Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions

Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in...

Full description

Saved in:
Bibliographic Details
Published inMolecular pharmaceutics Vol. 19; no. 2; pp. 392 - 413
Main Authors Hiew, Tze Ning, Zemlyanov, Dmitry Y, Taylor, Lynne S
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone–vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid–methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine–PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine–PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
AbstractList Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone–vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid–methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine–PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine–PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.
Author Taylor, Lynne S
Zemlyanov, Dmitry Y
Hiew, Tze Ning
AuthorAffiliation Department of Industrial and Physical Pharmacy, College of Pharmacy
Birck Nanotechnology Center
AuthorAffiliation_xml – name: Department of Industrial and Physical Pharmacy, College of Pharmacy
– name: Birck Nanotechnology Center
Author_xml – sequence: 1
  givenname: Tze Ning
  orcidid: 0000-0002-2313-7806
  surname: Hiew
  fullname: Hiew, Tze Ning
  organization: Department of Industrial and Physical Pharmacy, College of Pharmacy
– sequence: 2
  givenname: Dmitry Y
  orcidid: 0000-0002-1221-9195
  surname: Zemlyanov
  fullname: Zemlyanov, Dmitry Y
  organization: Birck Nanotechnology Center
– sequence: 3
  givenname: Lynne S
  orcidid: 0000-0002-4568-6021
  surname: Taylor
  fullname: Taylor, Lynne S
  email: lstaylor@purdue.edu
  organization: Department of Industrial and Physical Pharmacy, College of Pharmacy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34494842$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URH_gFZDZscngvygJG1SGFiqNREXLOnLs644rxw62s5gd79BH4M14kno600qw6sa25POdq3vOMTrwwQNC7yhZUMLoB6nSYgxuWss4SgVzXlBFiGjpC3REa8Grlnfs4OndikN0nNItIUzUjL9Ch1yITrSCHaE_n6WTXll_g6-Cs7q6yjIDLudgnc0bLL3GX2xKwc3ZBo8vIZpQxnoFOBi8mkcw0udoPeDTMcRpHea089pyE8RUsPQRX68B_wjugboMbjNCxMt1sMXnYUacb_7-vnv8ufAZolTbkek1emmkS_Bmf5-gn-dn18tv1er714vl6aqSoiW50lxT3WjJwAy0VsAGyg0bWsYa1Qo9GKlNzdsBCJCWMtNxJVjJoRkM5V1X8xP0fuc7xfBrhpT70SYFrgQEZame1Q3hDaspK9K3e-k8jKD7KdpRxk3_GGwRdDuBiiGlCOZJQkm_LbEvJfb_lNjvSyzsp_9YZUsrJYocpXXPcqh3DlvJbZijL7k9g7sHl2vC8w
CitedBy_id crossref_primary_10_1021_acs_molpharmaceut_2c00942
crossref_primary_10_1016_j_xphs_2022_03_020
crossref_primary_10_1016_j_ijpharm_2025_125441
crossref_primary_10_1007_s12247_023_09793_8
crossref_primary_10_1016_j_ijpharm_2023_123536
crossref_primary_10_1016_j_ijpharm_2023_123139
crossref_primary_10_1016_j_xphs_2024_10_026
crossref_primary_10_1021_acs_bioconjchem_4c00018
crossref_primary_10_3390_pharmaceutics15010126
crossref_primary_10_1021_acsami_2c12666
crossref_primary_10_1021_acs_molpharmaceut_1c00578
crossref_primary_10_1016_j_ijpharm_2024_124185
crossref_primary_10_1039_D0CE01709D
crossref_primary_10_1016_j_jddst_2023_104998
