Structural and Dynamic Features of Candida rugosa Lipase 1 in Water, Octane, Toluene, and Ionic Liquids BMIM-PF6 and BMIM-NO3

Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and...

Full description

Saved in:
Bibliographic Details
Published inThe journal of physical chemistry. B Vol. 117; no. 9; pp. 2662 - 2670
Main Authors Burney, Patrick R, Pfaendtner, Jim
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 07.03.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.
AbstractList Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF sub(6) and BMIM-NO sub(3), as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 mu s. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF sub(6). Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.
Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.
Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF6 and BMIM-NO3, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF6. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.
Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme, sometimes detrimentally. In this work we report the results for molecular dynamics simulations of Candida rugosa lipase (CRL) in ILs BMIM-PF₆ and BMIM-NO₃, as well as organic solvents toluene and octane in an effort to explore the role of solvent on the structure and dynamics of an enzyme known to be active in many nonaqueous media. Simulations of CRL in water were also included for comparison, bringing the aggregate simulation time to over 2.8 μs. At both 310 and 375 K the ILs significantly dampen protein dynamics and trap the system near its starting structure. Structural changes in the enzyme follow the viscosity of the solvent, with the enzyme deviating from its initial structure the most in water and the least in BMIM-PF₆. Interactions between the enzyme surface and the solvent in the IL simulations show that contacts are dominated by the IL anion, which is ascribed to a broader spatial distribution of positively charged protein residues and reduced mobility of the cation due to the size of the imadazolium ring.
Author Burney, Patrick R
Pfaendtner, Jim
AuthorAffiliation Department of Chemical Engineering
University of Washington
AuthorAffiliation_xml – name: Department of Chemical Engineering
– name: University of Washington
Author_xml – sequence: 1
  givenname: Patrick R
  surname: Burney
  fullname: Burney, Patrick R
– sequence: 2
  givenname: Jim
  surname: Pfaendtner
  fullname: Pfaendtner, Jim
  email: jpfaendt@u.washington.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23387335$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1URD_gwB9AviBRqUv9sV57j5ASiJQSJIo4WrNeL3K0sVPbe-iB_47TpBxQpWLJ8jueZ17ZmjlFRz54i9BrSt5TwujlesspY23bP0MnVDBSlS2PDrqhpDlGpymtCWGCqeYFOmacK8m5OEG_v-c4mTxFGDH4Hl_dedg4g-cWyqVNOAx4VhKuBxynXyEBXrotJIspdh7_hGzjBV6ZDN5e4JswTnYndlaL4IvR0t1Ork_44_Xiuvo2b-5T98HXFX-Jng8wJvvqcJ6hH_NPN7Mv1XL1eTH7sKygViRXwEHKznBpm65X7VB-W6RVA5WkpvVQQqMUoR1hXcvqsnjHGG866AWoDvgZerf33cZwO9mU9cYlY8exvDpMSTNCiKBECvYkSqXggrRNLZ9GBa9Vgfl_uHIqGk4VEQV9c0CnbmN7vY1uA_FOP_SsAJd7wMSQUrSDNi5DdsHnCG7UlOjdVOi_U1Eqzv-peDB9jH27Z8EkvQ5T9KUxj3B_AD3Lvc4
CitedBy_id crossref_primary_10_1002_prot_24757
crossref_primary_10_1016_j_bpj_2014_12_043
crossref_primary_10_1021_jp408061k
crossref_primary_10_1080_07391102_2023_2262590
crossref_primary_10_1021_acs_jpcb_6b01688
crossref_primary_10_1021_acs_langmuir_4c02174
crossref_primary_10_1016_j_molliq_2022_120765
crossref_primary_10_1039_C7CP08470F
crossref_primary_10_1016_j_bej_2015_10_024
crossref_primary_10_1039_C6CP01789D
crossref_primary_10_1021_cs500978x
crossref_primary_10_7717_peerj_3341
crossref_primary_10_1016_j_btre_2021_e00631
crossref_primary_10_1021_acsomega_9b00509
crossref_primary_10_1039_C7CP03013D
crossref_primary_10_1021_acs_jpcb_6b09410
crossref_primary_10_1039_C4RA07460B
crossref_primary_10_1016_j_molcatb_2014_08_013
crossref_primary_10_1016_j_molliq_2018_09_060
crossref_primary_10_1016_j_ijbiomac_2015_12_067
crossref_primary_10_1021_acs_chemrev_3c00551
crossref_primary_10_1016_j_ijbiomac_2016_12_005
crossref_primary_10_1039_C7CP04466F
crossref_primary_10_1016_j_molliq_2020_114347
crossref_primary_10_1016_j_molliq_2020_114501
crossref_primary_10_1039_C7SE00413C
crossref_primary_10_1021_acs_jpcb_5b00689
crossref_primary_10_1021_acs_jpcb_8b05778
crossref_primary_10_1016_j_carres_2015_08_009
crossref_primary_10_1016_j_molliq_2016_11_127
crossref_primary_10_1016_j_bbagen_2016_05_004
crossref_primary_10_1021_acs_jpcb_1c04167
crossref_primary_10_1021_acs_jpcb_8b01722
crossref_primary_10_1039_C6ME00047A
crossref_primary_10_1007_s40199_021_00388_7
crossref_primary_10_1021_acssuschemeng_9b00752
crossref_primary_10_1002_celc_201600875
crossref_primary_10_4028_www_scientific_net_KEM_874_88
crossref_primary_10_1016_j_molliq_2020_112879
crossref_primary_10_1080_07391102_2016_1204364
crossref_primary_10_1007_s12551_018_0416_5
crossref_primary_10_1021_acs_chemrev_7b00158
crossref_primary_10_1021_acs_chemrev_6b00562
crossref_primary_10_1021_acs_jpcb_0c02001
crossref_primary_10_1016_j_biotechadv_2019_107418
crossref_primary_10_1016_j_bpc_2024_107203
crossref_primary_10_1016_j_bioorg_2019_03_030
crossref_primary_10_1016_j_jmgm_2015_10_003
crossref_primary_10_1021_acs_jpcb_0c05629
crossref_primary_10_1039_C4CP04696J
Cites_doi 10.1016/0021-9991(83)90014-1
10.1063/1.470648
10.1039/b405693k
10.1016/j.jmgm.2005.12.005
10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
10.1021/ja025790m
10.1021/jo015761e
10.1021/jp061869s
10.1002/pro.5560030111
10.3109/10242422.2010.489152
10.1021/jp0475638
10.1039/C0CP01509A
10.1021/ja808537j
10.1016/S0021-9258(18)31464-9
10.1146/annurev.biophys.35.040405.102134
10.1021/j100142a004
10.1016/j.enzmictec.2007.03.017
10.1080/10242420500192940
10.1016/j.molcatb.2004.07.003
10.1002/jcc.20820
10.1021/bi020574b
10.1021/ie8001217
10.1002/jcc.20290
10.1002/jcc.21224
10.1007/s10930-011-9313-5
10.1023/A:1008896030387
10.1021/jp050888j
10.1021/jp0766050
10.1002/jcc.20289
10.1021/jp0267003
10.1103/PhysRevB.17.1302
10.1002/bit.10089
10.1021/jp056006y
10.1016/j.febslet.2007.08.002
10.1023/A:1011697609756
10.1002/prot.22654
10.1038/nsb1203-980
10.1002/bit.10342
10.1006/jmbi.1993.1329
10.1016/0263-7855(96)00018-5
10.1016/j.biotechadv.2005.09.003
10.1021/ja028557x
10.1002/jcc.20035
10.1002/prot.21123
10.1039/B511117J
10.1039/b302570e
10.1063/1.445869
10.1002/jcc.21787
10.1002/pro.493
10.1039/B607614A
10.1016/S1381-1177(02)00128-5
ContentType Journal Article
Copyright Copyright © 2013 American Chemical Society
Copyright_xml – notice: Copyright © 2013 American Chemical Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1021/jp312299d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database

MEDLINE
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-5207
EndPage 2670
ExternalDocumentID 23387335
10_1021_jp312299d
d037965448
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GroupedDBID -
.K2
02
123
29L
4.4
53G
55A
5VS
7~N
85S
8RP
AABXI
ABFLS
ABMVS
ABPTK
ABUCX
ACGFS
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
DU5
EBS
ED
ED~
EJD
F20
F5P
GNL
IH9
IHE
JG
JG~
K2
LG6
PZZ
RNS
ROL
TAE
TN5
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
X
YZZ
ZGI
ZHY
---
-~X
.DC
AAHBH
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ACBEA
ADHLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
YQT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-a480t-a3a77bc37e6bd89f3127e6e8f170414f127c8801b02b9244443b2236bad5a8ba3
IEDL.DBID ACS
ISSN 1520-6106
1520-5207
IngestDate Fri Jul 11 11:19:25 EDT 2025
Fri Jul 11 03:09:17 EDT 2025
Fri Jul 11 12:23:29 EDT 2025
Fri Jul 11 09:20:25 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Thu Apr 24 23:12:10 EDT 2025
Tue Jul 01 00:21:47 EDT 2025
Thu Aug 27 13:43:00 EDT 2020
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a480t-a3a77bc37e6bd89f3127e6e8f170414f127c8801b02b9244443b2236bad5a8ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 23387335
PQID 1315631805
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2000510752
proquest_miscellaneous_1753509647
proquest_miscellaneous_1534835032
proquest_miscellaneous_1315631805
pubmed_primary_23387335
crossref_citationtrail_10_1021_jp312299d
crossref_primary_10_1021_jp312299d
acs_journals_10_1021_jp312299d
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-07
PublicationDateYYYYMMDD 2013-03-07
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The journal of physical chemistry. B
PublicationTitleAlternate J. Phys. Chem. B
PublicationYear 2013
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References Micaêlo N. M. (ref18/cit18) 2006; 110
Canongia Lopes J. N. A. (ref15/cit15) 2006; 110
Morrow T. I. (ref19/cit19) 2002; 106
Fort D. A. (ref1/cit1) 2007; 9
Dave R. (ref25/cit25) 2010; 28
Hornak V. (ref43/cit43) 2006; 65
Binder J. B. (ref3/cit3) 2009; 131
Humphrey W. (ref48/cit48) 1996; 14
Ulbert O. (ref12/cit12) 2004; 31
Bayly C. I. (ref39/cit39) 1993; 97
Martínez L. (ref41/cit41) 2009; 30
Kirschner K. N. (ref32/cit32) 2008; 29
Phillips J. C. (ref42/cit42) 2005; 26
Curtis R. A. (ref16/cit16) 2002; 79
Wedemeyer W. J. (ref51/cit51) 2002; 41
Levy Y. (ref33/cit33) 2006; 35
Maginn E. J. (ref21/cit21) 2009; 21
Berman H. (ref30/cit30) 2003; 10
Ha S. H. (ref4/cit4) 2007; 41
Pickett S. D. (ref50/cit50) 1993; 231
Park S. (ref11/cit11) 2001; 66
Wang J. (ref37/cit37) 2006; 25
Swatloski R. P. (ref2/cit2) 2002; 124
Lozano P. (ref7/cit7) 2001; 75
Klähn M. (ref22/cit22) 2011; 13
Case D. A. (ref36/cit36) 2005; 26
Ghosh T. (ref17/cit17) 2005; 109
Turner M. B. (ref28/cit28) 2003; 5
Jorgensen W. L. (ref35/cit35) 1983; 79
Rehm S. (ref53/cit53) 2010; 19
Domínguez De María P. (ref26/cit26) 2006; 24
Michaud-Agrawal N. (ref49/cit49) 2011; 32
Feller S. E. (ref45/cit45) 1995; 103
Kaar J. L. (ref14/cit14) 2003; 125
Micaêlo N. M. (ref23/cit23) 2008; 112
Grochulski P. (ref31/cit31) 1993; 268
Guo Z. (ref5/cit5) 2006; 8
Grochulski P. (ref24/cit24) 1994; 3
Lozano P. (ref8/cit8) 2003; 21
Lozano P. (ref10/cit10) 2001; 23
Carlisle T. K. (ref6/cit6) 2008; 47
Wang J. (ref38/cit38) 2004; 25
Frisch M. J. (ref40/cit40) 2009
Andersen H. C. (ref46/cit46) 1983; 52
Schneider T. (ref44/cit44) 1978; 17
Fuciños González J. P. (ref29/cit29) 2011; 30
Madeira Lau R. (ref27/cit27) 2004; 6
James J. J. (ref52/cit52) 2007; 581
de la Casa R. M. (ref34/cit34) 1998; 12
Urukova I. (ref20/cit20) 2005; 109
Krautler V. (ref47/cit47) 2001; 22
Ulbert O. (ref9/cit9) 2005; 23
Kamerlin S. C. L. (ref13/cit13) 2010; 78
References_xml – volume: 52
  start-page: 24
  year: 1983
  ident: ref46/cit46
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90014-1
– volume: 103
  start-page: 4613
  year: 1995
  ident: ref45/cit45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470648
– volume: 6
  start-page: 483
  year: 2004
  ident: ref27/cit27
  publication-title: Green Chem.
  doi: 10.1039/b405693k
– volume: 25
  start-page: 247
  year: 2006
  ident: ref37/cit37
  publication-title: J. Mol. Graphics Modell.
  doi: 10.1016/j.jmgm.2005.12.005
– volume: 22
  start-page: 501
  year: 2001
  ident: ref47/cit47
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
– volume: 21
  start-page: 373101
  year: 2009
  ident: ref21/cit21
  publication-title: J. Phys.: Condens. Matter
– volume: 124
  start-page: 4974
  year: 2002
  ident: ref2/cit2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja025790m
– volume: 66
  start-page: 8395
  year: 2001
  ident: ref11/cit11
  publication-title: J. Org. Chem.
  doi: 10.1021/jo015761e
– volume: 110
  start-page: 14444
  year: 2006
  ident: ref18/cit18
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061869s
– volume: 3
  start-page: 82
  year: 1994
  ident: ref24/cit24
  publication-title: Protein Sci.
  doi: 10.1002/pro.5560030111
– volume: 28
  start-page: 157
  year: 2010
  ident: ref25/cit25
  publication-title: Biocatal. Biotransform.
  doi: 10.3109/10242422.2010.489152
– volume: 109
  start-page: 642
  year: 2005
  ident: ref17/cit17
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0475638
– volume: 13
  start-page: 1649
  year: 2011
  ident: ref22/cit22
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C0CP01509A
– volume: 131
  start-page: 1979
  year: 2009
  ident: ref3/cit3
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808537j
– volume: 268
  start-page: 12843
  year: 1993
  ident: ref31/cit31
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)31464-9
– volume: 35
  start-page: 389
  year: 2006
  ident: ref33/cit33
  publication-title: Annu. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.35.040405.102134
– volume: 97
  start-page: 10269
  year: 1993
  ident: ref39/cit39
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100142a004
– volume: 41
  start-page: 480
  year: 2007
  ident: ref4/cit4
  publication-title: Enzyme Microb. Technol.
  doi: 10.1016/j.enzmictec.2007.03.017
– volume: 23
  start-page: 177
  year: 2005
  ident: ref9/cit9
  publication-title: Biocatal. Biotransform.
  doi: 10.1080/10242420500192940
– volume: 31
  start-page: 39
  year: 2004
  ident: ref12/cit12
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/j.molcatb.2004.07.003
– volume: 29
  start-page: 622
  year: 2008
  ident: ref32/cit32
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20820
– volume: 41
  start-page: 14637
  year: 2002
  ident: ref51/cit51
  publication-title: Biochemistry
  doi: 10.1021/bi020574b
– volume: 47
  start-page: 7005
  year: 2008
  ident: ref6/cit6
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie8001217
– volume: 26
  start-page: 1668
  year: 2005
  ident: ref36/cit36
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20290
– volume: 30
  start-page: 2157
  year: 2009
  ident: ref41/cit41
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21224
– volume: 30
  start-page: 77
  year: 2011
  ident: ref29/cit29
  publication-title: Protein J.
  doi: 10.1007/s10930-011-9313-5
– volume: 12
  start-page: 823
  year: 1998
  ident: ref34/cit34
  publication-title: Biotechnol. Tech.
  doi: 10.1023/A:1008896030387
– volume: 109
  start-page: 12154
  year: 2005
  ident: ref20/cit20
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp050888j
– volume: 112
  start-page: 2566
  year: 2008
  ident: ref23/cit23
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0766050
– volume: 26
  start-page: 1781
  year: 2005
  ident: ref42/cit42
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20289
– volume: 106
  start-page: 12807
  year: 2002
  ident: ref19/cit19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0267003
– volume: 17
  start-page: 1302
  year: 1978
  ident: ref44/cit44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.17.1302
– volume: 75
  start-page: 563
  year: 2001
  ident: ref7/cit7
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10089
– volume: 110
  start-page: 3330
  year: 2006
  ident: ref15/cit15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp056006y
– volume: 581
  start-page: 4377
  year: 2007
  ident: ref52/cit52
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.08.002
– volume: 23
  start-page: 1529
  year: 2001
  ident: ref10/cit10
  publication-title: Biotechnol. Lett.
  doi: 10.1023/A:1011697609756
– volume: 78
  start-page: 1339
  year: 2010
  ident: ref13/cit13
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.22654
– volume: 10
  start-page: 980
  year: 2003
  ident: ref30/cit30
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1203-980
– volume: 79
  start-page: 367
  year: 2002
  ident: ref16/cit16
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10342
– volume: 231
  start-page: 825
  year: 1993
  ident: ref50/cit50
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1993.1329
– volume-title: Gaussian 09
  year: 2009
  ident: ref40/cit40
– volume: 14
  start-page: 33
  year: 1996
  ident: ref48/cit48
  publication-title: J. Mol. Graphics
  doi: 10.1016/0263-7855(96)00018-5
– volume: 24
  start-page: 180
  year: 2006
  ident: ref26/cit26
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2005.09.003
– volume: 125
  start-page: 4125
  year: 2003
  ident: ref14/cit14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja028557x
– volume: 25
  start-page: 1157
  year: 2004
  ident: ref38/cit38
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 65
  start-page: 712
  year: 2006
  ident: ref43/cit43
  publication-title: Proteins: Struct., Funct., Bioinf.
  doi: 10.1002/prot.21123
– volume: 8
  start-page: 54
  year: 2006
  ident: ref5/cit5
  publication-title: Green Chem.
  doi: 10.1039/B511117J
– volume: 5
  start-page: 443
  year: 2003
  ident: ref28/cit28
  publication-title: Green Chem.
  doi: 10.1039/b302570e
– volume: 79
  start-page: 926
  year: 1983
  ident: ref35/cit35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445869
– volume: 32
  start-page: 2319
  year: 2011
  ident: ref49/cit49
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21787
– volume: 19
  start-page: 2122
  year: 2010
  ident: ref53/cit53
  publication-title: Protein Sci.
  doi: 10.1002/pro.493
– volume: 9
  start-page: 63
  year: 2007
  ident: ref1/cit1
  publication-title: Green Chem.
  doi: 10.1039/B607614A
– volume: 21
  start-page: 9
  year: 2003
  ident: ref8/cit8
  publication-title: J. Mol. Catal. B: Enzym.
  doi: 10.1016/S1381-1177(02)00128-5
SSID ssj0025286
Score 2.3125813
Snippet Ionic liquids (ILs) and organic chemicals can be used as solvents in biochemical reactions to influence the structural and dynamic features of the enzyme,...
SourceID proquest
pubmed
crossref
acs
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2662
SubjectTerms Candida - enzymology
Candida rugosa
carboxylic ester hydrolases
cations
chemical reactions
Dynamical systems
Dynamics
Enzymes
Ionic liquids
Lipase
Lipase - chemistry
Lipase - metabolism
Models, Molecular
molecular dynamics
octane
Octanes - chemistry
Simulation
Solvents
toluene
Toluene - chemistry
viscosity
Water - chemistry
Title Structural and Dynamic Features of Candida rugosa Lipase 1 in Water, Octane, Toluene, and Ionic Liquids BMIM-PF6 and BMIM-NO3
URI http://dx.doi.org/10.1021/jp312299d
https://www.ncbi.nlm.nih.gov/pubmed/23387335
https://www.proquest.com/docview/1315631805
https://www.proquest.com/docview/1534835032
https://www.proquest.com/docview/1753509647
https://www.proquest.com/docview/2000510752
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3Pb9owFLZYd9guW_ezrC3y2h12IF1iJ7Z7pHQIqtJOKmjckH-lYpsSBuQyqf97nx2CWhVYlEOivDiJn-33fXL8PYS-GBuaFCJpkEqhg5glMlCa2YAKxq1OJTPCLXDuX7HuML4YJaMaOt4wg0-ib7-mNCIwaJpn6DlhgjuG1WrfrFhVQnw6R4hDjgeFrJIPenirCz16_jj0bMCTPq50XqPzanVO-TvJ75NioU70v6dijdteeRe9WuJK3CobwhtUs9lb9KJdpXN7h-5uvFKsU9nAMjP4vExFjx0GLIBz4zzFbbfGxUg8K27zucSXkynEOBzhSYZ_AiadNfG1BjBpm3iQu9QmcOCK6jl5XbD-W0zMHJ_1e_3gR4f5S_7k6pq-R8PO90G7GyxzLwQyFuEikFRyrjTllikjTlP4IDi0Io14GEdxCqcaun6kQqKAwsFGFSANpqRJpFCSfkA7WZ7ZPYR1Cs4nRtpTK2NqIyEUjBpOly5SmitbRw1wznjZd-ZjPy1OgJZUtVhHXyu_jfVSudwl0PizzvRoZTot5TrWGX2unD8GJ7gZEqi6vIBHU6CzMMqFyRabhMYAW0NKttgACXS6OjHfbEM8fAbEBuV8LFvg6pUJpYJTmnz6X9Xso5fE5-eAnR-gHWhJ9hBQ0kI1fC-5B62nCP0
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLagHMqFfSlLMYgDh6ZN7CzusQyMZmBmitSp6C3yFjQtSoZmckHiv_PZSYZFbSHKIVZeHMd-fu97cvw9Ql4bG5oCnjQopNBBnCYyUDq1ARdpZnUhUyPcBufpLB0dxx9OkpOOJsfthUEjatRU-0X8X-wC0d7pkkcMttNcJzcAQpgLtA4GR-vgKmE-qyPckQuHwrRnEfr9UeeBdP2nB7oEVnr3Mrzd5inyDfN_lZztNiu1q7__xdn4fy2_Q251KJMetGpxl1yz5T2yOeiTu90nP448b6zj3KCyNPRdm5ieOkTYIAKnVUEHbseLkfS8-VLVkk4WS3g8GtFFST8DoZ7v0EMNaGl36LxyiU5w4aoaO7JdSH9rFqamb6fjafBpmPpbvjA75A_I8fD9fDAKukwMgYxFuAokl1mmNM9sqozYL_BBuLSiiLIwjuICRQ1DEKmQKQR0OLgC7kiVNIkUSvKHZKOsSvuYUF1AFZiRdt_KmNtICAUb4ljqIqUzZbfINjox72ZSnftFcoYgpe_FLfKmH75cdzzmLp3G14tEX61Fly15x0VCL3sdyDEIbr0EXVc1eDVHcAubFyZXyCQ8BogNObtCBiGhY9mJs8tlmAfTwG-o51GriOsmM85Fxnny5F9d84JsjubTST4Zzz4-JTeZz9yBM3tGNqBV9jnw00pt-4nzE_aAEV4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSMCF96M8ikEcODQlsRPbPZYtqy50dyu1Fb1FflZbULI0mwsS_50Zb7IC1BaiHBJl4jjO2PN9cvwNIW-dT12ASJoErWySi0InxgqfcCWkt0ELp3CB83gi9o7zTyfFSUcUcS0MVKKBkpo4iY-9eu5CpzCQvT-b84zB-Omukxs4XYdka2dwuCJYBYuZHSEkISVKRa8k9PutGIVs82cUugRaxhAzvEumq8rFP0u-brULs2V__KXb-P-1v0fudGiT7izd4z655qsH5NagT_L2kPw8jPqxqL1BdeXo7jJBPUVk2AITp3WgA1z54jQ9b0_rRtP92RwiH83orKJfAKmeb9KpBYjpN-lRjQlP4ACLGqHoLlh_b2euoR_Go3FyMBTxUjyZTPkjcjz8eDTYS7qMDInOVbpINNdSGsulF8ap7QAvBIdehUymeZYHOLUwIGQmZQaIHWzcAP4QRrtCK6P5Y7JW1ZV_SqgN4BLMab_tdc59ppSBsQTV6jJjpfHrZAMasux6VFPGyXIGZKVvxXXyrv-Epe30zDGtxreLTN-sTOdLEY-LjF73flDCR8B5E2i6uoVHcyC5MPalxRU2Bc8BzKacXWED1BDVdnJ5uQ2LoBpwHJTzZOmMqyozzpXkvHj2r6Z5RW4e7A7L_dHk83Nym8UEHrDLF2QNnMq_BBi1MBux7_wC8LIT4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+and+Dynamic+Features+of+Candida+rugosa+Lipase+1+in+Water%2C+Octane%2C+Toluene%2C+and+Ionic+Liquids+BMIM-PF6+and+BMIM-NO3&rft.jtitle=The+journal+of+physical+chemistry.+B&rft.au=Burney%2C+Patrick+R.&rft.au=Pfaendtner%2C+Jim&rft.date=2013-03-07&rft.issn=1520-6106&rft.eissn=1520-5207&rft.volume=117&rft.issue=9&rft.spage=2662&rft.epage=2670&rft_id=info:doi/10.1021%2Fjp312299d&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_jp312299d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-6106&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-6106&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-6106&client=summon