Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions
Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in...
Saved in:
Published in | Molecular pharmaceutics Vol. 19; no. 2; pp. 392 - 413 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
07.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone–vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid–methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine–PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine–PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved. |
---|---|
AbstractList | Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved.Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone-vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid-methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine-PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine-PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved. Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that, in addition to acting as a crystallization inhibitor, the polymer in an ASD plays a role in controlling the rate of drug release, notably in congruently releasing formulations, where both the drug and polymer have similar normalized release rates. The aim of this study was to compare the solid-state stability and release performance of ASDs when formulated with neutral and enteric polymers. One neutral (polyvinylpyrrolidone–vinyl acetate copolymer, PVPVA) and four enteric polymers (hypromellose acetate succinate; hypromellose phthalate; cellulose acetate phthalate, CAP; methacrylic acid–methyl methacrylate copolymer, Eudragit L 100) were used to formulate binary ASDs with lumefantrine, a hydrophobic and weakly basic antimalarial drug. The normalized drug and polymer release rates of lumefantrine–PVPVA ASDs up to 35% drug loading (DL) were similar and rapid. No drug release from PVPVA systems was detected when the DL was increased to 40%. In contrast, ASDs formulated with enteric polymers showed a DL-dependent decrease in the release rates of both the drug and polymer, whereby release was slower than for PVPVA ASDs for DLs < 40% DL. Drug release from CAP and Eudragit L 100 systems was the slowest and drug amorphous solubility was not achieved even at 5% DL. Although lumefantrine–PVPVA ASDs showed fast release, they also showed rapid drug crystallization under accelerated stability conditions, while the ASDs with enteric polymers showed much greater resistance to crystallization. This study highlights the importance of polymer selection in the formulation of ASDs, where a balance between physical stability and dissolution release must be achieved. |
Author | Taylor, Lynne S Zemlyanov, Dmitry Y Hiew, Tze Ning |
AuthorAffiliation | Department of Industrial and Physical Pharmacy, College of Pharmacy Birck Nanotechnology Center |
AuthorAffiliation_xml | – name: Department of Industrial and Physical Pharmacy, College of Pharmacy – name: Birck Nanotechnology Center |
Author_xml | – sequence: 1 givenname: Tze Ning orcidid: 0000-0002-2313-7806 surname: Hiew fullname: Hiew, Tze Ning organization: Department of Industrial and Physical Pharmacy, College of Pharmacy – sequence: 2 givenname: Dmitry Y orcidid: 0000-0002-1221-9195 surname: Zemlyanov fullname: Zemlyanov, Dmitry Y organization: Birck Nanotechnology Center – sequence: 3 givenname: Lynne S orcidid: 0000-0002-4568-6021 surname: Taylor fullname: Taylor, Lynne S email: lstaylor@purdue.edu organization: Department of Industrial and Physical Pharmacy, College of Pharmacy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34494842$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URH_gFZDZscngvygJG1SGFiqNREXLOnLs644rxw62s5gd79BH4M14kno600qw6sa25POdq3vOMTrwwQNC7yhZUMLoB6nSYgxuWss4SgVzXlBFiGjpC3REa8Grlnfs4OndikN0nNItIUzUjL9Ch1yITrSCHaE_n6WTXll_g6-Cs7q6yjIDLudgnc0bLL3GX2xKwc3ZBo8vIZpQxnoFOBi8mkcw0udoPeDTMcRpHea089pyE8RUsPQRX68B_wjugboMbjNCxMt1sMXnYUacb_7-vnv8ufAZolTbkek1emmkS_Bmf5-gn-dn18tv1er714vl6aqSoiW50lxT3WjJwAy0VsAGyg0bWsYa1Qo9GKlNzdsBCJCWMtNxJVjJoRkM5V1X8xP0fuc7xfBrhpT70SYFrgQEZame1Q3hDaspK9K3e-k8jKD7KdpRxk3_GGwRdDuBiiGlCOZJQkm_LbEvJfb_lNjvSyzsp_9YZUsrJYocpXXPcqh3DlvJbZijL7k9g7sHl2vC8w |
CitedBy_id | crossref_primary_10_1021_acs_molpharmaceut_2c00942 crossref_primary_10_1016_j_xphs_2022_03_020 crossref_primary_10_1016_j_ijpharm_2025_125441 crossref_primary_10_1007_s12247_023_09793_8 crossref_primary_10_1016_j_ijpharm_2023_123536 crossref_primary_10_1016_j_ijpharm_2023_123139 crossref_primary_10_1016_j_xphs_2024_10_026 crossref_primary_10_1021_acs_bioconjchem_4c00018 crossref_primary_10_3390_pharmaceutics15010126 crossref_primary_10_1021_acsami_2c12666 crossref_primary_10_1021_acs_molpharmaceut_1c00578 crossref_primary_10_1016_j_ijpharm_2024_124185 crossref_primary_10_1039_D0CE01709D crossref_primary_10_1016_j_jddst_2023_104998 crossref_primary_10_1021_acs_molpharmaceut_4c00935 crossref_primary_10_1007_s12247_021_09590_1 crossref_primary_10_1016_j_ejps_2023_106423 crossref_primary_10_1016_j_xphs_2022_12_019 crossref_primary_10_1021_acs_molpharmaceut_3c00827 crossref_primary_10_1021_acs_molpharmaceut_3c00628 crossref_primary_10_1016_j_ijpharm_2022_121886 crossref_primary_10_1007_s12247_024_09906_x crossref_primary_10_1016_j_xphs_2024_08_013 crossref_primary_10_1021_acs_molpharmaceut_3c01078 crossref_primary_10_1021_acs_molpharmaceut_3c00586 crossref_primary_10_1016_j_xphs_2024_10_015 crossref_primary_10_1021_acs_molpharmaceut_4c00089 crossref_primary_10_3390_pharmaceutics16111373 crossref_primary_10_1016_j_cej_2022_140822 crossref_primary_10_1016_j_jconrel_2022_09_056 crossref_primary_10_1016_j_xphs_2022_10_020 crossref_primary_10_1080_03639045_2025_2477722 crossref_primary_10_1016_j_ijpx_2023_100222 crossref_primary_10_1016_j_xphs_2022_10_021 crossref_primary_10_1080_03639045_2024_2447276 crossref_primary_10_1021_acs_molpharmaceut_4c01256 crossref_primary_10_1016_j_ajps_2023_100834 crossref_primary_10_1016_j_ijpharm_2024_124197 crossref_primary_10_1016_j_jddst_2023_105158 crossref_primary_10_1080_07373937_2023_2272738 crossref_primary_10_1021_acs_chemrev_1c00987 crossref_primary_10_1016_j_ejpb_2022_09_021 crossref_primary_10_1016_j_xphs_2024_08_029 crossref_primary_10_1208_s12249_023_02622_8 crossref_primary_10_1016_j_apsb_2024_08_027 crossref_primary_10_1039_D2AN01903E crossref_primary_10_1208_s12249_024_02960_1 crossref_primary_10_1016_j_xphs_2024_08_023 crossref_primary_10_1021_acs_molpharmaceut_3c01106 crossref_primary_10_1016_j_xphs_2024_10_001 crossref_primary_10_1208_s12249_024_02932_5 crossref_primary_10_1007_s11095_023_03502_3 crossref_primary_10_1016_j_xphs_2024_06_023 crossref_primary_10_1021_acs_molpharmaceut_3c00174 crossref_primary_10_1016_j_jddst_2025_106837 crossref_primary_10_1021_acs_molpharmaceut_4c00118 crossref_primary_10_1021_acs_molpharmaceut_4c00315 crossref_primary_10_1016_j_ijpx_2024_100259 crossref_primary_10_1021_acs_molpharmaceut_2c00456 crossref_primary_10_1021_acs_molpharmaceut_2c00895 crossref_primary_10_1021_acs_molpharmaceut_3c00526 crossref_primary_10_1007_s11095_024_03808_w crossref_primary_10_1021_acs_molpharmaceut_3c00727 crossref_primary_10_3390_pharmaceutics15051539 crossref_primary_10_1021_acs_molpharmaceut_2c00818 crossref_primary_10_1016_j_ijpharm_2022_122115 crossref_primary_10_1016_j_xphs_2024_10_034 crossref_primary_10_1021_acs_molpharmaceut_3c01179 crossref_primary_10_1039_D4CE00811A crossref_primary_10_1016_j_jcrysgro_2025_128076 crossref_primary_10_1021_acs_molpharmaceut_4c00986 crossref_primary_10_1016_j_xphs_2024_09_020 |
Cites_doi | 10.3109/03639045.2016.1171331 10.1134/S0022476620010175 10.2165/00003088-199937020-00002 10.1007/s11095-015-1725-z 10.1039/C8SM02418A 10.1021/acs.molpharmaceut.5b00925 10.1021/acs.molpharmaceut.5b00708 10.4084/mjhid.2011.041 10.1016/S0928-0987(00)00173-1 10.1016/j.ijpx.2020.100052 10.1002/jps.21650 10.1021/acs.molpharmaceut.7b00338 10.1186/1475-2875-12-202 10.1021/mp9002283 10.1021/ma00046a037 10.1021/ma9707594 10.17159/0379-4350/2019/v72a33 10.1111/j.2042-7158.2010.01030.x 10.1016/j.ijpharm.2016.06.126 10.1016/j.ijpharm.2016.10.064 10.1016/j.xphs.2018.09.031 10.1021/acs.molpharmaceut.6b00783 10.1021/acs.cgd.0c00073 10.1111/j.1365-3156.2006.01784.x 10.1021/acs.molpharmaceut.1c00055 10.1021/acs.molpharmaceut.6b00202 10.1021/acs.molpharmaceut.8b01261 10.1063/1.1675789 10.1021/cm000385k 10.1021/cg301679h 10.1021/mp400228x 10.1021/acs.molpharmaceut.5b00041 10.1109/T-ED.1980.19957 10.1128/AAC.44.3.697-704.2000 10.1186/2008-2231-21-27 10.1128/AAC.00868-17 10.1016/j.ijpharm.2018.02.005 10.1186/1475-2875-8-S1-S3 10.1016/j.jconrel.2019.01.039 10.1007/s10544-020-0476-8 10.1021/mp900050c 10.1002/aic.10329 10.1002/app.1978.070220720 10.1128/AAC.01382-13 10.1021/acs.molpharmaceut.7b00735 10.1002/jps.22197 10.1007/s11095-016-1969-2 10.1007/s11095-017-2265-5 10.1021/acs.molpharmaceut.9b01272 10.7883/yoken.JJID.2009.139 10.1016/j.ejps.2020.105514 10.1007/s11095-009-9974-3 10.1007/s11095-012-0695-7 10.1021/acs.molpharmaceut.9b01025 10.1021/ac60111a017 |
ContentType | Journal Article |
Copyright | 2021 The Authors. Published by American
Chemical Society |
Copyright_xml | – notice: 2021 The Authors. Published by American Chemical Society |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1021/acs.molpharmaceut.1c00481 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1543-8392 |
EndPage | 413 |
ExternalDocumentID | 34494842 10_1021_acs_molpharmaceut_1c00481 i15159472 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 123 4.4 53G 55A 5VS 7~N AABXI ABFRP ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 DU5 EBS ED F5P GGK GNL H~9 IH9 JG P2P RNS ROL UI2 VF5 VG9 W1F X --- -~X AAYXX ABBLG ABJNI ABLBI ABQRX ADHLV BAANH CITATION CUPRZ ED~ JG~ NPM 7X8 |
ID | FETCH-LOGICAL-a480t-d3d1d7da2efb15ce2b13f2b8227c84dbfadf538be0e0812f93c424947bf139953 |
IEDL.DBID | ACS |
ISSN | 1543-8384 1543-8392 |
IngestDate | Fri Jul 11 17:02:01 EDT 2025 Thu Jan 02 22:54:50 EST 2025 Thu Apr 24 23:11:45 EDT 2025 Tue Jul 01 04:33:50 EDT 2025 Wed Feb 09 03:11:00 EST 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | neutral polymer enteric polymer polymer release amorphous solid dispersions lumefantrine |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a480t-d3d1d7da2efb15ce2b13f2b8227c84dbfadf538be0e0812f93c424947bf139953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4568-6021 0000-0002-2313-7806 0000-0002-1221-9195 |
OpenAccessLink | https://pubs.acs.org/doi/pdf/10.1021/acs.molpharmaceut.1c00481 |
PMID | 34494842 |
PQID | 2570372512 |
PQPubID | 23479 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2570372512 pubmed_primary_34494842 crossref_primary_10_1021_acs_molpharmaceut_1c00481 crossref_citationtrail_10_1021_acs_molpharmaceut_1c00481 acs_journals_10_1021_acs_molpharmaceut_1c00481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-07 |
PublicationDateYYYYMMDD | 2022-02-07 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular pharmaceutics |
PublicationTitleAlternate | Mol. Pharmaceutics |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref23/cit23 ref8/cit8 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 Spitael J. (ref52/cit52) 1979; 25 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 Mizuno Y. (ref7/cit7) 2009; 62 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 |
References_xml | – ident: ref12/cit12 doi: 10.3109/03639045.2016.1171331 – ident: ref55/cit55 doi: 10.1134/S0022476620010175 – ident: ref4/cit4 doi: 10.2165/00003088-199937020-00002 – ident: ref31/cit31 doi: 10.1007/s11095-015-1725-z – ident: ref11/cit11 doi: 10.1039/C8SM02418A – ident: ref43/cit43 doi: 10.1021/acs.molpharmaceut.5b00925 – ident: ref36/cit36 doi: 10.1021/acs.molpharmaceut.5b00708 – ident: ref8/cit8 doi: 10.4084/mjhid.2011.041 – ident: ref15/cit15 doi: 10.1016/S0928-0987(00)00173-1 – ident: ref46/cit46 doi: 10.1016/j.ijpx.2020.100052 – ident: ref14/cit14 doi: 10.1002/jps.21650 – ident: ref17/cit17 doi: 10.1021/acs.molpharmaceut.7b00338 – ident: ref30/cit30 doi: 10.1186/1475-2875-12-202 – ident: ref42/cit42 doi: 10.1021/mp9002283 – ident: ref47/cit47 doi: 10.1021/ma00046a037 – ident: ref48/cit48 doi: 10.1021/ma9707594 – ident: ref54/cit54 doi: 10.17159/0379-4350/2019/v72a33 – ident: ref1/cit1 doi: 10.1111/j.2042-7158.2010.01030.x – ident: ref37/cit37 doi: 10.1016/j.ijpharm.2016.06.126 – ident: ref13/cit13 doi: 10.1016/j.ijpharm.2016.10.064 – ident: ref16/cit16 doi: 10.1016/j.xphs.2018.09.031 – ident: ref19/cit19 doi: 10.1021/acs.molpharmaceut.6b00783 – ident: ref53/cit53 doi: 10.1021/acs.cgd.0c00073 – ident: ref5/cit5 doi: 10.1111/j.1365-3156.2006.01784.x – ident: ref28/cit28 doi: 10.1021/acs.molpharmaceut.1c00055 – ident: ref22/cit22 doi: 10.1021/acs.molpharmaceut.6b00202 – ident: ref23/cit23 doi: 10.1021/acs.molpharmaceut.8b01261 – ident: ref45/cit45 doi: 10.1063/1.1675789 – ident: ref51/cit51 doi: 10.1021/cm000385k – ident: ref21/cit21 doi: 10.1021/cg301679h – ident: ref35/cit35 doi: 10.1021/mp400228x – ident: ref40/cit40 doi: 10.1021/acs.molpharmaceut.5b00041 – ident: ref39/cit39 doi: 10.1109/T-ED.1980.19957 – ident: ref6/cit6 doi: 10.1128/AAC.44.3.697-704.2000 – ident: ref9/cit9 doi: 10.1186/2008-2231-21-27 – ident: ref2/cit2 doi: 10.1128/AAC.00868-17 – ident: ref25/cit25 doi: 10.1016/j.ijpharm.2018.02.005 – ident: ref3/cit3 doi: 10.1186/1475-2875-8-S1-S3 – ident: ref24/cit24 doi: 10.1016/j.jconrel.2019.01.039 – ident: ref10/cit10 doi: 10.1007/s10544-020-0476-8 – ident: ref41/cit41 doi: 10.1021/mp900050c – ident: ref50/cit50 doi: 10.1002/aic.10329 – ident: ref49/cit49 doi: 10.1002/app.1978.070220720 – ident: ref29/cit29 doi: 10.1128/AAC.01382-13 – volume: 25 start-page: 163 year: 1979 ident: ref52/cit52 publication-title: Acta Pharm. Technol. – ident: ref20/cit20 doi: 10.1021/acs.molpharmaceut.7b00735 – ident: ref33/cit33 doi: 10.1002/jps.22197 – ident: ref34/cit34 doi: 10.1007/s11095-016-1969-2 – ident: ref56/cit56 doi: 10.1007/s11095-017-2265-5 – ident: ref27/cit27 doi: 10.1021/acs.molpharmaceut.9b01272 – volume: 62 start-page: 139 year: 2009 ident: ref7/cit7 publication-title: Jpn. J. Infect. Dis. doi: 10.7883/yoken.JJID.2009.139 – ident: ref38/cit38 doi: 10.1016/j.ejps.2020.105514 – ident: ref18/cit18 doi: 10.1007/s11095-009-9974-3 – ident: ref44/cit44 doi: 10.1007/s11095-012-0695-7 – ident: ref26/cit26 doi: 10.1021/acs.molpharmaceut.9b01025 – ident: ref32/cit32 doi: 10.1021/ac60111a017 |
SSID | ssj0024523 |
Score | 2.5854113 |
Snippet | Amorphous solid dispersions (ASDs) are of great interest due to their ability to enhance the delivery of poorly soluble drugs. Recent studies have shown that,... |
SourceID | proquest pubmed crossref acs |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 392 |
Title | Balancing Solid-State Stability and Dissolution Performance of Lumefantrine Amorphous Solid Dispersions: The Role of Polymer Choice and Drug–Polymer Interactions |
URI | http://dx.doi.org/10.1021/acs.molpharmaceut.1c00481 https://www.ncbi.nlm.nih.gov/pubmed/34494842 https://www.proquest.com/docview/2570372512 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NThsxELYoSFUvlP6SFiojVZzYNGt7401vEECoaquoBInbyr8FkaxRNjmkp75DH6Fv1ifp2N5kRREqXPawu-Nda2bsz_Z8Mwi9NwDxWU5MYmyHJUx0DfgczxKrtZSqx7UNvLUvX7snZ-zTeXbe8Lj_PcEn6QehqvbYeeJpvcXbTlXIcvIIrZEuOLPHQ_3TJsFeFmq6ATSgSU5z9hjt_LcpPzWp6ubUdAfeDPPO8VM0XLB3YrjJVXs2lW3143Yyx4d0aQOt1zgU70fDeYZWTPkc7Q7iu_M9PGx4WdUe3sWDJsX1_AX6feAjIhVMe_jUjS51EjArhmuItZ1jUWp8eLk0bDxo-AnYWfwZRkQLOvXUQ7w_dqBsN6tiW17uOu7iVR_9f-BvbhSkBm40H5sJ7l84GN7iNyaz739-_lo8CfubkapRvURnx0fD_klSl3tIBMs700RTnWquBTFWppkyRKbUEgkIhqucaWmFtjA8S9MxgGOI7VHFYPHIuLSpJ-jSV2i1dKXZRFgBkOFdWAkKlTHdU1Jwa3rKaACwlGekhcBaq6J216oIJ_EkLfzNG4opasW0UL4wjULVydN9DY_RfUTJUvQ6ZhC5j9DOwv4K8Hd_iCNKA5oofNVByj0qbaHX0TCXzVLmk_0w8uah3XuLnhBP6_DR6HwLrU4nM7MNYGsq3wXn-gutWi9i |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgkYAL70d5eiW0p01pbKdOuZXCqkB3VbFdaaU9RPELVrTxqmkP5cR_4Cfwz_glzDhpo0VCLFxycDKOrRnbn-35Zgh5YQHii5TZyLqOiETetTDmZBI5Y5TSPWlc4K3tH3SHR-L9cXJce1UiFwYaUUJNZbjEb6ILxC-xbOaRf1qf9LZjHYKdXCZXAJQwtO7-4LCJs5eE1G6AEHiU8lRcJdt_rQpXKF2eX6H-ADvD8rN3k5xsGh68Tr60lwvV1l9_i-n4fz27RW7UqJT2KzO6TS7Z4g7ZGVffrnbppGFplbt0h46bgNeru-THa_SP1LAI0kM_PTVRQLAUnsHzdkXzwtA3pxszp-OGrUC9oyOYHx1oGImItD_zoHq_LKu6UO6sOtMrX2E76Ec_DVJjP13N7JwOPnuY7Kp_zJeffn77vn4TTjsr4kZ5jxztvZ0MhlGd_CHKRdpZRIab2EiTM-tUnGjLVMwdU4BnpE6FUS43DiZrZTsWUA1zPa4FbCWFVC5Gui6_T7YKX9iHhGqANbIL-8JcJ8L0tMqlsz1tDcBZLhPWIqiXrB68ZRbu5VmcYeE5xWS1YlokXVtIputQ6pjRY3oRUbYRPaviiVxEaHtthhmMfrzSyQsLmsgwByGXiFFb5EFln5tqucDQP4I9-tfuPSfXhpP9UTZ6d_DhMbnOkPCBfuryCdlazJf2KcCwhXoWxtsvPw03ww |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSBMvMO7l6kloT0tpHKdOeSsd1YAxRWyT9mbFt22ijaumfShP_Ad-Av9sv4RznLTVkBCDlzw4OY6tc_Hny3dMyGsLEJ9nzEbWdXjEi64FnxNp5IxRSveEcYG39vmwu3_CP56mp82CG3JhoBEV1FSFTXz06olxTYaB-A2Wjz1yUJvV3nasQ8KTm-QWbt-hhfcHR-tce2m43g1QQhJlScY3yfZfq8JRSldXR6k_QM8wBA3vErlqfDh58rU9n6m2_vZbXsf_790WudOgU9qvzekeuWHL-2Qnr79d7NLjNVur2qU7NF8nvl48ID_f4TlJDYMhPfKjCxMFJEvhGU7gLmhRGrp3sTJ3mq9ZC9Q7egBx0oGmkZBI-2MPJuDnVV0Xyk3qtb3qLbaDfvGjIJX70WJsp3Rw7iHo1f-Yzs8uv_9YvgmrnjWBo3pITobvjwf7UXMJRFTwrDOLTGJiI0zBrFNxqi1TceKYAlwjdMaNcoVxELSV7VhAN8z1Es1hSsmFcjHSdpNHZKP0pX1CqAZ4I7owPyx0yk1Pq0I429PWAKxNRMpaBHUjGyeuZNifZ7HEwiuKkY1iWiRbWonUTUp1vNljdB1RthKd1HlFriO0vTRFCVEAt3aK0oImJN5FmAjEqi3yuLbRVbUJxxRAnD391-69Ipv53lAefDj89IzcZsj7wOPq4jnZmE3n9gWgsZl6GVzuF94OOkY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Balancing+Solid-State+Stability+and+Dissolution+Performance+of+Lumefantrine+Amorphous+Solid+Dispersions%3A+The+Role+of+Polymer+Choice+and+Drug%E2%80%93Polymer+Interactions&rft.jtitle=Molecular+pharmaceutics&rft.au=Hiew%2C+Tze+Ning&rft.au=Zemlyanov%2C+Dmitry+Y.&rft.au=Taylor%2C+Lynne+S.&rft.date=2022-02-07&rft.issn=1543-8384&rft.eissn=1543-8392&rft.volume=19&rft.issue=2&rft.spage=392&rft.epage=413&rft_id=info:doi/10.1021%2Facs.molpharmaceut.1c00481&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acs_molpharmaceut_1c00481 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1543-8384&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1543-8384&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1543-8384&client=summon |