crossref_primary_10_1021_acs_molpharmaceut_4c00935
crossref_primary_10_1007_s12247_021_09590_1
crossref_primary_10_1016_j_ejps_2023_106423
crossref_primary_10_1016_j_xphs_2022_12_019
crossref_primary_10_1021_acs_molpharmaceut_3c00827
crossref_primary_10_1021_acs_molpharmaceut_3c00628
crossref_primary_10_1016_j_ijpharm_2022_121886
crossref_primary_10_1007_s12247_024_09906_x
crossref_primary_10_1016_j_xphs_2024_08_013
crossref_primary_10_1021_acs_molpharmaceut_3c01078
crossref_primary_10_1021_acs_molpharmaceut_3c00586
crossref_primary_10_1016_j_xphs_2024_10_015
crossref_primary_10_1021_acs_molpharmaceut_4c00089
crossref_primary_10_3390_pharmaceutics16111373
crossref_primary_10_1016_j_cej_2022_140822
crossref_primary_10_1016_j_jconrel_2022_09_056
crossref_primary_10_1016_j_xphs_2022_10_020
crossref_primary_10_1080_03639045_2025_2477722
crossref_primary_10_1016_j_ijpx_2023_100222
crossref_primary_10_1016_j_xphs_2022_10_021
crossref_primary_10_1080_03639045_2024_2447276
crossref_primary_10_1021_acs_molpharmaceut_4c01256
crossref_primary_10_1016_j_ajps_2023_100834
crossref_primary_10_1016_j_ijpharm_2024_124197
crossref_primary_10_1016_j_jddst_2023_105158
crossref_primary_10_1080_07373937_2023_2272738
crossref_primary_10_1021_acs_chemrev_1c00987
crossref_primary_10_1016_j_ejpb_2022_09_021
crossref_primary_10_1016_j_xphs_2024_08_029
crossref_primary_10_1208_s12249_023_02622_8
crossref_primary_10_1016_j_apsb_2024_08_027
crossref_primary_10_1039_D2AN01903E
crossref_primary_10_1208_s12249_024_02960_1
crossref_primary_10_1016_j_xphs_2024_08_023
crossref_primary_10_1021_acs_molpharmaceut_3c01106
crossref_primary_10_1016_j_xphs_2024_10_001
crossref_primary_10_1208_s12249_024_02932_5
crossref_primary_10_1007_s11095_023_03502_3
crossref_primary_10_1016_j_xphs_2024_06_023
crossref_primary_10_1021_acs_molpharmaceut_3c00174
crossref_primary_10_1016_j_jddst_2025_106837
crossref_primary_10_1021_acs_molpharmaceut_4c00118
crossref_primary_10_1021_acs_molpharmaceut_4c00315
crossref_primary_10_1016_j_ijpx_2024_100259
crossref_primary_10_1021_acs_molpharmaceut_2c00456
crossref_primary_10_1021_acs_molpharmaceut_2c00895
crossref_primary_10_1021_acs_molpharmaceut_3c00526
crossref_primary_10_1007_s11095_024_03808_w
crossref_primary_10_1021_acs_molpharmaceut_3c00727
crossref_primary_10_3390_pharmaceutics15051539
crossref_primary_10_1021_acs_molpharmaceut_2c00818
crossref_primary_10_1016_j_ijpharm_2022_122115
crossref_primary_10_1016_j_xphs_2024_10_034
crossref_primary_10_1021_acs_molpharmaceut_3c01179
crossref_primary_10_1039_D4CE00811A
crossref_primary_10_1016_j_jcrysgro_2025_128076
crossref_primary_10_1021_acs_molpharmaceut_4c00986
crossref_primary_10_1016_j_xphs_2024_09_020
Cites_doi 10.3109/03639045.2016.1171331
10.1134/S0022476620010175
10.2165/00003088-199937020-00002
10.1007/s11095-015-1725-z
10.1039/C8SM02418A
10.1021/acs.molpharmaceut.5b00925
10.1021/acs.molpharmaceut.5b00708
10.4084/mjhid.2011.041
10.1016/S0928-0987(00)00173-1
10.1016/j.ijpx.2020.100052
10.1002/jps.21650
10.1021/acs.molpharmaceut.7b00338
10.1186/1475-2875-12-202
10.1021/mp9002283
10.1021/ma00046a037
10.1021/ma9707594
10.17159/0379-4350/2019/v72a33
10.1111/j.2042-7158.2010.01030.x
10.1016/j.ijpharm.2016.06.126
10.1016/j.ijpharm.2016.10.064
10.1016/j.xphs.2018.09.031
10.1021/acs.molpharmaceut.6b00783
10.1021/acs.cgd.0c00073
10.1111/j.1365-3156.2006.01784.x
10.1021/acs.molpharmaceut.1c00055
10.1021/acs.molpharmaceut.6b00202
10.1021/acs.molpharmaceut.8b01261
10.1063/1.1675789
10.1021/cm000385k
10.1021/cg301679h
10.1021/mp400228x
10.1021/acs.molpharmaceut.5b00041
10.1109/T-ED.1980.19957
10.1128/AAC.44.3.697-704.2000
10.1186/2008-2231-21-27
10.1128/AAC.00868-17
10.1016/j.ijpharm.2018.02.005
10.1186/1475-2875-8-S1-S3
10.1016/j.jconrel.2019.01.039
10.1007/s10544-020-0476-8
10.1021/mp900050c
10.1002/aic.10329
10.1002/app.1978.070220720
10.1128/AAC.01382-13
10.1021/acs.molpharmaceut.7b00735
10.1002/jps.22197
10.1007/s11095-016-1969-2
10.1007/s11095-017-2265-5
10.1021/acs.molpharmaceut.9b01272
10.7883/yoken.JJID.2009.139
10.1016/j.ejps.2020.105514
10.1007/s11095-009-9974-3
10.1007/s11095-012-0695-7
10.1021/acs.molpharmaceut.9b01025
10.1021/ac60111a017
ContentType Journal Article
Copyright 2021 The Authors. Published by American Chemical Society
Copyright_xml – notice: 2021 The Authors. Published by American Chemical Society
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1021/acs.molpharmaceut.1c00481
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1543-8392
EndPage 413
ExternalDocumentID 34494842
10_1021_acs_molpharmaceut_1c00481
i15159472
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
4.4
53G
55A
5VS
7~N
AABXI
ABFRP
ABMVS
ABUCX
ACGFS
ACS
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
CS3
DU5
EBS
ED
F5P
GGK
GNL
H~9
IH9
JG
P2P
RNS
ROL
UI2
VF5
VG9
W1F
X
---
-~X
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
BAANH
CITATION
CUPRZ
ED~
JG~
NPM
7X8
ID FETCH-LOGICAL-a480t-d3d1d7da2efb15ce2b13f2b8227c84dbfadf538be0e0812f93c424947bf139953
IEDL.DBID ACS
ISSN 1543-8384
1543-8392
IngestDate Fri Jul 11 17:02:01 EDT 2025
Thu Jan 02 22:54:50 EST 2025
Thu Apr 24 23:11:45 EDT 2025
Tue Jul 01 04:33:50 EDT 2025
Wed Feb 09 03:11:00 EST 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neutral polymer
enteric polymer
polymer release
amorphous solid dispersions
lumefantrine
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a480t-d3d1d7da2efb15ce2b13f2b8227c84dbfadf538be0e0812f93c424947bf139953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4568-6021
0000-0002-2313-7806
0000-0002-1221-9195
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.1c00481
PMID 34494842
PQID 2570372512
PQPubID 23479
PageCount 22
ParticipantIDs proquest_miscellaneous_2570372512
pubmed_primary_34494842
crossref_primary_10_1021_acs_molpharmaceut_1c00481
crossref_citationtrail_10_1021_acs_molpharmaceut_1c00481
acs_journals_10_1021_acs_molpharmaceut_1c00481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-07
PublicationDateYYYYMMDD 2022-02-07
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-07
  day: 07
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular pharmaceutics
PublicationTitleAlternate Mol. Pharmaceutics
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref56/cit56
ref16/cit16
ref23/cit23
ref8/cit8
ref31/cit31
ref2/cit2
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
Spitael J. (ref52/cit52) 1979; 25
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref24/cit24
ref38/cit38
ref50/cit50
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref32/cit32
ref39/cit39
ref14/cit14
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
Mizuno Y. (ref7/cit7) 2009; 62
ref26/cit26
ref55/cit55
ref12/cit12
ref15/cit15
ref41/cit41
ref22/cit22
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
References_xml – ident: ref12/cit12
  doi: 10.3109/03639045.2016.1171331
– ident: ref55/cit55
  doi: 10.1134/S0022476620010175
– ident: ref4/cit4
  doi: 10.2165/00003088-199937020-00002
– ident: ref31/cit31
  doi: 10.1007/s11095-015-1725-z
– ident: ref11/cit11
  doi: 10.1039/C8SM02418A
– ident: ref43/cit43
  doi: 10.1021/acs.molpharmaceut.5b00925
– ident: ref36/cit36
  doi: 10.1021/acs.molpharmaceut.5b00708
– ident: ref8/cit8
  doi: 10.4084/mjhid.2011.041
– ident: ref15/cit15
  doi: 10.1016/S0928-0987(00)00173-1
– ident: ref46/cit46
  doi: 10.1016/j.ijpx.2020.100052
– ident: ref14/cit14
  doi: 10.1002/jps.21650
– ident: ref17/cit17
  doi: 10.1021/acs.molpharmaceut.7b00338
– ident: ref30/cit30
  doi: 10.1186/1475-2875-12-202
– ident: ref42/cit42
  doi: 10.1021/mp9002283
– ident: ref47/cit47
  doi: 10.1021/ma00046a037
– ident: ref48/cit48
  doi: 10.1021/ma9707594
– ident: ref54/cit54
  doi: 10.17159/0379-4350/2019/v72a33
– ident: ref1/cit1
  doi: 10.1111/j.2042-7158.2010.01030.x
– ident: ref37/cit37
  doi: 10.1016/j.ijpharm.2016.06.126
– ident: ref13/cit13
  doi: 10.1016/j.ijpharm.2016.10.064
– ident: ref16/cit16
  doi: 10.1016/j.xphs.2018.09.031
– ident: ref19/cit19
  doi: 10.1021/acs.molpharmaceut.6b00783
– ident: ref53/cit53
  doi: 10.1021/acs.cgd.0c00073
– ident: ref5/cit5
  doi: 10.1111/j.1365-3156.2006.01784.x
– ident: ref28/cit28
  doi: 10.1021/acs.molpharmaceut.1c00055
– ident: ref22/cit22
  doi: 10.1021/acs.molpharmaceut.6b00202
– ident: ref23/cit23
  doi: 10.1021/acs.molpharmaceut.8b01261
– ident: ref45/cit45
  doi: 10.1063/1.1675789
– ident: ref51/cit51
  doi: 10.1021/cm000385k
– ident: ref21/cit21
  doi: 10.1021/cg301679h
– ident: ref35/cit35
  doi: 10.1021/mp400228x
– ident: ref40/cit40
  doi: 10.1021/acs.molpharmaceut.5b00041
– ident: ref39/cit39
  doi: 10.1109/T-ED.1980.19957
– ident: ref6/cit6
  doi: 10.1128/AAC.44.3.697-704.2000
– ident: ref9/cit9
  doi: 10.1186/2008-2231-21-27
– ident: ref2/cit2
  doi: 10.1128/AAC.00868-17
– ident: ref25/cit25
  doi: 10.1016/j.ijpharm.2018.02.005
– ident: ref3/cit3
  doi: 10.1186/1475-2875-8-S1-S3
– ident: ref24/cit24
  doi: 10.1016/j.jconrel.2019.01.039
– ident: ref10/cit10
  doi: 10.1007/s10544-020-0476-8
– ident: ref41/cit41
  doi: 10.1021/mp900050c
– ident: ref50/cit50
  doi: 10.1002/aic.10329
– ident: ref49/cit49
  doi: 10.1002/app.1978.070220720
– ident: ref29/cit29
  doi: 10.1128/AAC.01382-13
– volume: 25
  start-page: 163
  year: 1979
  ident: ref52/cit52
  publication-title: Acta Pharm. Technol.
– ident: ref20/cit20
  doi: 10.1021/acs.molpharmaceut.7b00735
– ident: ref33/cit33
  doi: 10.1002/jps.22197
– ident: ref34/cit34
  doi: 10.1007/s11095-016-1969-2
– ident: ref56/cit56
  doi: 10.1007/s11095-017-2265-5
– ident: ref27/cit27
  doi: 10.1021/acs.molpharmaceut.9b01272
– volume: 62
  start-page: 139
  year: 2009
  ident: ref7/cit7
  publication-title: Jpn. J. Infect. Dis.
  doi: 10.7883/yoken.JJID.2009.139
– ident: ref38/cit38
  doi: 10.1016/j.ejps.2020.105514
– ident: ref18/cit18
  doi: 10.1007/s11095-009-9974-3
– ident: ref44/cit44
  doi: 10.1007/s11095-012-0695-7
– ident: ref26/cit26
  doi: 10.1021/acs.molpharmaceut.9b01025
– ident: ref32/cit32
  doi: 10.1021/ac60111a017
SSID ssj0024523
Score 2.5854113
Snippet Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 392
Title Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions
URI http://dx.doi.org/10.1021/acs.molpharmaceut.1c00481
https://www.ncbi.nlm.nih.gov/pubmed/34494842
https://www.proquest.com/docview/2570372512
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYoSFUvlP6SFiojVZzYNGt7401vEECoaquoBInbyr8FkaxRNjmkp75DH6Fv1ifp2N5kRREqXPawu-Nda2bsz_Z8Mwi9NwDxWU5MYmyHJUx0DfgczxKrtZSqx7UNvLUvX7snZ-zTeXbe8Lj_PcEn6QehqvbYeeJpvcXbTlXIcvIIrZEuOLPHQ_3TJsFeFmq6ATSgSU5z9hjt_LcpPzWp6ubUdAfeDPPO8VM0XLB3YrjJVXs2lW3143Yyx4d0aQOt1zgU70fDeYZWTPkc7Q7iu_M9PGx4WdUe3sWDJsX1_AX6feAjIhVMe_jUjS51EjArhmuItZ1jUWp8eLk0bDxo-AnYWfwZRkQLOvXUQ7w_dqBsN6tiW17uOu7iVR_9f-BvbhSkBm40H5sJ7l84GN7iNyaz739-_lo8CfubkapRvURnx0fD_klSl3tIBMs700RTnWquBTFWppkyRKbUEgkIhqucaWmFtjA8S9MxgGOI7VHFYPHIuLSpJ-jSV2i1dKXZRFgBkOFdWAkKlTHdU1Jwa3rKaACwlGekhcBaq6J216oIJ_EkLfzNG4opasW0UL4wjULVydN9DY_RfUTJUvQ6ZhC5j9DOwv4K8Hd_iCNKA5oofNVByj0qbaHX0TCXzVLmk_0w8uah3XuLnhBP6_DR6HwLrU4nM7MNYGsq3wXn-gutWi9i
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkYAL70d5eiW0p01pbKdOuZXCqkB3VbFdaaU9RPELVrTxqmkP5cR_4Cfwz_glzDhpo0VCLFxycDKOrRnbn-35Zgh5YQHii5TZyLqOiETetTDmZBI5Y5TSPWlc4K3tH3SHR-L9cXJce1UiFwYaUUJNZbjEb6ILxC-xbOaRf1qf9LZjHYKdXCZXAJQwtO7-4LCJs5eE1G6AEHiU8lRcJdt_rQpXKF2eX6H-ADvD8rN3k5xsGh68Tr60lwvV1l9_i-n4fz27RW7UqJT2KzO6TS7Z4g7ZGVffrnbppGFplbt0h46bgNeru-THa_SP1LAI0kM_PTVRQLAUnsHzdkXzwtA3pxszp-OGrUC9oyOYHx1oGImItD_zoHq_LKu6UO6sOtMrX2E76Ec_DVJjP13N7JwOPnuY7Kp_zJeffn77vn4TTjsr4kZ5jxztvZ0MhlGd_CHKRdpZRIab2EiTM-tUnGjLVMwdU4BnpE6FUS43DiZrZTsWUA1zPa4FbCWFVC5Gui6_T7YKX9iHhGqANbIL-8JcJ8L0tMqlsz1tDcBZLhPWIqiXrB68ZRbu5VmcYeE5xWS1YlokXVtIputQ6pjRY3oRUbYRPaviiVxEaHtthhmMfrzSyQsLmsgwByGXiFFb5EFln5tqucDQP4I9-tfuPSfXhpP9UTZ6d_DhMbnOkPCBfuryCdlazJf2KcCwhXoWxtsvPw03ww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSBMvMO7l6kloT0tpHKdOeSsd1YAxRWyT9mbFt22ijaumfShP_Ad-Av9sv4RznLTVkBCDlzw4OY6tc_Hny3dMyGsLEJ9nzEbWdXjEi64FnxNp5IxRSveEcYG39vmwu3_CP56mp82CG3JhoBEV1FSFTXz06olxTYaB-A2Wjz1yUJvV3nasQ8KTm-QWbt-hhfcHR-tce2m43g1QQhJlScY3yfZfq8JRSldXR6k_QM8wBA3vErlqfDh58rU9n6m2_vZbXsf_790WudOgU9qvzekeuWHL-2Qnr79d7NLjNVur2qU7NF8nvl48ID_f4TlJDYMhPfKjCxMFJEvhGU7gLmhRGrp3sTJ3mq9ZC9Q7egBx0oGmkZBI-2MPJuDnVV0Xyk3qtb3qLbaDfvGjIJX70WJsp3Rw7iHo1f-Yzs8uv_9YvgmrnjWBo3pITobvjwf7UXMJRFTwrDOLTGJiI0zBrFNxqi1TceKYAlwjdMaNcoVxELSV7VhAN8z1Es1hSsmFcjHSdpNHZKP0pX1CqAZ4I7owPyx0yk1Pq0I429PWAKxNRMpaBHUjGyeuZNifZ7HEwiuKkY1iWiRbWonUTUp1vNljdB1RthKd1HlFriO0vTRFCVEAt3aK0oImJN5FmAjEqi3yuLbRVbUJxxRAnD391-69Ipv53lAefDj89IzcZsj7wOPq4jnZmE3n9gWgsZl6GVzuF94OOkY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Solid-State+Stability+and+Dissolution+Performance+of+Lumefantrine+Amorphous+Solid+Dispersions%3A+The+Role+of+Polymer+Choice+and+Drug%E2%80%93Polymer+Interactions&rft.jtitle=Molecular+pharmaceutics&rft.au=Hiew%2C+Tze+Ning&rft.au=Zemlyanov%2C+Dmitry+Y.&rft.au=Taylor%2C+Lynne+S.&rft.date=2022-02-07&rft.issn=1543-8384&rft.eissn=1543-8392&rft.volume=19&rft.issue=2&rft.spage=392&rft.epage=413&rft_id=info:doi/10.1021%2Facs.molpharmaceut.1c00481&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_molpharmaceut_1c00481
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon