An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA

Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered “molecular wear-and-tear”,...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 59; no. 39; pp. 3683 - 3695
Main Authors Zhang, Tianze, Hansen, Kjetil, Politis, Argyris, Müller, Manuel M
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 06.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered “molecular wear-and-tear”, destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to “mature” via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
AbstractList Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered “molecular wear-and-tear”, destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to “mature” via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered "molecular wear-and-tear", destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here, we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAsp-containing hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to "mature" via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer, isoaspartate (isoAsp), on time scales ranging from days to centuries. Such modifications are typically considered “molecular wear-and-tear”, destroying protein function. However, the observation that some proteins, including the essential bacterial enzyme MurA, harbor stoichiometric amounts of isoAsp suggests that this modification can confer advantageous properties. Here we demonstrate that nature exploits an isoAsp residue within a hairpin to stabilize MurA. We found that isoAsp formation in MurA is unusually rapid and critically dependent on folding status. Moreover, perturbation of the isoAspcontaining hairpin via site-directed mutagenesis causes aggregation of MurA variants. Structural mass spectrometry revealed that this effect is caused by local protein unfolding in MurA mutants. Our findings demonstrate that MurA evolved to “mature” via a spontaneous post-translational incorporation of a β-amino acid, which raises the possibility that isoAsp-containing hairpins may serve as a structural motif of biological importance.
Author Hansen, Kjetil
Politis, Argyris
Müller, Manuel M
Zhang, Tianze
AuthorAffiliation Department of Chemistry
AuthorAffiliation_xml – name: Department of Chemistry
Author_xml – sequence: 1
  givenname: Tianze
  surname: Zhang
  fullname: Zhang, Tianze
– sequence: 2
  givenname: Kjetil
  orcidid: 0000-0002-0085-8440
  surname: Hansen
  fullname: Hansen, Kjetil
– sequence: 3
  givenname: Argyris
  orcidid: 0000-0002-6658-3224
  surname: Politis
  fullname: Politis, Argyris
– sequence: 4
  givenname: Manuel M
  orcidid: 0000-0001-6701-0893
  surname: Müller
  fullname: Müller, Manuel M
  email: manuel.muller@kcl.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32930597$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1vFCEYhYmpsdvqLzAxc-nNbIHha25M1mb9SGo0Wq8Jw7zjUmdgBabJ9tfLumujXtgrIO85hwPPGTrxwQNCzwleEkzJhbFp2blgNzAtscWYY_oILQinuGZty0_QAmMsatoKfIrOUropR4Yle4JOG9o2mLdygfTKV1_9nGYzjrvqs9m6vvoUQwbnq9fGfu_KndWH0LvBWZNd8NWXbDo3ujtIVd5AtU4JfHZm3MszxP1u7e92U7HNcfUUPR7MmODZcT1H12_W15fv6quPb99frq5qw6TKddf1QwO054oBMYKDoIxbxQ1XnSRKKgxCUiIb3tgeAIuBiL5ppeoH2RloztGrQ-x27ibobakUzai30U0m7nQwTv898W6jv4VbLQVhUqgS8PIYEMOPGVLWk0sWxtF4CHPSlBNCpGgJe1jKGFWMKcWL9MWfte77_P7_ImgOAhtDShGGewnBek9ZF8r6SFkfKRdX-4_LuvyLTnmbGx_wXhy8--FNmKMvWP7r-AmKHcIb
CitedBy_id crossref_primary_10_1002_anie_202500983
crossref_primary_10_1021_jacs_4c14136
crossref_primary_10_1021_acs_biochem_2c00656
crossref_primary_10_1002_ange_202500983
crossref_primary_10_1016_j_bpj_2021_07_014
crossref_primary_10_1111_1751_7915_13937
crossref_primary_10_1007_s11095_024_03726_x
crossref_primary_10_1002_ijch_202400006
Cites_doi 10.1039/C0CS00113A
10.1021/bi982929q
10.1128/JB.177.14.4194-4197.1995
10.1523/JNEUROSCI.18-06-02063.1998
10.1128/JB.181.9.2872-2877.1999
10.1021/ac901154s
10.1002/(SICI)1097-0134(20000801)40:2<290::AID-PROT90>3.0.CO;2-0
10.1074/jbc.M604812200
10.1073/pnas.84.9.2595
10.1016/S0021-9258(18)45619-0
10.1038/srep33191
10.1038/s41467-018-06704-1
10.1021/ja306311r
10.1006/abio.2000.4601
10.1007/s11095-009-0045-6
10.1073/pnas.0801135105
10.1073/pnas.082102799
10.1021/ja405422v
10.1007/s00018-003-2287-5
10.1073/pnas.98.3.944
10.1016/j.pbiomolbio.2014.02.004
10.2210/pdb5WI5/pdb
10.1074/jbc.274.32.22321
10.1038/s41467-019-09251-5
10.1002/anie.201400945
10.1021/acs.biochem.7b00861
10.1016/B978-0-12-382219-2.00288-X
10.1016/0003-2697(79)90115-5
10.1002/pro.2208
10.1016/S0092-8674(02)00972-8
10.1007/s004320050261
10.1038/s41467-019-11183-z
10.1021/bi00067a022
10.1074/jbc.M100987200
10.1107/S1744309112006720
10.1098/rsif.2006.0203
10.1021/jacs.9b07396
10.1248/bpb.28.1590
10.2210/pdb3SG1/pdb
10.1002/cbic.201700580
10.1038/s41598-019-54918-0
10.1021/acs.accounts.8b00048
10.1155/2016/5358272
10.1021/jacs.6b12866
10.1126/sciadv.1601386
10.1006/jmbi.2001.5095
10.1021/ja003689g
10.1038/s41592-019-0459-y
10.1146/annurev.biochem.67.1.509
10.1021/jacs.6b01454
10.1021/ja026114n
10.1002/cbdv.200490087
10.1006/abbi.2000.1955
10.1093/bioinformatics/btz022
10.1038/ncomms1933
10.1021/js9802493
10.1016/0003-2697(91)90553-6
10.1021/ar960298r
10.1038/ncomms12798
10.1016/S0960-894X(99)00121-3
10.1039/a804532a
10.1002/prot.21959
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.biochem.0c00502
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 3695
ExternalDocumentID PMC7614768
32930597
10_1021_acs_biochem_0c00502
h57242824
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  grantid: 202250/Z/16/Z
– fundername: Wellcome Trust
  grantid: 202250
GroupedDBID -
.K2
02
23N
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a478t-bbdf3e2d584e1a65e6245c85a58b718780e67217353cdee06f16d3978df7bae3
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:36:44 EDT 2025
Fri Jul 11 03:36:28 EDT 2025
Fri Jul 11 06:53:18 EDT 2025
Mon Jul 21 06:04:55 EDT 2025
Tue Jul 01 04:09:34 EDT 2025
Thu Apr 24 22:57:11 EDT 2025
Tue Nov 24 15:57:34 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
License http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a478t-bbdf3e2d584e1a65e6245c85a58b718780e67217353cdee06f16d3978df7bae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0085-8440
0000-0002-6658-3224
0000-0001-6701-0893
OpenAccessLink https://pubs.acs.org/doi/pdf/10.1021/acs.biochem.0c00502
PMID 32930597
PQID 2442844885
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614768
proquest_miscellaneous_2511176914
proquest_miscellaneous_2442844885
pubmed_primary_32930597
crossref_primary_10_1021_acs_biochem_0c00502
crossref_citationtrail_10_1021_acs_biochem_0c00502
acs_journals_10_1021_acs_biochem_0c00502
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-06
PublicationDateYYYYMMDD 2020-10-06
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref34/cit34
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref17/cit17
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
Fersht A. (ref32/cit32) 1999
ref46/cit46
ref49/cit49
Johnson B. A. (ref12/cit12) 1987; 262
ref13/cit13
ref61/cit61
ref24/cit24
ref38/cit38
ref50/cit50
ref64/cit64
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref11/cit11
ref25/cit25
ref29/cit29
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref51/cit51
ref43/cit43
ref28/cit28
ref40/cit40
ref26/cit26
ref55/cit55
ref15/cit15
ref62/cit62
ref41/cit41
ref58/cit58
ref22/cit22
Robinson N. E. (ref2/cit2) 2004
ref33/cit33
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref7/cit7
References_xml – ident: ref34/cit34
  doi: 10.1039/C0CS00113A
– ident: ref54/cit54
  doi: 10.1021/bi982929q
– ident: ref24/cit24
  doi: 10.1128/JB.177.14.4194-4197.1995
– ident: ref14/cit14
  doi: 10.1523/JNEUROSCI.18-06-02063.1998
– ident: ref64/cit64
  doi: 10.1128/JB.181.9.2872-2877.1999
– ident: ref33/cit33
  doi: 10.1021/ac901154s
– ident: ref3/cit3
  doi: 10.1002/(SICI)1097-0134(20000801)40:2<290::AID-PROT90>3.0.CO;2-0
– ident: ref61/cit61
  doi: 10.1074/jbc.M604812200
– ident: ref11/cit11
  doi: 10.1073/pnas.84.9.2595
– volume: 262
  start-page: 5622
  year: 1987
  ident: ref12/cit12
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)45619-0
– ident: ref41/cit41
  doi: 10.1038/srep33191
– ident: ref35/cit35
  doi: 10.1038/s41467-018-06704-1
– ident: ref47/cit47
  doi: 10.1021/ja306311r
– ident: ref21/cit21
  doi: 10.1006/abio.2000.4601
– ident: ref38/cit38
  doi: 10.1007/s11095-009-0045-6
– ident: ref46/cit46
  doi: 10.1073/pnas.0801135105
– ident: ref28/cit28
  doi: 10.1073/pnas.082102799
– ident: ref45/cit45
  doi: 10.1021/ja405422v
– ident: ref1/cit1
  doi: 10.1007/s00018-003-2287-5
– ident: ref4/cit4
  doi: 10.1073/pnas.98.3.944
– ident: ref10/cit10
  doi: 10.1016/j.pbiomolbio.2014.02.004
– ident: ref20/cit20
  doi: 10.2210/pdb5WI5/pdb
– ident: ref37/cit37
  doi: 10.1074/jbc.274.32.22321
– ident: ref62/cit62
  doi: 10.1038/s41467-019-09251-5
– ident: ref51/cit51
  doi: 10.1002/anie.201400945
– ident: ref36/cit36
  doi: 10.1021/acs.biochem.7b00861
– ident: ref29/cit29
  doi: 10.1016/B978-0-12-382219-2.00288-X
– ident: ref30/cit30
  doi: 10.1016/0003-2697(79)90115-5
– ident: ref48/cit48
  doi: 10.1002/pro.2208
– ident: ref59/cit59
  doi: 10.1016/S0092-8674(02)00972-8
– ident: ref63/cit63
  doi: 10.1007/s004320050261
– ident: ref9/cit9
  doi: 10.1038/s41467-019-11183-z
– ident: ref31/cit31
  doi: 10.1021/bi00067a022
– ident: ref13/cit13
  doi: 10.1074/jbc.M100987200
– ident: ref27/cit27
  doi: 10.1107/S1744309112006720
– ident: ref42/cit42
  doi: 10.1098/rsif.2006.0203
– ident: ref57/cit57
  doi: 10.1021/jacs.9b07396
– ident: ref6/cit6
  doi: 10.1248/bpb.28.1590
– ident: ref18/cit18
  doi: 10.2210/pdb3SG1/pdb
– ident: ref52/cit52
  doi: 10.1002/cbic.201700580
– volume-title: Molecular clocks: deamidation of asparaginyl and glutaminyl residues in peptides and proteins
  year: 2004
  ident: ref2/cit2
– ident: ref39/cit39
  doi: 10.1038/s41598-019-54918-0
– ident: ref43/cit43
  doi: 10.1021/acs.accounts.8b00048
– ident: ref40/cit40
  doi: 10.1155/2016/5358272
– ident: ref58/cit58
  doi: 10.1021/jacs.6b12866
– ident: ref56/cit56
  doi: 10.1126/sciadv.1601386
– ident: ref26/cit26
  doi: 10.1006/jmbi.2001.5095
– ident: ref50/cit50
  doi: 10.1021/ja003689g
– ident: ref22/cit22
  doi: 10.1038/s41592-019-0459-y
– ident: ref53/cit53
  doi: 10.1146/annurev.biochem.67.1.509
– volume-title: Structure And Mechanism in Protein Science
  year: 1999
  ident: ref32/cit32
– ident: ref44/cit44
  doi: 10.1021/jacs.6b01454
– ident: ref49/cit49
  doi: 10.1021/ja026114n
– ident: ref16/cit16
  doi: 10.1002/cbdv.200490087
– ident: ref8/cit8
  doi: 10.1006/abbi.2000.1955
– ident: ref23/cit23
  doi: 10.1093/bioinformatics/btz022
– ident: ref60/cit60
  doi: 10.1038/ncomms1933
– ident: ref5/cit5
  doi: 10.1021/js9802493
– ident: ref25/cit25
  doi: 10.1016/0003-2697(91)90553-6
– ident: ref17/cit17
  doi: 10.1021/ar960298r
– ident: ref55/cit55
  doi: 10.1038/ncomms12798
– ident: ref7/cit7
  doi: 10.1016/S0960-894X(99)00121-3
– ident: ref15/cit15
  doi: 10.1039/a804532a
– ident: ref19/cit19
  doi: 10.1002/prot.21959
SSID ssj0004074
Score 2.3791986
Snippet Proteins are subject to spontaneous rearrangements of their backbones. Most prominently, asparagine and aspartate residues isomerize to their β-linked isomer,...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3683
SubjectTerms Alkyl and Aryl Transferases - chemistry
asparagine
aspartic acid
bacterial enzymes
Bacterial Proteins - chemistry
Enterobacter cloacae - chemistry
Enterobacter cloacae - enzymology
Enzyme Stability
Isoaspartic Acid - chemistry
Isomerism
isomers
mass spectrometry
Models, Molecular
mutants
Protein Aggregates
Protein Conformation
Protein Folding
protein unfolding
proteins
site-directed mutagenesis
stoichiometry
Title An Unusually Rapid Protein Backbone Modification Stabilizes the Essential Bacterial Enzyme MurA
URI http://dx.doi.org/10.1021/acs.biochem.0c00502
https://www.ncbi.nlm.nih.gov/pubmed/32930597
https://www.proquest.com/docview/2442844885
https://www.proquest.com/docview/2511176914
https://pubmed.ncbi.nlm.nih.gov/PMC7614768
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELcm9rC9jA32UdiQJ03THpYuseOPPGZVEZoEmjaQeIv8Fa2idRFJHtq_nnOadBRQxWtiJ_H5nPudffc7hL4YoqlLaBqVisVR6jiNMidtBNBalkKYjGchUfj0jJ9cpL8u2eWdZPV7J_gk-aFMNdSTUD5qNoxN4CuBP-5zwqUIvlY--vs_DTLuSJfBSSaAzHuSoccfEsyRqTbN0QOMeT9U8o7tOd5FZ30Gzyrk5GrY1Hpolg8JHZ82rNfoVYdCcb5SmzfomfN7aD_34IHPFvgrbuNC2w33PfRi1NeE20dF7vGFb6pGTacL_EddTyz-HZgeJh7_VOZKz73Dp3Mb4o_aKccAZkP47dJVGKAmHlch2Ql0PjSvW-3HY79czKBbc5O_RefH4_PRSdSVaIhUKmQdaW1L6ogFGOMSxZnjJGVGMsWkBqsnZOw4-JiCMmqsczEvE24BAklbCq0cfYd2PHzZB4Sl1YQkqRXgf6UZNYolWpQZU0bbUCJogL6ByIpuhVVFe3hOkiJc7ORYdHIcINLPaWE6pvNQcGO6vdP3dafrFdHH9uafe2UpYA7CKYvybt5UBeAlMPnwX2Rb2gDMTQTPknSA3q8UbP1SCgAMBiwGSGyo3rpBIATfvOMn_1picAFYC9zHg6eL6hC9JGEDIURE8I9op75p3CdAWbU-atfWLWIYJTk
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbQclguPHZ5lKeREOJAuokT28mxVF0V2K4QtNLeIr8iqm3d1SY5tL-emTTt0gVVcHVsx4-x_Y098w0h7wzTsYviJCgUD4PEiTjIXGoDgNZpIaXJRIaOwqNzMZwkXy74ResUhr4w0IgSaiqbR_wbdoHoBNP0FKNIzbuhQdoS2HjvAhxhqHL1-j9uvCHDlnsZdGUGAH3DNfT3SvBUMuXuqfQH1LxtMfnbEXT6gEy2jW8sTy67daW7ZnWL1_F_e_eQ3G8xKe2thegRueP8ETnuedDH50v6njZWos31-xE57G8ixB2TvOfpxNdlrWazJf2urqaWfkPeh6mnn5S51Avv6Ghh0RqpEQAK0BaNcVeupAA86aBE1ydYAZi9atYCHfjVcg7F6uveYzI-HYz7w6AN2BCoRKZVoLUtYscsgBoXKcGdYAk3KVc81XAGyjR0AjROGfPYWOdCUUTCAiBKbSG1cvETcuChZc8ITa1mLEqsBG0syWKjeKRlkXFltMWAQR3yAYYsb9dbmTdP6SzKMbEdx7wdxw5hm6nNTct7juE3ZvsLfdwWulrTfuzP_nYjMznMAb65KO8WdZkDegIAALsk35MHQG8kRRYlHfJ0LWfbn8YAx6DDskPkjgRuMyA9-O4XP_3Z0IRLQF6gTD7_96F6Qw6H49FZfvb5_OsLco_h1QLaSoiX5KC6rt0rwF-Vft0st19C5C2a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLamIQEvDDYuHTcjIcQD6XKznTyG0mpcNk2wSeMp8i2iWutWS_LQ_nrOSZNCB6oQr47t-HKO_R37-DuEvNahimwQxV4hme_FlkdeahPjAbROCiF0ylN8KHxyyo8v4k-X7HKHJN1bGGhECTWVzSU-avXcFC3DQHCE6WqMkaSmfV8jdQksvrfw4g7Nrmzw7deLSL_lXwZ7OQSQ3vEN_b0S3Jl0ubkz_QE3b3pN_rYNjfbI93UHGu-Tq35dqb5e3uB2_J8e3if3WmxKs5UwPSA71u2Tg8yBXT5d0De08RZtjuH3yZ1BFynugOSZoxeuLms5mSzoVzkfG3qG_A9jR99LfaVmztKTmUGvpEYQKEBcdMpd2pICAKXDEp9AgSZg9qrRCTp0y8UUitXX2UNyPhqeD469NnCDJ2ORVJ5SpohsaADc2EByZnkYM50wyRIFe6FIfMvB8hQRi7Sx1udFwA0Ao8QUQkkbPSK7Dlr2hNDEqDAMYiPAKovTSEsWKFGkTGplMHBQj7yFIctbvSvz5ko9DHJMbMcxb8exR8JuenPd8p9jGI7J9kLv1oXmK_qP7dlfdXKTwxzg3Yt0dlaXOaAoAAKwWrIteQD8BoKnQdwjj1eytv5pBLAMOix6RGxI4ToD0oRvfnHjHw1duAAEBkbl4b8P1Uty--zDKP_y8fTzU3I3xBMGdJngz8hudV3b5wDDKvWi0bifzw8wHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Unusually+Rapid+Protein+Backbone+Modification+Stabilizes+the+Essential+Bacterial+Enzyme+MurA&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Zhang%2C+Tianze&rft.au=Hansen%2C+Kjetil&rft.au=Politis%2C+Argyris&rft.au=M%C3%BCller%2C+Manuel+M&rft.date=2020-10-06&rft.issn=1520-4995&rft.eissn=1520-4995&rft.volume=59&rft.issue=39&rft.spage=3683&rft_id=info:doi/10.1021%2Facs.biochem.0c00502&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon