/1.438955
10.1002/wcms.1172
10.1088/1367-2630/14/5/053020
10.1137/15M1026171
10.1103/PhysRevLett.90.216402
10.1063/1.456153
10.1021/acs.jctc.6b00637
10.1063/1.462569
10.1063/1.4793260
10.1103/PhysRevB.42.1112
10.1063/1.1316015
10.1063/1.1390175
10.1063/1.4907719
10.1063/1.4721386
10.1063/1.1791051
10.1002/jcc.21318
10.1006/jcph.2002.7160
10.1016/j.cpc.2010.04.018
10.1002/jcc.1056
10.1021/jp068677h
10.1063/1.1768161
10.1063/1.1756866
10.1016/j.cpc.2012.05.007
ContentType Journal Article
Copyright Copyright © 2017 American Chemical Society
info:eu-repo/semantics/openAccess
Copyright_xml – notice: Copyright © 2017 American Chemical Society
– notice: info:eu-repo/semantics/openAccess
DBID AAYXX
CITATION
NPM
7X8
3HK
DOI 10.1021/acs.jpclett.7b00255
DatabaseName CrossRef
PubMed
MEDLINE - Academic
NORA - Norwegian Open Research Archives
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1948-7185
EndPage 1457
ExternalDocumentID 10037_13340
28291362
10_1021_acs_jpclett_7b00255
b386138135
Genre Journal Article
GroupedDBID 53G
55A
7~N
AABXI
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
DU5
EBS
ED
ED~
EJD
GNL
IH9
JG
JG~
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
5VS
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACGFO
ADHLV
AHGAQ
BAANH
CITATION
CUPRZ
GGK
NPM
7X8
3HK
4.4
ID FETCH-LOGICAL-a480t-f7fd04a132ba7e8a22ccdafb87a146d752cf4ca319d207e37c1310b949fbcbe63
IEDL.DBID ACS
ISSN 1948-7185
IngestDate Tue May 06 06:43:36 EDT 2025
Fri Jul 11 00:18:17 EDT 2025
Thu Jan 02 23:09:34 EST 2025
Thu Apr 24 23:07:06 EDT 2025
Tue Jul 01 03:24:16 EDT 2025
Thu Aug 27 13:41:56 EDT 2020
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a480t-f7fd04a132ba7e8a22ccdafb87a146d752cf4ca319d207e37c1310b949fbcbe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Journal of Physical Chemistry Letters
ORCID 0000-0002-2175-5723
0000-0001-8660-7230
OpenAccessLink http://hdl.handle.net/10037/13340
PMID 28291362
PQID 1877850990
PQPubID 23479
PageCount 9
ParticipantIDs cristin_nora_10037_13340
proquest_miscellaneous_1877850990
pubmed_primary_28291362
crossref_primary_10_1021_acs_jpclett_7b00255
crossref_citationtrail_10_1021_acs_jpclett_7b00255
acs_journals_10_1021_acs_jpclett_7b00255
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
XKZ
7~N
VG9
W1F
ACS
AEESW
AFEFF
ABMVS
ABUCX
IH9
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-06
PublicationDateYYYYMMDD 2017-04-06
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-06
  day: 06
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry letters
PublicationTitleAlternate J. Phys. Chem. Lett
PublicationYear 2017
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref92/cit92
ref52/cit52
Kotochigova S. (ref20/cit20) 1997
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref93/cit93
ref21/cit21
ref42/cit42
ref46/cit46
ref96/cit96
ref49/cit49
ref61/cit61
ref75/cit75
ref24/cit24
ref38/cit38
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
Blaha P. (ref67/cit67) 2001
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref94/cit94
ref91/cit91
Singh D. J. (ref13/cit13) 2006
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref95/cit95
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref50/cit50
  doi: 10.1002/jcc.10108
– ident: ref42/cit42
  doi: 10.1137/0524016
– ident: ref80/cit80
  doi: 10.1063/1.476438
– ident: ref34/cit34
  doi: 10.1088/0965-0393/13/3/R01
– ident: ref56/cit56
  doi: 10.1039/C6CP01294A
– ident: ref95/cit95
  doi: 10.1063/1.3484283
– ident: ref83/cit83
  doi: 10.1063/1.464303
– ident: ref89/cit89
  doi: 10.1063/1.1677527
– ident: ref33/cit33
  doi: 10.1126/science.aah5975
– ident: ref28/cit28
  doi: 10.1063/1.1790931
– ident: ref46/cit46
  doi: 10.1016/j.acha.2005.01.003
– ident: ref66/cit66
– ident: ref71/cit71
  doi: 10.1103/PhysRevB.59.1743
– ident: ref93/cit93
  doi: 10.1063/1.1465405
– ident: ref86/cit86
  doi: 10.1016/S0009-2614(00)00198-6
– ident: ref3/cit3
  doi: 10.1021/ct900489g
– ident: ref19/cit19
  doi: 10.1002/qua.20275
– ident: ref51/cit51
  doi: 10.1080/00268970412331319236
– ident: ref52/cit52
  doi: 10.1039/C4CP05821F
– ident: ref49/cit49
  doi: 10.1103/PhysRev.128.1791
– ident: ref17/cit17
  doi: 10.1063/1.4952647
– ident: ref37/cit37
  doi: 10.1021/acs.jctc.6b01207
– ident: ref38/cit38
  doi: 10.1016/j.jcp.2011.11.032
– ident: ref43/cit43
  doi: 10.1073/pnas.112329799
– ident: ref47/cit47
  doi: 10.1006/acha.1997.0227
– ident: ref94/cit94
  doi: 10.1063/1.1413524
– ident: ref1/cit1
  doi: 10.1103/PhysRev.136.B864
– ident: ref79/cit79
– ident: ref10/cit10
  doi: 10.1002/qua.24849
– ident: ref53/cit53
  doi: 10.1039/C5CP00345H
– ident: ref36/cit36
  doi: 10.1039/C5CP01173F
– ident: ref58/cit58
  doi: 10.1021/ct100117s
– ident: ref55/cit55
  doi: 10.1088/1742-6596/352/1/012014
– volume-title: Planewaves, Pseudopotentials, and the LAPW Method
  year: 2006
  ident: ref13/cit13
– ident: ref48/cit48
  doi: 10.1016/j.acha.2007.08.001
– volume-title: Atomic reference data for electronic structure calculations
  year: 1997
  ident: ref20/cit20
– ident: ref2/cit2
  doi: 10.1103/PhysRev.140.A1133
– ident: ref88/cit88
  doi: 10.1063/1.430801
– ident: ref22/cit22
  doi: 10.1063/1.462066
– ident: ref87/cit87
  doi: 10.1063/1.444267
– ident: ref41/cit41
  doi: 10.1137/0914010
– ident: ref62/cit62
  doi: 10.1021/ci600510j
– ident: ref6/cit6
  doi: 10.1103/PhysRevLett.77.3865
– ident: ref40/cit40
  doi: 10.1103/PhysRevA.49.3453
– ident: ref68/cit68
  doi: 10.1088/0953-8984/26/36/363202
– ident: ref54/cit54
  doi: 10.1063/1.2955730
– ident: ref64/cit64
  doi: 10.1016/j.cpc.2009.06.022
– ident: ref44/cit44
  doi: 10.1016/j.acha.2007.01.001
– ident: ref96/cit96
  doi: 10.1021/jp3098268
– ident: ref60/cit60
– ident: ref81/cit81
  doi: 10.1002/wcms.1123
– ident: ref16/cit16
  doi: 10.1126/science.aad3000
– ident: ref26/cit26
  doi: 10.1007/3-540-44864-0_11
– ident: ref45/cit45
  doi: 10.1147/rd.482.0161
– ident: ref73/cit73
  doi: 10.1016/j.cpc.2009.08.006
– ident: ref75/cit75
  doi: 10.1002/jcc.540141112
– ident: ref4/cit4
  doi: 10.1021/jp801805p
– ident: ref14/cit14
  doi: 10.1103/PhysRevA.45.88
– ident: ref82/cit82
  doi: 10.1063/1.470645
– ident: ref39/cit39
  doi: 10.1039/C5CP90198G
– ident: ref61/cit61
  doi: 10.1002/(SICI)1096-987X(199610)17:13<1571::AID-JCC9>3.0.CO;2-P
– ident: ref32/cit32
  doi: 10.1063/1.1926272
– ident: ref8/cit8
  doi: 10.1103/PhysRevLett.114.053001
– ident: ref9/cit9
  doi: 10.1103/PhysRevLett.115.036402
– ident: ref5/cit5
  doi: 10.1021/jp050536c
– ident: ref24/cit24
– ident: ref31/cit31
  doi: 10.1063/1.478522
– ident: ref30/cit30
  doi: 10.1139/p80-159
– ident: ref11/cit11
  doi: 10.1098/rsta.2012.0476
– ident: ref69/cit69
  doi: 10.1063/1.458452
– ident: ref25/cit25
  doi: 10.1016/j.theochem.2006.05.010
– ident: ref90/cit90
  doi: 10.1063/1.438955
– ident: ref76/cit76
  doi: 10.1002/wcms.1172
– ident: ref65/cit65
  doi: 10.1088/1367-2630/14/5/053020
– ident: ref78/cit78
  doi: 10.1137/15M1026171
– ident: ref23/cit23
  doi: 10.1103/PhysRevLett.90.216402
– ident: ref85/cit85
  doi: 10.1063/1.456153
– ident: ref74/cit74
– ident: ref12/cit12
  doi: 10.1021/acs.jctc.6b00637
– ident: ref84/cit84
  doi: 10.1063/1.462569
– ident: ref15/cit15
  doi: 10.1063/1.4793260
– volume-title: WIEN2K: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties
  year: 2001
  ident: ref67/cit67
– ident: ref21/cit21
  doi: 10.1103/PhysRevB.42.1112
– ident: ref70/cit70
  doi: 10.1063/1.1316015
– ident: ref7/cit7
  doi: 10.1063/1.1390175
– ident: ref18/cit18
  doi: 10.1063/1.4907719
– ident: ref35/cit35
  doi: 10.1063/1.4721386
– ident: ref27/cit27
  doi: 10.1063/1.1791051
– ident: ref77/cit77
  doi: 10.1002/jcc.21318
– ident: ref59/cit59
  doi: 10.1006/jcph.2002.7160
– ident: ref63/cit63
  doi: 10.1016/j.cpc.2010.04.018
– ident: ref72/cit72
  doi: 10.1002/jcc.1056
– ident: ref91/cit91
  doi: 10.1021/jp068677h
– ident: ref29/cit29
  doi: 10.1063/1.1768161
– ident: ref92/cit92
  doi: 10.1063/1.1756866
– ident: ref57/cit57
  doi: 10.1016/j.cpc.2012.05.007
SSID ssj0069087
Score 2.5258303
Snippet Using multiwavelets, we have obtained total energies and corresponding atomization energies for the GGA-PBE and hybrid-PBE0 density functionals for a test set...
SourceID cristin
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1449
SubjectTerms Chemistry: 440
Kjemi: 440
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
VDP
Title The Elephant in the Room of Density Functional Theory Calculations
URI http://dx.doi.org/10.1021/acs.jpclett.7b00255
https://www.ncbi.nlm.nih.gov/pubmed/28291362
https://www.proquest.com/docview/1877850990
http://hdl.handle.net/10037/13340
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCvpRNRuLAgRTHceLkWEorhAQHFolb5C1iqdKKpgf4esZZELu4RsnIHs_yJjOeATgQrmwykgb120YeDw2qFDfUU1HAE4P4mZZTFC4uo7Nbfn4X3n24rP4lg8_8Y6nH7ccR8rAo2qLCwNMwy6JYuFir071uDC_GeeU8PAzLYw9Nbtg0GfqZiHNHeoywV5falH92TL-gzdLr9Bfhsrm7UxWbPLUnhWrr1--tHP-3oSVYqPEn6VQCswxTNl-BuW4z9m0VTlBwSG9gR_fIc_KQE0SI5ArhNRlm5NSVuxcvpI_esPqJSKrL_aQrB7qeBDZeg9t-76Z75tWDFjzJY1p4mcgM5RIDUyWFjSVjWhuZqVhINKRGhExnXEvUVsOosIHQPqJClfAkU1rZKFiHmXyY200gmplAMZVYQyUPKFU29n0VxDTJmJCCteAQ95_WijJOyxw489PyYcWUtGZKCzbro0lzVAfXXTkQKcbUnLaANWeV6rqXuRupMfib3tH7R6Oqlcffr-83QpDiEbg8isztcIJrRtGLQ5dRbMFGJR3vBF1i2kdQsPX_fW7DPHNYwZUDRTswUzxP7C4inULtlfL9BmiD-CQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcigXyrtbChgJJA5kcRwnTg4cyrarLX0coJV6c_2KeKyyK5IVKr-Hv9L_xdhJFoGg4lKJq5WMbM_rm8xkBuCZ8GWTmbKo3y6LeGpRpbilkc4SXljEzzRMUTg8yiYn_O1peroC3_t_YXATNVKqQxL_Z3eB-JVf-zTHq2yaoWihcFdKue_Ov2KgVr_e20GuPmdsvHs8mkTdLIFI8Zw2USlKS7nC2Esr4XLFmDFWlToXCm2FFSkzJTcKBdIyKlwiTIzARxe8KLXRLkuQ7jW4jvCH-RBve_S-t_cYXoYxfHHB8wgtfdr3Nvrzpr0XNDWibROUuPrVH_4F5AZnN16Hi-U1hRqXz8NFo4fm228dJP_3e7wFNzu0TbZb9bgNK666A2ujfsjdXXiDakJ2p27-ASWMfKwI4mHyDoMJMivJji_ub87JGH1_-8mUtK0MyEhNTTf3rL4HJ1dyhPuwWs0qtwHEMJtopgtnqeIJpdrlcayTnBYlE0qwAbzA-5adWahlyPizWIbFlgmyY8IANjqJkBUqv-8lnQgZJwmnA2C9iEjTdW73A0Sml9N7uXxp3jYuufzxp73sSWSBzxqpys0WuOdciDz1-dMBPGiFcknQp-FjhECb_37OJ7A2OT48kAd7R_sP4QbzKMkXQmVbsNp8WbhHiPEa_TioGIGzq5bFH34SXQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIgEX3tDlaSSQOJDFsZ04OXAou121FCoEVOrN-BXxWGVXJCtUfhF_hX_F2ElWAkHFpQeuVjKy5-VvMpMZgIcylE3m2qF9-zwRmUOTEo4mJueidIifaZyi8Oog3z0UL46yow34PvwLg5tokFITk_jBqpeu6jsMpE_D-qclsrNtx7KDw3055b4__orBWvNsb4qSfcTYbOfdZDfp5wkkWhS0TSpZOSo0xl9GS19oxqx1ujKF1OgvnMyYrYTVqJSOUem5tCmCH1OKsjLW-Jwj3TNwNiQKQ5i3PXk7-HwMMeMovrQURYLePhv6G_150-EmtA0ibhsNuf71TvwL0I0X3uwS_FizKta5fB6vWjO2337rIvk_8PIyXOxRN9nuzOQKbPj6KpyfDMPursFzNBeyM_fLD6hp5GNNEBeTNxhUkEVFpqHIvz0mM8QA3adT0rU0IBM9t_38s-Y6HJ7KEW7AZr2o_RYQyxw3zJTeUS04pcYXaWp4QcuKSS3ZCB4jv1XvHhoVM_8sVXGxE4LqhTCCrV4rVI1OIPSU5lKlnAs6AjaoibJ9B_cwSGR-Mr0n65eWXQOTkx9_MOifQhGE7JGu_WKFey6kLLKQRx3BzU4x1wRDOj5FKHTr3895H869ns7Uy72D_dtwgQWwFOqh8juw2X5Z-bsI9VpzL1oZgfenrYo_Aey9X4M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Elephant+in+the+Room+of+Density+Functional+Theory+Calculations&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Jensen%2C+Stig+Rune&rft.au=Saha%2C+Santanu&rft.au=Flores-Livas%2C+Jos%C3%A9+A.&rft.au=Huhn%2C+William&rft.date=2017-04-06&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=8&rft.issue=7&rft.spage=1449&rft.epage=1457&rft_id=info:doi/10.1021%2Facs.jpclett.7b00255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_jpclett_7b00255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon