Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases
Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several q...
Saved in:
Published in | ACS chemical biology Vol. 11; no. 8; pp. 2293 - 2303 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
19.08.2016
American Chemical Society (ACS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain–domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. |
---|---|
AbstractList | Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules.Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent to synthetase chemistry is the thioester templated mechanism that relies on protein/protein interactions and interdomain dynamics. Several questions related to structure and mechanism remain to be addressed, including the incorporation of accessory domains and intermodule interactions. The inclusion of nonproteinogenic d-amino acids into peptide frameworks is a common and important modification for bioactive nonribosomal peptides. Epimerization domains, embedded in nonribosomal peptide synthetases assembly lines, catalyze the l- to d-amino acid conversion. Here we report the structure of the epimerization domain/peptidyl carrier protein didomain construct from the first module of the cyclic peptide antibiotic gramicidin synthetase. Both holo (phosphopantethiene post-translationally modified) and apo structures were determined, each representing catalytically relevant conformations of the two domains. The structures provide insight into domain-domain recognition, substrate delivery during the assembly line process, in addition to the structural organization of homologous condensation domains, canonical players in all synthetase modules. |
Author | Bruner, Steven D Chen, Wei-Hung Li, Kunhua Guntaka, Naga Sandhya |
AuthorAffiliation | Department of Chemistry University of Florida |
AuthorAffiliation_xml | – name: Department of Chemistry – name: University of Florida |
Author_xml | – sequence: 1 givenname: Wei-Hung surname: Chen fullname: Chen, Wei-Hung – sequence: 2 givenname: Kunhua surname: Li fullname: Li, Kunhua – sequence: 3 givenname: Naga Sandhya surname: Guntaka fullname: Guntaka, Naga Sandhya – sequence: 4 givenname: Steven D surname: Bruner fullname: Bruner, Steven D email: bruner@ufl.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27294598$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1328050$$D View this record in Osti.gov |
BookMark | eNp9kUtP3DAUhS0E4tX-ARZV1BWbGfyIE3tZTSkgIUCiXVuOfcMYJfbUdhb01-OSASQWrK7t850r65wjtOuDB4ROCF4STMmZNsmsYexcWDYdxozRHXRIOK8XQrJ29-1M5QE6SukR45o1Qu6jA9pSWXMpDtFw5TNEG0btfKW9rV7uY7DTANVtfNDe_dPZBV8V_XzjRoivDz9n0yr4XKbzD9VN8NF1IRVhqO5gk52F6v7J5zVknSB9QXu9HhJ83c5j9OfX-e_V5eL69uJq9eN6oetW5gWhAJa2Na_B9LYXgjeN5Yxp0tiaANUcGkGAY42Z5jVvgQHrqG4k6xm1DTtG3-e9IWWnknEZzNoE78FkRRgVmOMCnc7QJoa_E6SsRpcMDIP2EKakiCBUCNlKUtBvW3TqRrBqE92o45N6jbEAdAZMDClF6N8QgtX_rtR7V2rbVTGJD6by0Zdoc9Ru-Ny6nK1FU49hir7E-ZnhGdqTrfk |
CitedBy_id | crossref_primary_10_1016_j_synbio_2018_11_003 crossref_primary_10_1038_s41467_019_11740_6 crossref_primary_10_1039_C8NP00038G crossref_primary_10_1073_pnas_1614191114 crossref_primary_10_1016_j_chempr_2024_07_013 crossref_primary_10_1016_j_cbpa_2016_09_005 crossref_primary_10_1039_D0NP00098A crossref_primary_10_1038_s41557_019_0335_5 crossref_primary_10_1038_s41586_024_08417_6 crossref_primary_10_1002_ange_202103872 crossref_primary_10_3389_fmicb_2019_00893 crossref_primary_10_1039_D0SC01969K crossref_primary_10_1002_prot_25493 crossref_primary_10_1039_D2SC00860B crossref_primary_10_1089_ast_2020_2381 crossref_primary_10_3390_molecules29071482 crossref_primary_10_1038_s41586_024_08306_y crossref_primary_10_1039_C7NP00029D crossref_primary_10_1098_rsob_200386 crossref_primary_10_1073_pnas_1608615113 crossref_primary_10_1021_acs_biochem_8b01177 crossref_primary_10_1039_D2CB00005A crossref_primary_10_1002_anie_202317753 crossref_primary_10_1016_j_sbi_2018_01_011 crossref_primary_10_1016_j_sbi_2018_01_015 crossref_primary_10_1016_j_crstbi_2020_01_002 crossref_primary_10_1038_s41467_022_28284_x crossref_primary_10_1039_D3NP00003F crossref_primary_10_1039_C8NP00044A crossref_primary_10_1039_C9NP00022D crossref_primary_10_1039_C7CC02427D crossref_primary_10_1002_ange_202317753 crossref_primary_10_1093_jimb_kuab045 crossref_primary_10_1126_science_aaw4388 crossref_primary_10_1038_s41467_020_20548_8 crossref_primary_10_1002_anie_201609079 crossref_primary_10_1016_j_jmb_2016_09_007 crossref_primary_10_1007_s10295_017_1999_8 crossref_primary_10_1016_j_synbio_2022_02_006 crossref_primary_10_1002_pro_3979 crossref_primary_10_1039_D0SC03483E crossref_primary_10_1074_jbc_M116_746297 crossref_primary_10_1007_s10930_017_9714_1 crossref_primary_10_1038_s41598_022_09188_8 crossref_primary_10_1021_acscatal_1c02113 crossref_primary_10_1039_D0CB00220H crossref_primary_10_1073_pnas_2026017118 crossref_primary_10_1016_j_bbapap_2017_05_010 crossref_primary_10_1002_ange_201609079 crossref_primary_10_1002_anie_202103872 crossref_primary_10_1039_C6MB00675B crossref_primary_10_1039_D3NP00041A crossref_primary_10_1038_s41467_019_10384_w crossref_primary_10_1007_s11274_022_03512_0 crossref_primary_10_1016_j_biotechadv_2023_108210 crossref_primary_10_1002_cbic_201800439 crossref_primary_10_1016_j_str_2017_03_014 |
Cites_doi | 10.1073/pnas.0630018100 10.1046/j.0014-2956.2001.02691.x 10.1016/j.chembiol.2011.09.018 10.1002/anie.201405281 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N 10.1016/j.chembiol.2011.11.013 10.1038/nchembio.1883 10.1021/bi9719861 10.1039/c2np20025b 10.1146/annurev.micro.58.030603.123615 10.1021/bi9929002 10.1107/S0907444909038360 10.1021/cr0503097 10.1038/nsb810 10.1038/nchem.2117 10.1073/pnas.85.12.4133 10.1021/bi300112e 10.1016/j.chembiol.2009.02.009 10.1093/emboj/16.14.4174 10.1021/ci200227u 10.1016/j.sbi.2010.01.009 10.1016/j.str.2007.05.008 10.1016/j.chembiol.2005.08.010 10.1007/s00253-014-5726-3 10.1073/pnas.0404932101 10.1107/S1399004714004398 10.1039/C5NP00099H 10.1186/1471-2148-7-78 10.1126/science.1159850 10.1039/b904543k 10.1146/annurev.micro.58.030603.123811 10.1002/prot.24485 10.1021/bi010355a 10.1038/nature16503 10.1016/j.chembiol.2006.02.005 10.1107/S0907444909047337 10.1007/s00018-010-0571-8 10.1021/cr960029e 10.1021/bi011595t 10.1038/nature16163 10.1016/j.jmb.2007.05.022 10.1039/b805115c 10.1021/ar000056y 10.1038/35021219 10.1128/jb.171.10.5422-5429.1989 10.1007/s002530051432 10.1126/science.1122928 10.1107/S0907444904019158 10.1021/bi000768w 10.1093/jb/mvg209 10.1021/ja0166646 10.1107/S0907444909052925 10.1107/S0907444910045749 |
ContentType | Journal Article |
Copyright | Copyright © 2016 American Chemical
Society |
Copyright_xml | – notice: Copyright © 2016 American Chemical Society |
CorporateAuthor | Argonne National Laboratory (ANL), Argonne, IL (United States) |
CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI |
DOI | 10.1021/acschembio.6b00332 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1554-8937 |
EndPage | 2303 |
ExternalDocumentID | 1328050 27294598 10_1021_acschembio_6b00332 c861212491 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GroupedDBID | - 23M 53G 55A 5GY 5VS 7~N AABXI ABMVS ABUCX ACGFS ACS AEESW AENEX AFEFF ALMA_UNASSIGNED_HOLDINGS AQSVZ CS3 D0L EBS ED ED~ EJD F5P GNL GX1 IH9 IHE JG JG~ P2P RNS ROL UI2 VF5 VG9 W1F --- 4.4 5ZA 6J9 AAYXX ABBLG ABJNI ABLBI ABQRX ACGFO ADHLV AHGAQ BAANH CITATION CUPRZ GGK CGR CUY CVF ECM EIF NPM 7X8 ABFRP OIOZB OTOTI |
ID | FETCH-LOGICAL-a479t-12eed27454ecfdf88566d533a16d41e2a5e681e50a03a5457e3e3b2a693f32d63 |
IEDL.DBID | ACS |
ISSN | 1554-8929 1554-8937 |
IngestDate | Mon Jul 03 03:55:29 EDT 2023 Fri Jul 11 05:56:44 EDT 2025 Mon Jul 21 05:53:43 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Tue Jul 01 03:43:54 EDT 2025 Fri Dec 18 21:25:39 EST 2020 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-a479t-12eed27454ecfdf88566d533a16d41e2a5e681e50a03a5457e3e3b2a693f32d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE National Science Foundation (NSF) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1328050 |
PMID | 27294598 |
PQID | 1812889791 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1328050 proquest_miscellaneous_1812889791 pubmed_primary_27294598 crossref_primary_10_1021_acschembio_6b00332 crossref_citationtrail_10_1021_acschembio_6b00332 acs_journals_10_1021_acschembio_6b00332 |
ProviderPackageCode | JG~ 55A AABXI GNL VF5 7~N VG9 W1F ACS AEESW AFEFF ABMVS ABUCX IH9 AQSVZ ED~ UI2 CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-08-19 |
PublicationDateYYYYMMDD | 2016-08-19 |
PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-19 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | ACS chemical biology |
PublicationTitleAlternate | ACS Chem. Biol |
PublicationYear | 2016 |
Publisher | American Chemical Society American Chemical Society (ACS) |
Publisher_xml | – name: American Chemical Society – name: American Chemical Society (ACS) |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref56/cit56 ref16/cit16 ref52/cit52 ref23/cit23 ref31/cit31 ref2/cit2 ref34/cit34 ref37/cit37 ref20/cit20 ref48/cit48 ref17/cit17 ref10/cit10 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 Kratzschmar J. (ref8/cit8) 1989; 171 ref50/cit50 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref11/cit11 ref25/cit25 ref29/cit29 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref5/cit5 ref51/cit51 ref43/cit43 ref28/cit28 ref40/cit40 ref26/cit26 ref55/cit55 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref33/cit33 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref5/cit5 doi: 10.1073/pnas.0630018100 – ident: ref49/cit49 doi: 10.1046/j.0014-2956.2001.02691.x – ident: ref32/cit32 doi: 10.1016/j.chembiol.2011.09.018 – ident: ref50/cit50 doi: 10.1002/anie.201405281 – ident: ref10/cit10 doi: 10.1002/1439-7633(20020603)3:6<490::AID-CBIC490>3.0.CO;2-N – ident: ref39/cit39 doi: 10.1016/j.chembiol.2011.11.013 – ident: ref23/cit23 doi: 10.1038/nchembio.1883 – ident: ref41/cit41 doi: 10.1021/bi9719861 – ident: ref11/cit11 doi: 10.1039/c2np20025b – ident: ref4/cit4 doi: 10.1146/annurev.micro.58.030603.123615 – ident: ref19/cit19 doi: 10.1021/bi9929002 – ident: ref45/cit45 doi: 10.1107/S0907444909038360 – ident: ref1/cit1 doi: 10.1021/cr0503097 – ident: ref47/cit47 – ident: ref21/cit21 doi: 10.1038/nsb810 – ident: ref25/cit25 doi: 10.1038/nchem.2117 – ident: ref51/cit51 doi: 10.1073/pnas.85.12.4133 – ident: ref34/cit34 doi: 10.1021/bi300112e – ident: ref40/cit40 doi: 10.1016/j.chembiol.2009.02.009 – ident: ref27/cit27 doi: 10.1093/emboj/16.14.4174 – ident: ref48/cit48 doi: 10.1021/ci200227u – ident: ref2/cit2 doi: 10.1016/j.sbi.2010.01.009 – ident: ref35/cit35 doi: 10.1016/j.str.2007.05.008 – ident: ref56/cit56 doi: 10.1016/j.chembiol.2005.08.010 – ident: ref13/cit13 doi: 10.1007/s00253-014-5726-3 – ident: ref38/cit38 doi: 10.1073/pnas.0404932101 – ident: ref22/cit22 doi: 10.1107/S1399004714004398 – ident: ref26/cit26 doi: 10.1039/C5NP00099H – ident: ref57/cit57 doi: 10.1186/1471-2148-7-78 – ident: ref31/cit31 doi: 10.1126/science.1159850 – ident: ref53/cit53 doi: 10.1039/b904543k – ident: ref7/cit7 doi: 10.1146/annurev.micro.58.030603.123811 – ident: ref30/cit30 doi: 10.1002/prot.24485 – ident: ref29/cit29 doi: 10.1021/bi010355a – ident: ref37/cit37 doi: 10.1038/nature16503 – ident: ref24/cit24 doi: 10.1016/j.sbi.2010.01.009 – ident: ref55/cit55 doi: 10.1016/j.chembiol.2006.02.005 – ident: ref42/cit42 doi: 10.1107/S0907444909047337 – ident: ref16/cit16 doi: 10.1021/bi9929002 – ident: ref14/cit14 doi: 10.1007/s00018-010-0571-8 – ident: ref9/cit9 doi: 10.1021/cr960029e – ident: ref15/cit15 doi: 10.1021/bi011595t – ident: ref36/cit36 doi: 10.1038/nature16163 – ident: ref33/cit33 doi: 10.1016/j.chembiol.2011.11.013 – ident: ref54/cit54 doi: 10.1016/j.jmb.2007.05.022 – ident: ref3/cit3 doi: 10.1039/b805115c – ident: ref17/cit17 doi: 10.1021/ar000056y – ident: ref6/cit6 doi: 10.1038/35021219 – volume: 171 start-page: 5422 year: 1989 ident: ref8/cit8 publication-title: J. Bacteriol. doi: 10.1128/jb.171.10.5422-5429.1989 – ident: ref12/cit12 doi: 10.1007/s002530051432 – ident: ref28/cit28 doi: 10.1126/science.1122928 – ident: ref46/cit46 doi: 10.1107/S0907444904019158 – ident: ref20/cit20 doi: 10.1021/bi000768w – ident: ref52/cit52 doi: 10.1093/jb/mvg209 – ident: ref18/cit18 doi: 10.1021/ja0166646 – ident: ref44/cit44 doi: 10.1107/S0907444909052925 – ident: ref43/cit43 doi: 10.1107/S0907444910045749 |
SSID | ssj0043689 |
Score | 2.3817272 |
Snippet | Nonribosomal peptide synthetases are large, complex multidomain enzymes responsible for the biosynthesis of a wide range of peptidic natural products. Inherent... |
SourceID | osti proquest pubmed crossref acs |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2293 |
SubjectTerms | BASIC BIOLOGICAL SCIENCES Catalytic Domain Chemical structure Crystal structure Crystallography, X-Ray Diketopiperazines - chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Interfaces Isomerism Monomers Mutagenesis, Site-Directed Peptide Synthases - chemistry Peptide Synthases - genetics Peptide Synthases - metabolism Peptides and proteins Protein Conformation |
Title | Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases |
URI | http://dx.doi.org/10.1021/acschembio.6b00332 https://www.ncbi.nlm.nih.gov/pubmed/27294598 https://www.proquest.com/docview/1812889791 https://www.osti.gov/servlets/purl/1328050 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZhe2gvfT-2aYsKhR5ab62npWPYJg2FhEIa2JsZPQxLdu2Q9R6aX5-RH2lLm5CLwZbHtuSR5huN9A0hH6QDw73WWeWCRQdFyMxFyLMcBSw4oU1I8x1Hx_rwVH5fqMUO-XxDBJ-zL-DRzYtrt2xmOumgwAH3HtemSK7W3vxkHHcTlbrt2FGVzAxa_WGLzP-fkYyR3_xljCYNdqqbgWZncA4ekaNx206_zuRstm3dzF_-y-J4p7o8Jg8H5En3elV5QnZi_ZTcn48J356RVTc7GJo1LGsKdaDd-boJ21Wkf-7ZpFi-f75MsZ7hwtdeKFFd9Rkn6HFTXyxds8GCFf2Rls6ESE9-1Yg3WzScm-fk9GD_5_wwG5IxZCAL22aMozVFF1bJ6KtQGYM4MCBWBKaDZJGDitqwqHLIBSAsK6KIwnHQVlSCBy1ekEnd1PEVoQq1I-JQ4EB7CboAqCrwSoAPJrfRTclHbKhy6EybsouTc1b-br1yaL0pYeP_K_3AaZ5Sa6xulfl0LXPeM3rcevduUosS8Ugi1fVp9ZFvS_ThTa7yKXk_akuJPyvFWqCOzRa_GYGTMbawbEpe9mp0_TaODo1U1ry-cz13yQMEajrNZTP7hkzai218i2Code-6PoDHbwt2BaP8CXE |
linkProvider | American Chemical Society |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6V5VAuvB9LeRgJxAFlG9uJ1z5wqLattrRdIbWVegt-RVqxm1RNVqj8Hf4KP4xxkt0CgopLJY5xMo7tmbG_scczAK8ToyWzQkS5cQoNFJ5Exus4ipFAacOFdGG_43AixifJh9P0dA2-Le_CYCMqrKlqDvEvowvQTSzDXszNtByIIIqcdZ6U-_7iC9pp1fu9bWTqG8Z2d45H46hLJRDpZKjqiDJcC9AASxNvc5dLiSjGIdLRVLiEeqZTLyT1aaxjrhFUDD333DAtFM85c4JjvTfgJqIfFiy8rdHRcroPEdxVE5Q1TSKJYKO7mfPnNoc10Fa_rIG9EnX57_i2Wed278D31Qg17i2fB4vaDOzX34JH_udDeBdudzibbLWKcQ_WfHEf1kfL9HYPYNbshbpyrqcF0YUjzfO8dIuZJz_fUCX4fudsGk62uoLtligE9mrza5BJWZxPTVnhixn5GByFnCdHFwWi6xphQvUQTq6ls4-gV5SFfwIkRV3wOPEZLWyixVDrPNc25do6GStv-vAWGZN1U0eVNV4BjGaX3Mo6bvWBLsUms10E95BIZHYlzbsVzVkbv-TKrzeCNGaIvkIIYRt8rWydUc5knMZ9eLUU0gyZFU6WdOHLBbYZYaKUaqhoHx630rv6G0PzLUmVfPrP_XwJ6-Pjw4PsYG-yvwG3EKKKsItP1TPo1ecL_xxhYG1eNGpI4NN1C-0PJLZqOA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lj9MwEB4tRQIuvB9leRgJxAGlxHbi2gcOq3arXRaqlZaV9hb8ilTRJtUmFVr-EH-Fn8U4SctDsOKyB45xYsf2zHi-scczAM8ToyWzQkS5cQoNFJ5Exus4irGC0oYL6cJ-x_up2DtO3p6kJ1vwdX0XBjtRYUtVc4gfpHrp8i7CAH2N5TiShZmVAxHYkbPOm_LAn31GW616sz9Gwr5gbLL7YbQXdekEIp0MVR1RhvoAjbA08TZ3uZSIZByiHU2FS6hnOvVCUp_GOuYagcXQc88N00LxnDMnOLZ7CS6Hc8Jg5e2MjtZLfojirprArGkSSQQc3e2cP_c56EFb_aIHeyXK898xbqPrJjfg22aWGheXT4NVbQb2y28BJP-DabwJ1zu8TXZaAbkFW764DVdH6zR3d2De7Im6cqFnBdGFI83zonSruSc_31Ql-H53OQsnXF3BuK0UAny1eTbItCxOZ6as8MWcHAaHIefJ0VmBKLtGuFDdheMLGew96BVl4R8ASVEmPC6ARgubaDHUOs-1Tbm2TsbKmz68RMJk3RJSZY13AKPZD2plHbX6QNesk9kukntIKDI_t86rTZ1lG8fk3K-3A0dmiMJCKGEbfK5snVHOZJzGfXi2ZtQMiRVOmHThyxX2GeGilGqoaB_utxy8-RtDMy5JlXz4z-N8ClcOx5Ps3f70YBuuIVIVYTOfqkfQq09X_jGiwdo8aSSRwMeL5tnv8Fhsuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interdomain+and+Intermodule+Organization+in+Epimerization+Domain+Containing+Nonribosomal+Peptide+Synthetases&rft.jtitle=ACS+chemical+biology&rft.au=Chen%2C+Wei-Hung&rft.au=Li%2C+Kunhua&rft.au=Guntaka%2C+Naga+Sandhya&rft.au=Bruner%2C+Steven+D.&rft.date=2016-08-19&rft.issn=1554-8929&rft.eissn=1554-8937&rft.volume=11&rft.issue=8&rft.spage=2293&rft.epage=2303&rft_id=info:doi/10.1021%2Facschembio.6b00332&rft.externalDBID=n%2Fa&rft.externalDocID=10_1021_acschembio_6b00332 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1554-8929&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1554-8929&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1554-8929&client=summon |