Global Profiling of Cellular Substrates of Human Dcp2

Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mappe...

Full description

Saved in:
Bibliographic Details
Published inBiochemistry (Easton) Vol. 59; no. 43; pp. 4176 - 4188
Main Authors Luo, Yang, Schofield, Jeremy A, Simon, Matthew D, Slavoff, Sarah A
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 03.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
AbstractList Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m⁶A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remain incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay, and that modification with m 6 A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of distinct subsets of cellular transcripts. However, the complete set of RNAs regulated by any individual decapping enzyme remains incompletely mapped, and no consensus sequence or property is currently known to unambiguously predict decapping enzyme substrates. Dcp2 was the first-identified and best-studied eukaryotic decapping enzyme, but it has been shown to regulate the stability of <400 transcripts in mammalian cells to date. Here, we globally profile changes in the stability of the human transcriptome in Dcp2 knockout cells via TimeLapse-seq. We find that P-body enrichment is the strongest correlate of Dcp2-dependent decay and that modification with m6A exhibits an additive effect with P-body enrichment for Dcp2 targeting. These results are consistent with a model in which P-bodies represent sites where translationally repressed transcripts are sorted for decay by soluble cytoplasmic decay complexes through additional molecular marks.
Author Schofield, Jeremy A
Luo, Yang
Slavoff, Sarah A
Simon, Matthew D
AuthorAffiliation Department of Chemistry
Chemical Biology Institute
Department of Molecular Biophysics and Biochemistry
AuthorAffiliation_xml – name: Chemical Biology Institute
– name: Department of Molecular Biophysics and Biochemistry
– name: Department of Chemistry
– name: Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06529, United States
– name: Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
– name: Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-8709-0103
  surname: Luo
  fullname: Luo, Yang
  organization: Chemical Biology Institute
– sequence: 2
  givenname: Jeremy A
  surname: Schofield
  fullname: Schofield, Jeremy A
  organization: Department of Molecular Biophysics and Biochemistry
– sequence: 3
  givenname: Matthew D
  orcidid: 0000-0001-7423-5265
  surname: Simon
  fullname: Simon, Matthew D
  organization: Department of Molecular Biophysics and Biochemistry
– sequence: 4
  givenname: Sarah A
  orcidid: 0000-0002-4443-2070
  surname: Slavoff
  fullname: Slavoff, Sarah A
  email: sarah.slavoff@yale.edu
  organization: Department of Molecular Biophysics and Biochemistry
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32365300$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1P3DAQtSqqskB_ARLKkUuW8WfWFyS0baESUiu1nK2J1wEjJ17spFL_fR3tgkoP5eTxzHtPb-YdkYMhDo6QUwpLCoxeoM3L1kf74PolWABQ-h1ZUMmgFlrLA7KYezXTCg7JUc6P5SugER_IIWdcSQ6wIPI6xBZD9T3Fzgc_3Fexq9YuhClgqn5MbR4Tji7P7Zupx6H6ZLfshLzvMGT3cf8ek7svn3-ub-rbb9df11e3NYpmNdYaVNPaxrrOSdUwFE5tWkTeKSil1CCFQhSrjm06qjVY2rIVt4BaStVazY_J5U53O7W921g3FDfBbJPvMf02Eb15PRn8g7mPv0yjBNVyFjjfC6T4NLk8mt5nW9bDwcUpGyYppU25Fn8byvVKCcGBFujZ37Ze_DyftQD4DmBTzDm57gVCwczhmRKe2Ydn9uEVlv6HZf2Io4_zbj68wb3YcefhY5zSUHL5L-MPbJeyXg
CitedBy_id crossref_primary_10_3389_fgene_2022_832547
crossref_primary_10_1111_dgd_12942
crossref_primary_10_15252_embj_2023113933
crossref_primary_10_3390_biology12020171
crossref_primary_10_1016_j_molcel_2024_10_033
crossref_primary_10_1261_rna_079451_122
crossref_primary_10_1016_j_chembiol_2020_12_003
crossref_primary_10_1093_bib_bbab219
crossref_primary_10_15252_embr_202050128
crossref_primary_10_1002_pmic_202100211
crossref_primary_10_1021_acschembio_2c00145
crossref_primary_10_1111_febs_15798
crossref_primary_10_1093_nar_gkad1251
crossref_primary_10_3390_cells13201689
crossref_primary_10_1093_nar_gkab1261
crossref_primary_10_1021_acs_biochem_0c00672
crossref_primary_10_1080_02648725_2023_2209409
crossref_primary_10_1242_jcs_259117
crossref_primary_10_1242_jcs_259156
crossref_primary_10_3390_ph17091195
crossref_primary_10_26508_lsa_202402938
Cites_doi 10.1038/s41556-018-0045-z
10.1126/science.1082320
10.1128/MCB.25.20.8779-8791.2005
10.1093/nar/gkp087
10.1128/MCB.00717-10
10.1038/nature12730
10.1093/nar/gkz633
10.1093/nar/gkw565
10.1038/nprot.2008.73
10.1016/j.tibs.2016.08.014
10.1038/nsmb.2381
10.1016/j.molcel.2017.09.003
10.7554/eLife.49708
10.1038/s41594-018-0164-z
10.1261/rna.2436411
10.1371/journal.pgen.1007806
10.1101/cshperspect.a012286
10.1016/j.molcel.2017.09.030
10.1038/ncomms12626
10.1016/j.bbagrm.2012.12.006
10.1016/j.cell.2016.08.053
10.1016/j.gde.2017.10.007
10.1016/j.molcel.2016.02.027
10.1016/j.molcel.2019.04.025
10.1016/j.molcel.2018.08.011
10.1101/gad.1424106
10.1128/MCB.22.23.8114-8121.2002
10.1038/nature08265
10.1021/acs.biochem.7b01162
10.1016/j.molcel.2006.10.013
10.1016/j.cell.2017.02.019
10.1128/MCB.01727-07
10.1261/rna.045302.114
10.1126/sciadv.1700006
10.1093/nar/gkw207
10.1038/nrg3160
10.1101/gad.1494707
10.7554/eLife.34409
10.1038/nprot.2013.143
10.1016/j.molcel.2010.10.010
10.7554/eLife.45396
10.1093/nar/gkx353
10.1016/j.molcel.2019.06.006
10.1016/j.molcel.2013.02.017
10.1038/cr.2017.15
10.1073/pnas.1412614111
10.1002/wrna.15
10.1038/nmeth.3047
10.1084/jem.20130736
10.1016/j.molcel.2019.02.034
10.1105/tpc.106.047605
10.1128/MCB.00128-07
10.1016/j.molcel.2017.10.015
10.1038/nrm4063
10.1016/S0076-6879(08)02617-7
10.1038/nbt.3269
10.1101/gad.209635.112
10.1038/nmeth.4582
10.1038/s41596-019-0128-8
10.1016/j.ymeth.2017.02.003
10.1016/j.cell.2005.07.012
10.1074/jbc.RA118.002243
10.1016/j.ymeth.2017.12.006
10.1126/science.aad0467
10.1073/pnas.192445599
10.18632/oncotarget.8736
10.1016/j.cell.2015.05.014
10.1038/cr.2017.10
10.1038/nature21022
10.1261/rna.045104.114
10.7554/eLife.03915
10.1038/nmeth.4502
10.1093/emboj/18.19.5411
10.1261/rna.055699.115
10.7554/eLife.32536
10.1002/wrna.40
10.1261/rna.2439811
10.1016/j.celrep.2015.09.033
10.1128/MCB.06328-11
10.1016/j.tig.2013.09.002
10.7554/eLife.05033
10.1016/j.molcel.2019.03.001
10.1016/j.tcb.2017.10.001
10.1038/nature17665
10.1016/j.cell.2012.05.003
10.1083/jcb.201007151
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
DOI 10.1021/acs.biochem.0c00069
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1520-4995
EndPage 4188
ExternalDocumentID PMC7641959
32365300
10_1021_acs_biochem_0c00069
a998718484
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: DP2 HD083992
– fundername: NIGMS NIH HHS
  grantid: R01 GM122984
GroupedDBID -
.K2
02
23N
55
55A
5GY
5RE
5VS
7~N
85S
AABXI
ABFLS
ABMVS
ABOCM
ABPTK
ABUCX
ABUFD
ACGFS
ACJ
ACNCT
ACS
AEESW
AENEX
AFEFF
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
D0L
DU5
DZ
EBS
ED
ED~
F5P
GNL
IH9
IHE
JG
JG~
K2
KM
L7B
LG6
P2P
ROL
TN5
UI2
VF5
VG9
VQA
W1F
WH7
X
X7M
YZZ
ZA5
---
-DZ
-~X
.55
4.4
53G
AAYXX
ABBLG
ABJNI
ABLBI
ABQRX
ADHLV
AGXLV
AHGAQ
CITATION
CUPRZ
GGK
XSW
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-a478t-9067bc7cefe5672a4e6dbaa3f604e6590546aa48f2df1990c1b283c0a9556bc93
IEDL.DBID ACS
ISSN 0006-2960
1520-4995
IngestDate Thu Aug 21 18:23:11 EDT 2025
Fri Jul 11 08:20:09 EDT 2025
Fri Jul 11 00:43:41 EDT 2025
Thu Apr 03 06:53:05 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Tue Jul 01 04:09:32 EDT 2025
Thu Nov 05 07:36:38 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a478t-9067bc7cefe5672a4e6dbaa3f604e6590546aa48f2df1990c1b283c0a9556bc93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Y.L. designed and performed experiments and data analysis and wrote the manuscript. J.A.S. performed the TimeLapse-seq experiment and data analysis and wrote the manuscript. M.D.S. and S.A.S conceived the project, designed experiments and edited the manuscript. All authors have given approval to the final version of the manuscript.
Author Contributions
These authors contributed equally
ORCID 0000-0002-8709-0103
0000-0001-7423-5265
0000-0002-4443-2070
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7641959
PMID 32365300
PQID 2398644301
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7641959
proquest_miscellaneous_2511179953
proquest_miscellaneous_2398644301
pubmed_primary_32365300
crossref_primary_10_1021_acs_biochem_0c00069
crossref_citationtrail_10_1021_acs_biochem_0c00069
acs_journals_10_1021_acs_biochem_0c00069
ProviderPackageCode JG~
55A
AABXI
GNL
VF5
7~N
ACJ
VG9
W1F
ACS
AEESW
AFEFF
.K2
ABMVS
ABUCX
IH9
BAANH
AQSVZ
ED~
UI2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-03
PublicationDateYYYYMMDD 2020-11-03
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-03
  day: 03
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biochemistry (Easton)
PublicationTitleAlternate Biochemistry
PublicationYear 2020
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref150/cit150
ref63/cit63
ref56/cit56
ref16/cit16
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref53/cit53
ref19/cit19
ref21/cit21
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref67/cit67
ref24/cit24
ref38/cit38
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref5/cit5
ref169/cit169
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref163/cit163
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref84/cit84
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref65/cit65
  doi: 10.1038/s41556-018-0045-z
– ident: ref72/cit72
  doi: 10.1126/science.1082320
– ident: ref21/cit21
  doi: 10.1128/MCB.25.20.8779-8791.2005
– ident: ref23/cit23
  doi: 10.1093/nar/gkp087
– ident: ref30/cit30
  doi: 10.1128/MCB.00717-10
– ident: ref32/cit32
  doi: 10.1038/nature12730
– ident: ref86/cit86
  doi: 10.1093/nar/gkz633
– ident: ref70/cit70
  doi: 10.1093/nar/gkw565
– ident: ref47/cit47
  doi: 10.1038/nprot.2008.73
– ident: ref27/cit27
  doi: 10.1016/j.tibs.2016.08.014
– ident: ref19/cit19
  doi: 10.1038/nsmb.2381
– ident: ref49/cit49
  doi: 10.1016/j.molcel.2017.09.003
– ident: ref75/cit75
  doi: 10.7554/eLife.49708
– ident: ref84/cit84
  doi: 10.1038/s41594-018-0164-z
– ident: ref44/cit44
  doi: 10.1261/rna.2436411
– ident: ref77/cit77
  doi: 10.1371/journal.pgen.1007806
– ident: ref68/cit68
  doi: 10.1101/cshperspect.a012286
– ident: ref29/cit29
  doi: 10.1016/j.molcel.2017.09.030
– ident: ref64/cit64
  doi: 10.1038/ncomms12626
– ident: ref24/cit24
  doi: 10.1016/j.bbagrm.2012.12.006
– ident: ref78/cit78
  doi: 10.1016/j.cell.2016.08.053
– ident: ref3/cit3
  doi: 10.1016/j.gde.2017.10.007
– ident: ref83/cit83
  doi: 10.1016/j.molcel.2016.02.027
– ident: ref25/cit25
  doi: 10.1016/j.molcel.2019.04.025
– ident: ref150/cit150
  doi: 10.1016/j.molcel.2018.08.011
– ident: ref13/cit13
  doi: 10.1101/gad.1424106
– ident: ref14/cit14
  doi: 10.1128/MCB.22.23.8114-8121.2002
– ident: ref48/cit48
  doi: 10.1038/nature08265
– ident: ref69/cit69
  doi: 10.1021/acs.biochem.7b01162
– ident: ref7/cit7
  doi: 10.1016/j.molcel.2006.10.013
– ident: ref20/cit20
  doi: 10.1016/j.cell.2017.02.019
– ident: ref22/cit22
  doi: 10.1128/MCB.01727-07
– ident: ref79/cit79
  doi: 10.1261/rna.045302.114
– ident: ref55/cit55
  doi: 10.1126/sciadv.1700006
– ident: ref57/cit57
  doi: 10.1093/nar/gkw207
– ident: ref2/cit2
  doi: 10.1038/nrg3160
– ident: ref31/cit31
  doi: 10.1101/gad.1494707
– ident: ref37/cit37
  doi: 10.7554/eLife.34409
– ident: ref43/cit43
  doi: 10.1038/nprot.2013.143
– ident: ref16/cit16
  doi: 10.1016/j.molcel.2010.10.010
– ident: ref52/cit52
  doi: 10.7554/eLife.45396
– ident: ref87/cit87
  doi: 10.1093/nar/gkx353
– ident: ref67/cit67
  doi: 10.1016/j.molcel.2019.06.006
– ident: ref18/cit18
  doi: 10.1016/j.molcel.2013.02.017
– ident: ref63/cit63
  doi: 10.1038/cr.2017.15
– ident: ref6/cit6
  doi: 10.1073/pnas.1412614111
– ident: ref9/cit9
  doi: 10.1002/wrna.15
– ident: ref42/cit42
  doi: 10.1038/nmeth.3047
– ident: ref62/cit62
  doi: 10.1084/jem.20130736
– ident: ref66/cit66
  doi: 10.1016/j.molcel.2019.02.034
– ident: ref12/cit12
  doi: 10.1105/tpc.106.047605
– ident: ref28/cit28
  doi: 10.1128/MCB.00128-07
– ident: ref34/cit34
  doi: 10.1016/j.molcel.2019.02.034
– ident: ref85/cit85
  doi: 10.1016/j.molcel.2017.10.015
– ident: ref1/cit1
  doi: 10.1038/nrm4063
– ident: ref45/cit45
  doi: 10.1016/S0076-6879(08)02617-7
– ident: ref53/cit53
  doi: 10.1038/nbt.3269
– ident: ref33/cit33
  doi: 10.1038/ncomms12626
– ident: ref46/cit46
  doi: 10.1101/gad.209635.112
– ident: ref40/cit40
  doi: 10.1038/nmeth.4582
– ident: ref56/cit56
  doi: 10.1038/s41596-019-0128-8
– ident: ref39/cit39
  doi: 10.1016/j.ymeth.2017.02.003
– ident: ref76/cit76
  doi: 10.1016/j.cell.2005.07.012
– ident: ref61/cit61
  doi: 10.1074/jbc.RA118.002243
– ident: ref38/cit38
  doi: 10.1016/j.ymeth.2017.12.006
– ident: ref5/cit5
  doi: 10.1126/science.aad0467
– ident: ref11/cit11
  doi: 10.1073/pnas.192445599
– ident: ref60/cit60
  doi: 10.18632/oncotarget.8736
– ident: ref35/cit35
  doi: 10.1016/j.cell.2015.05.014
– ident: ref36/cit36
  doi: 10.1038/cr.2017.10
– ident: ref41/cit41
  doi: 10.1038/nature21022
– ident: ref54/cit54
  doi: 10.1261/rna.045104.114
– ident: ref58/cit58
  doi: 10.7554/eLife.03915
– ident: ref73/cit73
  doi: 10.1038/nmeth.4502
– ident: ref10/cit10
  doi: 10.1093/emboj/18.19.5411
– ident: ref17/cit17
  doi: 10.1261/rna.055699.115
– ident: ref51/cit51
  doi: 10.7554/eLife.32536
– ident: ref8/cit8
  doi: 10.1002/wrna.40
– ident: ref15/cit15
  doi: 10.1261/rna.2439811
– ident: ref80/cit80
  doi: 10.1016/j.celrep.2015.09.033
– ident: ref4/cit4
  doi: 10.1128/MCB.06328-11
– ident: ref82/cit82
  doi: 10.1016/j.tig.2013.09.002
– ident: ref163/cit163
  doi: 10.7554/eLife.05033
– ident: ref71/cit71
  doi: 10.1128/MCB.00128-07
– ident: ref74/cit74
  doi: 10.1016/j.molcel.2019.03.001
– ident: ref26/cit26
  doi: 10.1016/j.tcb.2017.10.001
– ident: ref59/cit59
  doi: 10.1038/nature17665
– ident: ref169/cit169
  doi: 10.1016/j.cell.2012.05.003
– ident: ref81/cit81
  doi: 10.1083/jcb.201007151
SSID ssj0004074
Score 2.4502463
Snippet Decapping is the first committed step in 5′-to-3′ RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of...
Decapping is the first committed step in 5'-to-3' RNA decay, and in the cytoplasm of human cells, multiple decapping enzymes regulate the stabilities of...
SourceID pubmedcentral
proquest
pubmed
crossref
acs
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4176
SubjectTerms additive effect
Animals
cells
consensus sequence
cytoplasm
Cytoplasm - genetics
Cytoplasm - metabolism
deterioration
Endoribonucleases - genetics
Endoribonucleases - metabolism
enzyme substrates
enzymes
exhibitions
Humans
Models, Biological
RNA
RNA Stability - genetics
RNA Stability - physiology
transcriptome
Transcriptome - genetics
Transcriptome - physiology
translation (genetics)
Title Global Profiling of Cellular Substrates of Human Dcp2
URI http://dx.doi.org/10.1021/acs.biochem.0c00069
https://www.ncbi.nlm.nih.gov/pubmed/32365300
https://www.proquest.com/docview/2398644301
https://www.proquest.com/docview/2511179953
https://pubmed.ncbi.nlm.nih.gov/PMC7641959
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB219NBeaIF-LC3IlVDVQ7M4duIkx9UWhJBAlSgSt8h2bIFYsojsHtpfz4yTbFmoVtwix06Uydjz7Jl5A7BnjalwzbNRYriLCLBHeYFXCrG1rBx3vqBE4ZNTdXSeHF-kFw-S1R958EW8r20zNFdUPupmyC0tr8VLeCVUntFeazQ--5cGyTvSZdwkC0TmPcnQ_x9C5sg2y-boCcZ8HCr5wPYcvoXTPoOnDTm5Hs5nZmj_PiV0fN5nvYP1DoWyUas2G_DC1ZuwNapxB37zh31jIS40HLhvwutxXxNuC9K2RAD7FSp9o9VjU8_GbjKhYFZGi1Agu22oObgH2E97K97D-eHB7_FR1BVeiHSS5bOoQBNmbGadd6nKhE6cqozW0iuOl2mBME9pneReVD5Gc2ZjgyjFcl2kqTK2kB9grZ7W7hOwVBqvlFe50IKcqLpyivtYZpSSi2BsAN9REmU3cZoy-MRFXFJjJ56yE88ARP-rStsRmFMdjcnqQT8Wg25b_o7V3b_2OlCiaMl5oms3nTcl8SQidsT1cEUfRK-BYU8O4GOrN4uXSiFVKjkfQLakUYsOxPO9fKe-ugx835lKiAJo-_mi-gxvBJ0L0PG3_AJrs7u520HwNDO7YcrcAw0CFVQ
linkProvider American Chemical Society
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NbtQwEB5V5VAuFFp-thQwEiAOZHGcxNkcOKy2VFv6IyRaqbdgO7ZadZutSFZVeR5ehfdixpts2YJWXCpxixwnccaTmc-Z8TcAr4zWBdo8E8Sa24AAe9DL8Egito4Ky63LaKPw_oEcHsWfjpPjJfjR7oXBQVR4p8oH8a_ZBcL31KZPqYrUeZcbsrJZk0q5a68ucaFWfdjZwll9LcT2x8PBMGhqCQQqTnt1kKFV1iY11tlEpkLFVhZaqchJjodJhshFKhX3nChciBbahBodr-EqSxKpDVEuoaG_g_BH0BKvP_hyvfuSN1zPuDYXuCBouY3-Pmjygqaa94J_QNubGZq_ubztVfg5E5bPdDnrTmrdNd9v8Ej-79K8D_cazM3604_kASzZcg3W-6Wqx-dX7A3zWbA-vLAGK4O2At46JNOCCOyzr2uOPp6NHRvY0YhSdxmZXE_tW1GzD4awLXMhHsLRrbzMI1gux6V9AiyJtJPSyZ5QgkLGqrCSuzBKaQMyQs8OvEXJ542ZqHKfASDCnBqb6cib6eiAaDUkNw1dO1UNGS2-6N3soospW8ni7i9b1ctRtBQqUqUdT6qcWCERKaP1X9AHsbrnE4w68HiqrrOHRiKSScR5B9I5RZ51IFbz-TPl6YlnN09lTIRHG_8uqhewMjzc38v3dg52n8JdQX9E6Md_tAnL9beJfYawsdbP_VfL4OttK_YvZ9F4TQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRQIuPFoeSwsYCRAHsiRO4mwOHFa7rFoKVSWo1FtqO7ao2GZXJKuq_CL-Sv8VM15nYQtacemBW-Q4r_F45nNm_A3Ac61UiTZPB4kKTUCAPejleCQQW8elCY3NaaPwx32xc5i8P0qP1uBHuxcGX6LGO9UuiE-zelpazzAQvaF2dUKVpE67oSZLm_t0yj1zfoaLtfrt7hBH9gXno3efBzuBrycQyCTrNUGOllnpTBtrUpFxmRhRKiljK0I8THNEL0LKpGd5aSO00jpS6Hx1KPM0FUoT7RIa-2sUKKRlXn_w6dcOzNDzPeP6nOOioOU3-vtLkyfU9bIn_APeXs7S_M3tjW7DxUJgLtvla3fWqK7-folL8n-Q6B245bE3688ny11YM9UGbPYr2UxOz9lL5rJhXZhhA24M2kp4m5DOCyOwA1ffHH09m1g2MOMxpfAyMr2O4remZhcUYUM95ffg8Eo-5j6sV5PKPASWxsoKYUWPS06hY1kaEdoozmgjMkLQDrxCyRfeXNSFywTgUUGNfjgKPxwd4K2WFNrTtlP1kPHqi14vLprOWUtWd3_Wql-BoqWQkazMZFYXxA6JiBm9wIo-iNkdr2DcgQdzlV08NOaxSOMw7EC2pMyLDsRuvnymOvniWM4zkRDx0aN_F9VTuH4wHBUfdvf3tuAmpx8j9P8_3ob15tvMPEb02KgnbuIyOL5qvf4JrtJ60A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Global+Profiling+of+Cellular+Substrates+of+Human+Dcp2&rft.jtitle=Biochemistry+%28Easton%29&rft.au=Luo%2C+Yang&rft.au=Schofield%2C+Jeremy+A&rft.au=Simon%2C+Matthew+D&rft.au=Slavoff%2C+Sarah+A&rft.date=2020-11-03&rft.issn=1520-4995&rft.eissn=1520-4995&rft.volume=59&rft.issue=43&rft.spage=4176&rft_id=info:doi/10.1021%2Facs.biochem.0c00069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-2960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-2960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-2960&client=summon